//===- HexagonLoopIdiomRecognition.cpp ------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "hexagon-lir" #include "llvm/ADT/APInt.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Triple.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils.h" #include <algorithm> #include <array> #include <cassert> #include <cstdint> #include <cstdlib> #include <deque> #include <functional> #include <iterator> #include <map> #include <set> #include <utility> #include <vector> using namespace llvm; static cl::opt<bool> DisableMemcpyIdiom("disable-memcpy-idiom", cl::Hidden, cl::init(false), cl::desc("Disable generation of memcpy in loop idiom recognition")); static cl::opt<bool> DisableMemmoveIdiom("disable-memmove-idiom", cl::Hidden, cl::init(false), cl::desc("Disable generation of memmove in loop idiom recognition")); static cl::opt<unsigned> RuntimeMemSizeThreshold("runtime-mem-idiom-threshold", cl::Hidden, cl::init(0), cl::desc("Threshold (in bytes) for the runtime " "check guarding the memmove.")); static cl::opt<unsigned> CompileTimeMemSizeThreshold( "compile-time-mem-idiom-threshold", cl::Hidden, cl::init(64), cl::desc("Threshold (in bytes) to perform the transformation, if the " "runtime loop count (mem transfer size) is known at compile-time.")); static cl::opt<bool> OnlyNonNestedMemmove("only-nonnested-memmove-idiom", cl::Hidden, cl::init(true), cl::desc("Only enable generating memmove in non-nested loops")); cl::opt<bool> HexagonVolatileMemcpy("disable-hexagon-volatile-memcpy", cl::Hidden, cl::init(false), cl::desc("Enable Hexagon-specific memcpy for volatile destination.")); static cl::opt<unsigned> SimplifyLimit("hlir-simplify-limit", cl::init(10000), cl::Hidden, cl::desc("Maximum number of simplification steps in HLIR")); static const char *HexagonVolatileMemcpyName = "hexagon_memcpy_forward_vp4cp4n2"; namespace llvm { void initializeHexagonLoopIdiomRecognizePass(PassRegistry&); Pass *createHexagonLoopIdiomPass(); } // end namespace llvm namespace { class HexagonLoopIdiomRecognize : public LoopPass { public: static char ID; explicit HexagonLoopIdiomRecognize() : LoopPass(ID) { initializeHexagonLoopIdiomRecognizePass(*PassRegistry::getPassRegistry()); } StringRef getPassName() const override { return "Recognize Hexagon-specific loop idioms"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired<LoopInfoWrapperPass>(); AU.addRequiredID(LoopSimplifyID); AU.addRequiredID(LCSSAID); AU.addRequired<AAResultsWrapperPass>(); AU.addPreserved<AAResultsWrapperPass>(); AU.addRequired<ScalarEvolutionWrapperPass>(); AU.addRequired<DominatorTreeWrapperPass>(); AU.addRequired<TargetLibraryInfoWrapperPass>(); AU.addPreserved<TargetLibraryInfoWrapperPass>(); } bool runOnLoop(Loop *L, LPPassManager &LPM) override; private: int getSCEVStride(const SCEVAddRecExpr *StoreEv); bool isLegalStore(Loop *CurLoop, StoreInst *SI); void collectStores(Loop *CurLoop, BasicBlock *BB, SmallVectorImpl<StoreInst*> &Stores); bool processCopyingStore(Loop *CurLoop, StoreInst *SI, const SCEV *BECount); bool coverLoop(Loop *L, SmallVectorImpl<Instruction*> &Insts) const; bool runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, const SCEV *BECount, SmallVectorImpl<BasicBlock*> &ExitBlocks); bool runOnCountableLoop(Loop *L); AliasAnalysis *AA; const DataLayout *DL; DominatorTree *DT; LoopInfo *LF; const TargetLibraryInfo *TLI; ScalarEvolution *SE; bool HasMemcpy, HasMemmove; }; struct Simplifier { struct Rule { using FuncType = std::function<Value* (Instruction*, LLVMContext&)>; Rule(StringRef N, FuncType F) : Name(N), Fn(F) {} StringRef Name; // For debugging. FuncType Fn; }; void addRule(StringRef N, const Rule::FuncType &F) { Rules.push_back(Rule(N, F)); } private: struct WorkListType { WorkListType() = default; void push_back(Value* V) { // Do not push back duplicates. if (!S.count(V)) { Q.push_back(V); S.insert(V); } } Value *pop_front_val() { Value *V = Q.front(); Q.pop_front(); S.erase(V); return V; } bool empty() const { return Q.empty(); } private: std::deque<Value*> Q; std::set<Value*> S; }; using ValueSetType = std::set<Value *>; std::vector<Rule> Rules; public: struct Context { using ValueMapType = DenseMap<Value *, Value *>; Value *Root; ValueSetType Used; // The set of all cloned values used by Root. ValueSetType Clones; // The set of all cloned values. LLVMContext &Ctx; Context(Instruction *Exp) : Ctx(Exp->getParent()->getParent()->getContext()) { initialize(Exp); } ~Context() { cleanup(); } void print(raw_ostream &OS, const Value *V) const; Value *materialize(BasicBlock *B, BasicBlock::iterator At); private: friend struct Simplifier; void initialize(Instruction *Exp); void cleanup(); template <typename FuncT> void traverse(Value *V, FuncT F); void record(Value *V); void use(Value *V); void unuse(Value *V); bool equal(const Instruction *I, const Instruction *J) const; Value *find(Value *Tree, Value *Sub) const; Value *subst(Value *Tree, Value *OldV, Value *NewV); void replace(Value *OldV, Value *NewV); void link(Instruction *I, BasicBlock *B, BasicBlock::iterator At); }; Value *simplify(Context &C); }; struct PE { PE(const Simplifier::Context &c, Value *v = nullptr) : C(c), V(v) {} const Simplifier::Context &C; const Value *V; }; LLVM_ATTRIBUTE_USED raw_ostream &operator<<(raw_ostream &OS, const PE &P) { P.C.print(OS, P.V ? P.V : P.C.Root); return OS; } } // end anonymous namespace char HexagonLoopIdiomRecognize::ID = 0; INITIALIZE_PASS_BEGIN(HexagonLoopIdiomRecognize, "hexagon-loop-idiom", "Recognize Hexagon-specific loop idioms", false, false) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_END(HexagonLoopIdiomRecognize, "hexagon-loop-idiom", "Recognize Hexagon-specific loop idioms", false, false) template <typename FuncT> void Simplifier::Context::traverse(Value *V, FuncT F) { WorkListType Q; Q.push_back(V); while (!Q.empty()) { Instruction *U = dyn_cast<Instruction>(Q.pop_front_val()); if (!U || U->getParent()) continue; if (!F(U)) continue; for (Value *Op : U->operands()) Q.push_back(Op); } } void Simplifier::Context::print(raw_ostream &OS, const Value *V) const { const auto *U = dyn_cast<const Instruction>(V); if (!U) { OS << V << '(' << *V << ')'; return; } if (U->getParent()) { OS << U << '('; U->printAsOperand(OS, true); OS << ')'; return; } unsigned N = U->getNumOperands(); if (N != 0) OS << U << '('; OS << U->getOpcodeName(); for (const Value *Op : U->operands()) { OS << ' '; print(OS, Op); } if (N != 0) OS << ')'; } void Simplifier::Context::initialize(Instruction *Exp) { // Perform a deep clone of the expression, set Root to the root // of the clone, and build a map from the cloned values to the // original ones. ValueMapType M; BasicBlock *Block = Exp->getParent(); WorkListType Q; Q.push_back(Exp); while (!Q.empty()) { Value *V = Q.pop_front_val(); if (M.find(V) != M.end()) continue; if (Instruction *U = dyn_cast<Instruction>(V)) { if (isa<PHINode>(U) || U->getParent() != Block) continue; for (Value *Op : U->operands()) Q.push_back(Op); M.insert({U, U->clone()}); } } for (std::pair<Value*,Value*> P : M) { Instruction *U = cast<Instruction>(P.second); for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) { auto F = M.find(U->getOperand(i)); if (F != M.end()) U->setOperand(i, F->second); } } auto R = M.find(Exp); assert(R != M.end()); Root = R->second; record(Root); use(Root); } void Simplifier::Context::record(Value *V) { auto Record = [this](Instruction *U) -> bool { Clones.insert(U); return true; }; traverse(V, Record); } void Simplifier::Context::use(Value *V) { auto Use = [this](Instruction *U) -> bool { Used.insert(U); return true; }; traverse(V, Use); } void Simplifier::Context::unuse(Value *V) { if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != nullptr) return; auto Unuse = [this](Instruction *U) -> bool { if (!U->use_empty()) return false; Used.erase(U); return true; }; traverse(V, Unuse); } Value *Simplifier::Context::subst(Value *Tree, Value *OldV, Value *NewV) { if (Tree == OldV) return NewV; if (OldV == NewV) return Tree; WorkListType Q; Q.push_back(Tree); while (!Q.empty()) { Instruction *U = dyn_cast<Instruction>(Q.pop_front_val()); // If U is not an instruction, or it's not a clone, skip it. if (!U || U->getParent()) continue; for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) { Value *Op = U->getOperand(i); if (Op == OldV) { U->setOperand(i, NewV); unuse(OldV); } else { Q.push_back(Op); } } } return Tree; } void Simplifier::Context::replace(Value *OldV, Value *NewV) { if (Root == OldV) { Root = NewV; use(Root); return; } // NewV may be a complex tree that has just been created by one of the // transformation rules. We need to make sure that it is commoned with // the existing Root to the maximum extent possible. // Identify all subtrees of NewV (including NewV itself) that have // equivalent counterparts in Root, and replace those subtrees with // these counterparts. WorkListType Q; Q.push_back(NewV); while (!Q.empty()) { Value *V = Q.pop_front_val(); Instruction *U = dyn_cast<Instruction>(V); if (!U || U->getParent()) continue; if (Value *DupV = find(Root, V)) { if (DupV != V) NewV = subst(NewV, V, DupV); } else { for (Value *Op : U->operands()) Q.push_back(Op); } } // Now, simply replace OldV with NewV in Root. Root = subst(Root, OldV, NewV); use(Root); } void Simplifier::Context::cleanup() { for (Value *V : Clones) { Instruction *U = cast<Instruction>(V); if (!U->getParent()) U->dropAllReferences(); } for (Value *V : Clones) { Instruction *U = cast<Instruction>(V); if (!U->getParent()) U->deleteValue(); } } bool Simplifier::Context::equal(const Instruction *I, const Instruction *J) const { if (I == J) return true; if (!I->isSameOperationAs(J)) return false; if (isa<PHINode>(I)) return I->isIdenticalTo(J); for (unsigned i = 0, n = I->getNumOperands(); i != n; ++i) { Value *OpI = I->getOperand(i), *OpJ = J->getOperand(i); if (OpI == OpJ) continue; auto *InI = dyn_cast<const Instruction>(OpI); auto *InJ = dyn_cast<const Instruction>(OpJ); if (InI && InJ) { if (!equal(InI, InJ)) return false; } else if (InI != InJ || !InI) return false; } return true; } Value *Simplifier::Context::find(Value *Tree, Value *Sub) const { Instruction *SubI = dyn_cast<Instruction>(Sub); WorkListType Q; Q.push_back(Tree); while (!Q.empty()) { Value *V = Q.pop_front_val(); if (V == Sub) return V; Instruction *U = dyn_cast<Instruction>(V); if (!U || U->getParent()) continue; if (SubI && equal(SubI, U)) return U; assert(!isa<PHINode>(U)); for (Value *Op : U->operands()) Q.push_back(Op); } return nullptr; } void Simplifier::Context::link(Instruction *I, BasicBlock *B, BasicBlock::iterator At) { if (I->getParent()) return; for (Value *Op : I->operands()) { if (Instruction *OpI = dyn_cast<Instruction>(Op)) link(OpI, B, At); } B->getInstList().insert(At, I); } Value *Simplifier::Context::materialize(BasicBlock *B, BasicBlock::iterator At) { if (Instruction *RootI = dyn_cast<Instruction>(Root)) link(RootI, B, At); return Root; } Value *Simplifier::simplify(Context &C) { WorkListType Q; Q.push_back(C.Root); unsigned Count = 0; const unsigned Limit = SimplifyLimit; while (!Q.empty()) { if (Count++ >= Limit) break; Instruction *U = dyn_cast<Instruction>(Q.pop_front_val()); if (!U || U->getParent() || !C.Used.count(U)) continue; bool Changed = false; for (Rule &R : Rules) { Value *W = R.Fn(U, C.Ctx); if (!W) continue; Changed = true; C.record(W); C.replace(U, W); Q.push_back(C.Root); break; } if (!Changed) { for (Value *Op : U->operands()) Q.push_back(Op); } } return Count < Limit ? C.Root : nullptr; } //===----------------------------------------------------------------------===// // // Implementation of PolynomialMultiplyRecognize // //===----------------------------------------------------------------------===// namespace { class PolynomialMultiplyRecognize { public: explicit PolynomialMultiplyRecognize(Loop *loop, const DataLayout &dl, const DominatorTree &dt, const TargetLibraryInfo &tli, ScalarEvolution &se) : CurLoop(loop), DL(dl), DT(dt), TLI(tli), SE(se) {} bool recognize(); private: using ValueSeq = SetVector<Value *>; IntegerType *getPmpyType() const { LLVMContext &Ctx = CurLoop->getHeader()->getParent()->getContext(); return IntegerType::get(Ctx, 32); } bool isPromotableTo(Value *V, IntegerType *Ty); void promoteTo(Instruction *In, IntegerType *DestTy, BasicBlock *LoopB); bool promoteTypes(BasicBlock *LoopB, BasicBlock *ExitB); Value *getCountIV(BasicBlock *BB); bool findCycle(Value *Out, Value *In, ValueSeq &Cycle); void classifyCycle(Instruction *DivI, ValueSeq &Cycle, ValueSeq &Early, ValueSeq &Late); bool classifyInst(Instruction *UseI, ValueSeq &Early, ValueSeq &Late); bool commutesWithShift(Instruction *I); bool highBitsAreZero(Value *V, unsigned IterCount); bool keepsHighBitsZero(Value *V, unsigned IterCount); bool isOperandShifted(Instruction *I, Value *Op); bool convertShiftsToLeft(BasicBlock *LoopB, BasicBlock *ExitB, unsigned IterCount); void cleanupLoopBody(BasicBlock *LoopB); struct ParsedValues { ParsedValues() = default; Value *M = nullptr; Value *P = nullptr; Value *Q = nullptr; Value *R = nullptr; Value *X = nullptr; Instruction *Res = nullptr; unsigned IterCount = 0; bool Left = false; bool Inv = false; }; bool matchLeftShift(SelectInst *SelI, Value *CIV, ParsedValues &PV); bool matchRightShift(SelectInst *SelI, ParsedValues &PV); bool scanSelect(SelectInst *SI, BasicBlock *LoopB, BasicBlock *PrehB, Value *CIV, ParsedValues &PV, bool PreScan); unsigned getInverseMxN(unsigned QP); Value *generate(BasicBlock::iterator At, ParsedValues &PV); void setupPreSimplifier(Simplifier &S); void setupPostSimplifier(Simplifier &S); Loop *CurLoop; const DataLayout &DL; const DominatorTree &DT; const TargetLibraryInfo &TLI; ScalarEvolution &SE; }; } // end anonymous namespace Value *PolynomialMultiplyRecognize::getCountIV(BasicBlock *BB) { pred_iterator PI = pred_begin(BB), PE = pred_end(BB); if (std::distance(PI, PE) != 2) return nullptr; BasicBlock *PB = (*PI == BB) ? *std::next(PI) : *PI; for (auto I = BB->begin(), E = BB->end(); I != E && isa<PHINode>(I); ++I) { auto *PN = cast<PHINode>(I); Value *InitV = PN->getIncomingValueForBlock(PB); if (!isa<ConstantInt>(InitV) || !cast<ConstantInt>(InitV)->isZero()) continue; Value *IterV = PN->getIncomingValueForBlock(BB); if (!isa<BinaryOperator>(IterV)) continue; auto *BO = dyn_cast<BinaryOperator>(IterV); if (BO->getOpcode() != Instruction::Add) continue; Value *IncV = nullptr; if (BO->getOperand(0) == PN) IncV = BO->getOperand(1); else if (BO->getOperand(1) == PN) IncV = BO->getOperand(0); if (IncV == nullptr) continue; if (auto *T = dyn_cast<ConstantInt>(IncV)) if (T->getZExtValue() == 1) return PN; } return nullptr; } static void replaceAllUsesOfWithIn(Value *I, Value *J, BasicBlock *BB) { for (auto UI = I->user_begin(), UE = I->user_end(); UI != UE;) { Use &TheUse = UI.getUse(); ++UI; if (auto *II = dyn_cast<Instruction>(TheUse.getUser())) if (BB == II->getParent()) II->replaceUsesOfWith(I, J); } } bool PolynomialMultiplyRecognize::matchLeftShift(SelectInst *SelI, Value *CIV, ParsedValues &PV) { // Match the following: // select (X & (1 << i)) != 0 ? R ^ (Q << i) : R // select (X & (1 << i)) == 0 ? R : R ^ (Q << i) // The condition may also check for equality with the masked value, i.e // select (X & (1 << i)) == (1 << i) ? R ^ (Q << i) : R // select (X & (1 << i)) != (1 << i) ? R : R ^ (Q << i); Value *CondV = SelI->getCondition(); Value *TrueV = SelI->getTrueValue(); Value *FalseV = SelI->getFalseValue(); using namespace PatternMatch; CmpInst::Predicate P; Value *A = nullptr, *B = nullptr, *C = nullptr; if (!match(CondV, m_ICmp(P, m_And(m_Value(A), m_Value(B)), m_Value(C))) && !match(CondV, m_ICmp(P, m_Value(C), m_And(m_Value(A), m_Value(B))))) return false; if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE) return false; // Matched: select (A & B) == C ? ... : ... // select (A & B) != C ? ... : ... Value *X = nullptr, *Sh1 = nullptr; // Check (A & B) for (X & (1 << i)): if (match(A, m_Shl(m_One(), m_Specific(CIV)))) { Sh1 = A; X = B; } else if (match(B, m_Shl(m_One(), m_Specific(CIV)))) { Sh1 = B; X = A; } else { // TODO: Could also check for an induction variable containing single // bit shifted left by 1 in each iteration. return false; } bool TrueIfZero; // Check C against the possible values for comparison: 0 and (1 << i): if (match(C, m_Zero())) TrueIfZero = (P == CmpInst::ICMP_EQ); else if (C == Sh1) TrueIfZero = (P == CmpInst::ICMP_NE); else return false; // So far, matched: // select (X & (1 << i)) ? ... : ... // including variations of the check against zero/non-zero value. Value *ShouldSameV = nullptr, *ShouldXoredV = nullptr; if (TrueIfZero) { ShouldSameV = TrueV; ShouldXoredV = FalseV; } else { ShouldSameV = FalseV; ShouldXoredV = TrueV; } Value *Q = nullptr, *R = nullptr, *Y = nullptr, *Z = nullptr; Value *T = nullptr; if (match(ShouldXoredV, m_Xor(m_Value(Y), m_Value(Z)))) { // Matched: select +++ ? ... : Y ^ Z // select +++ ? Y ^ Z : ... // where +++ denotes previously checked matches. if (ShouldSameV == Y) T = Z; else if (ShouldSameV == Z) T = Y; else return false; R = ShouldSameV; // Matched: select +++ ? R : R ^ T // select +++ ? R ^ T : R // depending on TrueIfZero. } else if (match(ShouldSameV, m_Zero())) { // Matched: select +++ ? 0 : ... // select +++ ? ... : 0 if (!SelI->hasOneUse()) return false; T = ShouldXoredV; // Matched: select +++ ? 0 : T // select +++ ? T : 0 Value *U = *SelI->user_begin(); if (!match(U, m_Xor(m_Specific(SelI), m_Value(R))) && !match(U, m_Xor(m_Value(R), m_Specific(SelI)))) return false; // Matched: xor (select +++ ? 0 : T), R // xor (select +++ ? T : 0), R } else return false; // The xor input value T is isolated into its own match so that it could // be checked against an induction variable containing a shifted bit // (todo). // For now, check against (Q << i). if (!match(T, m_Shl(m_Value(Q), m_Specific(CIV))) && !match(T, m_Shl(m_ZExt(m_Value(Q)), m_ZExt(m_Specific(CIV))))) return false; // Matched: select +++ ? R : R ^ (Q << i) // select +++ ? R ^ (Q << i) : R PV.X = X; PV.Q = Q; PV.R = R; PV.Left = true; return true; } bool PolynomialMultiplyRecognize::matchRightShift(SelectInst *SelI, ParsedValues &PV) { // Match the following: // select (X & 1) != 0 ? (R >> 1) ^ Q : (R >> 1) // select (X & 1) == 0 ? (R >> 1) : (R >> 1) ^ Q // The condition may also check for equality with the masked value, i.e // select (X & 1) == 1 ? (R >> 1) ^ Q : (R >> 1) // select (X & 1) != 1 ? (R >> 1) : (R >> 1) ^ Q Value *CondV = SelI->getCondition(); Value *TrueV = SelI->getTrueValue(); Value *FalseV = SelI->getFalseValue(); using namespace PatternMatch; Value *C = nullptr; CmpInst::Predicate P; bool TrueIfZero; if (match(CondV, m_ICmp(P, m_Value(C), m_Zero())) || match(CondV, m_ICmp(P, m_Zero(), m_Value(C)))) { if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE) return false; // Matched: select C == 0 ? ... : ... // select C != 0 ? ... : ... TrueIfZero = (P == CmpInst::ICMP_EQ); } else if (match(CondV, m_ICmp(P, m_Value(C), m_One())) || match(CondV, m_ICmp(P, m_One(), m_Value(C)))) { if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE) return false; // Matched: select C == 1 ? ... : ... // select C != 1 ? ... : ... TrueIfZero = (P == CmpInst::ICMP_NE); } else return false; Value *X = nullptr; if (!match(C, m_And(m_Value(X), m_One())) && !match(C, m_And(m_One(), m_Value(X)))) return false; // Matched: select (X & 1) == +++ ? ... : ... // select (X & 1) != +++ ? ... : ... Value *R = nullptr, *Q = nullptr; if (TrueIfZero) { // The select's condition is true if the tested bit is 0. // TrueV must be the shift, FalseV must be the xor. if (!match(TrueV, m_LShr(m_Value(R), m_One()))) return false; // Matched: select +++ ? (R >> 1) : ... if (!match(FalseV, m_Xor(m_Specific(TrueV), m_Value(Q))) && !match(FalseV, m_Xor(m_Value(Q), m_Specific(TrueV)))) return false; // Matched: select +++ ? (R >> 1) : (R >> 1) ^ Q // with commuting ^. } else { // The select's condition is true if the tested bit is 1. // TrueV must be the xor, FalseV must be the shift. if (!match(FalseV, m_LShr(m_Value(R), m_One()))) return false; // Matched: select +++ ? ... : (R >> 1) if (!match(TrueV, m_Xor(m_Specific(FalseV), m_Value(Q))) && !match(TrueV, m_Xor(m_Value(Q), m_Specific(FalseV)))) return false; // Matched: select +++ ? (R >> 1) ^ Q : (R >> 1) // with commuting ^. } PV.X = X; PV.Q = Q; PV.R = R; PV.Left = false; return true; } bool PolynomialMultiplyRecognize::scanSelect(SelectInst *SelI, BasicBlock *LoopB, BasicBlock *PrehB, Value *CIV, ParsedValues &PV, bool PreScan) { using namespace PatternMatch; // The basic pattern for R = P.Q is: // for i = 0..31 // R = phi (0, R') // if (P & (1 << i)) ; test-bit(P, i) // R' = R ^ (Q << i) // // Similarly, the basic pattern for R = (P/Q).Q - P // for i = 0..31 // R = phi(P, R') // if (R & (1 << i)) // R' = R ^ (Q << i) // There exist idioms, where instead of Q being shifted left, P is shifted // right. This produces a result that is shifted right by 32 bits (the // non-shifted result is 64-bit). // // For R = P.Q, this would be: // for i = 0..31 // R = phi (0, R') // if ((P >> i) & 1) // R' = (R >> 1) ^ Q ; R is cycled through the loop, so it must // else ; be shifted by 1, not i. // R' = R >> 1 // // And for the inverse: // for i = 0..31 // R = phi (P, R') // if (R & 1) // R' = (R >> 1) ^ Q // else // R' = R >> 1 // The left-shifting idioms share the same pattern: // select (X & (1 << i)) ? R ^ (Q << i) : R // Similarly for right-shifting idioms: // select (X & 1) ? (R >> 1) ^ Q if (matchLeftShift(SelI, CIV, PV)) { // If this is a pre-scan, getting this far is sufficient. if (PreScan) return true; // Need to make sure that the SelI goes back into R. auto *RPhi = dyn_cast<PHINode>(PV.R); if (!RPhi) return false; if (SelI != RPhi->getIncomingValueForBlock(LoopB)) return false; PV.Res = SelI; // If X is loop invariant, it must be the input polynomial, and the // idiom is the basic polynomial multiply. if (CurLoop->isLoopInvariant(PV.X)) { PV.P = PV.X; PV.Inv = false; } else { // X is not loop invariant. If X == R, this is the inverse pmpy. // Otherwise, check for an xor with an invariant value. If the // variable argument to the xor is R, then this is still a valid // inverse pmpy. PV.Inv = true; if (PV.X != PV.R) { Value *Var = nullptr, *Inv = nullptr, *X1 = nullptr, *X2 = nullptr; if (!match(PV.X, m_Xor(m_Value(X1), m_Value(X2)))) return false; auto *I1 = dyn_cast<Instruction>(X1); auto *I2 = dyn_cast<Instruction>(X2); if (!I1 || I1->getParent() != LoopB) { Var = X2; Inv = X1; } else if (!I2 || I2->getParent() != LoopB) { Var = X1; Inv = X2; } else return false; if (Var != PV.R) return false; PV.M = Inv; } // The input polynomial P still needs to be determined. It will be // the entry value of R. Value *EntryP = RPhi->getIncomingValueForBlock(PrehB); PV.P = EntryP; } return true; } if (matchRightShift(SelI, PV)) { // If this is an inverse pattern, the Q polynomial must be known at // compile time. if (PV.Inv && !isa<ConstantInt>(PV.Q)) return false; if (PreScan) return true; // There is no exact matching of right-shift pmpy. return false; } return false; } bool PolynomialMultiplyRecognize::isPromotableTo(Value *Val, IntegerType *DestTy) { IntegerType *T = dyn_cast<IntegerType>(Val->getType()); if (!T || T->getBitWidth() > DestTy->getBitWidth()) return false; if (T->getBitWidth() == DestTy->getBitWidth()) return true; // Non-instructions are promotable. The reason why an instruction may not // be promotable is that it may produce a different result if its operands // and the result are promoted, for example, it may produce more non-zero // bits. While it would still be possible to represent the proper result // in a wider type, it may require adding additional instructions (which // we don't want to do). Instruction *In = dyn_cast<Instruction>(Val); if (!In) return true; // The bitwidth of the source type is smaller than the destination. // Check if the individual operation can be promoted. switch (In->getOpcode()) { case Instruction::PHI: case Instruction::ZExt: case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::LShr: // Shift right is ok. case Instruction::Select: case Instruction::Trunc: return true; case Instruction::ICmp: if (CmpInst *CI = cast<CmpInst>(In)) return CI->isEquality() || CI->isUnsigned(); llvm_unreachable("Cast failed unexpectedly"); case Instruction::Add: return In->hasNoSignedWrap() && In->hasNoUnsignedWrap(); } return false; } void PolynomialMultiplyRecognize::promoteTo(Instruction *In, IntegerType *DestTy, BasicBlock *LoopB) { Type *OrigTy = In->getType(); // Leave boolean values alone. if (!In->getType()->isIntegerTy(1)) In->mutateType(DestTy); unsigned DestBW = DestTy->getBitWidth(); // Handle PHIs. if (PHINode *P = dyn_cast<PHINode>(In)) { unsigned N = P->getNumIncomingValues(); for (unsigned i = 0; i != N; ++i) { BasicBlock *InB = P->getIncomingBlock(i); if (InB == LoopB) continue; Value *InV = P->getIncomingValue(i); IntegerType *Ty = cast<IntegerType>(InV->getType()); // Do not promote values in PHI nodes of type i1. if (Ty != P->getType()) { // If the value type does not match the PHI type, the PHI type // must have been promoted. assert(Ty->getBitWidth() < DestBW); InV = IRBuilder<>(InB->getTerminator()).CreateZExt(InV, DestTy); P->setIncomingValue(i, InV); } } } else if (ZExtInst *Z = dyn_cast<ZExtInst>(In)) { Value *Op = Z->getOperand(0); if (Op->getType() == Z->getType()) Z->replaceAllUsesWith(Op); Z->eraseFromParent(); return; } if (TruncInst *T = dyn_cast<TruncInst>(In)) { IntegerType *TruncTy = cast<IntegerType>(OrigTy); Value *Mask = ConstantInt::get(DestTy, (1u << TruncTy->getBitWidth()) - 1); Value *And = IRBuilder<>(In).CreateAnd(T->getOperand(0), Mask); T->replaceAllUsesWith(And); T->eraseFromParent(); return; } // Promote immediates. for (unsigned i = 0, n = In->getNumOperands(); i != n; ++i) { if (ConstantInt *CI = dyn_cast<ConstantInt>(In->getOperand(i))) if (CI->getType()->getBitWidth() < DestBW) In->setOperand(i, ConstantInt::get(DestTy, CI->getZExtValue())); } } bool PolynomialMultiplyRecognize::promoteTypes(BasicBlock *LoopB, BasicBlock *ExitB) { assert(LoopB); // Skip loops where the exit block has more than one predecessor. The values // coming from the loop block will be promoted to another type, and so the // values coming into the exit block from other predecessors would also have // to be promoted. if (!ExitB || (ExitB->getSinglePredecessor() != LoopB)) return false; IntegerType *DestTy = getPmpyType(); // Check if the exit values have types that are no wider than the type // that we want to promote to. unsigned DestBW = DestTy->getBitWidth(); for (PHINode &P : ExitB->phis()) { if (P.getNumIncomingValues() != 1) return false; assert(P.getIncomingBlock(0) == LoopB); IntegerType *T = dyn_cast<IntegerType>(P.getType()); if (!T || T->getBitWidth() > DestBW) return false; } // Check all instructions in the loop. for (Instruction &In : *LoopB) if (!In.isTerminator() && !isPromotableTo(&In, DestTy)) return false; // Perform the promotion. std::vector<Instruction*> LoopIns; std::transform(LoopB->begin(), LoopB->end(), std::back_inserter(LoopIns), [](Instruction &In) { return &In; }); for (Instruction *In : LoopIns) promoteTo(In, DestTy, LoopB); // Fix up the PHI nodes in the exit block. Instruction *EndI = ExitB->getFirstNonPHI(); BasicBlock::iterator End = EndI ? EndI->getIterator() : ExitB->end(); for (auto I = ExitB->begin(); I != End; ++I) { PHINode *P = dyn_cast<PHINode>(I); if (!P) break; Type *Ty0 = P->getIncomingValue(0)->getType(); Type *PTy = P->getType(); if (PTy != Ty0) { assert(Ty0 == DestTy); // In order to create the trunc, P must have the promoted type. P->mutateType(Ty0); Value *T = IRBuilder<>(ExitB, End).CreateTrunc(P, PTy); // In order for the RAUW to work, the types of P and T must match. P->mutateType(PTy); P->replaceAllUsesWith(T); // Final update of the P's type. P->mutateType(Ty0); cast<Instruction>(T)->setOperand(0, P); } } return true; } bool PolynomialMultiplyRecognize::findCycle(Value *Out, Value *In, ValueSeq &Cycle) { // Out = ..., In, ... if (Out == In) return true; auto *BB = cast<Instruction>(Out)->getParent(); bool HadPhi = false; for (auto U : Out->users()) { auto *I = dyn_cast<Instruction>(&*U); if (I == nullptr || I->getParent() != BB) continue; // Make sure that there are no multi-iteration cycles, e.g. // p1 = phi(p2) // p2 = phi(p1) // The cycle p1->p2->p1 would span two loop iterations. // Check that there is only one phi in the cycle. bool IsPhi = isa<PHINode>(I); if (IsPhi && HadPhi) return false; HadPhi |= IsPhi; if (Cycle.count(I)) return false; Cycle.insert(I); if (findCycle(I, In, Cycle)) break; Cycle.remove(I); } return !Cycle.empty(); } void PolynomialMultiplyRecognize::classifyCycle(Instruction *DivI, ValueSeq &Cycle, ValueSeq &Early, ValueSeq &Late) { // All the values in the cycle that are between the phi node and the // divider instruction will be classified as "early", all other values // will be "late". bool IsE = true; unsigned I, N = Cycle.size(); for (I = 0; I < N; ++I) { Value *V = Cycle[I]; if (DivI == V) IsE = false; else if (!isa<PHINode>(V)) continue; // Stop if found either. break; } // "I" is the index of either DivI or the phi node, whichever was first. // "E" is "false" or "true" respectively. ValueSeq &First = !IsE ? Early : Late; for (unsigned J = 0; J < I; ++J) First.insert(Cycle[J]); ValueSeq &Second = IsE ? Early : Late; Second.insert(Cycle[I]); for (++I; I < N; ++I) { Value *V = Cycle[I]; if (DivI == V || isa<PHINode>(V)) break; Second.insert(V); } for (; I < N; ++I) First.insert(Cycle[I]); } bool PolynomialMultiplyRecognize::classifyInst(Instruction *UseI, ValueSeq &Early, ValueSeq &Late) { // Select is an exception, since the condition value does not have to be // classified in the same way as the true/false values. The true/false // values do have to be both early or both late. if (UseI->getOpcode() == Instruction::Select) { Value *TV = UseI->getOperand(1), *FV = UseI->getOperand(2); if (Early.count(TV) || Early.count(FV)) { if (Late.count(TV) || Late.count(FV)) return false; Early.insert(UseI); } else if (Late.count(TV) || Late.count(FV)) { if (Early.count(TV) || Early.count(FV)) return false; Late.insert(UseI); } return true; } // Not sure what would be the example of this, but the code below relies // on having at least one operand. if (UseI->getNumOperands() == 0) return true; bool AE = true, AL = true; for (auto &I : UseI->operands()) { if (Early.count(&*I)) AL = false; else if (Late.count(&*I)) AE = false; } // If the operands appear "all early" and "all late" at the same time, // then it means that none of them are actually classified as either. // This is harmless. if (AE && AL) return true; // Conversely, if they are neither "all early" nor "all late", then // we have a mixture of early and late operands that is not a known // exception. if (!AE && !AL) return false; // Check that we have covered the two special cases. assert(AE != AL); if (AE) Early.insert(UseI); else Late.insert(UseI); return true; } bool PolynomialMultiplyRecognize::commutesWithShift(Instruction *I) { switch (I->getOpcode()) { case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::LShr: case Instruction::Shl: case Instruction::Select: case Instruction::ICmp: case Instruction::PHI: break; default: return false; } return true; } bool PolynomialMultiplyRecognize::highBitsAreZero(Value *V, unsigned IterCount) { auto *T = dyn_cast<IntegerType>(V->getType()); if (!T) return false; KnownBits Known(T->getBitWidth()); computeKnownBits(V, Known, DL); return Known.countMinLeadingZeros() >= IterCount; } bool PolynomialMultiplyRecognize::keepsHighBitsZero(Value *V, unsigned IterCount) { // Assume that all inputs to the value have the high bits zero. // Check if the value itself preserves the zeros in the high bits. if (auto *C = dyn_cast<ConstantInt>(V)) return C->getValue().countLeadingZeros() >= IterCount; if (auto *I = dyn_cast<Instruction>(V)) { switch (I->getOpcode()) { case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::LShr: case Instruction::Select: case Instruction::ICmp: case Instruction::PHI: case Instruction::ZExt: return true; } } return false; } bool PolynomialMultiplyRecognize::isOperandShifted(Instruction *I, Value *Op) { unsigned Opc = I->getOpcode(); if (Opc == Instruction::Shl || Opc == Instruction::LShr) return Op != I->getOperand(1); return true; } bool PolynomialMultiplyRecognize::convertShiftsToLeft(BasicBlock *LoopB, BasicBlock *ExitB, unsigned IterCount) { Value *CIV = getCountIV(LoopB); if (CIV == nullptr) return false; auto *CIVTy = dyn_cast<IntegerType>(CIV->getType()); if (CIVTy == nullptr) return false; ValueSeq RShifts; ValueSeq Early, Late, Cycled; // Find all value cycles that contain logical right shifts by 1. for (Instruction &I : *LoopB) { using namespace PatternMatch; Value *V = nullptr; if (!match(&I, m_LShr(m_Value(V), m_One()))) continue; ValueSeq C; if (!findCycle(&I, V, C)) continue; // Found a cycle. C.insert(&I); classifyCycle(&I, C, Early, Late); Cycled.insert(C.begin(), C.end()); RShifts.insert(&I); } // Find the set of all values affected by the shift cycles, i.e. all // cycled values, and (recursively) all their users. ValueSeq Users(Cycled.begin(), Cycled.end()); for (unsigned i = 0; i < Users.size(); ++i) { Value *V = Users[i]; if (!isa<IntegerType>(V->getType())) return false; auto *R = cast<Instruction>(V); // If the instruction does not commute with shifts, the loop cannot // be unshifted. if (!commutesWithShift(R)) return false; for (auto I = R->user_begin(), E = R->user_end(); I != E; ++I) { auto *T = cast<Instruction>(*I); // Skip users from outside of the loop. They will be handled later. // Also, skip the right-shifts and phi nodes, since they mix early // and late values. if (T->getParent() != LoopB || RShifts.count(T) || isa<PHINode>(T)) continue; Users.insert(T); if (!classifyInst(T, Early, Late)) return false; } } if (Users.empty()) return false; // Verify that high bits remain zero. ValueSeq Internal(Users.begin(), Users.end()); ValueSeq Inputs; for (unsigned i = 0; i < Internal.size(); ++i) { auto *R = dyn_cast<Instruction>(Internal[i]); if (!R) continue; for (Value *Op : R->operands()) { auto *T = dyn_cast<Instruction>(Op); if (T && T->getParent() != LoopB) Inputs.insert(Op); else Internal.insert(Op); } } for (Value *V : Inputs) if (!highBitsAreZero(V, IterCount)) return false; for (Value *V : Internal) if (!keepsHighBitsZero(V, IterCount)) return false; // Finally, the work can be done. Unshift each user. IRBuilder<> IRB(LoopB); std::map<Value*,Value*> ShiftMap; using CastMapType = std::map<std::pair<Value *, Type *>, Value *>; CastMapType CastMap; auto upcast = [] (CastMapType &CM, IRBuilder<> &IRB, Value *V, IntegerType *Ty) -> Value* { auto H = CM.find(std::make_pair(V, Ty)); if (H != CM.end()) return H->second; Value *CV = IRB.CreateIntCast(V, Ty, false); CM.insert(std::make_pair(std::make_pair(V, Ty), CV)); return CV; }; for (auto I = LoopB->begin(), E = LoopB->end(); I != E; ++I) { using namespace PatternMatch; if (isa<PHINode>(I) || !Users.count(&*I)) continue; // Match lshr x, 1. Value *V = nullptr; if (match(&*I, m_LShr(m_Value(V), m_One()))) { replaceAllUsesOfWithIn(&*I, V, LoopB); continue; } // For each non-cycled operand, replace it with the corresponding // value shifted left. for (auto &J : I->operands()) { Value *Op = J.get(); if (!isOperandShifted(&*I, Op)) continue; if (Users.count(Op)) continue; // Skip shifting zeros. if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) continue; // Check if we have already generated a shift for this value. auto F = ShiftMap.find(Op); Value *W = (F != ShiftMap.end()) ? F->second : nullptr; if (W == nullptr) { IRB.SetInsertPoint(&*I); // First, the shift amount will be CIV or CIV+1, depending on // whether the value is early or late. Instead of creating CIV+1, // do a single shift of the value. Value *ShAmt = CIV, *ShVal = Op; auto *VTy = cast<IntegerType>(ShVal->getType()); auto *ATy = cast<IntegerType>(ShAmt->getType()); if (Late.count(&*I)) ShVal = IRB.CreateShl(Op, ConstantInt::get(VTy, 1)); // Second, the types of the shifted value and the shift amount // must match. if (VTy != ATy) { if (VTy->getBitWidth() < ATy->getBitWidth()) ShVal = upcast(CastMap, IRB, ShVal, ATy); else ShAmt = upcast(CastMap, IRB, ShAmt, VTy); } // Ready to generate the shift and memoize it. W = IRB.CreateShl(ShVal, ShAmt); ShiftMap.insert(std::make_pair(Op, W)); } I->replaceUsesOfWith(Op, W); } } // Update the users outside of the loop to account for having left // shifts. They would normally be shifted right in the loop, so shift // them right after the loop exit. // Take advantage of the loop-closed SSA form, which has all the post- // loop values in phi nodes. IRB.SetInsertPoint(ExitB, ExitB->getFirstInsertionPt()); for (auto P = ExitB->begin(), Q = ExitB->end(); P != Q; ++P) { if (!isa<PHINode>(P)) break; auto *PN = cast<PHINode>(P); Value *U = PN->getIncomingValueForBlock(LoopB); if (!Users.count(U)) continue; Value *S = IRB.CreateLShr(PN, ConstantInt::get(PN->getType(), IterCount)); PN->replaceAllUsesWith(S); // The above RAUW will create // S = lshr S, IterCount // so we need to fix it back into // S = lshr PN, IterCount cast<User>(S)->replaceUsesOfWith(S, PN); } return true; } void PolynomialMultiplyRecognize::cleanupLoopBody(BasicBlock *LoopB) { for (auto &I : *LoopB) if (Value *SV = SimplifyInstruction(&I, {DL, &TLI, &DT})) I.replaceAllUsesWith(SV); for (auto I = LoopB->begin(), N = I; I != LoopB->end(); I = N) { N = std::next(I); RecursivelyDeleteTriviallyDeadInstructions(&*I, &TLI); } } unsigned PolynomialMultiplyRecognize::getInverseMxN(unsigned QP) { // Arrays of coefficients of Q and the inverse, C. // Q[i] = coefficient at x^i. std::array<char,32> Q, C; for (unsigned i = 0; i < 32; ++i) { Q[i] = QP & 1; QP >>= 1; } assert(Q[0] == 1); // Find C, such that // (Q[n]*x^n + ... + Q[1]*x + Q[0]) * (C[n]*x^n + ... + C[1]*x + C[0]) = 1 // // For it to have a solution, Q[0] must be 1. Since this is Z2[x], the // operations * and + are & and ^ respectively. // // Find C[i] recursively, by comparing i-th coefficient in the product // with 0 (or 1 for i=0). // // C[0] = 1, since C[0] = Q[0], and Q[0] = 1. C[0] = 1; for (unsigned i = 1; i < 32; ++i) { // Solve for C[i] in: // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i]Q[0] = 0 // This is equivalent to // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i] = 0 // which is // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] = C[i] unsigned T = 0; for (unsigned j = 0; j < i; ++j) T = T ^ (C[j] & Q[i-j]); C[i] = T; } unsigned QV = 0; for (unsigned i = 0; i < 32; ++i) if (C[i]) QV |= (1 << i); return QV; } Value *PolynomialMultiplyRecognize::generate(BasicBlock::iterator At, ParsedValues &PV) { IRBuilder<> B(&*At); Module *M = At->getParent()->getParent()->getParent(); Value *PMF = Intrinsic::getDeclaration(M, Intrinsic::hexagon_M4_pmpyw); Value *P = PV.P, *Q = PV.Q, *P0 = P; unsigned IC = PV.IterCount; if (PV.M != nullptr) P0 = P = B.CreateXor(P, PV.M); // Create a bit mask to clear the high bits beyond IterCount. auto *BMI = ConstantInt::get(P->getType(), APInt::getLowBitsSet(32, IC)); if (PV.IterCount != 32) P = B.CreateAnd(P, BMI); if (PV.Inv) { auto *QI = dyn_cast<ConstantInt>(PV.Q); assert(QI && QI->getBitWidth() <= 32); // Again, clearing bits beyond IterCount. unsigned M = (1 << PV.IterCount) - 1; unsigned Tmp = (QI->getZExtValue() | 1) & M; unsigned QV = getInverseMxN(Tmp) & M; auto *QVI = ConstantInt::get(QI->getType(), QV); P = B.CreateCall(PMF, {P, QVI}); P = B.CreateTrunc(P, QI->getType()); if (IC != 32) P = B.CreateAnd(P, BMI); } Value *R = B.CreateCall(PMF, {P, Q}); if (PV.M != nullptr) R = B.CreateXor(R, B.CreateIntCast(P0, R->getType(), false)); return R; } static bool hasZeroSignBit(const Value *V) { if (const auto *CI = dyn_cast<const ConstantInt>(V)) return (CI->getType()->getSignBit() & CI->getSExtValue()) == 0; const Instruction *I = dyn_cast<const Instruction>(V); if (!I) return false; switch (I->getOpcode()) { case Instruction::LShr: if (const auto SI = dyn_cast<const ConstantInt>(I->getOperand(1))) return SI->getZExtValue() > 0; return false; case Instruction::Or: case Instruction::Xor: return hasZeroSignBit(I->getOperand(0)) && hasZeroSignBit(I->getOperand(1)); case Instruction::And: return hasZeroSignBit(I->getOperand(0)) || hasZeroSignBit(I->getOperand(1)); } return false; } void PolynomialMultiplyRecognize::setupPreSimplifier(Simplifier &S) { S.addRule("sink-zext", // Sink zext past bitwise operations. [](Instruction *I, LLVMContext &Ctx) -> Value* { if (I->getOpcode() != Instruction::ZExt) return nullptr; Instruction *T = dyn_cast<Instruction>(I->getOperand(0)); if (!T) return nullptr; switch (T->getOpcode()) { case Instruction::And: case Instruction::Or: case Instruction::Xor: break; default: return nullptr; } IRBuilder<> B(Ctx); return B.CreateBinOp(cast<BinaryOperator>(T)->getOpcode(), B.CreateZExt(T->getOperand(0), I->getType()), B.CreateZExt(T->getOperand(1), I->getType())); }); S.addRule("xor/and -> and/xor", // (xor (and x a) (and y a)) -> (and (xor x y) a) [](Instruction *I, LLVMContext &Ctx) -> Value* { if (I->getOpcode() != Instruction::Xor) return nullptr; Instruction *And0 = dyn_cast<Instruction>(I->getOperand(0)); Instruction *And1 = dyn_cast<Instruction>(I->getOperand(1)); if (!And0 || !And1) return nullptr; if (And0->getOpcode() != Instruction::And || And1->getOpcode() != Instruction::And) return nullptr; if (And0->getOperand(1) != And1->getOperand(1)) return nullptr; IRBuilder<> B(Ctx); return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1->getOperand(0)), And0->getOperand(1)); }); S.addRule("sink binop into select", // (Op (select c x y) z) -> (select c (Op x z) (Op y z)) // (Op x (select c y z)) -> (select c (Op x y) (Op x z)) [](Instruction *I, LLVMContext &Ctx) -> Value* { BinaryOperator *BO = dyn_cast<BinaryOperator>(I); if (!BO) return nullptr; Instruction::BinaryOps Op = BO->getOpcode(); if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(0))) { IRBuilder<> B(Ctx); Value *X = Sel->getTrueValue(), *Y = Sel->getFalseValue(); Value *Z = BO->getOperand(1); return B.CreateSelect(Sel->getCondition(), B.CreateBinOp(Op, X, Z), B.CreateBinOp(Op, Y, Z)); } if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(1))) { IRBuilder<> B(Ctx); Value *X = BO->getOperand(0); Value *Y = Sel->getTrueValue(), *Z = Sel->getFalseValue(); return B.CreateSelect(Sel->getCondition(), B.CreateBinOp(Op, X, Y), B.CreateBinOp(Op, X, Z)); } return nullptr; }); S.addRule("fold select-select", // (select c (select c x y) z) -> (select c x z) // (select c x (select c y z)) -> (select c x z) [](Instruction *I, LLVMContext &Ctx) -> Value* { SelectInst *Sel = dyn_cast<SelectInst>(I); if (!Sel) return nullptr; IRBuilder<> B(Ctx); Value *C = Sel->getCondition(); if (SelectInst *Sel0 = dyn_cast<SelectInst>(Sel->getTrueValue())) { if (Sel0->getCondition() == C) return B.CreateSelect(C, Sel0->getTrueValue(), Sel->getFalseValue()); } if (SelectInst *Sel1 = dyn_cast<SelectInst>(Sel->getFalseValue())) { if (Sel1->getCondition() == C) return B.CreateSelect(C, Sel->getTrueValue(), Sel1->getFalseValue()); } return nullptr; }); S.addRule("or-signbit -> xor-signbit", // (or (lshr x 1) 0x800.0) -> (xor (lshr x 1) 0x800.0) [](Instruction *I, LLVMContext &Ctx) -> Value* { if (I->getOpcode() != Instruction::Or) return nullptr; ConstantInt *Msb = dyn_cast<ConstantInt>(I->getOperand(1)); if (!Msb || Msb->getZExtValue() != Msb->getType()->getSignBit()) return nullptr; if (!hasZeroSignBit(I->getOperand(0))) return nullptr; return IRBuilder<>(Ctx).CreateXor(I->getOperand(0), Msb); }); S.addRule("sink lshr into binop", // (lshr (BitOp x y) c) -> (BitOp (lshr x c) (lshr y c)) [](Instruction *I, LLVMContext &Ctx) -> Value* { if (I->getOpcode() != Instruction::LShr) return nullptr; BinaryOperator *BitOp = dyn_cast<BinaryOperator>(I->getOperand(0)); if (!BitOp) return nullptr; switch (BitOp->getOpcode()) { case Instruction::And: case Instruction::Or: case Instruction::Xor: break; default: return nullptr; } IRBuilder<> B(Ctx); Value *S = I->getOperand(1); return B.CreateBinOp(BitOp->getOpcode(), B.CreateLShr(BitOp->getOperand(0), S), B.CreateLShr(BitOp->getOperand(1), S)); }); S.addRule("expose bitop-const", // (BitOp1 (BitOp2 x a) b) -> (BitOp2 x (BitOp1 a b)) [](Instruction *I, LLVMContext &Ctx) -> Value* { auto IsBitOp = [](unsigned Op) -> bool { switch (Op) { case Instruction::And: case Instruction::Or: case Instruction::Xor: return true; } return false; }; BinaryOperator *BitOp1 = dyn_cast<BinaryOperator>(I); if (!BitOp1 || !IsBitOp(BitOp1->getOpcode())) return nullptr; BinaryOperator *BitOp2 = dyn_cast<BinaryOperator>(BitOp1->getOperand(0)); if (!BitOp2 || !IsBitOp(BitOp2->getOpcode())) return nullptr; ConstantInt *CA = dyn_cast<ConstantInt>(BitOp2->getOperand(1)); ConstantInt *CB = dyn_cast<ConstantInt>(BitOp1->getOperand(1)); if (!CA || !CB) return nullptr; IRBuilder<> B(Ctx); Value *X = BitOp2->getOperand(0); return B.CreateBinOp(BitOp2->getOpcode(), X, B.CreateBinOp(BitOp1->getOpcode(), CA, CB)); }); } void PolynomialMultiplyRecognize::setupPostSimplifier(Simplifier &S) { S.addRule("(and (xor (and x a) y) b) -> (and (xor x y) b), if b == b&a", [](Instruction *I, LLVMContext &Ctx) -> Value* { if (I->getOpcode() != Instruction::And) return nullptr; Instruction *Xor = dyn_cast<Instruction>(I->getOperand(0)); ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(1)); if (!Xor || !C0) return nullptr; if (Xor->getOpcode() != Instruction::Xor) return nullptr; Instruction *And0 = dyn_cast<Instruction>(Xor->getOperand(0)); Instruction *And1 = dyn_cast<Instruction>(Xor->getOperand(1)); // Pick the first non-null and. if (!And0 || And0->getOpcode() != Instruction::And) std::swap(And0, And1); ConstantInt *C1 = dyn_cast<ConstantInt>(And0->getOperand(1)); if (!C1) return nullptr; uint32_t V0 = C0->getZExtValue(); uint32_t V1 = C1->getZExtValue(); if (V0 != (V0 & V1)) return nullptr; IRBuilder<> B(Ctx); return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1), C0); }); } bool PolynomialMultiplyRecognize::recognize() { LLVM_DEBUG(dbgs() << "Starting PolynomialMultiplyRecognize on loop\n" << *CurLoop << '\n'); // Restrictions: // - The loop must consist of a single block. // - The iteration count must be known at compile-time. // - The loop must have an induction variable starting from 0, and // incremented in each iteration of the loop. BasicBlock *LoopB = CurLoop->getHeader(); LLVM_DEBUG(dbgs() << "Loop header:\n" << *LoopB); if (LoopB != CurLoop->getLoopLatch()) return false; BasicBlock *ExitB = CurLoop->getExitBlock(); if (ExitB == nullptr) return false; BasicBlock *EntryB = CurLoop->getLoopPreheader(); if (EntryB == nullptr) return false; unsigned IterCount = 0; const SCEV *CT = SE.getBackedgeTakenCount(CurLoop); if (isa<SCEVCouldNotCompute>(CT)) return false; if (auto *CV = dyn_cast<SCEVConstant>(CT)) IterCount = CV->getValue()->getZExtValue() + 1; Value *CIV = getCountIV(LoopB); ParsedValues PV; Simplifier PreSimp; PV.IterCount = IterCount; LLVM_DEBUG(dbgs() << "Loop IV: " << *CIV << "\nIterCount: " << IterCount << '\n'); setupPreSimplifier(PreSimp); // Perform a preliminary scan of select instructions to see if any of them // looks like a generator of the polynomial multiply steps. Assume that a // loop can only contain a single transformable operation, so stop the // traversal after the first reasonable candidate was found. // XXX: Currently this approach can modify the loop before being 100% sure // that the transformation can be carried out. bool FoundPreScan = false; auto FeedsPHI = [LoopB](const Value *V) -> bool { for (const Value *U : V->users()) { if (const auto *P = dyn_cast<const PHINode>(U)) if (P->getParent() == LoopB) return true; } return false; }; for (Instruction &In : *LoopB) { SelectInst *SI = dyn_cast<SelectInst>(&In); if (!SI || !FeedsPHI(SI)) continue; Simplifier::Context C(SI); Value *T = PreSimp.simplify(C); SelectInst *SelI = (T && isa<SelectInst>(T)) ? cast<SelectInst>(T) : SI; LLVM_DEBUG(dbgs() << "scanSelect(pre-scan): " << PE(C, SelI) << '\n'); if (scanSelect(SelI, LoopB, EntryB, CIV, PV, true)) { FoundPreScan = true; if (SelI != SI) { Value *NewSel = C.materialize(LoopB, SI->getIterator()); SI->replaceAllUsesWith(NewSel); RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI); } break; } } if (!FoundPreScan) { LLVM_DEBUG(dbgs() << "Have not found candidates for pmpy\n"); return false; } if (!PV.Left) { // The right shift version actually only returns the higher bits of // the result (each iteration discards the LSB). If we want to convert it // to a left-shifting loop, the working data type must be at least as // wide as the target's pmpy instruction. if (!promoteTypes(LoopB, ExitB)) return false; // Run post-promotion simplifications. Simplifier PostSimp; setupPostSimplifier(PostSimp); for (Instruction &In : *LoopB) { SelectInst *SI = dyn_cast<SelectInst>(&In); if (!SI || !FeedsPHI(SI)) continue; Simplifier::Context C(SI); Value *T = PostSimp.simplify(C); SelectInst *SelI = dyn_cast_or_null<SelectInst>(T); if (SelI != SI) { Value *NewSel = C.materialize(LoopB, SI->getIterator()); SI->replaceAllUsesWith(NewSel); RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI); } break; } if (!convertShiftsToLeft(LoopB, ExitB, IterCount)) return false; cleanupLoopBody(LoopB); } // Scan the loop again, find the generating select instruction. bool FoundScan = false; for (Instruction &In : *LoopB) { SelectInst *SelI = dyn_cast<SelectInst>(&In); if (!SelI) continue; LLVM_DEBUG(dbgs() << "scanSelect: " << *SelI << '\n'); FoundScan = scanSelect(SelI, LoopB, EntryB, CIV, PV, false); if (FoundScan) break; } assert(FoundScan); LLVM_DEBUG({ StringRef PP = (PV.M ? "(P+M)" : "P"); if (!PV.Inv) dbgs() << "Found pmpy idiom: R = " << PP << ".Q\n"; else dbgs() << "Found inverse pmpy idiom: R = (" << PP << "/Q).Q) + " << PP << "\n"; dbgs() << " Res:" << *PV.Res << "\n P:" << *PV.P << "\n"; if (PV.M) dbgs() << " M:" << *PV.M << "\n"; dbgs() << " Q:" << *PV.Q << "\n"; dbgs() << " Iteration count:" << PV.IterCount << "\n"; }); BasicBlock::iterator At(EntryB->getTerminator()); Value *PM = generate(At, PV); if (PM == nullptr) return false; if (PM->getType() != PV.Res->getType()) PM = IRBuilder<>(&*At).CreateIntCast(PM, PV.Res->getType(), false); PV.Res->replaceAllUsesWith(PM); PV.Res->eraseFromParent(); return true; } int HexagonLoopIdiomRecognize::getSCEVStride(const SCEVAddRecExpr *S) { if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) return SC->getAPInt().getSExtValue(); return 0; } bool HexagonLoopIdiomRecognize::isLegalStore(Loop *CurLoop, StoreInst *SI) { // Allow volatile stores if HexagonVolatileMemcpy is enabled. if (!(SI->isVolatile() && HexagonVolatileMemcpy) && !SI->isSimple()) return false; Value *StoredVal = SI->getValueOperand(); Value *StorePtr = SI->getPointerOperand(); // Reject stores that are so large that they overflow an unsigned. uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) return false; // See if the pointer expression is an AddRec like {base,+,1} on the current // loop, which indicates a strided store. If we have something else, it's a // random store we can't handle. auto *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) return false; // Check to see if the stride matches the size of the store. If so, then we // know that every byte is touched in the loop. int Stride = getSCEVStride(StoreEv); if (Stride == 0) return false; unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); if (StoreSize != unsigned(std::abs(Stride))) return false; // The store must be feeding a non-volatile load. LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); if (!LI || !LI->isSimple()) return false; // See if the pointer expression is an AddRec like {base,+,1} on the current // loop, which indicates a strided load. If we have something else, it's a // random load we can't handle. Value *LoadPtr = LI->getPointerOperand(); auto *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr)); if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) return false; // The store and load must share the same stride. if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) return false; // Success. This store can be converted into a memcpy. return true; } /// mayLoopAccessLocation - Return true if the specified loop might access the /// specified pointer location, which is a loop-strided access. The 'Access' /// argument specifies what the verboten forms of access are (read or write). static bool mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, const SCEV *BECount, unsigned StoreSize, AliasAnalysis &AA, SmallPtrSetImpl<Instruction *> &Ignored) { // Get the location that may be stored across the loop. Since the access // is strided positively through memory, we say that the modified location // starts at the pointer and has infinite size. LocationSize AccessSize = MemoryLocation::UnknownSize; // If the loop iterates a fixed number of times, we can refine the access // size to be exactly the size of the memset, which is (BECount+1)*StoreSize if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize; // TODO: For this to be really effective, we have to dive into the pointer // operand in the store. Store to &A[i] of 100 will always return may alias // with store of &A[100], we need to StoreLoc to be "A" with size of 100, // which will then no-alias a store to &A[100]. MemoryLocation StoreLoc(Ptr, AccessSize); for (auto *B : L->blocks()) for (auto &I : *B) if (Ignored.count(&I) == 0 && isModOrRefSet( intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access))) return true; return false; } void HexagonLoopIdiomRecognize::collectStores(Loop *CurLoop, BasicBlock *BB, SmallVectorImpl<StoreInst*> &Stores) { Stores.clear(); for (Instruction &I : *BB) if (StoreInst *SI = dyn_cast<StoreInst>(&I)) if (isLegalStore(CurLoop, SI)) Stores.push_back(SI); } bool HexagonLoopIdiomRecognize::processCopyingStore(Loop *CurLoop, StoreInst *SI, const SCEV *BECount) { assert((SI->isSimple() || (SI->isVolatile() && HexagonVolatileMemcpy)) && "Expected only non-volatile stores, or Hexagon-specific memcpy" "to volatile destination."); Value *StorePtr = SI->getPointerOperand(); auto *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); unsigned Stride = getSCEVStride(StoreEv); unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); if (Stride != StoreSize) return false; // See if the pointer expression is an AddRec like {base,+,1} on the current // loop, which indicates a strided load. If we have something else, it's a // random load we can't handle. LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); auto *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); // The trip count of the loop and the base pointer of the addrec SCEV is // guaranteed to be loop invariant, which means that it should dominate the // header. This allows us to insert code for it in the preheader. BasicBlock *Preheader = CurLoop->getLoopPreheader(); Instruction *ExpPt = Preheader->getTerminator(); IRBuilder<> Builder(ExpPt); SCEVExpander Expander(*SE, *DL, "hexagon-loop-idiom"); Type *IntPtrTy = Builder.getIntPtrTy(*DL, SI->getPointerAddressSpace()); // Okay, we have a strided store "p[i]" of a loaded value. We can turn // this into a memcpy/memmove in the loop preheader now if we want. However, // this would be unsafe to do if there is anything else in the loop that may // read or write the memory region we're storing to. For memcpy, this // includes the load that feeds the stores. Check for an alias by generating // the base address and checking everything. Value *StoreBasePtr = Expander.expandCodeFor(StoreEv->getStart(), Builder.getInt8PtrTy(SI->getPointerAddressSpace()), ExpPt); Value *LoadBasePtr = nullptr; bool Overlap = false; bool DestVolatile = SI->isVolatile(); Type *BECountTy = BECount->getType(); if (DestVolatile) { // The trip count must fit in i32, since it is the type of the "num_words" // argument to hexagon_memcpy_forward_vp4cp4n2. if (StoreSize != 4 || DL->getTypeSizeInBits(BECountTy) > 32) { CleanupAndExit: // If we generated new code for the base pointer, clean up. Expander.clear(); if (StoreBasePtr && (LoadBasePtr != StoreBasePtr)) { RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); StoreBasePtr = nullptr; } if (LoadBasePtr) { RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI); LoadBasePtr = nullptr; } return false; } } SmallPtrSet<Instruction*, 2> Ignore1; Ignore1.insert(SI); if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, StoreSize, *AA, Ignore1)) { // Check if the load is the offending instruction. Ignore1.insert(LI); if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, StoreSize, *AA, Ignore1)) { // Still bad. Nothing we can do. goto CleanupAndExit; } // It worked with the load ignored. Overlap = true; } if (!Overlap) { if (DisableMemcpyIdiom || !HasMemcpy) goto CleanupAndExit; } else { // Don't generate memmove if this function will be inlined. This is // because the caller will undergo this transformation after inlining. Function *Func = CurLoop->getHeader()->getParent(); if (Func->hasFnAttribute(Attribute::AlwaysInline)) goto CleanupAndExit; // In case of a memmove, the call to memmove will be executed instead // of the loop, so we need to make sure that there is nothing else in // the loop than the load, store and instructions that these two depend // on. SmallVector<Instruction*,2> Insts; Insts.push_back(SI); Insts.push_back(LI); if (!coverLoop(CurLoop, Insts)) goto CleanupAndExit; if (DisableMemmoveIdiom || !HasMemmove) goto CleanupAndExit; bool IsNested = CurLoop->getParentLoop() != nullptr; if (IsNested && OnlyNonNestedMemmove) goto CleanupAndExit; } // For a memcpy, we have to make sure that the input array is not being // mutated by the loop. LoadBasePtr = Expander.expandCodeFor(LoadEv->getStart(), Builder.getInt8PtrTy(LI->getPointerAddressSpace()), ExpPt); SmallPtrSet<Instruction*, 2> Ignore2; Ignore2.insert(SI); if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, StoreSize, *AA, Ignore2)) goto CleanupAndExit; // Check the stride. bool StridePos = getSCEVStride(LoadEv) >= 0; // Currently, the volatile memcpy only emulates traversing memory forward. if (!StridePos && DestVolatile) goto CleanupAndExit; bool RuntimeCheck = (Overlap || DestVolatile); BasicBlock *ExitB; if (RuntimeCheck) { // The runtime check needs a single exit block. SmallVector<BasicBlock*, 8> ExitBlocks; CurLoop->getUniqueExitBlocks(ExitBlocks); if (ExitBlocks.size() != 1) goto CleanupAndExit; ExitB = ExitBlocks[0]; } // The # stored bytes is (BECount+1)*Size. Expand the trip count out to // pointer size if it isn't already. LLVMContext &Ctx = SI->getContext(); BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy); DebugLoc DLoc = SI->getDebugLoc(); const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW); if (StoreSize != 1) NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize), SCEV::FlagNUW); Value *NumBytes = Expander.expandCodeFor(NumBytesS, IntPtrTy, ExpPt); if (Instruction *In = dyn_cast<Instruction>(NumBytes)) if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT})) NumBytes = Simp; CallInst *NewCall; if (RuntimeCheck) { unsigned Threshold = RuntimeMemSizeThreshold; if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) { uint64_t C = CI->getZExtValue(); if (Threshold != 0 && C < Threshold) goto CleanupAndExit; if (C < CompileTimeMemSizeThreshold) goto CleanupAndExit; } BasicBlock *Header = CurLoop->getHeader(); Function *Func = Header->getParent(); Loop *ParentL = LF->getLoopFor(Preheader); StringRef HeaderName = Header->getName(); // Create a new (empty) preheader, and update the PHI nodes in the // header to use the new preheader. BasicBlock *NewPreheader = BasicBlock::Create(Ctx, HeaderName+".rtli.ph", Func, Header); if (ParentL) ParentL->addBasicBlockToLoop(NewPreheader, *LF); IRBuilder<>(NewPreheader).CreateBr(Header); for (auto &In : *Header) { PHINode *PN = dyn_cast<PHINode>(&In); if (!PN) break; int bx = PN->getBasicBlockIndex(Preheader); if (bx >= 0) PN->setIncomingBlock(bx, NewPreheader); } DT->addNewBlock(NewPreheader, Preheader); DT->changeImmediateDominator(Header, NewPreheader); // Check for safe conditions to execute memmove. // If stride is positive, copying things from higher to lower addresses // is equivalent to memmove. For negative stride, it's the other way // around. Copying forward in memory with positive stride may not be // same as memmove since we may be copying values that we just stored // in some previous iteration. Value *LA = Builder.CreatePtrToInt(LoadBasePtr, IntPtrTy); Value *SA = Builder.CreatePtrToInt(StoreBasePtr, IntPtrTy); Value *LowA = StridePos ? SA : LA; Value *HighA = StridePos ? LA : SA; Value *CmpA = Builder.CreateICmpULT(LowA, HighA); Value *Cond = CmpA; // Check for distance between pointers. Since the case LowA < HighA // is checked for above, assume LowA >= HighA. Value *Dist = Builder.CreateSub(LowA, HighA); Value *CmpD = Builder.CreateICmpSLE(NumBytes, Dist); Value *CmpEither = Builder.CreateOr(Cond, CmpD); Cond = CmpEither; if (Threshold != 0) { Type *Ty = NumBytes->getType(); Value *Thr = ConstantInt::get(Ty, Threshold); Value *CmpB = Builder.CreateICmpULT(Thr, NumBytes); Value *CmpBoth = Builder.CreateAnd(Cond, CmpB); Cond = CmpBoth; } BasicBlock *MemmoveB = BasicBlock::Create(Ctx, Header->getName()+".rtli", Func, NewPreheader); if (ParentL) ParentL->addBasicBlockToLoop(MemmoveB, *LF); Instruction *OldT = Preheader->getTerminator(); Builder.CreateCondBr(Cond, MemmoveB, NewPreheader); OldT->eraseFromParent(); Preheader->setName(Preheader->getName()+".old"); DT->addNewBlock(MemmoveB, Preheader); // Find the new immediate dominator of the exit block. BasicBlock *ExitD = Preheader; for (auto PI = pred_begin(ExitB), PE = pred_end(ExitB); PI != PE; ++PI) { BasicBlock *PB = *PI; ExitD = DT->findNearestCommonDominator(ExitD, PB); if (!ExitD) break; } // If the prior immediate dominator of ExitB was dominated by the // old preheader, then the old preheader becomes the new immediate // dominator. Otherwise don't change anything (because the newly // added blocks are dominated by the old preheader). if (ExitD && DT->dominates(Preheader, ExitD)) { DomTreeNode *BN = DT->getNode(ExitB); DomTreeNode *DN = DT->getNode(ExitD); BN->setIDom(DN); } // Add a call to memmove to the conditional block. IRBuilder<> CondBuilder(MemmoveB); CondBuilder.CreateBr(ExitB); CondBuilder.SetInsertPoint(MemmoveB->getTerminator()); if (DestVolatile) { Type *Int32Ty = Type::getInt32Ty(Ctx); Type *Int32PtrTy = Type::getInt32PtrTy(Ctx); Type *VoidTy = Type::getVoidTy(Ctx); Module *M = Func->getParent(); Constant *CF = M->getOrInsertFunction(HexagonVolatileMemcpyName, VoidTy, Int32PtrTy, Int32PtrTy, Int32Ty); Function *Fn = cast<Function>(CF); Fn->setLinkage(Function::ExternalLinkage); const SCEV *OneS = SE->getConstant(Int32Ty, 1); const SCEV *BECount32 = SE->getTruncateOrZeroExtend(BECount, Int32Ty); const SCEV *NumWordsS = SE->getAddExpr(BECount32, OneS, SCEV::FlagNUW); Value *NumWords = Expander.expandCodeFor(NumWordsS, Int32Ty, MemmoveB->getTerminator()); if (Instruction *In = dyn_cast<Instruction>(NumWords)) if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT})) NumWords = Simp; Value *Op0 = (StoreBasePtr->getType() == Int32PtrTy) ? StoreBasePtr : CondBuilder.CreateBitCast(StoreBasePtr, Int32PtrTy); Value *Op1 = (LoadBasePtr->getType() == Int32PtrTy) ? LoadBasePtr : CondBuilder.CreateBitCast(LoadBasePtr, Int32PtrTy); NewCall = CondBuilder.CreateCall(Fn, {Op0, Op1, NumWords}); } else { NewCall = CondBuilder.CreateMemMove(StoreBasePtr, SI->getAlignment(), LoadBasePtr, LI->getAlignment(), NumBytes); } } else { NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(), LoadBasePtr, LI->getAlignment(), NumBytes); // Okay, the memcpy has been formed. Zap the original store and // anything that feeds into it. RecursivelyDeleteTriviallyDeadInstructions(SI, TLI); } NewCall->setDebugLoc(DLoc); LLVM_DEBUG(dbgs() << " Formed " << (Overlap ? "memmove: " : "memcpy: ") << *NewCall << "\n" << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" << " from store ptr=" << *StoreEv << " at: " << *SI << "\n"); return true; } // Check if the instructions in Insts, together with their dependencies // cover the loop in the sense that the loop could be safely eliminated once // the instructions in Insts are removed. bool HexagonLoopIdiomRecognize::coverLoop(Loop *L, SmallVectorImpl<Instruction*> &Insts) const { SmallSet<BasicBlock*,8> LoopBlocks; for (auto *B : L->blocks()) LoopBlocks.insert(B); SetVector<Instruction*> Worklist(Insts.begin(), Insts.end()); // Collect all instructions from the loop that the instructions in Insts // depend on (plus their dependencies, etc.). These instructions will // constitute the expression trees that feed those in Insts, but the trees // will be limited only to instructions contained in the loop. for (unsigned i = 0; i < Worklist.size(); ++i) { Instruction *In = Worklist[i]; for (auto I = In->op_begin(), E = In->op_end(); I != E; ++I) { Instruction *OpI = dyn_cast<Instruction>(I); if (!OpI) continue; BasicBlock *PB = OpI->getParent(); if (!LoopBlocks.count(PB)) continue; Worklist.insert(OpI); } } // Scan all instructions in the loop, if any of them have a user outside // of the loop, or outside of the expressions collected above, then either // the loop has a side-effect visible outside of it, or there are // instructions in it that are not involved in the original set Insts. for (auto *B : L->blocks()) { for (auto &In : *B) { if (isa<BranchInst>(In) || isa<DbgInfoIntrinsic>(In)) continue; if (!Worklist.count(&In) && In.mayHaveSideEffects()) return false; for (const auto &K : In.users()) { Instruction *UseI = dyn_cast<Instruction>(K); if (!UseI) continue; BasicBlock *UseB = UseI->getParent(); if (LF->getLoopFor(UseB) != L) return false; } } } return true; } /// runOnLoopBlock - Process the specified block, which lives in a counted loop /// with the specified backedge count. This block is known to be in the current /// loop and not in any subloops. bool HexagonLoopIdiomRecognize::runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, const SCEV *BECount, SmallVectorImpl<BasicBlock*> &ExitBlocks) { // We can only promote stores in this block if they are unconditionally // executed in the loop. For a block to be unconditionally executed, it has // to dominate all the exit blocks of the loop. Verify this now. auto DominatedByBB = [this,BB] (BasicBlock *EB) -> bool { return DT->dominates(BB, EB); }; if (!std::all_of(ExitBlocks.begin(), ExitBlocks.end(), DominatedByBB)) return false; bool MadeChange = false; // Look for store instructions, which may be optimized to memset/memcpy. SmallVector<StoreInst*,8> Stores; collectStores(CurLoop, BB, Stores); // Optimize the store into a memcpy, if it feeds an similarly strided load. for (auto &SI : Stores) MadeChange |= processCopyingStore(CurLoop, SI, BECount); return MadeChange; } bool HexagonLoopIdiomRecognize::runOnCountableLoop(Loop *L) { PolynomialMultiplyRecognize PMR(L, *DL, *DT, *TLI, *SE); if (PMR.recognize()) return true; if (!HasMemcpy && !HasMemmove) return false; const SCEV *BECount = SE->getBackedgeTakenCount(L); assert(!isa<SCEVCouldNotCompute>(BECount) && "runOnCountableLoop() called on a loop without a predictable" "backedge-taken count"); SmallVector<BasicBlock *, 8> ExitBlocks; L->getUniqueExitBlocks(ExitBlocks); bool Changed = false; // Scan all the blocks in the loop that are not in subloops. for (auto *BB : L->getBlocks()) { // Ignore blocks in subloops. if (LF->getLoopFor(BB) != L) continue; Changed |= runOnLoopBlock(L, BB, BECount, ExitBlocks); } return Changed; } bool HexagonLoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) { const Module &M = *L->getHeader()->getParent()->getParent(); if (Triple(M.getTargetTriple()).getArch() != Triple::hexagon) return false; if (skipLoop(L)) return false; // If the loop could not be converted to canonical form, it must have an // indirectbr in it, just give up. if (!L->getLoopPreheader()) return false; // Disable loop idiom recognition if the function's name is a common idiom. StringRef Name = L->getHeader()->getParent()->getName(); if (Name == "memset" || Name == "memcpy" || Name == "memmove") return false; AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); DL = &L->getHeader()->getModule()->getDataLayout(); DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); LF = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); HasMemcpy = TLI->has(LibFunc_memcpy); HasMemmove = TLI->has(LibFunc_memmove); if (SE->hasLoopInvariantBackedgeTakenCount(L)) return runOnCountableLoop(L); return false; } Pass *llvm::createHexagonLoopIdiomPass() { return new HexagonLoopIdiomRecognize(); }