//===- HexagonNewValueJump.cpp - Hexagon Backend New Value Jump -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements NewValueJump pass in Hexagon. // Ideally, we should merge this as a Peephole pass prior to register // allocation, but because we have a spill in between the feeder and new value // jump instructions, we are forced to write after register allocation. // Having said that, we should re-attempt to pull this earlier at some point // in future. // The basic approach looks for sequence of predicated jump, compare instruciton // that genereates the predicate and, the feeder to the predicate. Once it finds // all, it collapses compare and jump instruction into a new value jump // intstructions. // //===----------------------------------------------------------------------===// #include "Hexagon.h" #include "HexagonInstrInfo.h" #include "HexagonRegisterInfo.h" #include "HexagonSubtarget.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/DebugLoc.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/Pass.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include <cassert> #include <cstdint> #include <iterator> using namespace llvm; #define DEBUG_TYPE "hexagon-nvj" STATISTIC(NumNVJGenerated, "Number of New Value Jump Instructions created"); static cl::opt<int> DbgNVJCount("nvj-count", cl::init(-1), cl::Hidden, cl::desc("Maximum number of predicated jumps to be converted to " "New Value Jump")); static cl::opt<bool> DisableNewValueJumps("disable-nvjump", cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::desc("Disable New Value Jumps")); namespace llvm { FunctionPass *createHexagonNewValueJump(); void initializeHexagonNewValueJumpPass(PassRegistry&); } // end namespace llvm namespace { struct HexagonNewValueJump : public MachineFunctionPass { static char ID; HexagonNewValueJump() : MachineFunctionPass(ID) {} void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired<MachineBranchProbabilityInfo>(); MachineFunctionPass::getAnalysisUsage(AU); } StringRef getPassName() const override { return "Hexagon NewValueJump"; } bool runOnMachineFunction(MachineFunction &Fn) override; MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } private: const HexagonInstrInfo *QII; const HexagonRegisterInfo *QRI; /// A handle to the branch probability pass. const MachineBranchProbabilityInfo *MBPI; bool isNewValueJumpCandidate(const MachineInstr &MI) const; }; } // end anonymous namespace char HexagonNewValueJump::ID = 0; INITIALIZE_PASS_BEGIN(HexagonNewValueJump, "hexagon-nvj", "Hexagon NewValueJump", false, false) INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) INITIALIZE_PASS_END(HexagonNewValueJump, "hexagon-nvj", "Hexagon NewValueJump", false, false) // We have identified this II could be feeder to NVJ, // verify that it can be. static bool canBeFeederToNewValueJump(const HexagonInstrInfo *QII, const TargetRegisterInfo *TRI, MachineBasicBlock::iterator II, MachineBasicBlock::iterator end, MachineBasicBlock::iterator skip, MachineFunction &MF) { // Predicated instruction can not be feeder to NVJ. if (QII->isPredicated(*II)) return false; // Bail out if feederReg is a paired register (double regs in // our case). One would think that we can check to see if a given // register cmpReg1 or cmpReg2 is a sub register of feederReg // using -- if (QRI->isSubRegister(feederReg, cmpReg1) logic // before the callsite of this function // But we can not as it comes in the following fashion. // %d0 = Hexagon_S2_lsr_r_p killed %d0, killed %r2 // %r0 = KILL %r0, implicit killed %d0 // %p0 = CMPEQri killed %r0, 0 // Hence, we need to check if it's a KILL instruction. if (II->getOpcode() == TargetOpcode::KILL) return false; if (II->isImplicitDef()) return false; if (QII->isSolo(*II)) return false; if (QII->isFloat(*II)) return false; // Make sure that the (unique) def operand is a register from IntRegs. bool HadDef = false; for (const MachineOperand &Op : II->operands()) { if (!Op.isReg() || !Op.isDef()) continue; if (HadDef) return false; HadDef = true; if (!Hexagon::IntRegsRegClass.contains(Op.getReg())) return false; } assert(HadDef); // Make sure there is no 'def' or 'use' of any of the uses of // feeder insn between its definition, this MI and jump, jmpInst // skipping compare, cmpInst. // Here's the example. // r21=memub(r22+r24<<#0) // p0 = cmp.eq(r21, #0) // r4=memub(r3+r21<<#0) // if (p0.new) jump:t .LBB29_45 // Without this check, it will be converted into // r4=memub(r3+r21<<#0) // r21=memub(r22+r24<<#0) // p0 = cmp.eq(r21, #0) // if (p0.new) jump:t .LBB29_45 // and result WAR hazards if converted to New Value Jump. for (unsigned i = 0; i < II->getNumOperands(); ++i) { if (II->getOperand(i).isReg() && (II->getOperand(i).isUse() || II->getOperand(i).isDef())) { MachineBasicBlock::iterator localII = II; ++localII; unsigned Reg = II->getOperand(i).getReg(); for (MachineBasicBlock::iterator localBegin = localII; localBegin != end; ++localBegin) { if (localBegin == skip) continue; // Check for Subregisters too. if (localBegin->modifiesRegister(Reg, TRI) || localBegin->readsRegister(Reg, TRI)) return false; } } } return true; } // These are the common checks that need to performed // to determine if // 1. compare instruction can be moved before jump. // 2. feeder to the compare instruction can be moved before jump. static bool commonChecksToProhibitNewValueJump(bool afterRA, MachineBasicBlock::iterator MII) { // If store in path, bail out. if (MII->mayStore()) return false; // if call in path, bail out. if (MII->isCall()) return false; // if NVJ is running prior to RA, do the following checks. if (!afterRA) { // The following Target Opcode instructions are spurious // to new value jump. If they are in the path, bail out. // KILL sets kill flag on the opcode. It also sets up a // single register, out of pair. // %d0 = S2_lsr_r_p killed %d0, killed %r2 // %r0 = KILL %r0, implicit killed %d0 // %p0 = C2_cmpeqi killed %r0, 0 // PHI can be anything after RA. // COPY can remateriaze things in between feeder, compare and nvj. if (MII->getOpcode() == TargetOpcode::KILL || MII->getOpcode() == TargetOpcode::PHI || MII->getOpcode() == TargetOpcode::COPY) return false; // The following pseudo Hexagon instructions sets "use" and "def" // of registers by individual passes in the backend. At this time, // we don't know the scope of usage and definitions of these // instructions. if (MII->getOpcode() == Hexagon::LDriw_pred || MII->getOpcode() == Hexagon::STriw_pred) return false; } return true; } static bool canCompareBeNewValueJump(const HexagonInstrInfo *QII, const TargetRegisterInfo *TRI, MachineBasicBlock::iterator II, unsigned pReg, bool secondReg, bool optLocation, MachineBasicBlock::iterator end, MachineFunction &MF) { MachineInstr &MI = *II; // If the second operand of the compare is an imm, make sure it's in the // range specified by the arch. if (!secondReg) { const MachineOperand &Op2 = MI.getOperand(2); if (!Op2.isImm()) return false; int64_t v = Op2.getImm(); bool Valid = false; switch (MI.getOpcode()) { case Hexagon::C2_cmpeqi: case Hexagon::C4_cmpneqi: case Hexagon::C2_cmpgti: case Hexagon::C4_cmpltei: Valid = (isUInt<5>(v) || v == -1); break; case Hexagon::C2_cmpgtui: case Hexagon::C4_cmplteui: Valid = isUInt<5>(v); break; case Hexagon::S2_tstbit_i: case Hexagon::S4_ntstbit_i: Valid = (v == 0); break; } if (!Valid) return false; } unsigned cmpReg1, cmpOp2 = 0; // cmpOp2 assignment silences compiler warning. cmpReg1 = MI.getOperand(1).getReg(); if (secondReg) { cmpOp2 = MI.getOperand(2).getReg(); // If the same register appears as both operands, we cannot generate a new // value compare. Only one operand may use the .new suffix. if (cmpReg1 == cmpOp2) return false; // Make sure that the second register is not from COPY // at machine code level, we don't need this, but if we decide // to move new value jump prior to RA, we would be needing this. MachineRegisterInfo &MRI = MF.getRegInfo(); if (secondReg && !TargetRegisterInfo::isPhysicalRegister(cmpOp2)) { MachineInstr *def = MRI.getVRegDef(cmpOp2); if (def->getOpcode() == TargetOpcode::COPY) return false; } } // Walk the instructions after the compare (predicate def) to the jump, // and satisfy the following conditions. ++II; for (MachineBasicBlock::iterator localII = II; localII != end; ++localII) { if (localII->isDebugInstr()) continue; // Check 1. // If "common" checks fail, bail out. if (!commonChecksToProhibitNewValueJump(optLocation, localII)) return false; // Check 2. // If there is a def or use of predicate (result of compare), bail out. if (localII->modifiesRegister(pReg, TRI) || localII->readsRegister(pReg, TRI)) return false; // Check 3. // If there is a def of any of the use of the compare (operands of compare), // bail out. // Eg. // p0 = cmp.eq(r2, r0) // r2 = r4 // if (p0.new) jump:t .LBB28_3 if (localII->modifiesRegister(cmpReg1, TRI) || (secondReg && localII->modifiesRegister(cmpOp2, TRI))) return false; } return true; } // Given a compare operator, return a matching New Value Jump compare operator. // Make sure that MI here is included in isNewValueJumpCandidate. static unsigned getNewValueJumpOpcode(MachineInstr *MI, int reg, bool secondRegNewified, MachineBasicBlock *jmpTarget, const MachineBranchProbabilityInfo *MBPI) { bool taken = false; MachineBasicBlock *Src = MI->getParent(); const BranchProbability Prediction = MBPI->getEdgeProbability(Src, jmpTarget); if (Prediction >= BranchProbability(1,2)) taken = true; switch (MI->getOpcode()) { case Hexagon::C2_cmpeq: return taken ? Hexagon::J4_cmpeq_t_jumpnv_t : Hexagon::J4_cmpeq_t_jumpnv_nt; case Hexagon::C2_cmpeqi: if (reg >= 0) return taken ? Hexagon::J4_cmpeqi_t_jumpnv_t : Hexagon::J4_cmpeqi_t_jumpnv_nt; return taken ? Hexagon::J4_cmpeqn1_t_jumpnv_t : Hexagon::J4_cmpeqn1_t_jumpnv_nt; case Hexagon::C4_cmpneqi: if (reg >= 0) return taken ? Hexagon::J4_cmpeqi_f_jumpnv_t : Hexagon::J4_cmpeqi_f_jumpnv_nt; return taken ? Hexagon::J4_cmpeqn1_f_jumpnv_t : Hexagon::J4_cmpeqn1_f_jumpnv_nt; case Hexagon::C2_cmpgt: if (secondRegNewified) return taken ? Hexagon::J4_cmplt_t_jumpnv_t : Hexagon::J4_cmplt_t_jumpnv_nt; return taken ? Hexagon::J4_cmpgt_t_jumpnv_t : Hexagon::J4_cmpgt_t_jumpnv_nt; case Hexagon::C2_cmpgti: if (reg >= 0) return taken ? Hexagon::J4_cmpgti_t_jumpnv_t : Hexagon::J4_cmpgti_t_jumpnv_nt; return taken ? Hexagon::J4_cmpgtn1_t_jumpnv_t : Hexagon::J4_cmpgtn1_t_jumpnv_nt; case Hexagon::C2_cmpgtu: if (secondRegNewified) return taken ? Hexagon::J4_cmpltu_t_jumpnv_t : Hexagon::J4_cmpltu_t_jumpnv_nt; return taken ? Hexagon::J4_cmpgtu_t_jumpnv_t : Hexagon::J4_cmpgtu_t_jumpnv_nt; case Hexagon::C2_cmpgtui: return taken ? Hexagon::J4_cmpgtui_t_jumpnv_t : Hexagon::J4_cmpgtui_t_jumpnv_nt; case Hexagon::C4_cmpneq: return taken ? Hexagon::J4_cmpeq_f_jumpnv_t : Hexagon::J4_cmpeq_f_jumpnv_nt; case Hexagon::C4_cmplte: if (secondRegNewified) return taken ? Hexagon::J4_cmplt_f_jumpnv_t : Hexagon::J4_cmplt_f_jumpnv_nt; return taken ? Hexagon::J4_cmpgt_f_jumpnv_t : Hexagon::J4_cmpgt_f_jumpnv_nt; case Hexagon::C4_cmplteu: if (secondRegNewified) return taken ? Hexagon::J4_cmpltu_f_jumpnv_t : Hexagon::J4_cmpltu_f_jumpnv_nt; return taken ? Hexagon::J4_cmpgtu_f_jumpnv_t : Hexagon::J4_cmpgtu_f_jumpnv_nt; case Hexagon::C4_cmpltei: if (reg >= 0) return taken ? Hexagon::J4_cmpgti_f_jumpnv_t : Hexagon::J4_cmpgti_f_jumpnv_nt; return taken ? Hexagon::J4_cmpgtn1_f_jumpnv_t : Hexagon::J4_cmpgtn1_f_jumpnv_nt; case Hexagon::C4_cmplteui: return taken ? Hexagon::J4_cmpgtui_f_jumpnv_t : Hexagon::J4_cmpgtui_f_jumpnv_nt; default: llvm_unreachable("Could not find matching New Value Jump instruction."); } // return *some value* to avoid compiler warning return 0; } bool HexagonNewValueJump::isNewValueJumpCandidate( const MachineInstr &MI) const { switch (MI.getOpcode()) { case Hexagon::C2_cmpeq: case Hexagon::C2_cmpeqi: case Hexagon::C2_cmpgt: case Hexagon::C2_cmpgti: case Hexagon::C2_cmpgtu: case Hexagon::C2_cmpgtui: case Hexagon::C4_cmpneq: case Hexagon::C4_cmpneqi: case Hexagon::C4_cmplte: case Hexagon::C4_cmplteu: case Hexagon::C4_cmpltei: case Hexagon::C4_cmplteui: return true; default: return false; } } bool HexagonNewValueJump::runOnMachineFunction(MachineFunction &MF) { LLVM_DEBUG(dbgs() << "********** Hexagon New Value Jump **********\n" << "********** Function: " << MF.getName() << "\n"); if (skipFunction(MF.getFunction())) return false; // If we move NewValueJump before register allocation we'll need live variable // analysis here too. QII = static_cast<const HexagonInstrInfo *>(MF.getSubtarget().getInstrInfo()); QRI = static_cast<const HexagonRegisterInfo *>( MF.getSubtarget().getRegisterInfo()); MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); if (DisableNewValueJumps || !MF.getSubtarget<HexagonSubtarget>().useNewValueJumps()) return false; int nvjCount = DbgNVJCount; int nvjGenerated = 0; // Loop through all the bb's of the function for (MachineFunction::iterator MBBb = MF.begin(), MBBe = MF.end(); MBBb != MBBe; ++MBBb) { MachineBasicBlock *MBB = &*MBBb; LLVM_DEBUG(dbgs() << "** dumping bb ** " << MBB->getNumber() << "\n"); LLVM_DEBUG(MBB->dump()); LLVM_DEBUG(dbgs() << "\n" << "********** dumping instr bottom up **********\n"); bool foundJump = false; bool foundCompare = false; bool invertPredicate = false; unsigned predReg = 0; // predicate reg of the jump. unsigned cmpReg1 = 0; int cmpOp2 = 0; MachineBasicBlock::iterator jmpPos; MachineBasicBlock::iterator cmpPos; MachineInstr *cmpInstr = nullptr, *jmpInstr = nullptr; MachineBasicBlock *jmpTarget = nullptr; bool afterRA = false; bool isSecondOpReg = false; bool isSecondOpNewified = false; // Traverse the basic block - bottom up for (MachineBasicBlock::iterator MII = MBB->end(), E = MBB->begin(); MII != E;) { MachineInstr &MI = *--MII; if (MI.isDebugInstr()) { continue; } if ((nvjCount == 0) || (nvjCount > -1 && nvjCount <= nvjGenerated)) break; LLVM_DEBUG(dbgs() << "Instr: "; MI.dump(); dbgs() << "\n"); if (!foundJump && (MI.getOpcode() == Hexagon::J2_jumpt || MI.getOpcode() == Hexagon::J2_jumptpt || MI.getOpcode() == Hexagon::J2_jumpf || MI.getOpcode() == Hexagon::J2_jumpfpt || MI.getOpcode() == Hexagon::J2_jumptnewpt || MI.getOpcode() == Hexagon::J2_jumptnew || MI.getOpcode() == Hexagon::J2_jumpfnewpt || MI.getOpcode() == Hexagon::J2_jumpfnew)) { // This is where you would insert your compare and // instr that feeds compare jmpPos = MII; jmpInstr = &MI; predReg = MI.getOperand(0).getReg(); afterRA = TargetRegisterInfo::isPhysicalRegister(predReg); // If ifconverter had not messed up with the kill flags of the // operands, the following check on the kill flag would suffice. // if(!jmpInstr->getOperand(0).isKill()) break; // This predicate register is live out of BB // this would only work if we can actually use Live // variable analysis on phy regs - but LLVM does not // provide LV analysis on phys regs. //if(LVs.isLiveOut(predReg, *MBB)) break; // Get all the successors of this block - which will always // be 2. Check if the predicate register is live-in in those // successor. If yes, we can not delete the predicate - // I am doing this only because LLVM does not provide LiveOut // at the BB level. bool predLive = false; for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), SIE = MBB->succ_end(); SI != SIE; ++SI) { MachineBasicBlock *succMBB = *SI; if (succMBB->isLiveIn(predReg)) predLive = true; } if (predLive) break; if (!MI.getOperand(1).isMBB()) continue; jmpTarget = MI.getOperand(1).getMBB(); foundJump = true; if (MI.getOpcode() == Hexagon::J2_jumpf || MI.getOpcode() == Hexagon::J2_jumpfnewpt || MI.getOpcode() == Hexagon::J2_jumpfnew) { invertPredicate = true; } continue; } // No new value jump if there is a barrier. A barrier has to be in its // own packet. A barrier has zero operands. We conservatively bail out // here if we see any instruction with zero operands. if (foundJump && MI.getNumOperands() == 0) break; if (foundJump && !foundCompare && MI.getOperand(0).isReg() && MI.getOperand(0).getReg() == predReg) { // Not all compares can be new value compare. Arch Spec: 7.6.1.1 if (isNewValueJumpCandidate(MI)) { assert( (MI.getDesc().isCompare()) && "Only compare instruction can be collapsed into New Value Jump"); isSecondOpReg = MI.getOperand(2).isReg(); if (!canCompareBeNewValueJump(QII, QRI, MII, predReg, isSecondOpReg, afterRA, jmpPos, MF)) break; cmpInstr = &MI; cmpPos = MII; foundCompare = true; // We need cmpReg1 and cmpOp2(imm or reg) while building // new value jump instruction. cmpReg1 = MI.getOperand(1).getReg(); if (isSecondOpReg) cmpOp2 = MI.getOperand(2).getReg(); else cmpOp2 = MI.getOperand(2).getImm(); continue; } } if (foundCompare && foundJump) { // If "common" checks fail, bail out on this BB. if (!commonChecksToProhibitNewValueJump(afterRA, MII)) break; bool foundFeeder = false; MachineBasicBlock::iterator feederPos = MII; if (MI.getOperand(0).isReg() && MI.getOperand(0).isDef() && (MI.getOperand(0).getReg() == cmpReg1 || (isSecondOpReg && MI.getOperand(0).getReg() == (unsigned)cmpOp2))) { unsigned feederReg = MI.getOperand(0).getReg(); // First try to see if we can get the feeder from the first operand // of the compare. If we can not, and if secondOpReg is true // (second operand of the compare is also register), try that one. // TODO: Try to come up with some heuristic to figure out which // feeder would benefit. if (feederReg == cmpReg1) { if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF)) { if (!isSecondOpReg) break; else continue; } else foundFeeder = true; } if (!foundFeeder && isSecondOpReg && feederReg == (unsigned)cmpOp2) if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF)) break; if (isSecondOpReg) { // In case of CMPLT, or CMPLTU, or EQ with the second register // to newify, swap the operands. unsigned COp = cmpInstr->getOpcode(); if ((COp == Hexagon::C2_cmpeq || COp == Hexagon::C4_cmpneq) && (feederReg == (unsigned)cmpOp2)) { unsigned tmp = cmpReg1; cmpReg1 = cmpOp2; cmpOp2 = tmp; } // Now we have swapped the operands, all we need to check is, // if the second operand (after swap) is the feeder. // And if it is, make a note. if (feederReg == (unsigned)cmpOp2) isSecondOpNewified = true; } // Now that we are moving feeder close the jump, // make sure we are respecting the kill values of // the operands of the feeder. auto TransferKills = [jmpPos,cmpPos] (MachineInstr &MI) { for (MachineOperand &MO : MI.operands()) { if (!MO.isReg() || !MO.isUse()) continue; unsigned UseR = MO.getReg(); for (auto I = std::next(MI.getIterator()); I != jmpPos; ++I) { if (I == cmpPos) continue; for (MachineOperand &Op : I->operands()) { if (!Op.isReg() || !Op.isUse() || !Op.isKill()) continue; if (Op.getReg() != UseR) continue; // We found that there is kill of a use register // Set up a kill flag on the register Op.setIsKill(false); MO.setIsKill(true); return; } } } }; TransferKills(*feederPos); TransferKills(*cmpPos); bool MO1IsKill = cmpPos->killsRegister(cmpReg1, QRI); bool MO2IsKill = isSecondOpReg && cmpPos->killsRegister(cmpOp2, QRI); MBB->splice(jmpPos, MI.getParent(), MI); MBB->splice(jmpPos, MI.getParent(), cmpInstr); DebugLoc dl = MI.getDebugLoc(); MachineInstr *NewMI; assert((isNewValueJumpCandidate(*cmpInstr)) && "This compare is not a New Value Jump candidate."); unsigned opc = getNewValueJumpOpcode(cmpInstr, cmpOp2, isSecondOpNewified, jmpTarget, MBPI); if (invertPredicate) opc = QII->getInvertedPredicatedOpcode(opc); if (isSecondOpReg) NewMI = BuildMI(*MBB, jmpPos, dl, QII->get(opc)) .addReg(cmpReg1, getKillRegState(MO1IsKill)) .addReg(cmpOp2, getKillRegState(MO2IsKill)) .addMBB(jmpTarget); else NewMI = BuildMI(*MBB, jmpPos, dl, QII->get(opc)) .addReg(cmpReg1, getKillRegState(MO1IsKill)) .addImm(cmpOp2) .addMBB(jmpTarget); assert(NewMI && "New Value Jump Instruction Not created!"); (void)NewMI; if (cmpInstr->getOperand(0).isReg() && cmpInstr->getOperand(0).isKill()) cmpInstr->getOperand(0).setIsKill(false); if (cmpInstr->getOperand(1).isReg() && cmpInstr->getOperand(1).isKill()) cmpInstr->getOperand(1).setIsKill(false); cmpInstr->eraseFromParent(); jmpInstr->eraseFromParent(); ++nvjGenerated; ++NumNVJGenerated; break; } } } } return true; } FunctionPass *llvm::createHexagonNewValueJump() { return new HexagonNewValueJump(); }