//===---- MipsCCState.cpp - CCState with Mips specific extensions ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "MipsCCState.h" #include "MipsSubtarget.h" #include "llvm/IR/Module.h" using namespace llvm; /// This function returns true if CallSym is a long double emulation routine. static bool isF128SoftLibCall(const char *CallSym) { const char *const LibCalls[] = { "__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2", "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi", "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf", "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2", "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3", "__trunctfdf2", "__trunctfsf2", "__unordtf2", "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl", "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "roundl", "sinl", "sqrtl", "truncl"}; // Check that LibCalls is sorted alphabetically. auto Comp = [](const char *S1, const char *S2) { return strcmp(S1, S2) < 0; }; assert(std::is_sorted(std::begin(LibCalls), std::end(LibCalls), Comp)); return std::binary_search(std::begin(LibCalls), std::end(LibCalls), CallSym, Comp); } /// This function returns true if Ty is fp128, {f128} or i128 which was /// originally a fp128. static bool originalTypeIsF128(const Type *Ty, const char *Func) { if (Ty->isFP128Ty()) return true; if (Ty->isStructTy() && Ty->getStructNumElements() == 1 && Ty->getStructElementType(0)->isFP128Ty()) return true; // If the Ty is i128 and the function being called is a long double emulation // routine, then the original type is f128. return (Func && Ty->isIntegerTy(128) && isF128SoftLibCall(Func)); } /// Return true if the original type was vXfXX. static bool originalEVTTypeIsVectorFloat(EVT Ty) { if (Ty.isVector() && Ty.getVectorElementType().isFloatingPoint()) return true; return false; } /// Return true if the original type was vXfXX / vXfXX. static bool originalTypeIsVectorFloat(const Type * Ty) { if (Ty->isVectorTy() && Ty->isFPOrFPVectorTy()) return true; return false; } MipsCCState::SpecialCallingConvType MipsCCState::getSpecialCallingConvForCallee(const SDNode *Callee, const MipsSubtarget &Subtarget) { MipsCCState::SpecialCallingConvType SpecialCallingConv = NoSpecialCallingConv; if (Subtarget.inMips16HardFloat()) { if (const GlobalAddressSDNode *G = dyn_cast<const GlobalAddressSDNode>(Callee)) { llvm::StringRef Sym = G->getGlobal()->getName(); Function *F = G->getGlobal()->getParent()->getFunction(Sym); if (F && F->hasFnAttribute("__Mips16RetHelper")) { SpecialCallingConv = Mips16RetHelperConv; } } } return SpecialCallingConv; } void MipsCCState::PreAnalyzeCallResultForF128( const SmallVectorImpl<ISD::InputArg> &Ins, const Type *RetTy, const char *Call) { for (unsigned i = 0; i < Ins.size(); ++i) { OriginalArgWasF128.push_back( originalTypeIsF128(RetTy, Call)); OriginalArgWasFloat.push_back(RetTy->isFloatingPointTy()); } } /// Identify lowered values that originated from f128 or float arguments and /// record this for use by RetCC_MipsN. void MipsCCState::PreAnalyzeReturnForF128( const SmallVectorImpl<ISD::OutputArg> &Outs) { const MachineFunction &MF = getMachineFunction(); for (unsigned i = 0; i < Outs.size(); ++i) { OriginalArgWasF128.push_back( originalTypeIsF128(MF.getFunction().getReturnType(), nullptr)); OriginalArgWasFloat.push_back( MF.getFunction().getReturnType()->isFloatingPointTy()); } } /// Identify lower values that originated from vXfXX and record /// this. void MipsCCState::PreAnalyzeCallResultForVectorFloat( const SmallVectorImpl<ISD::InputArg> &Ins, const Type *RetTy) { for (unsigned i = 0; i < Ins.size(); ++i) { OriginalRetWasFloatVector.push_back(originalTypeIsVectorFloat(RetTy)); } } /// Identify lowered values that originated from vXfXX arguments and record /// this. void MipsCCState::PreAnalyzeReturnForVectorFloat( const SmallVectorImpl<ISD::OutputArg> &Outs) { for (unsigned i = 0; i < Outs.size(); ++i) { ISD::OutputArg Out = Outs[i]; OriginalRetWasFloatVector.push_back( originalEVTTypeIsVectorFloat(Out.ArgVT)); } } /// Identify lowered values that originated from f128, float and sret to vXfXX /// arguments and record this. void MipsCCState::PreAnalyzeCallOperands( const SmallVectorImpl<ISD::OutputArg> &Outs, std::vector<TargetLowering::ArgListEntry> &FuncArgs, const char *Func) { for (unsigned i = 0; i < Outs.size(); ++i) { TargetLowering::ArgListEntry FuncArg = FuncArgs[Outs[i].OrigArgIndex]; OriginalArgWasF128.push_back(originalTypeIsF128(FuncArg.Ty, Func)); OriginalArgWasFloat.push_back(FuncArg.Ty->isFloatingPointTy()); OriginalArgWasFloatVector.push_back(FuncArg.Ty->isVectorTy()); CallOperandIsFixed.push_back(Outs[i].IsFixed); } } /// Identify lowered values that originated from f128, float and vXfXX arguments /// and record this. void MipsCCState::PreAnalyzeFormalArgumentsForF128( const SmallVectorImpl<ISD::InputArg> &Ins) { const MachineFunction &MF = getMachineFunction(); for (unsigned i = 0; i < Ins.size(); ++i) { Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); // SRet arguments cannot originate from f128 or {f128} returns so we just // push false. We have to handle this specially since SRet arguments // aren't mapped to an original argument. if (Ins[i].Flags.isSRet()) { OriginalArgWasF128.push_back(false); OriginalArgWasFloat.push_back(false); OriginalArgWasFloatVector.push_back(false); continue; } assert(Ins[i].getOrigArgIndex() < MF.getFunction().arg_size()); std::advance(FuncArg, Ins[i].getOrigArgIndex()); OriginalArgWasF128.push_back( originalTypeIsF128(FuncArg->getType(), nullptr)); OriginalArgWasFloat.push_back(FuncArg->getType()->isFloatingPointTy()); // The MIPS vector ABI exhibits a corner case of sorts or quirk; if the // first argument is actually an SRet pointer to a vector, then the next // argument slot is $a2. OriginalArgWasFloatVector.push_back(FuncArg->getType()->isVectorTy()); } }