//===-- MipsCallingConv.td - Calling Conventions for Mips --*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // This describes the calling conventions for Mips architecture. //===----------------------------------------------------------------------===// /// CCIfSubtarget - Match if the current subtarget has a feature F. class CCIfSubtarget<string F, CCAction A, string Invert = ""> : CCIf<!strconcat(Invert, "static_cast<const MipsSubtarget&>" "(State.getMachineFunction().getSubtarget()).", F), A>; // The inverse of CCIfSubtarget class CCIfSubtargetNot<string F, CCAction A> : CCIfSubtarget<F, A, "!">; /// Match if the original argument (before lowering) was a float. /// For example, this is true for i32's that were lowered from soft-float. class CCIfOrigArgWasNotFloat<CCAction A> : CCIf<"!static_cast<MipsCCState *>(&State)->WasOriginalArgFloat(ValNo)", A>; /// Match if the original argument (before lowering) was a 128-bit float (i.e. /// long double). class CCIfOrigArgWasF128<CCAction A> : CCIf<"static_cast<MipsCCState *>(&State)->WasOriginalArgF128(ValNo)", A>; /// Match if this specific argument is a vararg. /// This is slightly different fro CCIfIsVarArg which matches if any argument is /// a vararg. class CCIfArgIsVarArg<CCAction A> : CCIf<"!static_cast<MipsCCState *>(&State)->IsCallOperandFixed(ValNo)", A>; /// Match if the return was a floating point vector. class CCIfOrigArgWasNotVectorFloat<CCAction A> : CCIf<"!static_cast<MipsCCState *>(&State)" "->WasOriginalRetVectorFloat(ValNo)", A>; /// Match if the special calling conv is the specified value. class CCIfSpecialCallingConv<string CC, CCAction A> : CCIf<"static_cast<MipsCCState *>(&State)->getSpecialCallingConv() == " "MipsCCState::" # CC, A>; // For soft-float, f128 values are returned in A0_64 rather than V1_64. def RetCC_F128SoftFloat : CallingConv<[ CCAssignToReg<[V0_64, A0_64]> ]>; // For hard-float, f128 values are returned as a pair of f64's rather than a // pair of i64's. def RetCC_F128HardFloat : CallingConv<[ CCBitConvertToType<f64>, // Contrary to the ABI documentation, a struct containing a long double is // returned in $f0, and $f1 instead of the usual $f0, and $f2. This is to // match the de facto ABI as implemented by GCC. CCIfInReg<CCAssignToReg<[D0_64, D1_64]>>, CCAssignToReg<[D0_64, D2_64]> ]>; // Handle F128 specially since we can't identify the original type during the // tablegen-erated code. def RetCC_F128 : CallingConv<[ CCIfSubtarget<"useSoftFloat()", CCIfType<[i64], CCDelegateTo<RetCC_F128SoftFloat>>>, CCIfSubtargetNot<"useSoftFloat()", CCIfType<[i64], CCDelegateTo<RetCC_F128HardFloat>>> ]>; //===----------------------------------------------------------------------===// // Mips O32 Calling Convention //===----------------------------------------------------------------------===// def CC_MipsO32 : CallingConv<[ // Promote i8/i16 arguments to i32. CCIfType<[i1, i8, i16], CCPromoteToType<i32>>, // Integer values get stored in stack slots that are 4 bytes in // size and 4-byte aligned. CCIfType<[i32, f32], CCAssignToStack<4, 4>>, // Integer values get stored in stack slots that are 8 bytes in // size and 8-byte aligned. CCIfType<[f64], CCAssignToStack<8, 8>> ]>; // Only the return rules are defined here for O32. The rules for argument // passing are defined in MipsISelLowering.cpp. def RetCC_MipsO32 : CallingConv<[ // Promote i1/i8/i16 return values to i32. CCIfType<[i1, i8, i16], CCPromoteToType<i32>>, // i32 are returned in registers V0, V1, A0, A1, unless the original return // type was a vector of floats. CCIfOrigArgWasNotVectorFloat<CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>>>, // f32 are returned in registers F0, F2 CCIfType<[f32], CCAssignToReg<[F0, F2]>>, // f64 arguments are returned in D0_64 and D2_64 in FP64bit mode or // in D0 and D1 in FP32bit mode. CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCAssignToReg<[D0_64, D2_64]>>>, CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()", CCAssignToReg<[D0, D1]>>> ]>; def CC_MipsO32_FP32 : CustomCallingConv; def CC_MipsO32_FP64 : CustomCallingConv; def CC_MipsO32_FP : CallingConv<[ CCIfSubtargetNot<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP32>>, CCIfSubtarget<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP64>> ]>; //===----------------------------------------------------------------------===// // Mips N32/64 Calling Convention //===----------------------------------------------------------------------===// def CC_MipsN_SoftFloat : CallingConv<[ CCAssignToRegWithShadow<[A0, A1, A2, A3, T0, T1, T2, T3], [D12_64, D13_64, D14_64, D15_64, D16_64, D17_64, D18_64, D19_64]>, CCAssignToStack<4, 8> ]>; def CC_MipsN : CallingConv<[ CCIfType<[i8, i16, i32, i64], CCIfSubtargetNot<"isLittle()", CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>, // All integers (except soft-float integers) are promoted to 64-bit. CCIfType<[i8, i16, i32], CCIfOrigArgWasNotFloat<CCPromoteToType<i64>>>, // The only i32's we have left are soft-float arguments. CCIfSubtarget<"useSoftFloat()", CCIfType<[i32], CCDelegateTo<CC_MipsN_SoftFloat>>>, // Integer arguments are passed in integer registers. CCIfType<[i64], CCAssignToRegWithShadow<[A0_64, A1_64, A2_64, A3_64, T0_64, T1_64, T2_64, T3_64], [D12_64, D13_64, D14_64, D15_64, D16_64, D17_64, D18_64, D19_64]>>, // f32 arguments are passed in single precision FP registers. CCIfType<[f32], CCAssignToRegWithShadow<[F12, F13, F14, F15, F16, F17, F18, F19], [A0_64, A1_64, A2_64, A3_64, T0_64, T1_64, T2_64, T3_64]>>, // f64 arguments are passed in double precision FP registers. CCIfType<[f64], CCAssignToRegWithShadow<[D12_64, D13_64, D14_64, D15_64, D16_64, D17_64, D18_64, D19_64], [A0_64, A1_64, A2_64, A3_64, T0_64, T1_64, T2_64, T3_64]>>, // All stack parameter slots become 64-bit doublewords and are 8-byte aligned. CCIfType<[f32], CCAssignToStack<4, 8>>, CCIfType<[i64, f64], CCAssignToStack<8, 8>> ]>; // N32/64 variable arguments. // All arguments are passed in integer registers. def CC_MipsN_VarArg : CallingConv<[ CCIfType<[i8, i16, i32, i64], CCIfSubtargetNot<"isLittle()", CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>, // All integers are promoted to 64-bit. CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, CCIfType<[f32], CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3]>>, CCIfType<[i64, f64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64, T0_64, T1_64, T2_64, T3_64]>>, // All stack parameter slots become 64-bit doublewords and are 8-byte aligned. CCIfType<[f32], CCAssignToStack<4, 8>>, CCIfType<[i64, f64], CCAssignToStack<8, 8>> ]>; def RetCC_MipsN : CallingConv<[ // f128 needs to be handled similarly to f32 and f64. However, f128 is not // legal and is lowered to i128 which is further lowered to a pair of i64's. // This presents us with a problem for the calling convention since hard-float // still needs to pass them in FPU registers, and soft-float needs to use $v0, // and $a0 instead of the usual $v0, and $v1. We therefore resort to a // pre-analyze (see PreAnalyzeReturnForF128()) step to pass information on // whether the result was originally an f128 into the tablegen-erated code. // // f128 should only occur for the N64 ABI where long double is 128-bit. On // N32, long double is equivalent to double. CCIfType<[i64], CCIfOrigArgWasF128<CCDelegateTo<RetCC_F128>>>, // Aggregate returns are positioned at the lowest address in the slot for // both little and big-endian targets. When passing in registers, this // requires that big-endian targets shift the value into the upper bits. CCIfSubtarget<"isLittle()", CCIfType<[i8, i16, i32, i64], CCIfInReg<CCPromoteToType<i64>>>>, CCIfSubtargetNot<"isLittle()", CCIfType<[i8, i16, i32, i64], CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>, // i64 are returned in registers V0_64, V1_64 CCIfType<[i64], CCAssignToReg<[V0_64, V1_64]>>, // f32 are returned in registers F0, F2 CCIfType<[f32], CCAssignToReg<[F0, F2]>>, // f64 are returned in registers D0, D2 CCIfType<[f64], CCAssignToReg<[D0_64, D2_64]>> ]>; //===----------------------------------------------------------------------===// // Mips FastCC Calling Convention //===----------------------------------------------------------------------===// def CC_MipsO32_FastCC : CallingConv<[ // f64 arguments are passed in double-precision floating pointer registers. CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()", CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7, D8, D9]>>>, CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"useOddSPReg()", CCAssignToReg<[D0_64, D1_64, D2_64, D3_64, D4_64, D5_64, D6_64, D7_64, D8_64, D9_64, D10_64, D11_64, D12_64, D13_64, D14_64, D15_64, D16_64, D17_64, D18_64, D19_64]>>>>, CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"noOddSPReg()", CCAssignToReg<[D0_64, D2_64, D4_64, D6_64, D8_64, D10_64, D12_64, D14_64, D16_64, D18_64]>>>>, // Stack parameter slots for f64 are 64-bit doublewords and 8-byte aligned. CCIfType<[f64], CCAssignToStack<8, 8>> ]>; def CC_MipsN_FastCC : CallingConv<[ // Integer arguments are passed in integer registers. CCIfType<[i64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64, T0_64, T1_64, T2_64, T3_64, T4_64, T5_64, T6_64, T7_64, T8_64, V1_64]>>, // f64 arguments are passed in double-precision floating pointer registers. CCIfType<[f64], CCAssignToReg<[D0_64, D1_64, D2_64, D3_64, D4_64, D5_64, D6_64, D7_64, D8_64, D9_64, D10_64, D11_64, D12_64, D13_64, D14_64, D15_64, D16_64, D17_64, D18_64, D19_64]>>, // Stack parameter slots for i64 and f64 are 64-bit doublewords and // 8-byte aligned. CCIfType<[i64, f64], CCAssignToStack<8, 8>> ]>; def CC_Mips_FastCC : CallingConv<[ // Handles byval parameters. CCIfByVal<CCPassByVal<4, 4>>, // Promote i8/i16 arguments to i32. CCIfType<[i8, i16], CCPromoteToType<i32>>, // Integer arguments are passed in integer registers. All scratch registers, // except for AT, V0 and T9, are available to be used as argument registers. CCIfType<[i32], CCIfSubtargetNot<"isTargetNaCl()", CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, V1]>>>, // In NaCl, T6, T7 and T8 are reserved and not available as argument // registers for fastcc. T6 contains the mask for sandboxing control flow // (indirect jumps and calls). T7 contains the mask for sandboxing memory // accesses (loads and stores). T8 contains the thread pointer. CCIfType<[i32], CCIfSubtarget<"isTargetNaCl()", CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, V1]>>>, // f32 arguments are passed in single-precision floating pointer registers. CCIfType<[f32], CCIfSubtarget<"useOddSPReg()", CCAssignToReg<[F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17, F18, F19]>>>, // Don't use odd numbered single-precision registers for -mno-odd-spreg. CCIfType<[f32], CCIfSubtarget<"noOddSPReg()", CCAssignToReg<[F0, F2, F4, F6, F8, F10, F12, F14, F16, F18]>>>, // Stack parameter slots for i32 and f32 are 32-bit words and 4-byte aligned. CCIfType<[i32, f32], CCAssignToStack<4, 4>>, CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FastCC>>, CCDelegateTo<CC_MipsN_FastCC> ]>; //===----------------------------------------------------------------------===// // Mips Calling Convention Dispatch //===----------------------------------------------------------------------===// def RetCC_Mips : CallingConv<[ CCIfSubtarget<"isABI_N32()", CCDelegateTo<RetCC_MipsN>>, CCIfSubtarget<"isABI_N64()", CCDelegateTo<RetCC_MipsN>>, CCDelegateTo<RetCC_MipsO32> ]>; def CC_Mips_ByVal : CallingConv<[ CCIfSubtarget<"isABI_O32()", CCIfByVal<CCPassByVal<4, 4>>>, CCIfByVal<CCPassByVal<8, 8>> ]>; def CC_Mips16RetHelper : CallingConv<[ CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>, // Integer arguments are passed in integer registers. CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>> ]>; def CC_Mips_FixedArg : CallingConv<[ // Mips16 needs special handling on some functions. CCIf<"State.getCallingConv() != CallingConv::Fast", CCIfSpecialCallingConv<"Mips16RetHelperConv", CCDelegateTo<CC_Mips16RetHelper>>>, CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>, // f128 needs to be handled similarly to f32 and f64 on hard-float. However, // f128 is not legal and is lowered to i128 which is further lowered to a pair // of i64's. // This presents us with a problem for the calling convention since hard-float // still needs to pass them in FPU registers. We therefore resort to a // pre-analyze (see PreAnalyzeFormalArgsForF128()) step to pass information on // whether the argument was originally an f128 into the tablegen-erated code. // // f128 should only occur for the N64 ABI where long double is 128-bit. On // N32, long double is equivalent to double. CCIfType<[i64], CCIfSubtargetNot<"useSoftFloat()", CCIfOrigArgWasF128<CCBitConvertToType<f64>>>>, CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_Mips_FastCC>>, CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>, CCDelegateTo<CC_MipsN> ]>; def CC_Mips_VarArg : CallingConv<[ CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>, CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>, CCDelegateTo<CC_MipsN_VarArg> ]>; def CC_Mips : CallingConv<[ CCIfVarArg<CCIfArgIsVarArg<CCDelegateTo<CC_Mips_VarArg>>>, CCDelegateTo<CC_Mips_FixedArg> ]>; //===----------------------------------------------------------------------===// // Callee-saved register lists. //===----------------------------------------------------------------------===// def CSR_SingleFloatOnly : CalleeSavedRegs<(add (sequence "F%u", 31, 20), RA, FP, (sequence "S%u", 7, 0))>; def CSR_O32_FPXX : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP, (sequence "S%u", 7, 0))> { let OtherPreserved = (add (decimate (sequence "F%u", 30, 20), 2)); } def CSR_O32 : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP, (sequence "S%u", 7, 0))>; def CSR_O32_FP64 : CalleeSavedRegs<(add (decimate (sequence "D%u_64", 30, 20), 2), RA, FP, (sequence "S%u", 7, 0))>; def CSR_N32 : CalleeSavedRegs<(add D20_64, D22_64, D24_64, D26_64, D28_64, D30_64, RA_64, FP_64, GP_64, (sequence "S%u_64", 7, 0))>; def CSR_N64 : CalleeSavedRegs<(add (sequence "D%u_64", 31, 24), RA_64, FP_64, GP_64, (sequence "S%u_64", 7, 0))>; def CSR_Mips16RetHelper : CalleeSavedRegs<(add V0, V1, FP, (sequence "A%u", 3, 0), (sequence "S%u", 7, 0), (sequence "D%u", 15, 10))>; def CSR_Interrupt_32R6 : CalleeSavedRegs<(add (sequence "A%u", 3, 0), (sequence "S%u", 7, 0), (sequence "V%u", 1, 0), (sequence "T%u", 9, 0), RA, FP, GP, AT)>; def CSR_Interrupt_32 : CalleeSavedRegs<(add (sequence "A%u", 3, 0), (sequence "S%u", 7, 0), (sequence "V%u", 1, 0), (sequence "T%u", 9, 0), RA, FP, GP, AT, LO0, HI0)>; def CSR_Interrupt_64R6 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0), (sequence "V%u_64", 1, 0), (sequence "S%u_64", 7, 0), (sequence "T%u_64", 9, 0), RA_64, FP_64, GP_64, AT_64)>; def CSR_Interrupt_64 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0), (sequence "S%u_64", 7, 0), (sequence "T%u_64", 9, 0), (sequence "V%u_64", 1, 0), RA_64, FP_64, GP_64, AT_64, LO0_64, HI0_64)>;