//===-- PPCInstrAltivec.td - The PowerPC Altivec Extension -*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the Altivec extension to the PowerPC instruction set. // //===----------------------------------------------------------------------===// // *********************************** NOTE *********************************** // ** For POWER8 Little Endian, the VSX swap optimization relies on knowing ** // ** which VMX and VSX instructions are lane-sensitive and which are not. ** // ** A lane-sensitive instruction relies, implicitly or explicitly, on ** // ** whether lanes are numbered from left to right. An instruction like ** // ** VADDFP is not lane-sensitive, because each lane of the result vector ** // ** relies only on the corresponding lane of the source vectors. However, ** // ** an instruction like VMULESB is lane-sensitive, because "even" and ** // ** "odd" lanes are different for big-endian and little-endian numbering. ** // ** ** // ** When adding new VMX and VSX instructions, please consider whether they ** // ** are lane-sensitive. If so, they must be added to a switch statement ** // ** in PPCVSXSwapRemoval::gatherVectorInstructions(). ** // **************************************************************************** //===----------------------------------------------------------------------===// // Altivec transformation functions and pattern fragments. // // Since we canonicalize buildvectors to v16i8, all vnots "-1" operands will be // of that type. def vnot_ppc : PatFrag<(ops node:$in), (xor node:$in, (bitconvert (v16i8 immAllOnesV)))>; def vpkuhum_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVPKUHUMShuffleMask(cast<ShuffleVectorSDNode>(N), 0, *CurDAG); }]>; def vpkuwum_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVPKUWUMShuffleMask(cast<ShuffleVectorSDNode>(N), 0, *CurDAG); }]>; def vpkudum_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVPKUDUMShuffleMask(cast<ShuffleVectorSDNode>(N), 0, *CurDAG); }]>; def vpkuhum_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVPKUHUMShuffleMask(cast<ShuffleVectorSDNode>(N), 1, *CurDAG); }]>; def vpkuwum_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVPKUWUMShuffleMask(cast<ShuffleVectorSDNode>(N), 1, *CurDAG); }]>; def vpkudum_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVPKUDUMShuffleMask(cast<ShuffleVectorSDNode>(N), 1, *CurDAG); }]>; // These fragments are provided for little-endian, where the inputs must be // swapped for correct semantics. def vpkuhum_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVPKUHUMShuffleMask(cast<ShuffleVectorSDNode>(N), 2, *CurDAG); }]>; def vpkuwum_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVPKUWUMShuffleMask(cast<ShuffleVectorSDNode>(N), 2, *CurDAG); }]>; def vpkudum_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVPKUDUMShuffleMask(cast<ShuffleVectorSDNode>(N), 2, *CurDAG); }]>; def vmrglb_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{ return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 0, *CurDAG); }]>; def vmrglh_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{ return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 0, *CurDAG); }]>; def vmrglw_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{ return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 0, *CurDAG); }]>; def vmrghb_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{ return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 0, *CurDAG); }]>; def vmrghh_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{ return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 0, *CurDAG); }]>; def vmrghw_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{ return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 0, *CurDAG); }]>; def vmrglb_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{ return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 1, *CurDAG); }]>; def vmrglh_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 1, *CurDAG); }]>; def vmrglw_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 1, *CurDAG); }]>; def vmrghb_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 1, *CurDAG); }]>; def vmrghh_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 1, *CurDAG); }]>; def vmrghw_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 1, *CurDAG); }]>; // These fragments are provided for little-endian, where the inputs must be // swapped for correct semantics. def vmrglb_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{ return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 2, *CurDAG); }]>; def vmrglh_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 2, *CurDAG); }]>; def vmrglw_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 2, *CurDAG); }]>; def vmrghb_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 2, *CurDAG); }]>; def vmrghh_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 2, *CurDAG); }]>; def vmrghw_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 2, *CurDAG); }]>; def vmrgew_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), true, 0, *CurDAG); }]>; def vmrgow_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), false, 0, *CurDAG); }]>; def vmrgew_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), true, 1, *CurDAG); }]>; def vmrgow_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), false, 1, *CurDAG); }]>; def vmrgew_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), true, 2, *CurDAG); }]>; def vmrgow_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), false, 2, *CurDAG); }]>; def VSLDOI_get_imm : SDNodeXForm<vector_shuffle, [{ return getI32Imm(PPC::isVSLDOIShuffleMask(N, 0, *CurDAG), SDLoc(N)); }]>; def vsldoi_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVSLDOIShuffleMask(N, 0, *CurDAG) != -1; }], VSLDOI_get_imm>; /// VSLDOI_unary* - These are used to match vsldoi(X,X), which is turned into /// vector_shuffle(X,undef,mask) by the dag combiner. def VSLDOI_unary_get_imm : SDNodeXForm<vector_shuffle, [{ return getI32Imm(PPC::isVSLDOIShuffleMask(N, 1, *CurDAG), SDLoc(N)); }]>; def vsldoi_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVSLDOIShuffleMask(N, 1, *CurDAG) != -1; }], VSLDOI_unary_get_imm>; /// VSLDOI_swapped* - These fragments are provided for little-endian, where /// the inputs must be swapped for correct semantics. def VSLDOI_swapped_get_imm : SDNodeXForm<vector_shuffle, [{ return getI32Imm(PPC::isVSLDOIShuffleMask(N, 2, *CurDAG), SDLoc(N)); }]>; def vsldoi_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVSLDOIShuffleMask(N, 2, *CurDAG) != -1; }], VSLDOI_get_imm>; // VSPLT*_get_imm xform function: convert vector_shuffle mask to VSPLT* imm. def VSPLTB_get_imm : SDNodeXForm<vector_shuffle, [{ return getI32Imm(PPC::getVSPLTImmediate(N, 1, *CurDAG), SDLoc(N)); }]>; def vspltb_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isSplatShuffleMask(cast<ShuffleVectorSDNode>(N), 1); }], VSPLTB_get_imm>; def VSPLTH_get_imm : SDNodeXForm<vector_shuffle, [{ return getI32Imm(PPC::getVSPLTImmediate(N, 2, *CurDAG), SDLoc(N)); }]>; def vsplth_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isSplatShuffleMask(cast<ShuffleVectorSDNode>(N), 2); }], VSPLTH_get_imm>; def VSPLTW_get_imm : SDNodeXForm<vector_shuffle, [{ return getI32Imm(PPC::getVSPLTImmediate(N, 4, *CurDAG), SDLoc(N)); }]>; def vspltw_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isSplatShuffleMask(cast<ShuffleVectorSDNode>(N), 4); }], VSPLTW_get_imm>; // VSPLTISB_get_imm xform function: convert build_vector to VSPLTISB imm. def VSPLTISB_get_imm : SDNodeXForm<build_vector, [{ return PPC::get_VSPLTI_elt(N, 1, *CurDAG); }]>; def vecspltisb : PatLeaf<(build_vector), [{ return PPC::get_VSPLTI_elt(N, 1, *CurDAG).getNode() != nullptr; }], VSPLTISB_get_imm>; // VSPLTISH_get_imm xform function: convert build_vector to VSPLTISH imm. def VSPLTISH_get_imm : SDNodeXForm<build_vector, [{ return PPC::get_VSPLTI_elt(N, 2, *CurDAG); }]>; def vecspltish : PatLeaf<(build_vector), [{ return PPC::get_VSPLTI_elt(N, 2, *CurDAG).getNode() != nullptr; }], VSPLTISH_get_imm>; // VSPLTISW_get_imm xform function: convert build_vector to VSPLTISW imm. def VSPLTISW_get_imm : SDNodeXForm<build_vector, [{ return PPC::get_VSPLTI_elt(N, 4, *CurDAG); }]>; def vecspltisw : PatLeaf<(build_vector), [{ return PPC::get_VSPLTI_elt(N, 4, *CurDAG).getNode() != nullptr; }], VSPLTISW_get_imm>; //===----------------------------------------------------------------------===// // Helpers for defining instructions that directly correspond to intrinsics. // VA1a_Int_Ty - A VAForm_1a intrinsic definition of specific type. class VA1a_Int_Ty<bits<6> xo, string opc, Intrinsic IntID, ValueType Ty> : VAForm_1a<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vC), !strconcat(opc, " $vD, $vA, $vB, $vC"), IIC_VecFP, [(set Ty:$vD, (IntID Ty:$vA, Ty:$vB, Ty:$vC))]>; // VA1a_Int_Ty2 - A VAForm_1a intrinsic definition where the type of the // inputs doesn't match the type of the output. class VA1a_Int_Ty2<bits<6> xo, string opc, Intrinsic IntID, ValueType OutTy, ValueType InTy> : VAForm_1a<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vC), !strconcat(opc, " $vD, $vA, $vB, $vC"), IIC_VecFP, [(set OutTy:$vD, (IntID InTy:$vA, InTy:$vB, InTy:$vC))]>; // VA1a_Int_Ty3 - A VAForm_1a intrinsic definition where there are two // input types and an output type. class VA1a_Int_Ty3<bits<6> xo, string opc, Intrinsic IntID, ValueType OutTy, ValueType In1Ty, ValueType In2Ty> : VAForm_1a<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vC), !strconcat(opc, " $vD, $vA, $vB, $vC"), IIC_VecFP, [(set OutTy:$vD, (IntID In1Ty:$vA, In1Ty:$vB, In2Ty:$vC))]>; // VX1_Int_Ty - A VXForm_1 intrinsic definition of specific type. class VX1_Int_Ty<bits<11> xo, string opc, Intrinsic IntID, ValueType Ty> : VXForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), !strconcat(opc, " $vD, $vA, $vB"), IIC_VecFP, [(set Ty:$vD, (IntID Ty:$vA, Ty:$vB))]>; // VX1_Int_Ty2 - A VXForm_1 intrinsic definition where the type of the // inputs doesn't match the type of the output. class VX1_Int_Ty2<bits<11> xo, string opc, Intrinsic IntID, ValueType OutTy, ValueType InTy> : VXForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), !strconcat(opc, " $vD, $vA, $vB"), IIC_VecFP, [(set OutTy:$vD, (IntID InTy:$vA, InTy:$vB))]>; // VX1_Int_Ty3 - A VXForm_1 intrinsic definition where there are two // input types and an output type. class VX1_Int_Ty3<bits<11> xo, string opc, Intrinsic IntID, ValueType OutTy, ValueType In1Ty, ValueType In2Ty> : VXForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), !strconcat(opc, " $vD, $vA, $vB"), IIC_VecFP, [(set OutTy:$vD, (IntID In1Ty:$vA, In2Ty:$vB))]>; // VX2_Int_SP - A VXForm_2 intrinsic definition of vector single-precision type. class VX2_Int_SP<bits<11> xo, string opc, Intrinsic IntID> : VXForm_2<xo, (outs vrrc:$vD), (ins vrrc:$vB), !strconcat(opc, " $vD, $vB"), IIC_VecFP, [(set v4f32:$vD, (IntID v4f32:$vB))]>; // VX2_Int_Ty2 - A VXForm_2 intrinsic definition where the type of the // inputs doesn't match the type of the output. class VX2_Int_Ty2<bits<11> xo, string opc, Intrinsic IntID, ValueType OutTy, ValueType InTy> : VXForm_2<xo, (outs vrrc:$vD), (ins vrrc:$vB), !strconcat(opc, " $vD, $vB"), IIC_VecFP, [(set OutTy:$vD, (IntID InTy:$vB))]>; class VXBX_Int_Ty<bits<11> xo, string opc, Intrinsic IntID, ValueType Ty> : VXForm_BX<xo, (outs vrrc:$vD), (ins vrrc:$vA), !strconcat(opc, " $vD, $vA"), IIC_VecFP, [(set Ty:$vD, (IntID Ty:$vA))]>; class VXCR_Int_Ty<bits<11> xo, string opc, Intrinsic IntID, ValueType Ty> : VXForm_CR<xo, (outs vrrc:$vD), (ins vrrc:$vA, u1imm:$ST, u4imm:$SIX), !strconcat(opc, " $vD, $vA, $ST, $SIX"), IIC_VecFP, [(set Ty:$vD, (IntID Ty:$vA, imm:$ST, imm:$SIX))]>; //===----------------------------------------------------------------------===// // Instruction Definitions. def HasAltivec : Predicate<"PPCSubTarget->hasAltivec()">; let Predicates = [HasAltivec] in { def DSS : DSS_Form<0, 822, (outs), (ins u5imm:$STRM), "dss $STRM", IIC_LdStLoad /*FIXME*/, [(int_ppc_altivec_dss imm:$STRM)]>, Deprecated<DeprecatedDST> { let A = 0; let B = 0; } def DSSALL : DSS_Form<1, 822, (outs), (ins), "dssall", IIC_LdStLoad /*FIXME*/, [(int_ppc_altivec_dssall)]>, Deprecated<DeprecatedDST> { let STRM = 0; let A = 0; let B = 0; } def DST : DSS_Form<0, 342, (outs), (ins u5imm:$STRM, gprc:$rA, gprc:$rB), "dst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, [(int_ppc_altivec_dst i32:$rA, i32:$rB, imm:$STRM)]>, Deprecated<DeprecatedDST>; def DSTT : DSS_Form<1, 342, (outs), (ins u5imm:$STRM, gprc:$rA, gprc:$rB), "dstt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, [(int_ppc_altivec_dstt i32:$rA, i32:$rB, imm:$STRM)]>, Deprecated<DeprecatedDST>; def DSTST : DSS_Form<0, 374, (outs), (ins u5imm:$STRM, gprc:$rA, gprc:$rB), "dstst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, [(int_ppc_altivec_dstst i32:$rA, i32:$rB, imm:$STRM)]>, Deprecated<DeprecatedDST>; def DSTSTT : DSS_Form<1, 374, (outs), (ins u5imm:$STRM, gprc:$rA, gprc:$rB), "dststt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, [(int_ppc_altivec_dststt i32:$rA, i32:$rB, imm:$STRM)]>, Deprecated<DeprecatedDST>; let isCodeGenOnly = 1 in { // The very same instructions as above, but formally matching 64bit registers. def DST64 : DSS_Form<0, 342, (outs), (ins u5imm:$STRM, g8rc:$rA, gprc:$rB), "dst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, [(int_ppc_altivec_dst i64:$rA, i32:$rB, imm:$STRM)]>, Deprecated<DeprecatedDST>; def DSTT64 : DSS_Form<1, 342, (outs), (ins u5imm:$STRM, g8rc:$rA, gprc:$rB), "dstt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, [(int_ppc_altivec_dstt i64:$rA, i32:$rB, imm:$STRM)]>, Deprecated<DeprecatedDST>; def DSTST64 : DSS_Form<0, 374, (outs), (ins u5imm:$STRM, g8rc:$rA, gprc:$rB), "dstst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, [(int_ppc_altivec_dstst i64:$rA, i32:$rB, imm:$STRM)]>, Deprecated<DeprecatedDST>; def DSTSTT64 : DSS_Form<1, 374, (outs), (ins u5imm:$STRM, g8rc:$rA, gprc:$rB), "dststt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/, [(int_ppc_altivec_dststt i64:$rA, i32:$rB, imm:$STRM)]>, Deprecated<DeprecatedDST>; } def MFVSCR : VXForm_4<1540, (outs vrrc:$vD), (ins), "mfvscr $vD", IIC_LdStStore, [(set v8i16:$vD, (int_ppc_altivec_mfvscr))]>; def MTVSCR : VXForm_5<1604, (outs), (ins vrrc:$vB), "mtvscr $vB", IIC_LdStLoad, [(int_ppc_altivec_mtvscr v4i32:$vB)]>; let PPC970_Unit = 2, mayLoad = 1, mayStore = 0 in { // Loads. def LVEBX: XForm_1_memOp<31, 7, (outs vrrc:$vD), (ins memrr:$src), "lvebx $vD, $src", IIC_LdStLoad, [(set v16i8:$vD, (int_ppc_altivec_lvebx xoaddr:$src))]>; def LVEHX: XForm_1_memOp<31, 39, (outs vrrc:$vD), (ins memrr:$src), "lvehx $vD, $src", IIC_LdStLoad, [(set v8i16:$vD, (int_ppc_altivec_lvehx xoaddr:$src))]>; def LVEWX: XForm_1_memOp<31, 71, (outs vrrc:$vD), (ins memrr:$src), "lvewx $vD, $src", IIC_LdStLoad, [(set v4i32:$vD, (int_ppc_altivec_lvewx xoaddr:$src))]>; def LVX : XForm_1_memOp<31, 103, (outs vrrc:$vD), (ins memrr:$src), "lvx $vD, $src", IIC_LdStLoad, [(set v4i32:$vD, (int_ppc_altivec_lvx xoaddr:$src))]>; def LVXL : XForm_1_memOp<31, 359, (outs vrrc:$vD), (ins memrr:$src), "lvxl $vD, $src", IIC_LdStLoad, [(set v4i32:$vD, (int_ppc_altivec_lvxl xoaddr:$src))]>; } def LVSL : XForm_1_memOp<31, 6, (outs vrrc:$vD), (ins memrr:$src), "lvsl $vD, $src", IIC_LdStLoad, [(set v16i8:$vD, (int_ppc_altivec_lvsl xoaddr:$src))]>, PPC970_Unit_LSU; def LVSR : XForm_1_memOp<31, 38, (outs vrrc:$vD), (ins memrr:$src), "lvsr $vD, $src", IIC_LdStLoad, [(set v16i8:$vD, (int_ppc_altivec_lvsr xoaddr:$src))]>, PPC970_Unit_LSU; let PPC970_Unit = 2, mayStore = 1, mayLoad = 0 in { // Stores. def STVEBX: XForm_8_memOp<31, 135, (outs), (ins vrrc:$rS, memrr:$dst), "stvebx $rS, $dst", IIC_LdStStore, [(int_ppc_altivec_stvebx v16i8:$rS, xoaddr:$dst)]>; def STVEHX: XForm_8_memOp<31, 167, (outs), (ins vrrc:$rS, memrr:$dst), "stvehx $rS, $dst", IIC_LdStStore, [(int_ppc_altivec_stvehx v8i16:$rS, xoaddr:$dst)]>; def STVEWX: XForm_8_memOp<31, 199, (outs), (ins vrrc:$rS, memrr:$dst), "stvewx $rS, $dst", IIC_LdStStore, [(int_ppc_altivec_stvewx v4i32:$rS, xoaddr:$dst)]>; def STVX : XForm_8_memOp<31, 231, (outs), (ins vrrc:$rS, memrr:$dst), "stvx $rS, $dst", IIC_LdStStore, [(int_ppc_altivec_stvx v4i32:$rS, xoaddr:$dst)]>; def STVXL : XForm_8_memOp<31, 487, (outs), (ins vrrc:$rS, memrr:$dst), "stvxl $rS, $dst", IIC_LdStStore, [(int_ppc_altivec_stvxl v4i32:$rS, xoaddr:$dst)]>; } let PPC970_Unit = 5 in { // VALU Operations. // VA-Form instructions. 3-input AltiVec ops. let isCommutable = 1 in { def VMADDFP : VAForm_1<46, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vC, vrrc:$vB), "vmaddfp $vD, $vA, $vC, $vB", IIC_VecFP, [(set v4f32:$vD, (fma v4f32:$vA, v4f32:$vC, v4f32:$vB))]>; // FIXME: The fma+fneg pattern won't match because fneg is not legal. def VNMSUBFP: VAForm_1<47, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vC, vrrc:$vB), "vnmsubfp $vD, $vA, $vC, $vB", IIC_VecFP, [(set v4f32:$vD, (fneg (fma v4f32:$vA, v4f32:$vC, (fneg v4f32:$vB))))]>; def VMHADDSHS : VA1a_Int_Ty<32, "vmhaddshs", int_ppc_altivec_vmhaddshs, v8i16>; def VMHRADDSHS : VA1a_Int_Ty<33, "vmhraddshs", int_ppc_altivec_vmhraddshs, v8i16>; def VMLADDUHM : VA1a_Int_Ty<34, "vmladduhm", int_ppc_altivec_vmladduhm, v8i16>; } // isCommutable def VPERM : VA1a_Int_Ty3<43, "vperm", int_ppc_altivec_vperm, v4i32, v4i32, v16i8>; def VSEL : VA1a_Int_Ty<42, "vsel", int_ppc_altivec_vsel, v4i32>; // Shuffles. def VSLDOI : VAForm_2<44, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, u4imm:$SH), "vsldoi $vD, $vA, $vB, $SH", IIC_VecFP, [(set v16i8:$vD, (PPCvecshl v16i8:$vA, v16i8:$vB, imm32SExt16:$SH))]>; // VX-Form instructions. AltiVec arithmetic ops. let isCommutable = 1 in { def VADDFP : VXForm_1<10, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vaddfp $vD, $vA, $vB", IIC_VecFP, [(set v4f32:$vD, (fadd v4f32:$vA, v4f32:$vB))]>; def VADDUBM : VXForm_1<0, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vaddubm $vD, $vA, $vB", IIC_VecGeneral, [(set v16i8:$vD, (add v16i8:$vA, v16i8:$vB))]>; def VADDUHM : VXForm_1<64, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vadduhm $vD, $vA, $vB", IIC_VecGeneral, [(set v8i16:$vD, (add v8i16:$vA, v8i16:$vB))]>; def VADDUWM : VXForm_1<128, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vadduwm $vD, $vA, $vB", IIC_VecGeneral, [(set v4i32:$vD, (add v4i32:$vA, v4i32:$vB))]>; def VADDCUW : VX1_Int_Ty<384, "vaddcuw", int_ppc_altivec_vaddcuw, v4i32>; def VADDSBS : VX1_Int_Ty<768, "vaddsbs", int_ppc_altivec_vaddsbs, v16i8>; def VADDSHS : VX1_Int_Ty<832, "vaddshs", int_ppc_altivec_vaddshs, v8i16>; def VADDSWS : VX1_Int_Ty<896, "vaddsws", int_ppc_altivec_vaddsws, v4i32>; def VADDUBS : VX1_Int_Ty<512, "vaddubs", int_ppc_altivec_vaddubs, v16i8>; def VADDUHS : VX1_Int_Ty<576, "vadduhs", int_ppc_altivec_vadduhs, v8i16>; def VADDUWS : VX1_Int_Ty<640, "vadduws", int_ppc_altivec_vadduws, v4i32>; } // isCommutable let isCommutable = 1 in def VAND : VXForm_1<1028, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vand $vD, $vA, $vB", IIC_VecFP, [(set v4i32:$vD, (and v4i32:$vA, v4i32:$vB))]>; def VANDC : VXForm_1<1092, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vandc $vD, $vA, $vB", IIC_VecFP, [(set v4i32:$vD, (and v4i32:$vA, (vnot_ppc v4i32:$vB)))]>; def VCFSX : VXForm_1<842, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB), "vcfsx $vD, $vB, $UIMM", IIC_VecFP, [(set v4f32:$vD, (int_ppc_altivec_vcfsx v4i32:$vB, imm:$UIMM))]>; def VCFUX : VXForm_1<778, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB), "vcfux $vD, $vB, $UIMM", IIC_VecFP, [(set v4f32:$vD, (int_ppc_altivec_vcfux v4i32:$vB, imm:$UIMM))]>; def VCTSXS : VXForm_1<970, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB), "vctsxs $vD, $vB, $UIMM", IIC_VecFP, [(set v4i32:$vD, (int_ppc_altivec_vctsxs v4f32:$vB, imm:$UIMM))]>; def VCTUXS : VXForm_1<906, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB), "vctuxs $vD, $vB, $UIMM", IIC_VecFP, [(set v4i32:$vD, (int_ppc_altivec_vctuxs v4f32:$vB, imm:$UIMM))]>; // Defines with the UIM field set to 0 for floating-point // to integer (fp_to_sint/fp_to_uint) conversions and integer // to floating-point (sint_to_fp/uint_to_fp) conversions. let isCodeGenOnly = 1, VA = 0 in { def VCFSX_0 : VXForm_1<842, (outs vrrc:$vD), (ins vrrc:$vB), "vcfsx $vD, $vB, 0", IIC_VecFP, [(set v4f32:$vD, (int_ppc_altivec_vcfsx v4i32:$vB, 0))]>; def VCTUXS_0 : VXForm_1<906, (outs vrrc:$vD), (ins vrrc:$vB), "vctuxs $vD, $vB, 0", IIC_VecFP, [(set v4i32:$vD, (int_ppc_altivec_vctuxs v4f32:$vB, 0))]>; def VCFUX_0 : VXForm_1<778, (outs vrrc:$vD), (ins vrrc:$vB), "vcfux $vD, $vB, 0", IIC_VecFP, [(set v4f32:$vD, (int_ppc_altivec_vcfux v4i32:$vB, 0))]>; def VCTSXS_0 : VXForm_1<970, (outs vrrc:$vD), (ins vrrc:$vB), "vctsxs $vD, $vB, 0", IIC_VecFP, [(set v4i32:$vD, (int_ppc_altivec_vctsxs v4f32:$vB, 0))]>; } def VEXPTEFP : VX2_Int_SP<394, "vexptefp", int_ppc_altivec_vexptefp>; def VLOGEFP : VX2_Int_SP<458, "vlogefp", int_ppc_altivec_vlogefp>; let isCommutable = 1 in { def VAVGSB : VX1_Int_Ty<1282, "vavgsb", int_ppc_altivec_vavgsb, v16i8>; def VAVGSH : VX1_Int_Ty<1346, "vavgsh", int_ppc_altivec_vavgsh, v8i16>; def VAVGSW : VX1_Int_Ty<1410, "vavgsw", int_ppc_altivec_vavgsw, v4i32>; def VAVGUB : VX1_Int_Ty<1026, "vavgub", int_ppc_altivec_vavgub, v16i8>; def VAVGUH : VX1_Int_Ty<1090, "vavguh", int_ppc_altivec_vavguh, v8i16>; def VAVGUW : VX1_Int_Ty<1154, "vavguw", int_ppc_altivec_vavguw, v4i32>; def VMAXFP : VX1_Int_Ty<1034, "vmaxfp", int_ppc_altivec_vmaxfp, v4f32>; def VMAXSB : VX1_Int_Ty< 258, "vmaxsb", int_ppc_altivec_vmaxsb, v16i8>; def VMAXSH : VX1_Int_Ty< 322, "vmaxsh", int_ppc_altivec_vmaxsh, v8i16>; def VMAXSW : VX1_Int_Ty< 386, "vmaxsw", int_ppc_altivec_vmaxsw, v4i32>; def VMAXUB : VX1_Int_Ty< 2, "vmaxub", int_ppc_altivec_vmaxub, v16i8>; def VMAXUH : VX1_Int_Ty< 66, "vmaxuh", int_ppc_altivec_vmaxuh, v8i16>; def VMAXUW : VX1_Int_Ty< 130, "vmaxuw", int_ppc_altivec_vmaxuw, v4i32>; def VMINFP : VX1_Int_Ty<1098, "vminfp", int_ppc_altivec_vminfp, v4f32>; def VMINSB : VX1_Int_Ty< 770, "vminsb", int_ppc_altivec_vminsb, v16i8>; def VMINSH : VX1_Int_Ty< 834, "vminsh", int_ppc_altivec_vminsh, v8i16>; def VMINSW : VX1_Int_Ty< 898, "vminsw", int_ppc_altivec_vminsw, v4i32>; def VMINUB : VX1_Int_Ty< 514, "vminub", int_ppc_altivec_vminub, v16i8>; def VMINUH : VX1_Int_Ty< 578, "vminuh", int_ppc_altivec_vminuh, v8i16>; def VMINUW : VX1_Int_Ty< 642, "vminuw", int_ppc_altivec_vminuw, v4i32>; } // isCommutable def VMRGHB : VXForm_1< 12, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vmrghb $vD, $vA, $vB", IIC_VecFP, [(set v16i8:$vD, (vmrghb_shuffle v16i8:$vA, v16i8:$vB))]>; def VMRGHH : VXForm_1< 76, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vmrghh $vD, $vA, $vB", IIC_VecFP, [(set v16i8:$vD, (vmrghh_shuffle v16i8:$vA, v16i8:$vB))]>; def VMRGHW : VXForm_1<140, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vmrghw $vD, $vA, $vB", IIC_VecFP, [(set v16i8:$vD, (vmrghw_shuffle v16i8:$vA, v16i8:$vB))]>; def VMRGLB : VXForm_1<268, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vmrglb $vD, $vA, $vB", IIC_VecFP, [(set v16i8:$vD, (vmrglb_shuffle v16i8:$vA, v16i8:$vB))]>; def VMRGLH : VXForm_1<332, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vmrglh $vD, $vA, $vB", IIC_VecFP, [(set v16i8:$vD, (vmrglh_shuffle v16i8:$vA, v16i8:$vB))]>; def VMRGLW : VXForm_1<396, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vmrglw $vD, $vA, $vB", IIC_VecFP, [(set v16i8:$vD, (vmrglw_shuffle v16i8:$vA, v16i8:$vB))]>; def VMSUMMBM : VA1a_Int_Ty3<37, "vmsummbm", int_ppc_altivec_vmsummbm, v4i32, v16i8, v4i32>; def VMSUMSHM : VA1a_Int_Ty3<40, "vmsumshm", int_ppc_altivec_vmsumshm, v4i32, v8i16, v4i32>; def VMSUMSHS : VA1a_Int_Ty3<41, "vmsumshs", int_ppc_altivec_vmsumshs, v4i32, v8i16, v4i32>; def VMSUMUBM : VA1a_Int_Ty3<36, "vmsumubm", int_ppc_altivec_vmsumubm, v4i32, v16i8, v4i32>; def VMSUMUHM : VA1a_Int_Ty3<38, "vmsumuhm", int_ppc_altivec_vmsumuhm, v4i32, v8i16, v4i32>; def VMSUMUHS : VA1a_Int_Ty3<39, "vmsumuhs", int_ppc_altivec_vmsumuhs, v4i32, v8i16, v4i32>; let isCommutable = 1 in { def VMULESB : VX1_Int_Ty2<776, "vmulesb", int_ppc_altivec_vmulesb, v8i16, v16i8>; def VMULESH : VX1_Int_Ty2<840, "vmulesh", int_ppc_altivec_vmulesh, v4i32, v8i16>; def VMULEUB : VX1_Int_Ty2<520, "vmuleub", int_ppc_altivec_vmuleub, v8i16, v16i8>; def VMULEUH : VX1_Int_Ty2<584, "vmuleuh", int_ppc_altivec_vmuleuh, v4i32, v8i16>; def VMULOSB : VX1_Int_Ty2<264, "vmulosb", int_ppc_altivec_vmulosb, v8i16, v16i8>; def VMULOSH : VX1_Int_Ty2<328, "vmulosh", int_ppc_altivec_vmulosh, v4i32, v8i16>; def VMULOUB : VX1_Int_Ty2< 8, "vmuloub", int_ppc_altivec_vmuloub, v8i16, v16i8>; def VMULOUH : VX1_Int_Ty2< 72, "vmulouh", int_ppc_altivec_vmulouh, v4i32, v8i16>; } // isCommutable def VREFP : VX2_Int_SP<266, "vrefp", int_ppc_altivec_vrefp>; def VRFIM : VX2_Int_SP<714, "vrfim", int_ppc_altivec_vrfim>; def VRFIN : VX2_Int_SP<522, "vrfin", int_ppc_altivec_vrfin>; def VRFIP : VX2_Int_SP<650, "vrfip", int_ppc_altivec_vrfip>; def VRFIZ : VX2_Int_SP<586, "vrfiz", int_ppc_altivec_vrfiz>; def VRSQRTEFP : VX2_Int_SP<330, "vrsqrtefp", int_ppc_altivec_vrsqrtefp>; def VSUBCUW : VX1_Int_Ty<1408, "vsubcuw", int_ppc_altivec_vsubcuw, v4i32>; def VSUBFP : VXForm_1<74, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vsubfp $vD, $vA, $vB", IIC_VecGeneral, [(set v4f32:$vD, (fsub v4f32:$vA, v4f32:$vB))]>; def VSUBUBM : VXForm_1<1024, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vsububm $vD, $vA, $vB", IIC_VecGeneral, [(set v16i8:$vD, (sub v16i8:$vA, v16i8:$vB))]>; def VSUBUHM : VXForm_1<1088, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vsubuhm $vD, $vA, $vB", IIC_VecGeneral, [(set v8i16:$vD, (sub v8i16:$vA, v8i16:$vB))]>; def VSUBUWM : VXForm_1<1152, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vsubuwm $vD, $vA, $vB", IIC_VecGeneral, [(set v4i32:$vD, (sub v4i32:$vA, v4i32:$vB))]>; def VSUBSBS : VX1_Int_Ty<1792, "vsubsbs" , int_ppc_altivec_vsubsbs, v16i8>; def VSUBSHS : VX1_Int_Ty<1856, "vsubshs" , int_ppc_altivec_vsubshs, v8i16>; def VSUBSWS : VX1_Int_Ty<1920, "vsubsws" , int_ppc_altivec_vsubsws, v4i32>; def VSUBUBS : VX1_Int_Ty<1536, "vsububs" , int_ppc_altivec_vsububs, v16i8>; def VSUBUHS : VX1_Int_Ty<1600, "vsubuhs" , int_ppc_altivec_vsubuhs, v8i16>; def VSUBUWS : VX1_Int_Ty<1664, "vsubuws" , int_ppc_altivec_vsubuws, v4i32>; def VSUMSWS : VX1_Int_Ty<1928, "vsumsws" , int_ppc_altivec_vsumsws, v4i32>; def VSUM2SWS: VX1_Int_Ty<1672, "vsum2sws", int_ppc_altivec_vsum2sws, v4i32>; def VSUM4SBS: VX1_Int_Ty3<1800, "vsum4sbs", int_ppc_altivec_vsum4sbs, v4i32, v16i8, v4i32>; def VSUM4SHS: VX1_Int_Ty3<1608, "vsum4shs", int_ppc_altivec_vsum4shs, v4i32, v8i16, v4i32>; def VSUM4UBS: VX1_Int_Ty3<1544, "vsum4ubs", int_ppc_altivec_vsum4ubs, v4i32, v16i8, v4i32>; def VNOR : VXForm_1<1284, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vnor $vD, $vA, $vB", IIC_VecFP, [(set v4i32:$vD, (vnot_ppc (or v4i32:$vA, v4i32:$vB)))]>; let isCommutable = 1 in { def VOR : VXForm_1<1156, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vor $vD, $vA, $vB", IIC_VecFP, [(set v4i32:$vD, (or v4i32:$vA, v4i32:$vB))]>; def VXOR : VXForm_1<1220, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vxor $vD, $vA, $vB", IIC_VecFP, [(set v4i32:$vD, (xor v4i32:$vA, v4i32:$vB))]>; } // isCommutable def VRLB : VX1_Int_Ty< 4, "vrlb", int_ppc_altivec_vrlb, v16i8>; def VRLH : VX1_Int_Ty< 68, "vrlh", int_ppc_altivec_vrlh, v8i16>; def VRLW : VX1_Int_Ty< 132, "vrlw", int_ppc_altivec_vrlw, v4i32>; def VSL : VX1_Int_Ty< 452, "vsl" , int_ppc_altivec_vsl, v4i32 >; def VSLO : VX1_Int_Ty<1036, "vslo", int_ppc_altivec_vslo, v4i32>; def VSLB : VX1_Int_Ty< 260, "vslb", int_ppc_altivec_vslb, v16i8>; def VSLH : VX1_Int_Ty< 324, "vslh", int_ppc_altivec_vslh, v8i16>; def VSLW : VX1_Int_Ty< 388, "vslw", int_ppc_altivec_vslw, v4i32>; def VSPLTB : VXForm_1<524, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB), "vspltb $vD, $vB, $UIMM", IIC_VecPerm, [(set v16i8:$vD, (vspltb_shuffle:$UIMM v16i8:$vB, (undef)))]>; def VSPLTH : VXForm_1<588, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB), "vsplth $vD, $vB, $UIMM", IIC_VecPerm, [(set v16i8:$vD, (vsplth_shuffle:$UIMM v16i8:$vB, (undef)))]>; def VSPLTW : VXForm_1<652, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB), "vspltw $vD, $vB, $UIMM", IIC_VecPerm, [(set v16i8:$vD, (vspltw_shuffle:$UIMM v16i8:$vB, (undef)))]>; let isCodeGenOnly = 1 in { def VSPLTBs : VXForm_1<524, (outs vrrc:$vD), (ins u5imm:$UIMM, vfrc:$vB), "vspltb $vD, $vB, $UIMM", IIC_VecPerm, []>; def VSPLTHs : VXForm_1<588, (outs vrrc:$vD), (ins u5imm:$UIMM, vfrc:$vB), "vsplth $vD, $vB, $UIMM", IIC_VecPerm, []>; } def VSR : VX1_Int_Ty< 708, "vsr" , int_ppc_altivec_vsr, v4i32>; def VSRO : VX1_Int_Ty<1100, "vsro" , int_ppc_altivec_vsro, v4i32>; def VSRAB : VX1_Int_Ty< 772, "vsrab", int_ppc_altivec_vsrab, v16i8>; def VSRAH : VX1_Int_Ty< 836, "vsrah", int_ppc_altivec_vsrah, v8i16>; def VSRAW : VX1_Int_Ty< 900, "vsraw", int_ppc_altivec_vsraw, v4i32>; def VSRB : VX1_Int_Ty< 516, "vsrb" , int_ppc_altivec_vsrb , v16i8>; def VSRH : VX1_Int_Ty< 580, "vsrh" , int_ppc_altivec_vsrh , v8i16>; def VSRW : VX1_Int_Ty< 644, "vsrw" , int_ppc_altivec_vsrw , v4i32>; def VSPLTISB : VXForm_3<780, (outs vrrc:$vD), (ins s5imm:$SIMM), "vspltisb $vD, $SIMM", IIC_VecPerm, [(set v16i8:$vD, (v16i8 vecspltisb:$SIMM))]>; def VSPLTISH : VXForm_3<844, (outs vrrc:$vD), (ins s5imm:$SIMM), "vspltish $vD, $SIMM", IIC_VecPerm, [(set v8i16:$vD, (v8i16 vecspltish:$SIMM))]>; def VSPLTISW : VXForm_3<908, (outs vrrc:$vD), (ins s5imm:$SIMM), "vspltisw $vD, $SIMM", IIC_VecPerm, [(set v4i32:$vD, (v4i32 vecspltisw:$SIMM))]>; // Vector Pack. def VPKPX : VX1_Int_Ty2<782, "vpkpx", int_ppc_altivec_vpkpx, v8i16, v4i32>; def VPKSHSS : VX1_Int_Ty2<398, "vpkshss", int_ppc_altivec_vpkshss, v16i8, v8i16>; def VPKSHUS : VX1_Int_Ty2<270, "vpkshus", int_ppc_altivec_vpkshus, v16i8, v8i16>; def VPKSWSS : VX1_Int_Ty2<462, "vpkswss", int_ppc_altivec_vpkswss, v8i16, v4i32>; def VPKSWUS : VX1_Int_Ty2<334, "vpkswus", int_ppc_altivec_vpkswus, v8i16, v4i32>; def VPKUHUM : VXForm_1<14, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vpkuhum $vD, $vA, $vB", IIC_VecFP, [(set v16i8:$vD, (vpkuhum_shuffle v16i8:$vA, v16i8:$vB))]>; def VPKUHUS : VX1_Int_Ty2<142, "vpkuhus", int_ppc_altivec_vpkuhus, v16i8, v8i16>; def VPKUWUM : VXForm_1<78, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vpkuwum $vD, $vA, $vB", IIC_VecFP, [(set v16i8:$vD, (vpkuwum_shuffle v16i8:$vA, v16i8:$vB))]>; def VPKUWUS : VX1_Int_Ty2<206, "vpkuwus", int_ppc_altivec_vpkuwus, v8i16, v4i32>; // Vector Unpack. def VUPKHPX : VX2_Int_Ty2<846, "vupkhpx", int_ppc_altivec_vupkhpx, v4i32, v8i16>; def VUPKHSB : VX2_Int_Ty2<526, "vupkhsb", int_ppc_altivec_vupkhsb, v8i16, v16i8>; def VUPKHSH : VX2_Int_Ty2<590, "vupkhsh", int_ppc_altivec_vupkhsh, v4i32, v8i16>; def VUPKLPX : VX2_Int_Ty2<974, "vupklpx", int_ppc_altivec_vupklpx, v4i32, v8i16>; def VUPKLSB : VX2_Int_Ty2<654, "vupklsb", int_ppc_altivec_vupklsb, v8i16, v16i8>; def VUPKLSH : VX2_Int_Ty2<718, "vupklsh", int_ppc_altivec_vupklsh, v4i32, v8i16>; // Altivec Comparisons. class VCMP<bits<10> xo, string asmstr, ValueType Ty> : VXRForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), asmstr, IIC_VecFPCompare, [(set Ty:$vD, (Ty (PPCvcmp Ty:$vA, Ty:$vB, xo)))]>; class VCMPo<bits<10> xo, string asmstr, ValueType Ty> : VXRForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), asmstr, IIC_VecFPCompare, [(set Ty:$vD, (Ty (PPCvcmp_o Ty:$vA, Ty:$vB, xo)))]> { let Defs = [CR6]; let RC = 1; } // f32 element comparisons.0 def VCMPBFP : VCMP <966, "vcmpbfp $vD, $vA, $vB" , v4f32>; def VCMPBFPo : VCMPo<966, "vcmpbfp. $vD, $vA, $vB" , v4f32>; def VCMPEQFP : VCMP <198, "vcmpeqfp $vD, $vA, $vB" , v4f32>; def VCMPEQFPo : VCMPo<198, "vcmpeqfp. $vD, $vA, $vB", v4f32>; def VCMPGEFP : VCMP <454, "vcmpgefp $vD, $vA, $vB" , v4f32>; def VCMPGEFPo : VCMPo<454, "vcmpgefp. $vD, $vA, $vB", v4f32>; def VCMPGTFP : VCMP <710, "vcmpgtfp $vD, $vA, $vB" , v4f32>; def VCMPGTFPo : VCMPo<710, "vcmpgtfp. $vD, $vA, $vB", v4f32>; // i8 element comparisons. def VCMPEQUB : VCMP < 6, "vcmpequb $vD, $vA, $vB" , v16i8>; def VCMPEQUBo : VCMPo< 6, "vcmpequb. $vD, $vA, $vB", v16i8>; def VCMPGTSB : VCMP <774, "vcmpgtsb $vD, $vA, $vB" , v16i8>; def VCMPGTSBo : VCMPo<774, "vcmpgtsb. $vD, $vA, $vB", v16i8>; def VCMPGTUB : VCMP <518, "vcmpgtub $vD, $vA, $vB" , v16i8>; def VCMPGTUBo : VCMPo<518, "vcmpgtub. $vD, $vA, $vB", v16i8>; // i16 element comparisons. def VCMPEQUH : VCMP < 70, "vcmpequh $vD, $vA, $vB" , v8i16>; def VCMPEQUHo : VCMPo< 70, "vcmpequh. $vD, $vA, $vB", v8i16>; def VCMPGTSH : VCMP <838, "vcmpgtsh $vD, $vA, $vB" , v8i16>; def VCMPGTSHo : VCMPo<838, "vcmpgtsh. $vD, $vA, $vB", v8i16>; def VCMPGTUH : VCMP <582, "vcmpgtuh $vD, $vA, $vB" , v8i16>; def VCMPGTUHo : VCMPo<582, "vcmpgtuh. $vD, $vA, $vB", v8i16>; // i32 element comparisons. def VCMPEQUW : VCMP <134, "vcmpequw $vD, $vA, $vB" , v4i32>; def VCMPEQUWo : VCMPo<134, "vcmpequw. $vD, $vA, $vB", v4i32>; def VCMPGTSW : VCMP <902, "vcmpgtsw $vD, $vA, $vB" , v4i32>; def VCMPGTSWo : VCMPo<902, "vcmpgtsw. $vD, $vA, $vB", v4i32>; def VCMPGTUW : VCMP <646, "vcmpgtuw $vD, $vA, $vB" , v4i32>; def VCMPGTUWo : VCMPo<646, "vcmpgtuw. $vD, $vA, $vB", v4i32>; let isCodeGenOnly = 1 in { def V_SET0B : VXForm_setzero<1220, (outs vrrc:$vD), (ins), "vxor $vD, $vD, $vD", IIC_VecFP, [(set v16i8:$vD, (v16i8 immAllZerosV))]>; def V_SET0H : VXForm_setzero<1220, (outs vrrc:$vD), (ins), "vxor $vD, $vD, $vD", IIC_VecFP, [(set v8i16:$vD, (v8i16 immAllZerosV))]>; def V_SET0 : VXForm_setzero<1220, (outs vrrc:$vD), (ins), "vxor $vD, $vD, $vD", IIC_VecFP, [(set v4i32:$vD, (v4i32 immAllZerosV))]>; let IMM=-1 in { def V_SETALLONESB : VXForm_3<908, (outs vrrc:$vD), (ins), "vspltisw $vD, -1", IIC_VecFP, [(set v16i8:$vD, (v16i8 immAllOnesV))]>; def V_SETALLONESH : VXForm_3<908, (outs vrrc:$vD), (ins), "vspltisw $vD, -1", IIC_VecFP, [(set v8i16:$vD, (v8i16 immAllOnesV))]>; def V_SETALLONES : VXForm_3<908, (outs vrrc:$vD), (ins), "vspltisw $vD, -1", IIC_VecFP, [(set v4i32:$vD, (v4i32 immAllOnesV))]>; } } } // VALU Operations. //===----------------------------------------------------------------------===// // Additional Altivec Patterns // // Extended mnemonics def : InstAlias<"vmr $vD, $vA", (VOR vrrc:$vD, vrrc:$vA, vrrc:$vA)>; def : InstAlias<"vnot $vD, $vA", (VNOR vrrc:$vD, vrrc:$vA, vrrc:$vA)>; // Loads. def : Pat<(v4i32 (load xoaddr:$src)), (LVX xoaddr:$src)>; // Stores. def : Pat<(store v4i32:$rS, xoaddr:$dst), (STVX $rS, xoaddr:$dst)>; // Bit conversions. def : Pat<(v16i8 (bitconvert (v8i16 VRRC:$src))), (v16i8 VRRC:$src)>; def : Pat<(v16i8 (bitconvert (v4i32 VRRC:$src))), (v16i8 VRRC:$src)>; def : Pat<(v16i8 (bitconvert (v4f32 VRRC:$src))), (v16i8 VRRC:$src)>; def : Pat<(v16i8 (bitconvert (v2i64 VRRC:$src))), (v16i8 VRRC:$src)>; def : Pat<(v16i8 (bitconvert (v1i128 VRRC:$src))), (v16i8 VRRC:$src)>; def : Pat<(v8i16 (bitconvert (v16i8 VRRC:$src))), (v8i16 VRRC:$src)>; def : Pat<(v8i16 (bitconvert (v4i32 VRRC:$src))), (v8i16 VRRC:$src)>; def : Pat<(v8i16 (bitconvert (v4f32 VRRC:$src))), (v8i16 VRRC:$src)>; def : Pat<(v8i16 (bitconvert (v2i64 VRRC:$src))), (v8i16 VRRC:$src)>; def : Pat<(v8i16 (bitconvert (v1i128 VRRC:$src))), (v8i16 VRRC:$src)>; def : Pat<(v4i32 (bitconvert (v16i8 VRRC:$src))), (v4i32 VRRC:$src)>; def : Pat<(v4i32 (bitconvert (v8i16 VRRC:$src))), (v4i32 VRRC:$src)>; def : Pat<(v4i32 (bitconvert (v4f32 VRRC:$src))), (v4i32 VRRC:$src)>; def : Pat<(v4i32 (bitconvert (v2i64 VRRC:$src))), (v4i32 VRRC:$src)>; def : Pat<(v4i32 (bitconvert (v1i128 VRRC:$src))), (v4i32 VRRC:$src)>; def : Pat<(v4f32 (bitconvert (v16i8 VRRC:$src))), (v4f32 VRRC:$src)>; def : Pat<(v4f32 (bitconvert (v8i16 VRRC:$src))), (v4f32 VRRC:$src)>; def : Pat<(v4f32 (bitconvert (v4i32 VRRC:$src))), (v4f32 VRRC:$src)>; def : Pat<(v4f32 (bitconvert (v2i64 VRRC:$src))), (v4f32 VRRC:$src)>; def : Pat<(v4f32 (bitconvert (v1i128 VRRC:$src))), (v4f32 VRRC:$src)>; def : Pat<(v2i64 (bitconvert (v16i8 VRRC:$src))), (v2i64 VRRC:$src)>; def : Pat<(v2i64 (bitconvert (v8i16 VRRC:$src))), (v2i64 VRRC:$src)>; def : Pat<(v2i64 (bitconvert (v4i32 VRRC:$src))), (v2i64 VRRC:$src)>; def : Pat<(v2i64 (bitconvert (v4f32 VRRC:$src))), (v2i64 VRRC:$src)>; def : Pat<(v2i64 (bitconvert (v1i128 VRRC:$src))), (v2i64 VRRC:$src)>; def : Pat<(v1i128 (bitconvert (v16i8 VRRC:$src))), (v1i128 VRRC:$src)>; def : Pat<(v1i128 (bitconvert (v8i16 VRRC:$src))), (v1i128 VRRC:$src)>; def : Pat<(v1i128 (bitconvert (v4i32 VRRC:$src))), (v1i128 VRRC:$src)>; def : Pat<(v1i128 (bitconvert (v4f32 VRRC:$src))), (v1i128 VRRC:$src)>; def : Pat<(v1i128 (bitconvert (v2i64 VRRC:$src))), (v1i128 VRRC:$src)>; // Shuffles. // Match vsldoi(x,x), vpkuwum(x,x), vpkuhum(x,x) def:Pat<(vsldoi_unary_shuffle:$in v16i8:$vA, undef), (VSLDOI $vA, $vA, (VSLDOI_unary_get_imm $in))>; def:Pat<(vpkuwum_unary_shuffle v16i8:$vA, undef), (VPKUWUM $vA, $vA)>; def:Pat<(vpkuhum_unary_shuffle v16i8:$vA, undef), (VPKUHUM $vA, $vA)>; def:Pat<(vsldoi_shuffle:$SH v16i8:$vA, v16i8:$vB), (VSLDOI v16i8:$vA, v16i8:$vB, (VSLDOI_get_imm $SH))>; // Match vsldoi(y,x), vpkuwum(y,x), vpkuhum(y,x), i.e., swapped operands. // These fragments are matched for little-endian, where the inputs must // be swapped for correct semantics. def:Pat<(vsldoi_swapped_shuffle:$in v16i8:$vA, v16i8:$vB), (VSLDOI $vB, $vA, (VSLDOI_swapped_get_imm $in))>; def:Pat<(vpkuwum_swapped_shuffle v16i8:$vA, v16i8:$vB), (VPKUWUM $vB, $vA)>; def:Pat<(vpkuhum_swapped_shuffle v16i8:$vA, v16i8:$vB), (VPKUHUM $vB, $vA)>; // Match vmrg*(x,x) def:Pat<(vmrglb_unary_shuffle v16i8:$vA, undef), (VMRGLB $vA, $vA)>; def:Pat<(vmrglh_unary_shuffle v16i8:$vA, undef), (VMRGLH $vA, $vA)>; def:Pat<(vmrglw_unary_shuffle v16i8:$vA, undef), (VMRGLW $vA, $vA)>; def:Pat<(vmrghb_unary_shuffle v16i8:$vA, undef), (VMRGHB $vA, $vA)>; def:Pat<(vmrghh_unary_shuffle v16i8:$vA, undef), (VMRGHH $vA, $vA)>; def:Pat<(vmrghw_unary_shuffle v16i8:$vA, undef), (VMRGHW $vA, $vA)>; // Match vmrg*(y,x), i.e., swapped operands. These fragments // are matched for little-endian, where the inputs must be // swapped for correct semantics. def:Pat<(vmrglb_swapped_shuffle v16i8:$vA, v16i8:$vB), (VMRGLB $vB, $vA)>; def:Pat<(vmrglh_swapped_shuffle v16i8:$vA, v16i8:$vB), (VMRGLH $vB, $vA)>; def:Pat<(vmrglw_swapped_shuffle v16i8:$vA, v16i8:$vB), (VMRGLW $vB, $vA)>; def:Pat<(vmrghb_swapped_shuffle v16i8:$vA, v16i8:$vB), (VMRGHB $vB, $vA)>; def:Pat<(vmrghh_swapped_shuffle v16i8:$vA, v16i8:$vB), (VMRGHH $vB, $vA)>; def:Pat<(vmrghw_swapped_shuffle v16i8:$vA, v16i8:$vB), (VMRGHW $vB, $vA)>; // Logical Operations def : Pat<(vnot_ppc v4i32:$vA), (VNOR $vA, $vA)>; def : Pat<(vnot_ppc (or v4i32:$A, v4i32:$B)), (VNOR $A, $B)>; def : Pat<(and v4i32:$A, (vnot_ppc v4i32:$B)), (VANDC $A, $B)>; def : Pat<(fmul v4f32:$vA, v4f32:$vB), (VMADDFP $vA, $vB, (v4i32 (VSLW (v4i32 (V_SETALLONES)), (v4i32 (V_SETALLONES)))))>; // Fused multiply add and multiply sub for packed float. These are represented // separately from the real instructions above, for operations that must have // the additional precision, such as Newton-Rhapson (used by divide, sqrt) def : Pat<(PPCvmaddfp v4f32:$A, v4f32:$B, v4f32:$C), (VMADDFP $A, $B, $C)>; def : Pat<(PPCvnmsubfp v4f32:$A, v4f32:$B, v4f32:$C), (VNMSUBFP $A, $B, $C)>; def : Pat<(int_ppc_altivec_vmaddfp v4f32:$A, v4f32:$B, v4f32:$C), (VMADDFP $A, $B, $C)>; def : Pat<(int_ppc_altivec_vnmsubfp v4f32:$A, v4f32:$B, v4f32:$C), (VNMSUBFP $A, $B, $C)>; def : Pat<(PPCvperm v16i8:$vA, v16i8:$vB, v16i8:$vC), (VPERM $vA, $vB, $vC)>; def : Pat<(PPCfre v4f32:$A), (VREFP $A)>; def : Pat<(PPCfrsqrte v4f32:$A), (VRSQRTEFP $A)>; // Vector shifts def : Pat<(v16i8 (shl v16i8:$vA, v16i8:$vB)), (v16i8 (VSLB $vA, $vB))>; def : Pat<(v8i16 (shl v8i16:$vA, v8i16:$vB)), (v8i16 (VSLH $vA, $vB))>; def : Pat<(v4i32 (shl v4i32:$vA, v4i32:$vB)), (v4i32 (VSLW $vA, $vB))>; def : Pat<(v1i128 (shl v1i128:$vA, v1i128:$vB)), (v1i128 (VSL (v16i8 (VSLO $vA, $vB)), (v16i8 (VSPLTB 15, $vB))))>; def : Pat<(v16i8 (PPCshl v16i8:$vA, v16i8:$vB)), (v16i8 (VSLB $vA, $vB))>; def : Pat<(v8i16 (PPCshl v8i16:$vA, v8i16:$vB)), (v8i16 (VSLH $vA, $vB))>; def : Pat<(v4i32 (PPCshl v4i32:$vA, v4i32:$vB)), (v4i32 (VSLW $vA, $vB))>; def : Pat<(v1i128 (PPCshl v1i128:$vA, v1i128:$vB)), (v1i128 (VSL (v16i8 (VSLO $vA, $vB)), (v16i8 (VSPLTB 15, $vB))))>; def : Pat<(v16i8 (srl v16i8:$vA, v16i8:$vB)), (v16i8 (VSRB $vA, $vB))>; def : Pat<(v8i16 (srl v8i16:$vA, v8i16:$vB)), (v8i16 (VSRH $vA, $vB))>; def : Pat<(v4i32 (srl v4i32:$vA, v4i32:$vB)), (v4i32 (VSRW $vA, $vB))>; def : Pat<(v1i128 (srl v1i128:$vA, v1i128:$vB)), (v1i128 (VSR (v16i8 (VSRO $vA, $vB)), (v16i8 (VSPLTB 15, $vB))))>; def : Pat<(v16i8 (PPCsrl v16i8:$vA, v16i8:$vB)), (v16i8 (VSRB $vA, $vB))>; def : Pat<(v8i16 (PPCsrl v8i16:$vA, v8i16:$vB)), (v8i16 (VSRH $vA, $vB))>; def : Pat<(v4i32 (PPCsrl v4i32:$vA, v4i32:$vB)), (v4i32 (VSRW $vA, $vB))>; def : Pat<(v1i128 (PPCsrl v1i128:$vA, v1i128:$vB)), (v1i128 (VSR (v16i8 (VSRO $vA, $vB)), (v16i8 (VSPLTB 15, $vB))))>; def : Pat<(v16i8 (sra v16i8:$vA, v16i8:$vB)), (v16i8 (VSRAB $vA, $vB))>; def : Pat<(v8i16 (sra v8i16:$vA, v8i16:$vB)), (v8i16 (VSRAH $vA, $vB))>; def : Pat<(v4i32 (sra v4i32:$vA, v4i32:$vB)), (v4i32 (VSRAW $vA, $vB))>; def : Pat<(v16i8 (PPCsra v16i8:$vA, v16i8:$vB)), (v16i8 (VSRAB $vA, $vB))>; def : Pat<(v8i16 (PPCsra v8i16:$vA, v8i16:$vB)), (v8i16 (VSRAH $vA, $vB))>; def : Pat<(v4i32 (PPCsra v4i32:$vA, v4i32:$vB)), (v4i32 (VSRAW $vA, $vB))>; // Float to integer and integer to float conversions def : Pat<(v4i32 (fp_to_sint v4f32:$vA)), (VCTSXS_0 $vA)>; def : Pat<(v4i32 (fp_to_uint v4f32:$vA)), (VCTUXS_0 $vA)>; def : Pat<(v4f32 (sint_to_fp v4i32:$vA)), (VCFSX_0 $vA)>; def : Pat<(v4f32 (uint_to_fp v4i32:$vA)), (VCFUX_0 $vA)>; // Floating-point rounding def : Pat<(v4f32 (ffloor v4f32:$vA)), (VRFIM $vA)>; def : Pat<(v4f32 (fceil v4f32:$vA)), (VRFIP $vA)>; def : Pat<(v4f32 (ftrunc v4f32:$vA)), (VRFIZ $vA)>; def : Pat<(v4f32 (fnearbyint v4f32:$vA)), (VRFIN $vA)>; } // end HasAltivec def HasP8Altivec : Predicate<"PPCSubTarget->hasP8Altivec()">; def HasP8Crypto : Predicate<"PPCSubTarget->hasP8Crypto()">; let Predicates = [HasP8Altivec] in { let isCommutable = 1 in { def VMULESW : VX1_Int_Ty2<904, "vmulesw", int_ppc_altivec_vmulesw, v2i64, v4i32>; def VMULEUW : VX1_Int_Ty2<648, "vmuleuw", int_ppc_altivec_vmuleuw, v2i64, v4i32>; def VMULOSW : VX1_Int_Ty2<392, "vmulosw", int_ppc_altivec_vmulosw, v2i64, v4i32>; def VMULOUW : VX1_Int_Ty2<136, "vmulouw", int_ppc_altivec_vmulouw, v2i64, v4i32>; def VMULUWM : VXForm_1<137, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vmuluwm $vD, $vA, $vB", IIC_VecGeneral, [(set v4i32:$vD, (mul v4i32:$vA, v4i32:$vB))]>; def VMAXSD : VX1_Int_Ty<450, "vmaxsd", int_ppc_altivec_vmaxsd, v2i64>; def VMAXUD : VX1_Int_Ty<194, "vmaxud", int_ppc_altivec_vmaxud, v2i64>; def VMINSD : VX1_Int_Ty<962, "vminsd", int_ppc_altivec_vminsd, v2i64>; def VMINUD : VX1_Int_Ty<706, "vminud", int_ppc_altivec_vminud, v2i64>; } // isCommutable // Vector merge def VMRGEW : VXForm_1<1932, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vmrgew $vD, $vA, $vB", IIC_VecFP, [(set v16i8:$vD, (v16i8 (vmrgew_shuffle v16i8:$vA, v16i8:$vB)))]>; def VMRGOW : VXForm_1<1676, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vmrgow $vD, $vA, $vB", IIC_VecFP, [(set v16i8:$vD, (v16i8 (vmrgow_shuffle v16i8:$vA, v16i8:$vB)))]>; // Match vmrgew(x,x) and vmrgow(x,x) def:Pat<(vmrgew_unary_shuffle v16i8:$vA, undef), (VMRGEW $vA, $vA)>; def:Pat<(vmrgow_unary_shuffle v16i8:$vA, undef), (VMRGOW $vA, $vA)>; // Match vmrgew(y,x) and vmrgow(y,x), i.e., swapped operands. These fragments // are matched for little-endian, where the inputs must be swapped for correct // semantics.w def:Pat<(vmrgew_swapped_shuffle v16i8:$vA, v16i8:$vB), (VMRGEW $vB, $vA)>; def:Pat<(vmrgow_swapped_shuffle v16i8:$vA, v16i8:$vB), (VMRGOW $vB, $vA)>; // Vector shifts def VRLD : VX1_Int_Ty<196, "vrld", int_ppc_altivec_vrld, v2i64>; def VSLD : VXForm_1<1476, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vsld $vD, $vA, $vB", IIC_VecGeneral, []>; def VSRD : VXForm_1<1732, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vsrd $vD, $vA, $vB", IIC_VecGeneral, []>; def VSRAD : VXForm_1<964, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vsrad $vD, $vA, $vB", IIC_VecGeneral, []>; def : Pat<(v2i64 (shl v2i64:$vA, v2i64:$vB)), (v2i64 (VSLD $vA, $vB))>; def : Pat<(v2i64 (PPCshl v2i64:$vA, v2i64:$vB)), (v2i64 (VSLD $vA, $vB))>; def : Pat<(v2i64 (srl v2i64:$vA, v2i64:$vB)), (v2i64 (VSRD $vA, $vB))>; def : Pat<(v2i64 (PPCsrl v2i64:$vA, v2i64:$vB)), (v2i64 (VSRD $vA, $vB))>; def : Pat<(v2i64 (sra v2i64:$vA, v2i64:$vB)), (v2i64 (VSRAD $vA, $vB))>; def : Pat<(v2i64 (PPCsra v2i64:$vA, v2i64:$vB)), (v2i64 (VSRAD $vA, $vB))>; // Vector Integer Arithmetic Instructions let isCommutable = 1 in { def VADDUDM : VXForm_1<192, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vaddudm $vD, $vA, $vB", IIC_VecGeneral, [(set v2i64:$vD, (add v2i64:$vA, v2i64:$vB))]>; def VADDUQM : VXForm_1<256, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vadduqm $vD, $vA, $vB", IIC_VecGeneral, [(set v1i128:$vD, (add v1i128:$vA, v1i128:$vB))]>; } // isCommutable // Vector Quadword Add def VADDEUQM : VA1a_Int_Ty<60, "vaddeuqm", int_ppc_altivec_vaddeuqm, v1i128>; def VADDCUQ : VX1_Int_Ty<320, "vaddcuq", int_ppc_altivec_vaddcuq, v1i128>; def VADDECUQ : VA1a_Int_Ty<61, "vaddecuq", int_ppc_altivec_vaddecuq, v1i128>; // Vector Doubleword Subtract def VSUBUDM : VXForm_1<1216, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vsubudm $vD, $vA, $vB", IIC_VecGeneral, [(set v2i64:$vD, (sub v2i64:$vA, v2i64:$vB))]>; // Vector Quadword Subtract def VSUBUQM : VXForm_1<1280, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vsubuqm $vD, $vA, $vB", IIC_VecGeneral, [(set v1i128:$vD, (sub v1i128:$vA, v1i128:$vB))]>; def VSUBEUQM : VA1a_Int_Ty<62, "vsubeuqm", int_ppc_altivec_vsubeuqm, v1i128>; def VSUBCUQ : VX1_Int_Ty<1344, "vsubcuq", int_ppc_altivec_vsubcuq, v1i128>; def VSUBECUQ : VA1a_Int_Ty<63, "vsubecuq", int_ppc_altivec_vsubecuq, v1i128>; // Count Leading Zeros def VCLZB : VXForm_2<1794, (outs vrrc:$vD), (ins vrrc:$vB), "vclzb $vD, $vB", IIC_VecGeneral, [(set v16i8:$vD, (ctlz v16i8:$vB))]>; def VCLZH : VXForm_2<1858, (outs vrrc:$vD), (ins vrrc:$vB), "vclzh $vD, $vB", IIC_VecGeneral, [(set v8i16:$vD, (ctlz v8i16:$vB))]>; def VCLZW : VXForm_2<1922, (outs vrrc:$vD), (ins vrrc:$vB), "vclzw $vD, $vB", IIC_VecGeneral, [(set v4i32:$vD, (ctlz v4i32:$vB))]>; def VCLZD : VXForm_2<1986, (outs vrrc:$vD), (ins vrrc:$vB), "vclzd $vD, $vB", IIC_VecGeneral, [(set v2i64:$vD, (ctlz v2i64:$vB))]>; // Population Count def VPOPCNTB : VXForm_2<1795, (outs vrrc:$vD), (ins vrrc:$vB), "vpopcntb $vD, $vB", IIC_VecGeneral, [(set v16i8:$vD, (ctpop v16i8:$vB))]>; def VPOPCNTH : VXForm_2<1859, (outs vrrc:$vD), (ins vrrc:$vB), "vpopcnth $vD, $vB", IIC_VecGeneral, [(set v8i16:$vD, (ctpop v8i16:$vB))]>; def VPOPCNTW : VXForm_2<1923, (outs vrrc:$vD), (ins vrrc:$vB), "vpopcntw $vD, $vB", IIC_VecGeneral, [(set v4i32:$vD, (ctpop v4i32:$vB))]>; def VPOPCNTD : VXForm_2<1987, (outs vrrc:$vD), (ins vrrc:$vB), "vpopcntd $vD, $vB", IIC_VecGeneral, [(set v2i64:$vD, (ctpop v2i64:$vB))]>; let isCommutable = 1 in { // FIXME: Use AddedComplexity > 400 to ensure these patterns match before the // VSX equivalents. We need to fix this up at some point. Two possible // solutions for this problem: // 1. Disable Altivec patterns that compete with VSX patterns using the // !HasVSX predicate. This essentially favours VSX over Altivec, in // hopes of reducing register pressure (larger register set using VSX // instructions than VMX instructions) // 2. Employ a more disciplined use of AddedComplexity, which would provide // more fine-grained control than option 1. This would be beneficial // if we find situations where Altivec is really preferred over VSX. def VEQV : VXForm_1<1668, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "veqv $vD, $vA, $vB", IIC_VecGeneral, [(set v4i32:$vD, (vnot_ppc (xor v4i32:$vA, v4i32:$vB)))]>; def VNAND : VXForm_1<1412, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vnand $vD, $vA, $vB", IIC_VecGeneral, [(set v4i32:$vD, (vnot_ppc (and v4i32:$vA, v4i32:$vB)))]>; } // isCommutable def VORC : VXForm_1<1348, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vorc $vD, $vA, $vB", IIC_VecGeneral, [(set v4i32:$vD, (or v4i32:$vA, (vnot_ppc v4i32:$vB)))]>; // i64 element comparisons. def VCMPEQUD : VCMP <199, "vcmpequd $vD, $vA, $vB" , v2i64>; def VCMPEQUDo : VCMPo<199, "vcmpequd. $vD, $vA, $vB", v2i64>; def VCMPGTSD : VCMP <967, "vcmpgtsd $vD, $vA, $vB" , v2i64>; def VCMPGTSDo : VCMPo<967, "vcmpgtsd. $vD, $vA, $vB", v2i64>; def VCMPGTUD : VCMP <711, "vcmpgtud $vD, $vA, $vB" , v2i64>; def VCMPGTUDo : VCMPo<711, "vcmpgtud. $vD, $vA, $vB", v2i64>; // The cryptography instructions that do not require Category:Vector.Crypto def VPMSUMB : VX1_Int_Ty<1032, "vpmsumb", int_ppc_altivec_crypto_vpmsumb, v16i8>; def VPMSUMH : VX1_Int_Ty<1096, "vpmsumh", int_ppc_altivec_crypto_vpmsumh, v8i16>; def VPMSUMW : VX1_Int_Ty<1160, "vpmsumw", int_ppc_altivec_crypto_vpmsumw, v4i32>; def VPMSUMD : VX1_Int_Ty<1224, "vpmsumd", int_ppc_altivec_crypto_vpmsumd, v2i64>; def VPERMXOR : VA1a_Int_Ty<45, "vpermxor", int_ppc_altivec_crypto_vpermxor, v16i8>; // Vector doubleword integer pack and unpack. def VPKSDSS : VX1_Int_Ty2<1486, "vpksdss", int_ppc_altivec_vpksdss, v4i32, v2i64>; def VPKSDUS : VX1_Int_Ty2<1358, "vpksdus", int_ppc_altivec_vpksdus, v4i32, v2i64>; def VPKUDUM : VXForm_1<1102, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vpkudum $vD, $vA, $vB", IIC_VecFP, [(set v16i8:$vD, (vpkudum_shuffle v16i8:$vA, v16i8:$vB))]>; def VPKUDUS : VX1_Int_Ty2<1230, "vpkudus", int_ppc_altivec_vpkudus, v4i32, v2i64>; def VUPKHSW : VX2_Int_Ty2<1614, "vupkhsw", int_ppc_altivec_vupkhsw, v2i64, v4i32>; def VUPKLSW : VX2_Int_Ty2<1742, "vupklsw", int_ppc_altivec_vupklsw, v2i64, v4i32>; // Shuffle patterns for unary and swapped (LE) vector pack modulo. def:Pat<(vpkudum_unary_shuffle v16i8:$vA, undef), (VPKUDUM $vA, $vA)>; def:Pat<(vpkudum_swapped_shuffle v16i8:$vA, v16i8:$vB), (VPKUDUM $vB, $vA)>; def VGBBD : VX2_Int_Ty2<1292, "vgbbd", int_ppc_altivec_vgbbd, v16i8, v16i8>; def VBPERMQ : VX1_Int_Ty2<1356, "vbpermq", int_ppc_altivec_vbpermq, v2i64, v16i8>; } // end HasP8Altivec // Crypto instructions (from builtins) let Predicates = [HasP8Crypto] in { def VSHASIGMAW : VXCR_Int_Ty<1666, "vshasigmaw", int_ppc_altivec_crypto_vshasigmaw, v4i32>; def VSHASIGMAD : VXCR_Int_Ty<1730, "vshasigmad", int_ppc_altivec_crypto_vshasigmad, v2i64>; def VCIPHER : VX1_Int_Ty<1288, "vcipher", int_ppc_altivec_crypto_vcipher, v2i64>; def VCIPHERLAST : VX1_Int_Ty<1289, "vcipherlast", int_ppc_altivec_crypto_vcipherlast, v2i64>; def VNCIPHER : VX1_Int_Ty<1352, "vncipher", int_ppc_altivec_crypto_vncipher, v2i64>; def VNCIPHERLAST : VX1_Int_Ty<1353, "vncipherlast", int_ppc_altivec_crypto_vncipherlast, v2i64>; def VSBOX : VXBX_Int_Ty<1480, "vsbox", int_ppc_altivec_crypto_vsbox, v2i64>; } // HasP8Crypto // The following altivec instructions were introduced in Power ISA 3.0 def HasP9Altivec : Predicate<"PPCSubTarget->hasP9Altivec()">; let Predicates = [HasP9Altivec] in { // i8 element comparisons. def VCMPNEB : VCMP < 7, "vcmpneb $vD, $vA, $vB" , v16i8>; def VCMPNEBo : VCMPo < 7, "vcmpneb. $vD, $vA, $vB" , v16i8>; def VCMPNEZB : VCMP <263, "vcmpnezb $vD, $vA, $vB" , v16i8>; def VCMPNEZBo : VCMPo<263, "vcmpnezb. $vD, $vA, $vB", v16i8>; // i16 element comparisons. def VCMPNEH : VCMP < 71, "vcmpneh $vD, $vA, $vB" , v8i16>; def VCMPNEHo : VCMPo< 71, "vcmpneh. $vD, $vA, $vB" , v8i16>; def VCMPNEZH : VCMP <327, "vcmpnezh $vD, $vA, $vB" , v8i16>; def VCMPNEZHo : VCMPo<327, "vcmpnezh. $vD, $vA, $vB", v8i16>; // i32 element comparisons. def VCMPNEW : VCMP <135, "vcmpnew $vD, $vA, $vB" , v4i32>; def VCMPNEWo : VCMPo<135, "vcmpnew. $vD, $vA, $vB" , v4i32>; def VCMPNEZW : VCMP <391, "vcmpnezw $vD, $vA, $vB" , v4i32>; def VCMPNEZWo : VCMPo<391, "vcmpnezw. $vD, $vA, $vB", v4i32>; // VX-Form: [PO VRT / UIM VRB XO]. // We use VXForm_1 to implement it, that is, we use "VRA" (5 bit) to represent // "/ UIM" (1 + 4 bit) class VX1_VT5_UIM5_VB5<bits<11> xo, string opc, list<dag> pattern> : VXForm_1<xo, (outs vrrc:$vD), (ins u4imm:$UIMM, vrrc:$vB), !strconcat(opc, " $vD, $vB, $UIMM"), IIC_VecGeneral, pattern>; class VX1_RT5_RA5_VB5<bits<11> xo, string opc, list<dag> pattern> : VXForm_1<xo, (outs g8rc:$rD), (ins g8rc:$rA, vrrc:$vB), !strconcat(opc, " $rD, $rA, $vB"), IIC_VecGeneral, pattern>; // Vector Extract Unsigned def VEXTRACTUB : VX1_VT5_UIM5_VB5<525, "vextractub", []>; def VEXTRACTUH : VX1_VT5_UIM5_VB5<589, "vextractuh", []>; def VEXTRACTUW : VX1_VT5_UIM5_VB5<653, "vextractuw", []>; def VEXTRACTD : VX1_VT5_UIM5_VB5<717, "vextractd" , []>; // Vector Extract Unsigned Byte/Halfword/Word Left/Right-Indexed def VEXTUBLX : VX1_RT5_RA5_VB5<1549, "vextublx", []>; def VEXTUBRX : VX1_RT5_RA5_VB5<1805, "vextubrx", []>; def VEXTUHLX : VX1_RT5_RA5_VB5<1613, "vextuhlx", []>; def VEXTUHRX : VX1_RT5_RA5_VB5<1869, "vextuhrx", []>; def VEXTUWLX : VX1_RT5_RA5_VB5<1677, "vextuwlx", []>; def VEXTUWRX : VX1_RT5_RA5_VB5<1933, "vextuwrx", []>; // Vector Insert Element Instructions def VINSERTB : VXForm_1<781, (outs vrrc:$vD), (ins vrrc:$vDi, u4imm:$UIM, vrrc:$vB), "vinsertb $vD, $vB, $UIM", IIC_VecGeneral, [(set v16i8:$vD, (PPCvecinsert v16i8:$vDi, v16i8:$vB, imm32SExt16:$UIM))]>, RegConstraint<"$vDi = $vD">, NoEncode<"$vDi">; def VINSERTH : VXForm_1<845, (outs vrrc:$vD), (ins vrrc:$vDi, u4imm:$UIM, vrrc:$vB), "vinserth $vD, $vB, $UIM", IIC_VecGeneral, [(set v8i16:$vD, (PPCvecinsert v8i16:$vDi, v8i16:$vB, imm32SExt16:$UIM))]>, RegConstraint<"$vDi = $vD">, NoEncode<"$vDi">; def VINSERTW : VX1_VT5_UIM5_VB5<909, "vinsertw", []>; def VINSERTD : VX1_VT5_UIM5_VB5<973, "vinsertd", []>; class VX_VT5_EO5_VB5<bits<11> xo, bits<5> eo, string opc, list<dag> pattern> : VXForm_RD5_XO5_RS5<xo, eo, (outs vrrc:$vD), (ins vrrc:$vB), !strconcat(opc, " $vD, $vB"), IIC_VecGeneral, pattern>; class VX_VT5_EO5_VB5s<bits<11> xo, bits<5> eo, string opc, list<dag> pattern> : VXForm_RD5_XO5_RS5<xo, eo, (outs vfrc:$vD), (ins vfrc:$vB), !strconcat(opc, " $vD, $vB"), IIC_VecGeneral, pattern>; // Vector Count Leading/Trailing Zero LSB. Result is placed into GPR[rD] def VCLZLSBB : VXForm_RD5_XO5_RS5<1538, 0, (outs gprc:$rD), (ins vrrc:$vB), "vclzlsbb $rD, $vB", IIC_VecGeneral, [(set i32:$rD, (int_ppc_altivec_vclzlsbb v16i8:$vB))]>; def VCTZLSBB : VXForm_RD5_XO5_RS5<1538, 1, (outs gprc:$rD), (ins vrrc:$vB), "vctzlsbb $rD, $vB", IIC_VecGeneral, [(set i32:$rD, (int_ppc_altivec_vctzlsbb v16i8:$vB))]>; // Vector Count Trailing Zeros def VCTZB : VX_VT5_EO5_VB5<1538, 28, "vctzb", [(set v16i8:$vD, (cttz v16i8:$vB))]>; def VCTZH : VX_VT5_EO5_VB5<1538, 29, "vctzh", [(set v8i16:$vD, (cttz v8i16:$vB))]>; def VCTZW : VX_VT5_EO5_VB5<1538, 30, "vctzw", [(set v4i32:$vD, (cttz v4i32:$vB))]>; def VCTZD : VX_VT5_EO5_VB5<1538, 31, "vctzd", [(set v2i64:$vD, (cttz v2i64:$vB))]>; // Vector Extend Sign def VEXTSB2W : VX_VT5_EO5_VB5<1538, 16, "vextsb2w", []>; def VEXTSH2W : VX_VT5_EO5_VB5<1538, 17, "vextsh2w", []>; def VEXTSB2D : VX_VT5_EO5_VB5<1538, 24, "vextsb2d", []>; def VEXTSH2D : VX_VT5_EO5_VB5<1538, 25, "vextsh2d", []>; def VEXTSW2D : VX_VT5_EO5_VB5<1538, 26, "vextsw2d", []>; let isCodeGenOnly = 1 in { def VEXTSB2Ws : VX_VT5_EO5_VB5s<1538, 16, "vextsb2w", []>; def VEXTSH2Ws : VX_VT5_EO5_VB5s<1538, 17, "vextsh2w", []>; def VEXTSB2Ds : VX_VT5_EO5_VB5s<1538, 24, "vextsb2d", []>; def VEXTSH2Ds : VX_VT5_EO5_VB5s<1538, 25, "vextsh2d", []>; def VEXTSW2Ds : VX_VT5_EO5_VB5s<1538, 26, "vextsw2d", []>; } // Vector Integer Negate def VNEGW : VX_VT5_EO5_VB5<1538, 6, "vnegw", [(set v4i32:$vD, (sub (v4i32 immAllZerosV), v4i32:$vB))]>; def VNEGD : VX_VT5_EO5_VB5<1538, 7, "vnegd", [(set v2i64:$vD, (sub (v2i64 (bitconvert (v4i32 immAllZerosV))), v2i64:$vB))]>; // Vector Parity Byte def VPRTYBW : VX_VT5_EO5_VB5<1538, 8, "vprtybw", [(set v4i32:$vD, (int_ppc_altivec_vprtybw v4i32:$vB))]>; def VPRTYBD : VX_VT5_EO5_VB5<1538, 9, "vprtybd", [(set v2i64:$vD, (int_ppc_altivec_vprtybd v2i64:$vB))]>; def VPRTYBQ : VX_VT5_EO5_VB5<1538, 10, "vprtybq", [(set v1i128:$vD, (int_ppc_altivec_vprtybq v1i128:$vB))]>; // Vector (Bit) Permute (Right-indexed) def VBPERMD : VXForm_1<1484, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vbpermd $vD, $vA, $vB", IIC_VecFP, []>; def VPERMR : VAForm_1a<59, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vC), "vpermr $vD, $vA, $vB, $vC", IIC_VecFP, []>; class VX1_VT5_VA5_VB5<bits<11> xo, string opc, list<dag> pattern> : VXForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), !strconcat(opc, " $vD, $vA, $vB"), IIC_VecFP, pattern>; // Vector Rotate Left Mask/Mask-Insert def VRLWNM : VX1_VT5_VA5_VB5<389, "vrlwnm", [(set v4i32:$vD, (int_ppc_altivec_vrlwnm v4i32:$vA, v4i32:$vB))]>; def VRLWMI : VXForm_1<133, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vDi), "vrlwmi $vD, $vA, $vB", IIC_VecFP, [(set v4i32:$vD, (int_ppc_altivec_vrlwmi v4i32:$vA, v4i32:$vB, v4i32:$vDi))]>, RegConstraint<"$vDi = $vD">, NoEncode<"$vDi">; def VRLDNM : VX1_VT5_VA5_VB5<453, "vrldnm", [(set v2i64:$vD, (int_ppc_altivec_vrldnm v2i64:$vA, v2i64:$vB))]>; def VRLDMI : VXForm_1<197, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vDi), "vrldmi $vD, $vA, $vB", IIC_VecFP, [(set v2i64:$vD, (int_ppc_altivec_vrldmi v2i64:$vA, v2i64:$vB, v2i64:$vDi))]>, RegConstraint<"$vDi = $vD">, NoEncode<"$vDi">; // Vector Shift Left/Right def VSLV : VX1_VT5_VA5_VB5<1860, "vslv", [(set v16i8 : $vD, (int_ppc_altivec_vslv v16i8 : $vA, v16i8 : $vB))]>; def VSRV : VX1_VT5_VA5_VB5<1796, "vsrv", [(set v16i8 : $vD, (int_ppc_altivec_vsrv v16i8 : $vA, v16i8 : $vB))]>; // Vector Multiply-by-10 (& Write Carry) Unsigned Quadword def VMUL10UQ : VXForm_BX<513, (outs vrrc:$vD), (ins vrrc:$vA), "vmul10uq $vD, $vA", IIC_VecFP, []>; def VMUL10CUQ : VXForm_BX< 1, (outs vrrc:$vD), (ins vrrc:$vA), "vmul10cuq $vD, $vA", IIC_VecFP, []>; // Vector Multiply-by-10 Extended (& Write Carry) Unsigned Quadword def VMUL10EUQ : VX1_VT5_VA5_VB5<577, "vmul10euq" , []>; def VMUL10ECUQ : VX1_VT5_VA5_VB5< 65, "vmul10ecuq", []>; // Decimal Integer Format Conversion Instructions // [PO VRT EO VRB 1 PS XO], "_o" means CR6 is set. class VX_VT5_EO5_VB5_PS1_XO9_o<bits<5> eo, bits<9> xo, string opc, list<dag> pattern> : VX_RD5_EO5_RS5_PS1_XO9<eo, xo, (outs vrrc:$vD), (ins vrrc:$vB, u1imm:$PS), !strconcat(opc, " $vD, $vB, $PS"), IIC_VecFP, pattern> { let Defs = [CR6]; } // [PO VRT EO VRB 1 / XO] class VX_VT5_EO5_VB5_XO9_o<bits<5> eo, bits<9> xo, string opc, list<dag> pattern> : VX_RD5_EO5_RS5_PS1_XO9<eo, xo, (outs vrrc:$vD), (ins vrrc:$vB), !strconcat(opc, " $vD, $vB"), IIC_VecFP, pattern> { let Defs = [CR6]; let PS = 0; } // Decimal Convert From/to National/Zoned/Signed-QWord def BCDCFNo : VX_VT5_EO5_VB5_PS1_XO9_o<7, 385, "bcdcfn." , []>; def BCDCFZo : VX_VT5_EO5_VB5_PS1_XO9_o<6, 385, "bcdcfz." , []>; def BCDCTNo : VX_VT5_EO5_VB5_XO9_o <5, 385, "bcdctn." , []>; def BCDCTZo : VX_VT5_EO5_VB5_PS1_XO9_o<4, 385, "bcdctz." , []>; def BCDCFSQo : VX_VT5_EO5_VB5_PS1_XO9_o<2, 385, "bcdcfsq.", []>; def BCDCTSQo : VX_VT5_EO5_VB5_XO9_o <0, 385, "bcdctsq.", []>; // Decimal Copy-Sign/Set-Sign let Defs = [CR6] in def BCDCPSGNo : VX1_VT5_VA5_VB5<833, "bcdcpsgn.", []>; def BCDSETSGNo : VX_VT5_EO5_VB5_PS1_XO9_o<31, 385, "bcdsetsgn.", []>; // [PO VRT VRA VRB 1 PS XO], "_o" means CR6 is set. class VX_VT5_VA5_VB5_PS1_XO9_o<bits<9> xo, string opc, list<dag> pattern> : VX_RD5_RSp5_PS1_XO9<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, u1imm:$PS), !strconcat(opc, " $vD, $vA, $vB, $PS"), IIC_VecFP, pattern> { let Defs = [CR6]; } // [PO VRT VRA VRB 1 / XO] class VX_VT5_VA5_VB5_XO9_o<bits<9> xo, string opc, list<dag> pattern> : VX_RD5_RSp5_PS1_XO9<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), !strconcat(opc, " $vD, $vA, $vB"), IIC_VecFP, pattern> { let Defs = [CR6]; let PS = 0; } // Decimal Shift/Unsigned-Shift/Shift-and-Round def BCDSo : VX_VT5_VA5_VB5_PS1_XO9_o<193, "bcds." , []>; def BCDUSo : VX_VT5_VA5_VB5_XO9_o <129, "bcdus.", []>; def BCDSRo : VX_VT5_VA5_VB5_PS1_XO9_o<449, "bcdsr.", []>; // Decimal (Unsigned) Truncate def BCDTRUNCo : VX_VT5_VA5_VB5_PS1_XO9_o<257, "bcdtrunc." , []>; def BCDUTRUNCo : VX_VT5_VA5_VB5_XO9_o <321, "bcdutrunc.", []>; // Absolute Difference def VABSDUB : VXForm_1<1027, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vabsdub $vD, $vA, $vB", IIC_VecGeneral, [(set v16i8:$vD, (int_ppc_altivec_vabsdub v16i8:$vA, v16i8:$vB))]>; def VABSDUH : VXForm_1<1091, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vabsduh $vD, $vA, $vB", IIC_VecGeneral, [(set v8i16:$vD, (int_ppc_altivec_vabsduh v8i16:$vA, v8i16:$vB))]>; def VABSDUW : VXForm_1<1155, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), "vabsduw $vD, $vA, $vB", IIC_VecGeneral, [(set v4i32:$vD, (int_ppc_altivec_vabsduw v4i32:$vA, v4i32:$vB))]>; } // end HasP9Altivec