//===-- RISCVInstrInfoF.td - RISC-V 'F' instructions -------*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the RISC-V instructions from the standard 'F', // Single-Precision Floating-Point instruction set extension. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Operand and SDNode transformation definitions. //===----------------------------------------------------------------------===// // Floating-point rounding mode def FRMArg : AsmOperandClass { let Name = "FRMArg"; let RenderMethod = "addFRMArgOperands"; let DiagnosticType = "InvalidFRMArg"; } def frmarg : Operand<XLenVT> { let ParserMatchClass = FRMArg; let PrintMethod = "printFRMArg"; let DecoderMethod = "decodeUImmOperand<3>"; } //===----------------------------------------------------------------------===// // Instruction class templates //===----------------------------------------------------------------------===// let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class FPFMAS_rrr_frm<RISCVOpcode opcode, string opcodestr> : RVInstR4<0b00, opcode, (outs FPR32:$rd), (ins FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, frmarg:$funct3), opcodestr, "$rd, $rs1, $rs2, $rs3, $funct3">; class FPFMASDynFrmAlias<FPFMAS_rrr_frm Inst, string OpcodeStr> : InstAlias<OpcodeStr#" $rd, $rs1, $rs2, $rs3", (Inst FPR32:$rd, FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class FPALUS_rr<bits<7> funct7, bits<3> funct3, string opcodestr> : RVInstR<funct7, funct3, OPC_OP_FP, (outs FPR32:$rd), (ins FPR32:$rs1, FPR32:$rs2), opcodestr, "$rd, $rs1, $rs2">; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class FPALUS_rr_frm<bits<7> funct7, string opcodestr> : RVInstRFrm<funct7, OPC_OP_FP, (outs FPR32:$rd), (ins FPR32:$rs1, FPR32:$rs2, frmarg:$funct3), opcodestr, "$rd, $rs1, $rs2, $funct3">; class FPALUSDynFrmAlias<FPALUS_rr_frm Inst, string OpcodeStr> : InstAlias<OpcodeStr#" $rd, $rs1, $rs2", (Inst FPR32:$rd, FPR32:$rs1, FPR32:$rs2, 0b111)>; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class FPUnaryOp_r<bits<7> funct7, bits<3> funct3, RegisterClass rdty, RegisterClass rs1ty, string opcodestr> : RVInstR<funct7, funct3, OPC_OP_FP, (outs rdty:$rd), (ins rs1ty:$rs1), opcodestr, "$rd, $rs1">; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class FPUnaryOp_r_frm<bits<7> funct7, RegisterClass rdty, RegisterClass rs1ty, string opcodestr> : RVInstRFrm<funct7, OPC_OP_FP, (outs rdty:$rd), (ins rs1ty:$rs1, frmarg:$funct3), opcodestr, "$rd, $rs1, $funct3">; class FPUnaryOpDynFrmAlias<FPUnaryOp_r_frm Inst, string OpcodeStr, RegisterClass rdty, RegisterClass rs1ty> : InstAlias<OpcodeStr#" $rd, $rs1", (Inst rdty:$rd, rs1ty:$rs1, 0b111)>; let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in class FPCmpS_rr<bits<3> funct3, string opcodestr> : RVInstR<0b1010000, funct3, OPC_OP_FP, (outs GPR:$rd), (ins FPR32:$rs1, FPR32:$rs2), opcodestr, "$rd, $rs1, $rs2">; //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// let Predicates = [HasStdExtF] in { let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in def FLW : RVInstI<0b010, OPC_LOAD_FP, (outs FPR32:$rd), (ins GPR:$rs1, simm12:$imm12), "flw", "$rd, ${imm12}(${rs1})">; // Operands for stores are in the order srcreg, base, offset rather than // reflecting the order these fields are specified in the instruction // encoding. let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in def FSW : RVInstS<0b010, OPC_STORE_FP, (outs), (ins FPR32:$rs2, GPR:$rs1, simm12:$imm12), "fsw", "$rs2, ${imm12}(${rs1})">; def FMADD_S : FPFMAS_rrr_frm<OPC_MADD, "fmadd.s">; def : FPFMASDynFrmAlias<FMADD_S, "fmadd.s">; def FMSUB_S : FPFMAS_rrr_frm<OPC_MSUB, "fmsub.s">; def : FPFMASDynFrmAlias<FMSUB_S, "fmsub.s">; def FNMSUB_S : FPFMAS_rrr_frm<OPC_NMSUB, "fnmsub.s">; def : FPFMASDynFrmAlias<FNMSUB_S, "fnmsub.s">; def FNMADD_S : FPFMAS_rrr_frm<OPC_NMADD, "fnmadd.s">; def : FPFMASDynFrmAlias<FNMADD_S, "fnmadd.s">; def FADD_S : FPALUS_rr_frm<0b0000000, "fadd.s">; def : FPALUSDynFrmAlias<FADD_S, "fadd.s">; def FSUB_S : FPALUS_rr_frm<0b0000100, "fsub.s">; def : FPALUSDynFrmAlias<FSUB_S, "fsub.s">; def FMUL_S : FPALUS_rr_frm<0b0001000, "fmul.s">; def : FPALUSDynFrmAlias<FMUL_S, "fmul.s">; def FDIV_S : FPALUS_rr_frm<0b0001100, "fdiv.s">; def : FPALUSDynFrmAlias<FDIV_S, "fdiv.s">; def FSQRT_S : FPUnaryOp_r_frm<0b0101100, FPR32, FPR32, "fsqrt.s"> { let rs2 = 0b00000; } def : FPUnaryOpDynFrmAlias<FSQRT_S, "fsqrt.s", FPR32, FPR32>; def FSGNJ_S : FPALUS_rr<0b0010000, 0b000, "fsgnj.s">; def FSGNJN_S : FPALUS_rr<0b0010000, 0b001, "fsgnjn.s">; def FSGNJX_S : FPALUS_rr<0b0010000, 0b010, "fsgnjx.s">; def FMIN_S : FPALUS_rr<0b0010100, 0b000, "fmin.s">; def FMAX_S : FPALUS_rr<0b0010100, 0b001, "fmax.s">; def FCVT_W_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.w.s"> { let rs2 = 0b00000; } def : FPUnaryOpDynFrmAlias<FCVT_W_S, "fcvt.w.s", GPR, FPR32>; def FCVT_WU_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.wu.s"> { let rs2 = 0b00001; } def : FPUnaryOpDynFrmAlias<FCVT_WU_S, "fcvt.wu.s", GPR, FPR32>; def FMV_X_W : FPUnaryOp_r<0b1110000, 0b000, GPR, FPR32, "fmv.x.w"> { let rs2 = 0b00000; } def FEQ_S : FPCmpS_rr<0b010, "feq.s">; def FLT_S : FPCmpS_rr<0b001, "flt.s">; def FLE_S : FPCmpS_rr<0b000, "fle.s">; def FCLASS_S : FPUnaryOp_r<0b1110000, 0b001, GPR, FPR32, "fclass.s"> { let rs2 = 0b00000; } def FCVT_S_W : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.w"> { let rs2 = 0b00000; } def : FPUnaryOpDynFrmAlias<FCVT_S_W, "fcvt.s.w", FPR32, GPR>; def FCVT_S_WU : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.wu"> { let rs2 = 0b00001; } def : FPUnaryOpDynFrmAlias<FCVT_S_WU, "fcvt.s.wu", FPR32, GPR>; def FMV_W_X : FPUnaryOp_r<0b1111000, 0b000, FPR32, GPR, "fmv.w.x"> { let rs2 = 0b00000; } } // Predicates = [HasStdExtF] let Predicates = [HasStdExtF, IsRV64] in { def FCVT_L_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.l.s"> { let rs2 = 0b00010; } def : FPUnaryOpDynFrmAlias<FCVT_L_S, "fcvt.l.s", GPR, FPR32>; def FCVT_LU_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.lu.s"> { let rs2 = 0b00011; } def : FPUnaryOpDynFrmAlias<FCVT_LU_S, "fcvt.lu.s", GPR, FPR32>; def FCVT_S_L : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.l"> { let rs2 = 0b00010; } def : FPUnaryOpDynFrmAlias<FCVT_S_L, "fcvt.s.l", FPR32, GPR>; def FCVT_S_LU : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.lu"> { let rs2 = 0b00011; } def : FPUnaryOpDynFrmAlias<FCVT_S_LU, "fcvt.s.lu", FPR32, GPR>; } // Predicates = [HasStdExtF, IsRV64] //===----------------------------------------------------------------------===// // Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20) //===----------------------------------------------------------------------===// let Predicates = [HasStdExtF] in { // TODO flw // TODO fsw def : InstAlias<"fmv.s $rd, $rs", (FSGNJ_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>; def : InstAlias<"fabs.s $rd, $rs", (FSGNJX_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>; def : InstAlias<"fneg.s $rd, $rs", (FSGNJN_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>; // fgt.s/fge.s are recognised by the GNU assembler but the canonical // flt.s/fle.s forms will always be printed. Therefore, set a zero weight. def : InstAlias<"fgt.s $rd, $rs, $rt", (FLT_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>; def : InstAlias<"fge.s $rd, $rs, $rt", (FLE_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>; // The following csr instructions actually alias instructions from the base ISA. // However, it only makes sense to support them when the F extension is enabled. // CSR Addresses: 0x003 == fcsr, 0x002 == frm, 0x001 == fflags // NOTE: "frcsr", "frrm", and "frflags" are more specialized version of "csrr". def : InstAlias<"frcsr $rd", (CSRRS GPR:$rd, 0x003, X0), 2>; def : InstAlias<"fscsr $rd, $rs", (CSRRW GPR:$rd, 0x003, GPR:$rs)>; def : InstAlias<"fscsr $rs", (CSRRW X0, 0x003, GPR:$rs), 2>; def : InstAlias<"frrm $rd", (CSRRS GPR:$rd, 0x002, X0), 2>; def : InstAlias<"fsrm $rd, $rs", (CSRRW GPR:$rd, 0x002, GPR:$rs)>; def : InstAlias<"fsrm $rs", (CSRRW X0, 0x002, GPR:$rs), 2>; def : InstAlias<"fsrmi $rd, $imm", (CSRRWI GPR:$rd, 0x002, uimm5:$imm)>; def : InstAlias<"fsrmi $imm", (CSRRWI X0, 0x002, uimm5:$imm), 2>; def : InstAlias<"frflags $rd", (CSRRS GPR:$rd, 0x001, X0), 2>; def : InstAlias<"fsflags $rd, $rs", (CSRRW GPR:$rd, 0x001, GPR:$rs)>; def : InstAlias<"fsflags $rs", (CSRRW X0, 0x001, GPR:$rs), 2>; def : InstAlias<"fsflagsi $rd, $imm", (CSRRWI GPR:$rd, 0x001, uimm5:$imm)>; def : InstAlias<"fsflagsi $imm", (CSRRWI X0, 0x001, uimm5:$imm), 2>; // fmv.w.x and fmv.x.w were previously known as fmv.s.x and fmv.x.s. Both // spellings should be supported by standard tools. def : MnemonicAlias<"fmv.s.x", "fmv.w.x">; def : MnemonicAlias<"fmv.x.s", "fmv.x.w">; } // Predicates = [HasStdExtF] //===----------------------------------------------------------------------===// // Pseudo-instructions and codegen patterns //===----------------------------------------------------------------------===// /// Generic pattern classes class PatFpr32Fpr32<SDPatternOperator OpNode, RVInstR Inst> : Pat<(OpNode FPR32:$rs1, FPR32:$rs2), (Inst $rs1, $rs2)>; class PatFpr32Fpr32DynFrm<SDPatternOperator OpNode, RVInstRFrm Inst> : Pat<(OpNode FPR32:$rs1, FPR32:$rs2), (Inst $rs1, $rs2, 0b111)>; let Predicates = [HasStdExtF] in { /// Float conversion operations // Moves (no conversion) def : Pat<(bitconvert GPR:$rs1), (FMV_W_X GPR:$rs1)>; def : Pat<(bitconvert FPR32:$rs1), (FMV_X_W FPR32:$rs1)>; // FP->[u]int. Round-to-zero must be used def : Pat<(fp_to_sint FPR32:$rs1), (FCVT_W_S $rs1, 0b001)>; def : Pat<(fp_to_uint FPR32:$rs1), (FCVT_WU_S $rs1, 0b001)>; // [u]int->fp. Match GCC and default to using dynamic rounding mode. def : Pat<(sint_to_fp GPR:$rs1), (FCVT_S_W $rs1, 0b111)>; def : Pat<(uint_to_fp GPR:$rs1), (FCVT_S_WU $rs1, 0b111)>; /// Float arithmetic operations def : PatFpr32Fpr32DynFrm<fadd, FADD_S>; def : PatFpr32Fpr32DynFrm<fsub, FSUB_S>; def : PatFpr32Fpr32DynFrm<fmul, FMUL_S>; def : PatFpr32Fpr32DynFrm<fdiv, FDIV_S>; def : Pat<(fsqrt FPR32:$rs1), (FSQRT_S FPR32:$rs1, 0b111)>; def : Pat<(fneg FPR32:$rs1), (FSGNJN_S $rs1, $rs1)>; def : Pat<(fabs FPR32:$rs1), (FSGNJX_S $rs1, $rs1)>; def : PatFpr32Fpr32<fcopysign, FSGNJ_S>; def : Pat<(fcopysign FPR32:$rs1, (fneg FPR32:$rs2)), (FSGNJN_S $rs1, $rs2)>; // The RISC-V 2.2 user-level ISA spec defines fmin and fmax as returning the // canonical NaN when given a signaling NaN. This doesn't match the LLVM // behaviour (see https://bugs.llvm.org/show_bug.cgi?id=27363). However, the // draft 2.3 ISA spec changes the definition of fmin and fmax in a way that // matches LLVM's fminnum and fmaxnum // <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>. def : PatFpr32Fpr32<fminnum, FMIN_S>; def : PatFpr32Fpr32<fmaxnum, FMAX_S>; /// Setcc def : PatFpr32Fpr32<seteq, FEQ_S>; def : PatFpr32Fpr32<setoeq, FEQ_S>; def : PatFpr32Fpr32<setlt, FLT_S>; def : PatFpr32Fpr32<setolt, FLT_S>; def : PatFpr32Fpr32<setle, FLE_S>; def : PatFpr32Fpr32<setole, FLE_S>; // Define pattern expansions for setcc operations which aren't directly // handled by a RISC-V instruction and aren't expanded in the SelectionDAG // Legalizer. def : Pat<(setuo FPR32:$rs1, FPR32:$rs2), (SLTIU (AND (FEQ_S FPR32:$rs1, FPR32:$rs1), (FEQ_S FPR32:$rs2, FPR32:$rs2)), 1)>; def Select_FPR32_Using_CC_GPR : SelectCC_rrirr<FPR32, GPR>; /// Loads defm : LdPat<load, FLW>; /// Stores defm : StPat<store, FSW, FPR32>; } // Predicates = [HasStdExtF]