//===-- SparcCallingConv.td - Calling Conventions Sparc ----*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This describes the calling conventions for the Sparc architectures. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // SPARC v8 32-bit. //===----------------------------------------------------------------------===// def CC_Sparc32 : CallingConv<[ // Custom assign SRet to [sp+64]. CCIfSRet<CCCustom<"CC_Sparc_Assign_SRet">>, // i32 f32 arguments get passed in integer registers if there is space. CCIfType<[i32, f32], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>, // f64 arguments are split and passed through registers or through stack. CCIfType<[f64], CCCustom<"CC_Sparc_Assign_Split_64">>, // As are v2i32 arguments (this would be the default behavior for // v2i32 if it wasn't allocated to the IntPair register-class) CCIfType<[v2i32], CCCustom<"CC_Sparc_Assign_Split_64">>, // Alternatively, they are assigned to the stack in 4-byte aligned units. CCAssignToStack<4, 4> ]>; def RetCC_Sparc32 : CallingConv<[ CCIfType<[i32], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>, CCIfType<[f32], CCAssignToReg<[F0, F1, F2, F3]>>, CCIfType<[f64], CCAssignToReg<[D0, D1]>>, CCIfType<[v2i32], CCCustom<"CC_Sparc_Assign_Ret_Split_64">> ]>; //===----------------------------------------------------------------------===// // SPARC v9 64-bit. //===----------------------------------------------------------------------===// // // The 64-bit ABI conceptually assigns all function arguments to a parameter // array starting at [%fp+BIAS+128] in the callee's stack frame. All arguments // occupy a multiple of 8 bytes in the array. Integer arguments are extended to // 64 bits by the caller. Floats are right-aligned in their 8-byte slot, the // first 4 bytes in the slot are undefined. // // The integer registers %i0 to %i5 shadow the first 48 bytes of the parameter // array at fixed offsets. Integer arguments are promoted to registers when // possible. // // The floating point registers %f0 to %f31 shadow the first 128 bytes of the // parameter array at fixed offsets. Float and double parameters are promoted // to these registers when possible. // // Structs up to 16 bytes in size are passed by value. They are right-aligned // in one or two 8-byte slots in the parameter array. Struct members are // promoted to both floating point and integer registers when possible. A // struct containing two floats would thus be passed in %f0 and %f1, while two // float function arguments would occupy 8 bytes each, and be passed in %f1 and // %f3. // // When a struct { int, float } is passed by value, the int goes in the high // bits of an integer register while the float goes in a floating point // register. // // The difference is encoded in LLVM IR using the inreg atttribute on function // arguments: // // C: void f(float, float); // IR: declare void f(float %f1, float %f3) // // C: void f(struct { float f0, f1; }); // IR: declare void f(float inreg %f0, float inreg %f1) // // C: void f(int, float); // IR: declare void f(int signext %i0, float %f3) // // C: void f(struct { int i0high; float f1; }); // IR: declare void f(i32 inreg %i0high, float inreg %f1) // // Two ints in a struct are simply coerced to i64: // // C: void f(struct { int i0high, i0low; }); // IR: declare void f(i64 %i0.coerced) // // The frontend and backend divide the task of producing ABI compliant code for // C functions. The C frontend will: // // - Annotate integer arguments with zeroext or signext attributes. // // - Split structs into one or two 64-bit sized chunks, or 32-bit chunks with // inreg attributes. // // - Pass structs larger than 16 bytes indirectly with an explicit pointer // argument. The byval attribute is not used. // // The backend will: // // - Assign all arguments to 64-bit aligned stack slots, 32-bits for inreg. // // - Promote to integer or floating point registers depending on type. // // Function return values are passed exactly like function arguments, except a // struct up to 32 bytes in size can be returned in registers. // Function arguments AND most return values. def CC_Sparc64 : CallingConv<[ // The frontend uses the inreg flag to indicate i32 and float arguments from // structs. These arguments are not promoted to 64 bits, but they can still // be assigned to integer and float registers. CCIfInReg<CCIfType<[i32, f32], CCCustom<"CC_Sparc64_Half">>>, // All integers are promoted to i64 by the caller. CCIfType<[i32], CCPromoteToType<i64>>, // Custom assignment is required because stack space is reserved for all // arguments whether they are passed in registers or not. CCCustom<"CC_Sparc64_Full"> ]>; def RetCC_Sparc64 : CallingConv<[ // A single f32 return value always goes in %f0. The ABI doesn't specify what // happens to multiple f32 return values outside a struct. CCIfType<[f32], CCCustom<"CC_Sparc64_Half">>, // Otherwise, return values are passed exactly like arguments. CCDelegateTo<CC_Sparc64> ]>; // Callee-saved registers are handled by the register window mechanism. def CSR : CalleeSavedRegs<(add)> { let OtherPreserved = (add (sequence "I%u", 0, 7), (sequence "L%u", 0, 7)); } // Callee-saved registers for calls with ReturnsTwice attribute. def RTCSR : CalleeSavedRegs<(add)> { let OtherPreserved = (add I6, I7); }