//===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "SystemZTargetMachine.h" #include "MCTargetDesc/SystemZMCTargetDesc.h" #include "SystemZ.h" #include "SystemZMachineScheduler.h" #include "SystemZTargetTransformInfo.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/DataLayout.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include "llvm/Transforms/Scalar.h" #include <string> using namespace llvm; extern "C" void LLVMInitializeSystemZTarget() { // Register the target. RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget()); } // Determine whether we use the vector ABI. static bool UsesVectorABI(StringRef CPU, StringRef FS) { // We use the vector ABI whenever the vector facility is avaiable. // This is the case by default if CPU is z13 or later, and can be // overridden via "[+-]vector" feature string elements. bool VectorABI = true; if (CPU.empty() || CPU == "generic" || CPU == "z10" || CPU == "z196" || CPU == "zEC12") VectorABI = false; SmallVector<StringRef, 3> Features; FS.split(Features, ',', -1, false /* KeepEmpty */); for (auto &Feature : Features) { if (Feature == "vector" || Feature == "+vector") VectorABI = true; if (Feature == "-vector") VectorABI = false; } return VectorABI; } static std::string computeDataLayout(const Triple &TT, StringRef CPU, StringRef FS) { bool VectorABI = UsesVectorABI(CPU, FS); std::string Ret; // Big endian. Ret += "E"; // Data mangling. Ret += DataLayout::getManglingComponent(TT); // Make sure that global data has at least 16 bits of alignment by // default, so that we can refer to it using LARL. We don't have any // special requirements for stack variables though. Ret += "-i1:8:16-i8:8:16"; // 64-bit integers are naturally aligned. Ret += "-i64:64"; // 128-bit floats are aligned only to 64 bits. Ret += "-f128:64"; // When using the vector ABI, 128-bit vectors are also aligned to 64 bits. if (VectorABI) Ret += "-v128:64"; // We prefer 16 bits of aligned for all globals; see above. Ret += "-a:8:16"; // Integer registers are 32 or 64 bits. Ret += "-n32:64"; return Ret; } static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { // Static code is suitable for use in a dynamic executable; there is no // separate DynamicNoPIC model. if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC) return Reloc::Static; return *RM; } // For SystemZ we define the models as follows: // // Small: BRASL can call any function and will use a stub if necessary. // Locally-binding symbols will always be in range of LARL. // // Medium: BRASL can call any function and will use a stub if necessary. // GOT slots and locally-defined text will always be in range // of LARL, but other symbols might not be. // // Large: Equivalent to Medium for now. // // Kernel: Equivalent to Medium for now. // // This means that any PIC module smaller than 4GB meets the // requirements of Small, so Small seems like the best default there. // // All symbols bind locally in a non-PIC module, so the choice is less // obvious. There are two cases: // // - When creating an executable, PLTs and copy relocations allow // us to treat external symbols as part of the executable. // Any executable smaller than 4GB meets the requirements of Small, // so that seems like the best default. // // - When creating JIT code, stubs will be in range of BRASL if the // image is less than 4GB in size. GOT entries will likewise be // in range of LARL. However, the JIT environment has no equivalent // of copy relocs, so locally-binding data symbols might not be in // the range of LARL. We need the Medium model in that case. static CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM, Reloc::Model RM, bool JIT) { if (CM) return *CM; if (JIT) return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium; return CodeModel::Small; } SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Optional<Reloc::Model> RM, Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) : LLVMTargetMachine( T, computeDataLayout(TT, CPU, FS), TT, CPU, FS, Options, getEffectiveRelocModel(RM), getEffectiveCodeModel(CM, getEffectiveRelocModel(RM), JIT), OL), TLOF(llvm::make_unique<TargetLoweringObjectFileELF>()), Subtarget(TT, CPU, FS, *this) { initAsmInfo(); } SystemZTargetMachine::~SystemZTargetMachine() = default; namespace { /// SystemZ Code Generator Pass Configuration Options. class SystemZPassConfig : public TargetPassConfig { public: SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM) : TargetPassConfig(TM, PM) {} SystemZTargetMachine &getSystemZTargetMachine() const { return getTM<SystemZTargetMachine>(); } ScheduleDAGInstrs * createPostMachineScheduler(MachineSchedContext *C) const override { return new ScheduleDAGMI(C, llvm::make_unique<SystemZPostRASchedStrategy>(C), /*RemoveKillFlags=*/true); } void addIRPasses() override; bool addInstSelector() override; bool addILPOpts() override; void addPreSched2() override; void addPreEmitPass() override; }; } // end anonymous namespace void SystemZPassConfig::addIRPasses() { if (getOptLevel() != CodeGenOpt::None) { addPass(createSystemZTDCPass()); addPass(createLoopDataPrefetchPass()); } TargetPassConfig::addIRPasses(); } bool SystemZPassConfig::addInstSelector() { addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel())); if (getOptLevel() != CodeGenOpt::None) addPass(createSystemZLDCleanupPass(getSystemZTargetMachine())); return false; } bool SystemZPassConfig::addILPOpts() { addPass(&EarlyIfConverterID); return true; } void SystemZPassConfig::addPreSched2() { addPass(createSystemZExpandPseudoPass(getSystemZTargetMachine())); if (getOptLevel() != CodeGenOpt::None) addPass(&IfConverterID); } void SystemZPassConfig::addPreEmitPass() { // Do instruction shortening before compare elimination because some // vector instructions will be shortened into opcodes that compare // elimination recognizes. if (getOptLevel() != CodeGenOpt::None) addPass(createSystemZShortenInstPass(getSystemZTargetMachine()), false); // We eliminate comparisons here rather than earlier because some // transformations can change the set of available CC values and we // generally want those transformations to have priority. This is // especially true in the commonest case where the result of the comparison // is used by a single in-range branch instruction, since we will then // be able to fuse the compare and the branch instead. // // For example, two-address NILF can sometimes be converted into // three-address RISBLG. NILF produces a CC value that indicates whether // the low word is zero, but RISBLG does not modify CC at all. On the // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG. // The CC value produced by NILL isn't useful for our purposes, but the // value produced by RISBG can be used for any comparison with zero // (not just equality). So there are some transformations that lose // CC values (while still being worthwhile) and others that happen to make // the CC result more useful than it was originally. // // Another reason is that we only want to use BRANCH ON COUNT in cases // where we know that the count register is not going to be spilled. // // Doing it so late makes it more likely that a register will be reused // between the comparison and the branch, but it isn't clear whether // preventing that would be a win or not. if (getOptLevel() != CodeGenOpt::None) addPass(createSystemZElimComparePass(getSystemZTargetMachine()), false); addPass(createSystemZLongBranchPass(getSystemZTargetMachine())); // Do final scheduling after all other optimizations, to get an // optimal input for the decoder (branch relaxation must happen // after block placement). if (getOptLevel() != CodeGenOpt::None) addPass(&PostMachineSchedulerID); } TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) { return new SystemZPassConfig(*this, PM); } TargetTransformInfo SystemZTargetMachine::getTargetTransformInfo(const Function &F) { return TargetTransformInfo(SystemZTTIImpl(this, F)); }