//===-- TargetMachine.cpp - General Target Information ---------------------==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the general parts of a Target machine. // //===----------------------------------------------------------------------===// #include "llvm/Target/TargetMachine.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/Mangler.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MCTargetOptions.h" #include "llvm/MC/SectionKind.h" #include "llvm/Target/TargetLoweringObjectFile.h" using namespace llvm; //--------------------------------------------------------------------------- // TargetMachine Class // TargetMachine::TargetMachine(const Target &T, StringRef DataLayoutString, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options) : TheTarget(T), DL(DataLayoutString), TargetTriple(TT), TargetCPU(CPU), TargetFS(FS), AsmInfo(nullptr), MRI(nullptr), MII(nullptr), STI(nullptr), RequireStructuredCFG(false), DefaultOptions(Options), Options(Options) { } TargetMachine::~TargetMachine() { delete AsmInfo; delete MRI; delete MII; delete STI; } bool TargetMachine::isPositionIndependent() const { return getRelocationModel() == Reloc::PIC_; } /// Reset the target options based on the function's attributes. // FIXME: This function needs to go away for a number of reasons: // a) global state on the TargetMachine is terrible in general, // b) these target options should be passed only on the function // and not on the TargetMachine (via TargetOptions) at all. void TargetMachine::resetTargetOptions(const Function &F) const { #define RESET_OPTION(X, Y) \ do { \ if (F.hasFnAttribute(Y)) \ Options.X = (F.getFnAttribute(Y).getValueAsString() == "true"); \ else \ Options.X = DefaultOptions.X; \ } while (0) RESET_OPTION(UnsafeFPMath, "unsafe-fp-math"); RESET_OPTION(NoInfsFPMath, "no-infs-fp-math"); RESET_OPTION(NoNaNsFPMath, "no-nans-fp-math"); RESET_OPTION(NoSignedZerosFPMath, "no-signed-zeros-fp-math"); RESET_OPTION(NoTrappingFPMath, "no-trapping-math"); StringRef Denormal = F.getFnAttribute("denormal-fp-math").getValueAsString(); if (Denormal == "ieee") Options.FPDenormalMode = FPDenormal::IEEE; else if (Denormal == "preserve-sign") Options.FPDenormalMode = FPDenormal::PreserveSign; else if (Denormal == "positive-zero") Options.FPDenormalMode = FPDenormal::PositiveZero; else Options.FPDenormalMode = DefaultOptions.FPDenormalMode; } /// Returns the code generation relocation model. The choices are static, PIC, /// and dynamic-no-pic. Reloc::Model TargetMachine::getRelocationModel() const { return RM; } /// Returns the code model. The choices are small, kernel, medium, large, and /// target default. CodeModel::Model TargetMachine::getCodeModel() const { return CMModel; } /// Get the IR-specified TLS model for Var. static TLSModel::Model getSelectedTLSModel(const GlobalValue *GV) { switch (GV->getThreadLocalMode()) { case GlobalVariable::NotThreadLocal: llvm_unreachable("getSelectedTLSModel for non-TLS variable"); break; case GlobalVariable::GeneralDynamicTLSModel: return TLSModel::GeneralDynamic; case GlobalVariable::LocalDynamicTLSModel: return TLSModel::LocalDynamic; case GlobalVariable::InitialExecTLSModel: return TLSModel::InitialExec; case GlobalVariable::LocalExecTLSModel: return TLSModel::LocalExec; } llvm_unreachable("invalid TLS model"); } bool TargetMachine::shouldAssumeDSOLocal(const Module &M, const GlobalValue *GV) const { // If the IR producer requested that this GV be treated as dso local, obey. if (GV && GV->isDSOLocal()) return true; // If we are not supossed to use a PLT, we cannot assume that intrinsics are // local since the linker can convert some direct access to access via plt. if (M.getRtLibUseGOT() && !GV) return false; // According to the llvm language reference, we should be able to // just return false in here if we have a GV, as we know it is // dso_preemptable. At this point in time, the various IR producers // have not been transitioned to always produce a dso_local when it // is possible to do so. // In the case of intrinsics, GV is null and there is nowhere to put // dso_local. Returning false for those will produce worse code in some // architectures. For example, on x86 the caller has to set ebx before calling // a plt. // As a result we still have some logic in here to improve the quality of the // generated code. // FIXME: Add a module level metadata for whether intrinsics should be assumed // local. Reloc::Model RM = getRelocationModel(); const Triple &TT = getTargetTriple(); // DLLImport explicitly marks the GV as external. if (GV && GV->hasDLLImportStorageClass()) return false; // Every other GV is local on COFF. // Make an exception for windows OS in the triple: Some firmware builds use // *-win32-macho triples. This (accidentally?) produced windows relocations // without GOT tables in older clang versions; Keep this behaviour. if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) return true; // Most PIC code sequences that assume that a symbol is local cannot // produce a 0 if it turns out the symbol is undefined. While this // is ABI and relocation depended, it seems worth it to handle it // here. if (GV && isPositionIndependent() && GV->hasExternalWeakLinkage()) return false; if (GV && !GV->hasDefaultVisibility()) return true; if (TT.isOSBinFormatMachO()) { if (RM == Reloc::Static) return true; return GV && GV->isStrongDefinitionForLinker(); } assert(TT.isOSBinFormatELF()); assert(RM != Reloc::DynamicNoPIC); bool IsExecutable = RM == Reloc::Static || M.getPIELevel() != PIELevel::Default; if (IsExecutable) { // If the symbol is defined, it cannot be preempted. if (GV && !GV->isDeclarationForLinker()) return true; // A symbol marked nonlazybind should not be accessed with a plt. If the // symbol turns out to be external, the linker will convert a direct // access to an access via the plt, so don't assume it is local. const Function *F = dyn_cast_or_null<Function>(GV); if (F && F->hasFnAttribute(Attribute::NonLazyBind)) return false; bool IsTLS = GV && GV->isThreadLocal(); bool IsAccessViaCopyRelocs = GV && Options.MCOptions.MCPIECopyRelocations && isa<GlobalVariable>(GV); Triple::ArchType Arch = TT.getArch(); bool IsPPC = Arch == Triple::ppc || Arch == Triple::ppc64 || Arch == Triple::ppc64le; // Check if we can use copy relocations. PowerPC has no copy relocations. if (!IsTLS && !IsPPC && (RM == Reloc::Static || IsAccessViaCopyRelocs)) return true; } // ELF supports preemption of other symbols. return false; } bool TargetMachine::useEmulatedTLS() const { // Returns Options.EmulatedTLS if the -emulated-tls or -no-emulated-tls // was specified explicitly; otherwise uses target triple to decide default. if (Options.ExplicitEmulatedTLS) return Options.EmulatedTLS; return getTargetTriple().hasDefaultEmulatedTLS(); } TLSModel::Model TargetMachine::getTLSModel(const GlobalValue *GV) const { bool IsPIE = GV->getParent()->getPIELevel() != PIELevel::Default; Reloc::Model RM = getRelocationModel(); bool IsSharedLibrary = RM == Reloc::PIC_ && !IsPIE; bool IsLocal = shouldAssumeDSOLocal(*GV->getParent(), GV); TLSModel::Model Model; if (IsSharedLibrary) { if (IsLocal) Model = TLSModel::LocalDynamic; else Model = TLSModel::GeneralDynamic; } else { if (IsLocal) Model = TLSModel::LocalExec; else Model = TLSModel::InitialExec; } // If the user specified a more specific model, use that. TLSModel::Model SelectedModel = getSelectedTLSModel(GV); if (SelectedModel > Model) return SelectedModel; return Model; } /// Returns the optimization level: None, Less, Default, or Aggressive. CodeGenOpt::Level TargetMachine::getOptLevel() const { return OptLevel; } void TargetMachine::setOptLevel(CodeGenOpt::Level Level) { OptLevel = Level; } TargetTransformInfo TargetMachine::getTargetTransformInfo(const Function &F) { return TargetTransformInfo(F.getParent()->getDataLayout()); } void TargetMachine::getNameWithPrefix(SmallVectorImpl<char> &Name, const GlobalValue *GV, Mangler &Mang, bool MayAlwaysUsePrivate) const { if (MayAlwaysUsePrivate || !GV->hasPrivateLinkage()) { // Simple case: If GV is not private, it is not important to find out if // private labels are legal in this case or not. Mang.getNameWithPrefix(Name, GV, false); return; } const TargetLoweringObjectFile *TLOF = getObjFileLowering(); TLOF->getNameWithPrefix(Name, GV, *this); } MCSymbol *TargetMachine::getSymbol(const GlobalValue *GV) const { const TargetLoweringObjectFile *TLOF = getObjFileLowering(); SmallString<128> NameStr; getNameWithPrefix(NameStr, GV, TLOF->getMangler()); return TLOF->getContext().getOrCreateSymbol(NameStr); } TargetIRAnalysis TargetMachine::getTargetIRAnalysis() { // Since Analysis can't depend on Target, use a std::function to invert the // dependency. return TargetIRAnalysis( [this](const Function &F) { return this->getTargetTransformInfo(F); }); }