//=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// This file implements the WebAssemblyTargetLowering class. /// //===----------------------------------------------------------------------===// #include "WebAssemblyISelLowering.h" #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" #include "WebAssemblyMachineFunctionInfo.h" #include "WebAssemblySubtarget.h" #include "WebAssemblyTargetMachine.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/DiagnosticPrinter.h" #include "llvm/IR/Function.h" #include "llvm/IR/Intrinsics.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; #define DEBUG_TYPE "wasm-lower" WebAssemblyTargetLowering::WebAssemblyTargetLowering( const TargetMachine &TM, const WebAssemblySubtarget &STI) : TargetLowering(TM), Subtarget(&STI) { auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; // Booleans always contain 0 or 1. setBooleanContents(ZeroOrOneBooleanContent); // WebAssembly does not produce floating-point exceptions on normal floating // point operations. setHasFloatingPointExceptions(false); // We don't know the microarchitecture here, so just reduce register pressure. setSchedulingPreference(Sched::RegPressure); // Tell ISel that we have a stack pointer. setStackPointerRegisterToSaveRestore( Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); // Set up the register classes. addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); if (Subtarget->hasSIMD128()) { addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); } // Compute derived properties from the register classes. computeRegisterProperties(Subtarget->getRegisterInfo()); setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); setOperationAction(ISD::JumpTable, MVTPtr, Custom); setOperationAction(ISD::BlockAddress, MVTPtr, Custom); setOperationAction(ISD::BRIND, MVT::Other, Custom); // Take the default expansion for va_arg, va_copy, and va_end. There is no // default action for va_start, so we do that custom. setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VAARG, MVT::Other, Expand); setOperationAction(ISD::VACOPY, MVT::Other, Expand); setOperationAction(ISD::VAEND, MVT::Other, Expand); for (auto T : {MVT::f32, MVT::f64}) { // Don't expand the floating-point types to constant pools. setOperationAction(ISD::ConstantFP, T, Legal); // Expand floating-point comparisons. for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) setCondCodeAction(CC, T, Expand); // Expand floating-point library function operators. for (auto Op : {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) setOperationAction(Op, T, Expand); // Note supported floating-point library function operators that otherwise // default to expand. for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) setOperationAction(Op, T, Legal); // Support minnan and maxnan, which otherwise default to expand. setOperationAction(ISD::FMINNAN, T, Legal); setOperationAction(ISD::FMAXNAN, T, Legal); // WebAssembly currently has no builtin f16 support. setOperationAction(ISD::FP16_TO_FP, T, Expand); setOperationAction(ISD::FP_TO_FP16, T, Expand); setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); setTruncStoreAction(T, MVT::f16, Expand); } for (auto T : {MVT::i32, MVT::i64}) { // Expand unavailable integer operations. for (auto Op : {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { setOperationAction(Op, T, Expand); } } // As a special case, these operators use the type to mean the type to // sign-extend from. setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); if (!Subtarget->hasSignExt()) { for (auto T : {MVT::i8, MVT::i16, MVT::i32}) setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); } // Dynamic stack allocation: use the default expansion. setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); setOperationAction(ISD::FrameIndex, MVT::i32, Custom); setOperationAction(ISD::CopyToReg, MVT::Other, Custom); // Expand these forms; we pattern-match the forms that we can handle in isel. for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) setOperationAction(Op, T, Expand); // We have custom switch handling. setOperationAction(ISD::BR_JT, MVT::Other, Custom); // WebAssembly doesn't have: // - Floating-point extending loads. // - Floating-point truncating stores. // - i1 extending loads. setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); setTruncStoreAction(MVT::f64, MVT::f32, Expand); for (auto T : MVT::integer_valuetypes()) for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) setLoadExtAction(Ext, T, MVT::i1, Promote); // Trap lowers to wasm unreachable setOperationAction(ISD::TRAP, MVT::Other, Legal); // Exception handling intrinsics setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); setMaxAtomicSizeInBitsSupported(64); } FastISel *WebAssemblyTargetLowering::createFastISel( FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { return WebAssembly::createFastISel(FuncInfo, LibInfo); } bool WebAssemblyTargetLowering::isOffsetFoldingLegal( const GlobalAddressSDNode * /*GA*/) const { // All offsets can be folded. return true; } MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, EVT VT) const { unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); if (BitWidth > 1 && BitWidth < 8) BitWidth = 8; if (BitWidth > 64) { // The shift will be lowered to a libcall, and compiler-rt libcalls expect // the count to be an i32. BitWidth = 32; assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && "32-bit shift counts ought to be enough for anyone"); } MVT Result = MVT::getIntegerVT(BitWidth); assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && "Unable to represent scalar shift amount type"); return Result; } // Lower an fp-to-int conversion operator from the LLVM opcode, which has an // undefined result on invalid/overflow, to the WebAssembly opcode, which // traps on invalid/overflow. static MachineBasicBlock * LowerFPToInt( MachineInstr &MI, DebugLoc DL, MachineBasicBlock *BB, const TargetInstrInfo &TII, bool IsUnsigned, bool Int64, bool Float64, unsigned LoweredOpcode ) { MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); unsigned OutReg = MI.getOperand(0).getReg(); unsigned InReg = MI.getOperand(1).getReg(); unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; unsigned Eqz = WebAssembly::EQZ_I32; unsigned And = WebAssembly::AND_I32; int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; int64_t Substitute = IsUnsigned ? 0 : Limit; double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; auto &Context = BB->getParent()->getFunction().getContext(); Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction *F = BB->getParent(); MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineFunction::iterator It = ++BB->getIterator(); F->insert(It, FalseMBB); F->insert(It, TrueMBB); F->insert(It, DoneMBB); // Transfer the remainder of BB and its successor edges to DoneMBB. DoneMBB->splice(DoneMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); DoneMBB->transferSuccessorsAndUpdatePHIs(BB); BB->addSuccessor(TrueMBB); BB->addSuccessor(FalseMBB); TrueMBB->addSuccessor(DoneMBB); FalseMBB->addSuccessor(DoneMBB); unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); MI.eraseFromParent(); // For signed numbers, we can do a single comparison to determine whether // fabs(x) is within range. if (IsUnsigned) { Tmp0 = InReg; } else { BuildMI(BB, DL, TII.get(Abs), Tmp0) .addReg(InReg); } BuildMI(BB, DL, TII.get(FConst), Tmp1) .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); BuildMI(BB, DL, TII.get(LT), CmpReg) .addReg(Tmp0) .addReg(Tmp1); // For unsigned numbers, we have to do a separate comparison with zero. if (IsUnsigned) { Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); unsigned SecondCmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); unsigned AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); BuildMI(BB, DL, TII.get(FConst), Tmp1) .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); BuildMI(BB, DL, TII.get(GE), SecondCmpReg) .addReg(Tmp0) .addReg(Tmp1); BuildMI(BB, DL, TII.get(And), AndReg) .addReg(CmpReg) .addReg(SecondCmpReg); CmpReg = AndReg; } BuildMI(BB, DL, TII.get(Eqz), EqzReg) .addReg(CmpReg); // Create the CFG diamond to select between doing the conversion or using // the substitute value. BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)) .addMBB(TrueMBB) .addReg(EqzReg); BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg) .addReg(InReg); BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)) .addMBB(DoneMBB); BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg) .addImm(Substitute); BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) .addReg(FalseReg) .addMBB(FalseMBB) .addReg(TrueReg) .addMBB(TrueMBB); return DoneMBB; } MachineBasicBlock * WebAssemblyTargetLowering::EmitInstrWithCustomInserter( MachineInstr &MI, MachineBasicBlock *BB ) const { const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); DebugLoc DL = MI.getDebugLoc(); switch (MI.getOpcode()) { default: llvm_unreachable("Unexpected instr type to insert"); case WebAssembly::FP_TO_SINT_I32_F32: return LowerFPToInt(MI, DL, BB, TII, false, false, false, WebAssembly::I32_TRUNC_S_F32); case WebAssembly::FP_TO_UINT_I32_F32: return LowerFPToInt(MI, DL, BB, TII, true, false, false, WebAssembly::I32_TRUNC_U_F32); case WebAssembly::FP_TO_SINT_I64_F32: return LowerFPToInt(MI, DL, BB, TII, false, true, false, WebAssembly::I64_TRUNC_S_F32); case WebAssembly::FP_TO_UINT_I64_F32: return LowerFPToInt(MI, DL, BB, TII, true, true, false, WebAssembly::I64_TRUNC_U_F32); case WebAssembly::FP_TO_SINT_I32_F64: return LowerFPToInt(MI, DL, BB, TII, false, false, true, WebAssembly::I32_TRUNC_S_F64); case WebAssembly::FP_TO_UINT_I32_F64: return LowerFPToInt(MI, DL, BB, TII, true, false, true, WebAssembly::I32_TRUNC_U_F64); case WebAssembly::FP_TO_SINT_I64_F64: return LowerFPToInt(MI, DL, BB, TII, false, true, true, WebAssembly::I64_TRUNC_S_F64); case WebAssembly::FP_TO_UINT_I64_F64: return LowerFPToInt(MI, DL, BB, TII, true, true, true, WebAssembly::I64_TRUNC_U_F64); llvm_unreachable("Unexpected instruction to emit with custom inserter"); } } const char *WebAssemblyTargetLowering::getTargetNodeName( unsigned Opcode) const { switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { case WebAssemblyISD::FIRST_NUMBER: break; #define HANDLE_NODETYPE(NODE) \ case WebAssemblyISD::NODE: \ return "WebAssemblyISD::" #NODE; #include "WebAssemblyISD.def" #undef HANDLE_NODETYPE } return nullptr; } std::pair<unsigned, const TargetRegisterClass *> WebAssemblyTargetLowering::getRegForInlineAsmConstraint( const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { // First, see if this is a constraint that directly corresponds to a // WebAssembly register class. if (Constraint.size() == 1) { switch (Constraint[0]) { case 'r': assert(VT != MVT::iPTR && "Pointer MVT not expected here"); if (Subtarget->hasSIMD128() && VT.isVector()) { if (VT.getSizeInBits() == 128) return std::make_pair(0U, &WebAssembly::V128RegClass); } if (VT.isInteger() && !VT.isVector()) { if (VT.getSizeInBits() <= 32) return std::make_pair(0U, &WebAssembly::I32RegClass); if (VT.getSizeInBits() <= 64) return std::make_pair(0U, &WebAssembly::I64RegClass); } break; default: break; } } return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); } bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { // Assume ctz is a relatively cheap operation. return true; } bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { // Assume clz is a relatively cheap operation. return true; } bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { // WebAssembly offsets are added as unsigned without wrapping. The // isLegalAddressingMode gives us no way to determine if wrapping could be // happening, so we approximate this by accepting only non-negative offsets. if (AM.BaseOffs < 0) return false; // WebAssembly has no scale register operands. if (AM.Scale != 0) return false; // Everything else is legal. return true; } bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, bool *Fast) const { // WebAssembly supports unaligned accesses, though it should be declared // with the p2align attribute on loads and stores which do so, and there // may be a performance impact. We tell LLVM they're "fast" because // for the kinds of things that LLVM uses this for (merging adjacent stores // of constants, etc.), WebAssembly implementations will either want the // unaligned access or they'll split anyway. if (Fast) *Fast = true; return true; } bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const { // The current thinking is that wasm engines will perform this optimization, // so we can save on code size. return true; } EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, EVT VT) const { if (VT.isVector()) return VT.changeVectorElementTypeToInteger(); return TargetLowering::getSetCCResultType(DL, C, VT); } //===----------------------------------------------------------------------===// // WebAssembly Lowering private implementation. //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Lowering Code //===----------------------------------------------------------------------===// static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *msg) { MachineFunction &MF = DAG.getMachineFunction(); DAG.getContext()->diagnose( DiagnosticInfoUnsupported(MF.getFunction(), msg, DL.getDebugLoc())); } // Test whether the given calling convention is supported. static bool CallingConvSupported(CallingConv::ID CallConv) { // We currently support the language-independent target-independent // conventions. We don't yet have a way to annotate calls with properties like // "cold", and we don't have any call-clobbered registers, so these are mostly // all handled the same. return CallConv == CallingConv::C || CallConv == CallingConv::Fast || CallConv == CallingConv::Cold || CallConv == CallingConv::PreserveMost || CallConv == CallingConv::PreserveAll || CallConv == CallingConv::CXX_FAST_TLS; } SDValue WebAssemblyTargetLowering::LowerCall( CallLoweringInfo &CLI, SmallVectorImpl<SDValue> &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc DL = CLI.DL; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; MachineFunction &MF = DAG.getMachineFunction(); auto Layout = MF.getDataLayout(); CallingConv::ID CallConv = CLI.CallConv; if (!CallingConvSupported(CallConv)) fail(DL, DAG, "WebAssembly doesn't support language-specific or target-specific " "calling conventions yet"); if (CLI.IsPatchPoint) fail(DL, DAG, "WebAssembly doesn't support patch point yet"); // WebAssembly doesn't currently support explicit tail calls. If they are // required, fail. Otherwise, just disable them. if ((CallConv == CallingConv::Fast && CLI.IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) || (CLI.CS && CLI.CS.isMustTailCall())) fail(DL, DAG, "WebAssembly doesn't support tail call yet"); CLI.IsTailCall = false; SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; if (Ins.size() > 1) fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet"); SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; unsigned NumFixedArgs = 0; for (unsigned i = 0; i < Outs.size(); ++i) { const ISD::OutputArg &Out = Outs[i]; SDValue &OutVal = OutVals[i]; if (Out.Flags.isNest()) fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); if (Out.Flags.isInAlloca()) fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); if (Out.Flags.isInConsecutiveRegs()) fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); if (Out.Flags.isInConsecutiveRegsLast()) fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { auto &MFI = MF.getFrameInfo(); int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), Out.Flags.getByValAlign(), /*isSS=*/false); SDValue SizeNode = DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); Chain = DAG.getMemcpy( Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(), /*isVolatile*/ false, /*AlwaysInline=*/false, /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); OutVal = FINode; } // Count the number of fixed args *after* legalization. NumFixedArgs += Out.IsFixed; } bool IsVarArg = CLI.IsVarArg; auto PtrVT = getPointerTy(Layout); // Analyze operands of the call, assigning locations to each operand. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); if (IsVarArg) { // Outgoing non-fixed arguments are placed in a buffer. First // compute their offsets and the total amount of buffer space needed. for (SDValue Arg : make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { EVT VT = Arg.getValueType(); assert(VT != MVT::iPTR && "Legalized args should be concrete"); Type *Ty = VT.getTypeForEVT(*DAG.getContext()); unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Layout.getABITypeAlignment(Ty)); CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), Offset, VT.getSimpleVT(), CCValAssign::Full)); } } unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); SDValue FINode; if (IsVarArg && NumBytes) { // For non-fixed arguments, next emit stores to store the argument values // to the stack buffer at the offsets computed above. int FI = MF.getFrameInfo().CreateStackObject(NumBytes, Layout.getStackAlignment(), /*isSS=*/false); unsigned ValNo = 0; SmallVector<SDValue, 8> Chains; for (SDValue Arg : make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { assert(ArgLocs[ValNo].getValNo() == ValNo && "ArgLocs should remain in order and only hold varargs args"); unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, DAG.getConstant(Offset, DL, PtrVT)); Chains.push_back(DAG.getStore( Chain, DL, Arg, Add, MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); } if (!Chains.empty()) Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); } else if (IsVarArg) { FINode = DAG.getIntPtrConstant(0, DL); } // Compute the operands for the CALLn node. SmallVector<SDValue, 16> Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs // isn't reliable. Ops.append(OutVals.begin(), IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); // Add a pointer to the vararg buffer. if (IsVarArg) Ops.push_back(FINode); SmallVector<EVT, 8> InTys; for (const auto &In : Ins) { assert(!In.Flags.isByVal() && "byval is not valid for return values"); assert(!In.Flags.isNest() && "nest is not valid for return values"); if (In.Flags.isInAlloca()) fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); if (In.Flags.isInConsecutiveRegs()) fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); if (In.Flags.isInConsecutiveRegsLast()) fail(DL, DAG, "WebAssembly hasn't implemented cons regs last return values"); // Ignore In.getOrigAlign() because all our arguments are passed in // registers. InTys.push_back(In.VT); } InTys.push_back(MVT::Other); SDVTList InTyList = DAG.getVTList(InTys); SDValue Res = DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1, DL, InTyList, Ops); if (Ins.empty()) { Chain = Res; } else { InVals.push_back(Res); Chain = Res.getValue(1); } return Chain; } bool WebAssemblyTargetLowering::CanLowerReturn( CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext & /*Context*/) const { // WebAssembly can't currently handle returning tuples. return Outs.size() <= 1; } SDValue WebAssemblyTargetLowering::LowerReturn( SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, SelectionDAG &DAG) const { assert(Outs.size() <= 1 && "WebAssembly can only return up to one value"); if (!CallingConvSupported(CallConv)) fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); SmallVector<SDValue, 4> RetOps(1, Chain); RetOps.append(OutVals.begin(), OutVals.end()); Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); // Record the number and types of the return values. for (const ISD::OutputArg &Out : Outs) { assert(!Out.Flags.isByVal() && "byval is not valid for return values"); assert(!Out.Flags.isNest() && "nest is not valid for return values"); assert(Out.IsFixed && "non-fixed return value is not valid"); if (Out.Flags.isInAlloca()) fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); if (Out.Flags.isInConsecutiveRegs()) fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); if (Out.Flags.isInConsecutiveRegsLast()) fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); } return Chain; } SDValue WebAssemblyTargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { if (!CallingConvSupported(CallConv)) fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); MachineFunction &MF = DAG.getMachineFunction(); auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); // Set up the incoming ARGUMENTS value, which serves to represent the liveness // of the incoming values before they're represented by virtual registers. MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); for (const ISD::InputArg &In : Ins) { if (In.Flags.isInAlloca()) fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); if (In.Flags.isNest()) fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); if (In.Flags.isInConsecutiveRegs()) fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); if (In.Flags.isInConsecutiveRegsLast()) fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); // Ignore In.getOrigAlign() because all our arguments are passed in // registers. InVals.push_back( In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, DAG.getTargetConstant(InVals.size(), DL, MVT::i32)) : DAG.getUNDEF(In.VT)); // Record the number and types of arguments. MFI->addParam(In.VT); } // Varargs are copied into a buffer allocated by the caller, and a pointer to // the buffer is passed as an argument. if (IsVarArg) { MVT PtrVT = getPointerTy(MF.getDataLayout()); unsigned VarargVreg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); MFI->setVarargBufferVreg(VarargVreg); Chain = DAG.getCopyToReg( Chain, DL, VarargVreg, DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); MFI->addParam(PtrVT); } // Record the number and types of results. SmallVector<MVT, 4> Params; SmallVector<MVT, 4> Results; ComputeSignatureVTs(MF.getFunction(), DAG.getTarget(), Params, Results); for (MVT VT : Results) MFI->addResult(VT); return Chain; } //===----------------------------------------------------------------------===// // Custom lowering hooks. //===----------------------------------------------------------------------===// SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); switch (Op.getOpcode()) { default: llvm_unreachable("unimplemented operation lowering"); return SDValue(); case ISD::FrameIndex: return LowerFrameIndex(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::BR_JT: return LowerBR_JT(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG); case ISD::BlockAddress: case ISD::BRIND: fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); return SDValue(); case ISD::RETURNADDR: // Probably nothing meaningful can be returned here. fail(DL, DAG, "WebAssembly hasn't implemented __builtin_return_address"); return SDValue(); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); case ISD::CopyToReg: return LowerCopyToReg(Op, DAG); case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); } } SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, SelectionDAG &DAG) const { SDValue Src = Op.getOperand(2); if (isa<FrameIndexSDNode>(Src.getNode())) { // CopyToReg nodes don't support FrameIndex operands. Other targets select // the FI to some LEA-like instruction, but since we don't have that, we // need to insert some kind of instruction that can take an FI operand and // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy // copy_local between Op and its FI operand. SDValue Chain = Op.getOperand(0); SDLoc DL(Op); unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); EVT VT = Src.getValueType(); SDValue Copy( DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 : WebAssembly::COPY_I64, DL, VT, Src), 0); return Op.getNode()->getNumValues() == 1 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) : DAG.getCopyToReg(Chain, DL, Reg, Copy, Op.getNumOperands() == 4 ? Op.getOperand(3) : SDValue()); } return SDValue(); } SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const { int FI = cast<FrameIndexSDNode>(Op)->getIndex(); return DAG.getTargetFrameIndex(FI, Op.getValueType()); } SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { // Non-zero depths are not supported by WebAssembly currently. Use the // legalizer's default expansion, which is to return 0 (what this function is // documented to do). if (Op.getConstantOperandVal(0) > 0) return SDValue(); DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); EVT VT = Op.getValueType(); unsigned FP = Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); } SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); const auto *GA = cast<GlobalAddressSDNode>(Op); EVT VT = Op.getValueType(); assert(GA->getTargetFlags() == 0 && "Unexpected target flags on generic GlobalAddressSDNode"); if (GA->getAddressSpace() != 0) fail(DL, DAG, "WebAssembly only expects the 0 address space"); return DAG.getNode( WebAssemblyISD::Wrapper, DL, VT, DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset())); } SDValue WebAssemblyTargetLowering::LowerExternalSymbol( SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); const auto *ES = cast<ExternalSymbolSDNode>(Op); EVT VT = Op.getValueType(); assert(ES->getTargetFlags() == 0 && "Unexpected target flags on generic ExternalSymbolSDNode"); // Set the TargetFlags to 0x1 which indicates that this is a "function" // symbol rather than a data symbol. We do this unconditionally even though // we don't know anything about the symbol other than its name, because all // external symbols used in target-independent SelectionDAG code are for // functions. return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, DAG.getTargetExternalSymbol(ES->getSymbol(), VT, /*TargetFlags=*/0x1)); } SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { // There's no need for a Wrapper node because we always incorporate a jump // table operand into a BR_TABLE instruction, rather than ever // materializing it in a register. const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), JT->getTargetFlags()); } SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); SDValue Chain = Op.getOperand(0); const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); SDValue Index = Op.getOperand(2); assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); SmallVector<SDValue, 8> Ops; Ops.push_back(Chain); Ops.push_back(Index); MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; // Add an operand for each case. for (auto MBB : MBBs) Ops.push_back(DAG.getBasicBlock(MBB)); // TODO: For now, we just pick something arbitrary for a default case for now. // We really want to sniff out the guard and put in the real default case (and // delete the guard). Ops.push_back(DAG.getBasicBlock(MBBs[0])); return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); } SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, MFI->getVarargBufferVreg(), PtrVT); return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), MachinePointerInfo(SV), 0); } SDValue WebAssemblyTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); SDLoc DL(Op); switch (IntNo) { default: return {}; // Don't custom lower most intrinsics. case Intrinsic::wasm_lsda: // TODO For now, just return 0 not to crash return DAG.getConstant(0, DL, Op.getValueType()); } } //===----------------------------------------------------------------------===// // WebAssembly Optimization Hooks //===----------------------------------------------------------------------===//