//===-- X86AsmPrinter.cpp - Convert X86 LLVM code to AT&T assembly --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to X86 machine code. // //===----------------------------------------------------------------------===// #include "X86AsmPrinter.h" #include "InstPrinter/X86ATTInstPrinter.h" #include "MCTargetDesc/X86BaseInfo.h" #include "MCTargetDesc/X86TargetStreamer.h" #include "X86InstrInfo.h" #include "X86MachineFunctionInfo.h" #include "llvm/BinaryFormat/COFF.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineModuleInfoImpls.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCSectionCOFF.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MachineValueType.h" #include "llvm/Support/TargetRegistry.h" using namespace llvm; X86AsmPrinter::X86AsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer) : AsmPrinter(TM, std::move(Streamer)), SM(*this), FM(*this) {} //===----------------------------------------------------------------------===// // Primitive Helper Functions. //===----------------------------------------------------------------------===// /// runOnMachineFunction - Emit the function body. /// bool X86AsmPrinter::runOnMachineFunction(MachineFunction &MF) { Subtarget = &MF.getSubtarget<X86Subtarget>(); SMShadowTracker.startFunction(MF); CodeEmitter.reset(TM.getTarget().createMCCodeEmitter( *Subtarget->getInstrInfo(), *Subtarget->getRegisterInfo(), MF.getContext())); EmitFPOData = Subtarget->isTargetWin32() && MF.getMMI().getModule()->getCodeViewFlag(); SetupMachineFunction(MF); if (Subtarget->isTargetCOFF()) { bool Local = MF.getFunction().hasLocalLinkage(); OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); OutStreamer->EmitCOFFSymbolStorageClass( Local ? COFF::IMAGE_SYM_CLASS_STATIC : COFF::IMAGE_SYM_CLASS_EXTERNAL); OutStreamer->EmitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT); OutStreamer->EndCOFFSymbolDef(); } // Emit the rest of the function body. EmitFunctionBody(); // Emit the XRay table for this function. emitXRayTable(); EmitFPOData = false; // We didn't modify anything. return false; } void X86AsmPrinter::EmitFunctionBodyStart() { if (EmitFPOData) { X86TargetStreamer *XTS = static_cast<X86TargetStreamer *>(OutStreamer->getTargetStreamer()); unsigned ParamsSize = MF->getInfo<X86MachineFunctionInfo>()->getArgumentStackSize(); XTS->emitFPOProc(CurrentFnSym, ParamsSize); } } void X86AsmPrinter::EmitFunctionBodyEnd() { if (EmitFPOData) { X86TargetStreamer *XTS = static_cast<X86TargetStreamer *>(OutStreamer->getTargetStreamer()); XTS->emitFPOEndProc(); } } /// printSymbolOperand - Print a raw symbol reference operand. This handles /// jump tables, constant pools, global address and external symbols, all of /// which print to a label with various suffixes for relocation types etc. static void printSymbolOperand(X86AsmPrinter &P, const MachineOperand &MO, raw_ostream &O) { switch (MO.getType()) { default: llvm_unreachable("unknown symbol type!"); case MachineOperand::MO_ConstantPoolIndex: P.GetCPISymbol(MO.getIndex())->print(O, P.MAI); P.printOffset(MO.getOffset(), O); break; case MachineOperand::MO_GlobalAddress: { const GlobalValue *GV = MO.getGlobal(); MCSymbol *GVSym; if (MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY || MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE) GVSym = P.getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); else GVSym = P.getSymbol(GV); // Handle dllimport linkage. if (MO.getTargetFlags() == X86II::MO_DLLIMPORT) GVSym = P.OutContext.getOrCreateSymbol(Twine("__imp_") + GVSym->getName()); if (MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY || MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE) { MCSymbol *Sym = P.getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); MachineModuleInfoImpl::StubValueTy &StubSym = P.MMI->getObjFileInfo<MachineModuleInfoMachO>().getGVStubEntry(Sym); if (!StubSym.getPointer()) StubSym = MachineModuleInfoImpl:: StubValueTy(P.getSymbol(GV), !GV->hasInternalLinkage()); } // If the name begins with a dollar-sign, enclose it in parens. We do this // to avoid having it look like an integer immediate to the assembler. if (GVSym->getName()[0] != '$') GVSym->print(O, P.MAI); else { O << '('; GVSym->print(O, P.MAI); O << ')'; } P.printOffset(MO.getOffset(), O); break; } } switch (MO.getTargetFlags()) { default: llvm_unreachable("Unknown target flag on GV operand"); case X86II::MO_NO_FLAG: // No flag. break; case X86II::MO_DARWIN_NONLAZY: case X86II::MO_DLLIMPORT: // These affect the name of the symbol, not any suffix. break; case X86II::MO_GOT_ABSOLUTE_ADDRESS: O << " + [.-"; P.MF->getPICBaseSymbol()->print(O, P.MAI); O << ']'; break; case X86II::MO_PIC_BASE_OFFSET: case X86II::MO_DARWIN_NONLAZY_PIC_BASE: O << '-'; P.MF->getPICBaseSymbol()->print(O, P.MAI); break; case X86II::MO_TLSGD: O << "@TLSGD"; break; case X86II::MO_TLSLD: O << "@TLSLD"; break; case X86II::MO_TLSLDM: O << "@TLSLDM"; break; case X86II::MO_GOTTPOFF: O << "@GOTTPOFF"; break; case X86II::MO_INDNTPOFF: O << "@INDNTPOFF"; break; case X86II::MO_TPOFF: O << "@TPOFF"; break; case X86II::MO_DTPOFF: O << "@DTPOFF"; break; case X86II::MO_NTPOFF: O << "@NTPOFF"; break; case X86II::MO_GOTNTPOFF: O << "@GOTNTPOFF"; break; case X86II::MO_GOTPCREL: O << "@GOTPCREL"; break; case X86II::MO_GOT: O << "@GOT"; break; case X86II::MO_GOTOFF: O << "@GOTOFF"; break; case X86II::MO_PLT: O << "@PLT"; break; case X86II::MO_TLVP: O << "@TLVP"; break; case X86II::MO_TLVP_PIC_BASE: O << "@TLVP" << '-'; P.MF->getPICBaseSymbol()->print(O, P.MAI); break; case X86II::MO_SECREL: O << "@SECREL32"; break; } } static void printOperand(X86AsmPrinter &P, const MachineInstr *MI, unsigned OpNo, raw_ostream &O, const char *Modifier = nullptr, unsigned AsmVariant = 0); /// printPCRelImm - This is used to print an immediate value that ends up /// being encoded as a pc-relative value. These print slightly differently, for /// example, a $ is not emitted. static void printPCRelImm(X86AsmPrinter &P, const MachineInstr *MI, unsigned OpNo, raw_ostream &O) { const MachineOperand &MO = MI->getOperand(OpNo); switch (MO.getType()) { default: llvm_unreachable("Unknown pcrel immediate operand"); case MachineOperand::MO_Register: // pc-relativeness was handled when computing the value in the reg. printOperand(P, MI, OpNo, O); return; case MachineOperand::MO_Immediate: O << MO.getImm(); return; case MachineOperand::MO_GlobalAddress: printSymbolOperand(P, MO, O); return; } } static void printOperand(X86AsmPrinter &P, const MachineInstr *MI, unsigned OpNo, raw_ostream &O, const char *Modifier, unsigned AsmVariant) { const MachineOperand &MO = MI->getOperand(OpNo); switch (MO.getType()) { default: llvm_unreachable("unknown operand type!"); case MachineOperand::MO_Register: { // FIXME: Enumerating AsmVariant, so we can remove magic number. if (AsmVariant == 0) O << '%'; unsigned Reg = MO.getReg(); if (Modifier && strncmp(Modifier, "subreg", strlen("subreg")) == 0) { unsigned Size = (strcmp(Modifier+6,"64") == 0) ? 64 : (strcmp(Modifier+6,"32") == 0) ? 32 : (strcmp(Modifier+6,"16") == 0) ? 16 : 8; Reg = getX86SubSuperRegister(Reg, Size); } O << X86ATTInstPrinter::getRegisterName(Reg); return; } case MachineOperand::MO_Immediate: if (AsmVariant == 0) O << '$'; O << MO.getImm(); return; case MachineOperand::MO_GlobalAddress: { if (AsmVariant == 0) O << '$'; printSymbolOperand(P, MO, O); break; } } } static void printLeaMemReference(X86AsmPrinter &P, const MachineInstr *MI, unsigned Op, raw_ostream &O, const char *Modifier = nullptr) { const MachineOperand &BaseReg = MI->getOperand(Op+X86::AddrBaseReg); const MachineOperand &IndexReg = MI->getOperand(Op+X86::AddrIndexReg); const MachineOperand &DispSpec = MI->getOperand(Op+X86::AddrDisp); // If we really don't want to print out (rip), don't. bool HasBaseReg = BaseReg.getReg() != 0; if (HasBaseReg && Modifier && !strcmp(Modifier, "no-rip") && BaseReg.getReg() == X86::RIP) HasBaseReg = false; // HasParenPart - True if we will print out the () part of the mem ref. bool HasParenPart = IndexReg.getReg() || HasBaseReg; switch (DispSpec.getType()) { default: llvm_unreachable("unknown operand type!"); case MachineOperand::MO_Immediate: { int DispVal = DispSpec.getImm(); if (DispVal || !HasParenPart) O << DispVal; break; } case MachineOperand::MO_GlobalAddress: case MachineOperand::MO_ConstantPoolIndex: printSymbolOperand(P, DispSpec, O); } if (Modifier && strcmp(Modifier, "H") == 0) O << "+8"; if (HasParenPart) { assert(IndexReg.getReg() != X86::ESP && "X86 doesn't allow scaling by ESP"); O << '('; if (HasBaseReg) printOperand(P, MI, Op+X86::AddrBaseReg, O, Modifier); if (IndexReg.getReg()) { O << ','; printOperand(P, MI, Op+X86::AddrIndexReg, O, Modifier); unsigned ScaleVal = MI->getOperand(Op+X86::AddrScaleAmt).getImm(); if (ScaleVal != 1) O << ',' << ScaleVal; } O << ')'; } } static void printMemReference(X86AsmPrinter &P, const MachineInstr *MI, unsigned Op, raw_ostream &O, const char *Modifier = nullptr) { assert(isMem(*MI, Op) && "Invalid memory reference!"); const MachineOperand &Segment = MI->getOperand(Op+X86::AddrSegmentReg); if (Segment.getReg()) { printOperand(P, MI, Op+X86::AddrSegmentReg, O, Modifier); O << ':'; } printLeaMemReference(P, MI, Op, O, Modifier); } static void printIntelMemReference(X86AsmPrinter &P, const MachineInstr *MI, unsigned Op, raw_ostream &O, const char *Modifier = nullptr, unsigned AsmVariant = 1) { const MachineOperand &BaseReg = MI->getOperand(Op+X86::AddrBaseReg); unsigned ScaleVal = MI->getOperand(Op+X86::AddrScaleAmt).getImm(); const MachineOperand &IndexReg = MI->getOperand(Op+X86::AddrIndexReg); const MachineOperand &DispSpec = MI->getOperand(Op+X86::AddrDisp); const MachineOperand &SegReg = MI->getOperand(Op+X86::AddrSegmentReg); // If this has a segment register, print it. if (SegReg.getReg()) { printOperand(P, MI, Op+X86::AddrSegmentReg, O, Modifier, AsmVariant); O << ':'; } O << '['; bool NeedPlus = false; if (BaseReg.getReg()) { printOperand(P, MI, Op+X86::AddrBaseReg, O, Modifier, AsmVariant); NeedPlus = true; } if (IndexReg.getReg()) { if (NeedPlus) O << " + "; if (ScaleVal != 1) O << ScaleVal << '*'; printOperand(P, MI, Op+X86::AddrIndexReg, O, Modifier, AsmVariant); NeedPlus = true; } if (!DispSpec.isImm()) { if (NeedPlus) O << " + "; printOperand(P, MI, Op+X86::AddrDisp, O, Modifier, AsmVariant); } else { int64_t DispVal = DispSpec.getImm(); if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg())) { if (NeedPlus) { if (DispVal > 0) O << " + "; else { O << " - "; DispVal = -DispVal; } } O << DispVal; } } O << ']'; } static bool printAsmMRegister(X86AsmPrinter &P, const MachineOperand &MO, char Mode, raw_ostream &O) { unsigned Reg = MO.getReg(); bool EmitPercent = true; if (!X86::GR8RegClass.contains(Reg) && !X86::GR16RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg) && !X86::GR64RegClass.contains(Reg)) return true; switch (Mode) { default: return true; // Unknown mode. case 'b': // Print QImode register Reg = getX86SubSuperRegister(Reg, 8); break; case 'h': // Print QImode high register Reg = getX86SubSuperRegister(Reg, 8, true); break; case 'w': // Print HImode register Reg = getX86SubSuperRegister(Reg, 16); break; case 'k': // Print SImode register Reg = getX86SubSuperRegister(Reg, 32); break; case 'V': EmitPercent = false; LLVM_FALLTHROUGH; case 'q': // Print 64-bit register names if 64-bit integer registers are available. // Otherwise, print 32-bit register names. Reg = getX86SubSuperRegister(Reg, P.getSubtarget().is64Bit() ? 64 : 32); break; } if (EmitPercent) O << '%'; O << X86ATTInstPrinter::getRegisterName(Reg); return false; } /// PrintAsmOperand - Print out an operand for an inline asm expression. /// bool X86AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O) { // Does this asm operand have a single letter operand modifier? if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. const MachineOperand &MO = MI->getOperand(OpNo); switch (ExtraCode[0]) { default: // See if this is a generic print operand return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O); case 'a': // This is an address. Currently only 'i' and 'r' are expected. switch (MO.getType()) { default: return true; case MachineOperand::MO_Immediate: O << MO.getImm(); return false; case MachineOperand::MO_ConstantPoolIndex: case MachineOperand::MO_JumpTableIndex: case MachineOperand::MO_ExternalSymbol: llvm_unreachable("unexpected operand type!"); case MachineOperand::MO_GlobalAddress: printSymbolOperand(*this, MO, O); if (Subtarget->isPICStyleRIPRel()) O << "(%rip)"; return false; case MachineOperand::MO_Register: O << '('; printOperand(*this, MI, OpNo, O); O << ')'; return false; } case 'c': // Don't print "$" before a global var name or constant. switch (MO.getType()) { default: printOperand(*this, MI, OpNo, O); break; case MachineOperand::MO_Immediate: O << MO.getImm(); break; case MachineOperand::MO_ConstantPoolIndex: case MachineOperand::MO_JumpTableIndex: case MachineOperand::MO_ExternalSymbol: llvm_unreachable("unexpected operand type!"); case MachineOperand::MO_GlobalAddress: printSymbolOperand(*this, MO, O); break; } return false; case 'A': // Print '*' before a register (it must be a register) if (MO.isReg()) { O << '*'; printOperand(*this, MI, OpNo, O); return false; } return true; case 'b': // Print QImode register case 'h': // Print QImode high register case 'w': // Print HImode register case 'k': // Print SImode register case 'q': // Print DImode register case 'V': // Print native register without '%' if (MO.isReg()) return printAsmMRegister(*this, MO, ExtraCode[0], O); printOperand(*this, MI, OpNo, O); return false; case 'P': // This is the operand of a call, treat specially. printPCRelImm(*this, MI, OpNo, O); return false; case 'n': // Negate the immediate or print a '-' before the operand. // Note: this is a temporary solution. It should be handled target // independently as part of the 'MC' work. if (MO.isImm()) { O << -MO.getImm(); return false; } O << '-'; } } printOperand(*this, MI, OpNo, O, /*Modifier*/ nullptr, AsmVariant); return false; } bool X86AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O) { if (AsmVariant) { printIntelMemReference(*this, MI, OpNo, O); return false; } if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { default: return true; // Unknown modifier. case 'b': // Print QImode register case 'h': // Print QImode high register case 'w': // Print HImode register case 'k': // Print SImode register case 'q': // Print SImode register // These only apply to registers, ignore on mem. break; case 'H': printMemReference(*this, MI, OpNo, O, "H"); return false; case 'P': // Don't print @PLT, but do print as memory. printMemReference(*this, MI, OpNo, O, "no-rip"); return false; } } printMemReference(*this, MI, OpNo, O); return false; } void X86AsmPrinter::EmitStartOfAsmFile(Module &M) { const Triple &TT = TM.getTargetTriple(); if (TT.isOSBinFormatELF()) { // Assemble feature flags that may require creation of a note section. unsigned FeatureFlagsAnd = 0; if (M.getModuleFlag("cf-protection-branch")) FeatureFlagsAnd |= ELF::GNU_PROPERTY_X86_FEATURE_1_IBT; if (M.getModuleFlag("cf-protection-return")) FeatureFlagsAnd |= ELF::GNU_PROPERTY_X86_FEATURE_1_SHSTK; if (FeatureFlagsAnd) { // Emit a .note.gnu.property section with the flags. if (!TT.isArch32Bit() && !TT.isArch64Bit()) llvm_unreachable("CFProtection used on invalid architecture!"); MCSection *Cur = OutStreamer->getCurrentSectionOnly(); MCSection *Nt = MMI->getContext().getELFSection( ".note.gnu.property", ELF::SHT_NOTE, ELF::SHF_ALLOC); OutStreamer->SwitchSection(Nt); // Emitting note header. int WordSize = TT.isArch64Bit() ? 8 : 4; EmitAlignment(WordSize == 4 ? 2 : 3); OutStreamer->EmitIntValue(4, 4 /*size*/); // data size for "GNU\0" OutStreamer->EmitIntValue(8 + WordSize, 4 /*size*/); // Elf_Prop size OutStreamer->EmitIntValue(ELF::NT_GNU_PROPERTY_TYPE_0, 4 /*size*/); OutStreamer->EmitBytes(StringRef("GNU", 4)); // note name // Emitting an Elf_Prop for the CET properties. OutStreamer->EmitIntValue(ELF::GNU_PROPERTY_X86_FEATURE_1_AND, 4); OutStreamer->EmitIntValue(WordSize, 4); // data size OutStreamer->EmitIntValue(FeatureFlagsAnd, WordSize); // data EmitAlignment(WordSize == 4 ? 2 : 3); // padding OutStreamer->endSection(Nt); OutStreamer->SwitchSection(Cur); } } if (TT.isOSBinFormatMachO()) OutStreamer->SwitchSection(getObjFileLowering().getTextSection()); if (TT.isOSBinFormatCOFF()) { // Emit an absolute @feat.00 symbol. This appears to be some kind of // compiler features bitfield read by link.exe. if (TT.getArch() == Triple::x86) { MCSymbol *S = MMI->getContext().getOrCreateSymbol(StringRef("@feat.00")); OutStreamer->BeginCOFFSymbolDef(S); OutStreamer->EmitCOFFSymbolStorageClass(COFF::IMAGE_SYM_CLASS_STATIC); OutStreamer->EmitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_NULL); OutStreamer->EndCOFFSymbolDef(); // According to the PE-COFF spec, the LSB of this value marks the object // for "registered SEH". This means that all SEH handler entry points // must be registered in .sxdata. Use of any unregistered handlers will // cause the process to terminate immediately. LLVM does not know how to // register any SEH handlers, so its object files should be safe. OutStreamer->EmitSymbolAttribute(S, MCSA_Global); OutStreamer->EmitAssignment( S, MCConstantExpr::create(int64_t(1), MMI->getContext())); } } OutStreamer->EmitSyntaxDirective(); // If this is not inline asm and we're in 16-bit // mode prefix assembly with .code16. bool is16 = TT.getEnvironment() == Triple::CODE16; if (M.getModuleInlineAsm().empty() && is16) OutStreamer->EmitAssemblerFlag(MCAF_Code16); } static void emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, MachineModuleInfoImpl::StubValueTy &MCSym) { // L_foo$stub: OutStreamer.EmitLabel(StubLabel); // .indirect_symbol _foo OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); if (MCSym.getInt()) // External to current translation unit. OutStreamer.EmitIntValue(0, 4/*size*/); else // Internal to current translation unit. // // When we place the LSDA into the TEXT section, the type info // pointers need to be indirect and pc-rel. We accomplish this by // using NLPs; however, sometimes the types are local to the file. // We need to fill in the value for the NLP in those cases. OutStreamer.EmitValue( MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 4 /*size*/); } static void emitNonLazyStubs(MachineModuleInfo *MMI, MCStreamer &OutStreamer) { MachineModuleInfoMachO &MMIMacho = MMI->getObjFileInfo<MachineModuleInfoMachO>(); // Output stubs for dynamically-linked functions. MachineModuleInfoMachO::SymbolListTy Stubs; // Output stubs for external and common global variables. Stubs = MMIMacho.GetGVStubList(); if (!Stubs.empty()) { OutStreamer.SwitchSection(MMI->getContext().getMachOSection( "__IMPORT", "__pointers", MachO::S_NON_LAZY_SYMBOL_POINTERS, SectionKind::getMetadata())); for (auto &Stub : Stubs) emitNonLazySymbolPointer(OutStreamer, Stub.first, Stub.second); Stubs.clear(); OutStreamer.AddBlankLine(); } } void X86AsmPrinter::EmitEndOfAsmFile(Module &M) { const Triple &TT = TM.getTargetTriple(); if (TT.isOSBinFormatMachO()) { // Mach-O uses non-lazy symbol stubs to encode per-TU information into // global table for symbol lookup. emitNonLazyStubs(MMI, *OutStreamer); // Emit stack and fault map information. SM.serializeToStackMapSection(); FM.serializeToFaultMapSection(); // This flag tells the linker that no global symbols contain code that fall // through to other global symbols (e.g. an implementation of multiple entry // points). If this doesn't occur, the linker can safely perform dead code // stripping. Since LLVM never generates code that does this, it is always // safe to set. OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); return; } if (TT.isKnownWindowsMSVCEnvironment() && MMI->usesVAFloatArgument()) { StringRef SymbolName = (TT.getArch() == Triple::x86_64) ? "_fltused" : "__fltused"; MCSymbol *S = MMI->getContext().getOrCreateSymbol(SymbolName); OutStreamer->EmitSymbolAttribute(S, MCSA_Global); return; } if (TT.isOSBinFormatCOFF()) { SM.serializeToStackMapSection(); return; } if (TT.isOSBinFormatELF()) { SM.serializeToStackMapSection(); FM.serializeToFaultMapSection(); return; } } //===----------------------------------------------------------------------===// // Target Registry Stuff //===----------------------------------------------------------------------===// // Force static initialization. extern "C" void LLVMInitializeX86AsmPrinter() { RegisterAsmPrinter<X86AsmPrinter> X(getTheX86_32Target()); RegisterAsmPrinter<X86AsmPrinter> Y(getTheX86_64Target()); }