//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a DAG pattern matching instruction selector for X86, // converting from a legalized dag to a X86 dag. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86MachineFunctionInfo.h" #include "X86RegisterInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Type.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include <stdint.h> using namespace llvm; #define DEBUG_TYPE "x86-isel" STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor"); //===----------------------------------------------------------------------===// // Pattern Matcher Implementation //===----------------------------------------------------------------------===// namespace { /// This corresponds to X86AddressMode, but uses SDValue's instead of register /// numbers for the leaves of the matched tree. struct X86ISelAddressMode { enum { RegBase, FrameIndexBase } BaseType; // This is really a union, discriminated by BaseType! SDValue Base_Reg; int Base_FrameIndex; unsigned Scale; SDValue IndexReg; int32_t Disp; SDValue Segment; const GlobalValue *GV; const Constant *CP; const BlockAddress *BlockAddr; const char *ES; MCSymbol *MCSym; int JT; unsigned Align; // CP alignment. unsigned char SymbolFlags; // X86II::MO_* X86ISelAddressMode() : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0), Segment(), GV(nullptr), CP(nullptr), BlockAddr(nullptr), ES(nullptr), MCSym(nullptr), JT(-1), Align(0), SymbolFlags(X86II::MO_NO_FLAG) {} bool hasSymbolicDisplacement() const { return GV != nullptr || CP != nullptr || ES != nullptr || MCSym != nullptr || JT != -1 || BlockAddr != nullptr; } bool hasBaseOrIndexReg() const { return BaseType == FrameIndexBase || IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr; } /// Return true if this addressing mode is already RIP-relative. bool isRIPRelative() const { if (BaseType != RegBase) return false; if (RegisterSDNode *RegNode = dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode())) return RegNode->getReg() == X86::RIP; return false; } void setBaseReg(SDValue Reg) { BaseType = RegBase; Base_Reg = Reg; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void dump(SelectionDAG *DAG = nullptr) { dbgs() << "X86ISelAddressMode " << this << '\n'; dbgs() << "Base_Reg "; if (Base_Reg.getNode()) Base_Reg.getNode()->dump(DAG); else dbgs() << "nul\n"; if (BaseType == FrameIndexBase) dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'; dbgs() << " Scale " << Scale << '\n' << "IndexReg "; if (IndexReg.getNode()) IndexReg.getNode()->dump(DAG); else dbgs() << "nul\n"; dbgs() << " Disp " << Disp << '\n' << "GV "; if (GV) GV->dump(); else dbgs() << "nul"; dbgs() << " CP "; if (CP) CP->dump(); else dbgs() << "nul"; dbgs() << '\n' << "ES "; if (ES) dbgs() << ES; else dbgs() << "nul"; dbgs() << " MCSym "; if (MCSym) dbgs() << MCSym; else dbgs() << "nul"; dbgs() << " JT" << JT << " Align" << Align << '\n'; } #endif }; } namespace { //===--------------------------------------------------------------------===// /// ISel - X86-specific code to select X86 machine instructions for /// SelectionDAG operations. /// class X86DAGToDAGISel final : public SelectionDAGISel { /// Keep a pointer to the X86Subtarget around so that we can /// make the right decision when generating code for different targets. const X86Subtarget *Subtarget; /// If true, selector should try to optimize for code size instead of /// performance. bool OptForSize; /// If true, selector should try to optimize for minimum code size. bool OptForMinSize; public: explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel) : SelectionDAGISel(tm, OptLevel), OptForSize(false), OptForMinSize(false) {} StringRef getPassName() const override { return "X86 DAG->DAG Instruction Selection"; } bool runOnMachineFunction(MachineFunction &MF) override { // Reset the subtarget each time through. Subtarget = &MF.getSubtarget<X86Subtarget>(); SelectionDAGISel::runOnMachineFunction(MF); return true; } void EmitFunctionEntryCode() override; bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override; void PreprocessISelDAG() override; void PostprocessISelDAG() override; // Include the pieces autogenerated from the target description. #include "X86GenDAGISel.inc" private: void Select(SDNode *N) override; bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM); bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM); bool matchWrapper(SDValue N, X86ISelAddressMode &AM); bool matchAddress(SDValue N, X86ISelAddressMode &AM); bool matchVectorAddress(SDValue N, X86ISelAddressMode &AM); bool matchAdd(SDValue N, X86ISelAddressMode &AM, unsigned Depth); bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM, unsigned Depth); bool matchAddressBase(SDValue N, X86ISelAddressMode &AM); bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment); bool selectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment); bool selectMOV64Imm32(SDValue N, SDValue &Imm); bool selectLEAAddr(SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment); bool selectLEA64_32Addr(SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment); bool selectTLSADDRAddr(SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment); bool selectScalarSSELoad(SDNode *Root, SDNode *Parent, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment, SDValue &NodeWithChain); bool selectRelocImm(SDValue N, SDValue &Op); bool tryFoldLoad(SDNode *Root, SDNode *P, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment); // Convenience method where P is also root. bool tryFoldLoad(SDNode *P, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment) { return tryFoldLoad(P, P, N, Base, Scale, Index, Disp, Segment); } // Try to fold a vector load. This makes sure the load isn't non-temporal. bool tryFoldVecLoad(SDNode *Root, SDNode *P, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment); /// Implement addressing mode selection for inline asm expressions. bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) override; void emitSpecialCodeForMain(); inline void getAddressOperands(X86ISelAddressMode &AM, const SDLoc &DL, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment) { Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ? CurDAG->getTargetFrameIndex( AM.Base_FrameIndex, TLI->getPointerTy(CurDAG->getDataLayout())) : AM.Base_Reg; Scale = getI8Imm(AM.Scale, DL); Index = AM.IndexReg; // These are 32-bit even in 64-bit mode since RIP-relative offset // is 32-bit. if (AM.GV) Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(), MVT::i32, AM.Disp, AM.SymbolFlags); else if (AM.CP) Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Align, AM.Disp, AM.SymbolFlags); else if (AM.ES) { assert(!AM.Disp && "Non-zero displacement is ignored with ES."); Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags); } else if (AM.MCSym) { assert(!AM.Disp && "Non-zero displacement is ignored with MCSym."); assert(AM.SymbolFlags == 0 && "oo"); Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32); } else if (AM.JT != -1) { assert(!AM.Disp && "Non-zero displacement is ignored with JT."); Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags); } else if (AM.BlockAddr) Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp, AM.SymbolFlags); else Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32); if (AM.Segment.getNode()) Segment = AM.Segment; else Segment = CurDAG->getRegister(0, MVT::i32); } // Utility function to determine whether we should avoid selecting // immediate forms of instructions for better code size or not. // At a high level, we'd like to avoid such instructions when // we have similar constants used within the same basic block // that can be kept in a register. // bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const { uint32_t UseCount = 0; // Do not want to hoist if we're not optimizing for size. // TODO: We'd like to remove this restriction. // See the comment in X86InstrInfo.td for more info. if (!OptForSize) return false; // Walk all the users of the immediate. for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); (UI != UE) && (UseCount < 2); ++UI) { SDNode *User = *UI; // This user is already selected. Count it as a legitimate use and // move on. if (User->isMachineOpcode()) { UseCount++; continue; } // We want to count stores of immediates as real uses. if (User->getOpcode() == ISD::STORE && User->getOperand(1).getNode() == N) { UseCount++; continue; } // We don't currently match users that have > 2 operands (except // for stores, which are handled above) // Those instruction won't match in ISEL, for now, and would // be counted incorrectly. // This may change in the future as we add additional instruction // types. if (User->getNumOperands() != 2) continue; // Immediates that are used for offsets as part of stack // manipulation should be left alone. These are typically // used to indicate SP offsets for argument passing and // will get pulled into stores/pushes (implicitly). if (User->getOpcode() == X86ISD::ADD || User->getOpcode() == ISD::ADD || User->getOpcode() == X86ISD::SUB || User->getOpcode() == ISD::SUB) { // Find the other operand of the add/sub. SDValue OtherOp = User->getOperand(0); if (OtherOp.getNode() == N) OtherOp = User->getOperand(1); // Don't count if the other operand is SP. RegisterSDNode *RegNode; if (OtherOp->getOpcode() == ISD::CopyFromReg && (RegNode = dyn_cast_or_null<RegisterSDNode>( OtherOp->getOperand(1).getNode()))) if ((RegNode->getReg() == X86::ESP) || (RegNode->getReg() == X86::RSP)) continue; } // ... otherwise, count this and move on. UseCount++; } // If we have more than 1 use, then recommend for hoisting. return (UseCount > 1); } /// Return a target constant with the specified value of type i8. inline SDValue getI8Imm(unsigned Imm, const SDLoc &DL) { return CurDAG->getTargetConstant(Imm, DL, MVT::i8); } /// Return a target constant with the specified value, of type i32. inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) { return CurDAG->getTargetConstant(Imm, DL, MVT::i32); } /// Return a target constant with the specified value, of type i64. inline SDValue getI64Imm(uint64_t Imm, const SDLoc &DL) { return CurDAG->getTargetConstant(Imm, DL, MVT::i64); } SDValue getExtractVEXTRACTImmediate(SDNode *N, unsigned VecWidth, const SDLoc &DL) { assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width"); uint64_t Index = N->getConstantOperandVal(1); MVT VecVT = N->getOperand(0).getSimpleValueType(); return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL); } SDValue getInsertVINSERTImmediate(SDNode *N, unsigned VecWidth, const SDLoc &DL) { assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width"); uint64_t Index = N->getConstantOperandVal(2); MVT VecVT = N->getSimpleValueType(0); return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL); } /// Return an SDNode that returns the value of the global base register. /// Output instructions required to initialize the global base register, /// if necessary. SDNode *getGlobalBaseReg(); /// Return a reference to the TargetMachine, casted to the target-specific /// type. const X86TargetMachine &getTargetMachine() const { return static_cast<const X86TargetMachine &>(TM); } /// Return a reference to the TargetInstrInfo, casted to the target-specific /// type. const X86InstrInfo *getInstrInfo() const { return Subtarget->getInstrInfo(); } /// Address-mode matching performs shift-of-and to and-of-shift /// reassociation in order to expose more scaled addressing /// opportunities. bool ComplexPatternFuncMutatesDAG() const override { return true; } bool isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const; /// Returns whether this is a relocatable immediate in the range /// [-2^Width .. 2^Width-1]. template <unsigned Width> bool isSExtRelocImm(SDNode *N) const { if (auto *CN = dyn_cast<ConstantSDNode>(N)) return isInt<Width>(CN->getSExtValue()); return isSExtAbsoluteSymbolRef(Width, N); } // Indicates we should prefer to use a non-temporal load for this load. bool useNonTemporalLoad(LoadSDNode *N) const { if (!N->isNonTemporal()) return false; unsigned StoreSize = N->getMemoryVT().getStoreSize(); if (N->getAlignment() < StoreSize) return false; switch (StoreSize) { default: llvm_unreachable("Unsupported store size"); case 16: return Subtarget->hasSSE41(); case 32: return Subtarget->hasAVX2(); case 64: return Subtarget->hasAVX512(); } } bool foldLoadStoreIntoMemOperand(SDNode *Node); bool matchBEXTRFromAnd(SDNode *Node); bool shrinkAndImmediate(SDNode *N); bool isMaskZeroExtended(SDNode *N) const; MachineSDNode *emitPCMPISTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad, const SDLoc &dl, MVT VT, SDNode *Node); MachineSDNode *emitPCMPESTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad, const SDLoc &dl, MVT VT, SDNode *Node, SDValue &InFlag); }; } // Returns true if this masked compare can be implemented legally with this // type. static bool isLegalMaskCompare(SDNode *N, const X86Subtarget *Subtarget) { unsigned Opcode = N->getOpcode(); if (Opcode == X86ISD::CMPM || Opcode == ISD::SETCC || Opcode == X86ISD::CMPM_RND || Opcode == X86ISD::VFPCLASS) { // We can get 256-bit 8 element types here without VLX being enabled. When // this happens we will use 512-bit operations and the mask will not be // zero extended. EVT OpVT = N->getOperand(0).getValueType(); if (OpVT.is256BitVector() || OpVT.is128BitVector()) return Subtarget->hasVLX(); return true; } // Scalar opcodes use 128 bit registers, but aren't subject to the VLX check. if (Opcode == X86ISD::VFPCLASSS || Opcode == X86ISD::FSETCCM || Opcode == X86ISD::FSETCCM_RND) return true; return false; } // Returns true if we can assume the writer of the mask has zero extended it // for us. bool X86DAGToDAGISel::isMaskZeroExtended(SDNode *N) const { // If this is an AND, check if we have a compare on either side. As long as // one side guarantees the mask is zero extended, the AND will preserve those // zeros. if (N->getOpcode() == ISD::AND) return isLegalMaskCompare(N->getOperand(0).getNode(), Subtarget) || isLegalMaskCompare(N->getOperand(1).getNode(), Subtarget); return isLegalMaskCompare(N, Subtarget); } bool X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const { if (OptLevel == CodeGenOpt::None) return false; if (!N.hasOneUse()) return false; if (N.getOpcode() != ISD::LOAD) return true; // If N is a load, do additional profitability checks. if (U == Root) { switch (U->getOpcode()) { default: break; case X86ISD::ADD: case X86ISD::SUB: case X86ISD::AND: case X86ISD::XOR: case X86ISD::OR: case ISD::ADD: case ISD::ADDCARRY: case ISD::AND: case ISD::OR: case ISD::XOR: { SDValue Op1 = U->getOperand(1); // If the other operand is a 8-bit immediate we should fold the immediate // instead. This reduces code size. // e.g. // movl 4(%esp), %eax // addl $4, %eax // vs. // movl $4, %eax // addl 4(%esp), %eax // The former is 2 bytes shorter. In case where the increment is 1, then // the saving can be 4 bytes (by using incl %eax). if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) { if (Imm->getAPIntValue().isSignedIntN(8)) return false; // If this is a 64-bit AND with an immediate that fits in 32-bits, // prefer using the smaller and over folding the load. This is needed to // make sure immediates created by shrinkAndImmediate are always folded. // Ideally we would narrow the load during DAG combine and get the // best of both worlds. if (U->getOpcode() == ISD::AND && Imm->getAPIntValue().getBitWidth() == 64 && Imm->getAPIntValue().isIntN(32)) return false; } // If the other operand is a TLS address, we should fold it instead. // This produces // movl %gs:0, %eax // leal i@NTPOFF(%eax), %eax // instead of // movl $i@NTPOFF, %eax // addl %gs:0, %eax // if the block also has an access to a second TLS address this will save // a load. // FIXME: This is probably also true for non-TLS addresses. if (Op1.getOpcode() == X86ISD::Wrapper) { SDValue Val = Op1.getOperand(0); if (Val.getOpcode() == ISD::TargetGlobalTLSAddress) return false; } // Don't fold load if this matches the BTS/BTR/BTC patterns. // BTS: (or X, (shl 1, n)) // BTR: (and X, (rotl -2, n)) // BTC: (xor X, (shl 1, n)) if (U->getOpcode() == ISD::OR || U->getOpcode() == ISD::XOR) { if (U->getOperand(0).getOpcode() == ISD::SHL && isOneConstant(U->getOperand(0).getOperand(0))) return false; if (U->getOperand(1).getOpcode() == ISD::SHL && isOneConstant(U->getOperand(1).getOperand(0))) return false; } if (U->getOpcode() == ISD::AND) { SDValue U0 = U->getOperand(0); SDValue U1 = U->getOperand(1); if (U0.getOpcode() == ISD::ROTL) { auto *C = dyn_cast<ConstantSDNode>(U0.getOperand(0)); if (C && C->getSExtValue() == -2) return false; } if (U1.getOpcode() == ISD::ROTL) { auto *C = dyn_cast<ConstantSDNode>(U1.getOperand(0)); if (C && C->getSExtValue() == -2) return false; } } break; } case ISD::SHL: case ISD::SRA: case ISD::SRL: // Don't fold a load into a shift by immediate. The BMI2 instructions // support folding a load, but not an immediate. The legacy instructions // support folding an immediate, but can't fold a load. Folding an // immediate is preferable to folding a load. if (isa<ConstantSDNode>(U->getOperand(1))) return false; break; } } // Prevent folding a load if this can implemented with an insert_subreg or // a move that implicitly zeroes. if (Root->getOpcode() == ISD::INSERT_SUBVECTOR && isNullConstant(Root->getOperand(2)) && (Root->getOperand(0).isUndef() || ISD::isBuildVectorAllZeros(Root->getOperand(0).getNode()))) return false; return true; } /// Replace the original chain operand of the call with /// load's chain operand and move load below the call's chain operand. static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load, SDValue Call, SDValue OrigChain) { SmallVector<SDValue, 8> Ops; SDValue Chain = OrigChain.getOperand(0); if (Chain.getNode() == Load.getNode()) Ops.push_back(Load.getOperand(0)); else { assert(Chain.getOpcode() == ISD::TokenFactor && "Unexpected chain operand"); for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) if (Chain.getOperand(i).getNode() == Load.getNode()) Ops.push_back(Load.getOperand(0)); else Ops.push_back(Chain.getOperand(i)); SDValue NewChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops); Ops.clear(); Ops.push_back(NewChain); } Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end()); CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops); CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0), Load.getOperand(1), Load.getOperand(2)); Ops.clear(); Ops.push_back(SDValue(Load.getNode(), 1)); Ops.append(Call->op_begin() + 1, Call->op_end()); CurDAG->UpdateNodeOperands(Call.getNode(), Ops); } /// Return true if call address is a load and it can be /// moved below CALLSEQ_START and the chains leading up to the call. /// Return the CALLSEQ_START by reference as a second output. /// In the case of a tail call, there isn't a callseq node between the call /// chain and the load. static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) { // The transformation is somewhat dangerous if the call's chain was glued to // the call. After MoveBelowOrigChain the load is moved between the call and // the chain, this can create a cycle if the load is not folded. So it is // *really* important that we are sure the load will be folded. if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse()) return false; LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode()); if (!LD || LD->isVolatile() || LD->getAddressingMode() != ISD::UNINDEXED || LD->getExtensionType() != ISD::NON_EXTLOAD) return false; // Now let's find the callseq_start. while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) { if (!Chain.hasOneUse()) return false; Chain = Chain.getOperand(0); } if (!Chain.getNumOperands()) return false; // Since we are not checking for AA here, conservatively abort if the chain // writes to memory. It's not safe to move the callee (a load) across a store. if (isa<MemSDNode>(Chain.getNode()) && cast<MemSDNode>(Chain.getNode())->writeMem()) return false; if (Chain.getOperand(0).getNode() == Callee.getNode()) return true; if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor && Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) && Callee.getValue(1).hasOneUse()) return true; return false; } void X86DAGToDAGISel::PreprocessISelDAG() { // OptFor[Min]Size are used in pattern predicates that isel is matching. OptForSize = MF->getFunction().optForSize(); OptForMinSize = MF->getFunction().optForMinSize(); assert((!OptForMinSize || OptForSize) && "OptForMinSize implies OptForSize"); for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), E = CurDAG->allnodes_end(); I != E; ) { SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues. // If this is a target specific AND node with no flag usages, turn it back // into ISD::AND to enable test instruction matching. if (N->getOpcode() == X86ISD::AND && !N->hasAnyUseOfValue(1)) { SDValue Res = CurDAG->getNode(ISD::AND, SDLoc(N), N->getValueType(0), N->getOperand(0), N->getOperand(1)); --I; CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); ++I; CurDAG->DeleteNode(N); continue; } if (OptLevel != CodeGenOpt::None && // Only do this when the target can fold the load into the call or // jmp. !Subtarget->useRetpoline() && ((N->getOpcode() == X86ISD::CALL && !Subtarget->slowTwoMemOps()) || (N->getOpcode() == X86ISD::TC_RETURN && (Subtarget->is64Bit() || !getTargetMachine().isPositionIndependent())))) { /// Also try moving call address load from outside callseq_start to just /// before the call to allow it to be folded. /// /// [Load chain] /// ^ /// | /// [Load] /// ^ ^ /// | | /// / \-- /// / | ///[CALLSEQ_START] | /// ^ | /// | | /// [LOAD/C2Reg] | /// | | /// \ / /// \ / /// [CALL] bool HasCallSeq = N->getOpcode() == X86ISD::CALL; SDValue Chain = N->getOperand(0); SDValue Load = N->getOperand(1); if (!isCalleeLoad(Load, Chain, HasCallSeq)) continue; moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain); ++NumLoadMoved; continue; } // Lower fpround and fpextend nodes that target the FP stack to be store and // load to the stack. This is a gross hack. We would like to simply mark // these as being illegal, but when we do that, legalize produces these when // it expands calls, then expands these in the same legalize pass. We would // like dag combine to be able to hack on these between the call expansion // and the node legalization. As such this pass basically does "really // late" legalization of these inline with the X86 isel pass. // FIXME: This should only happen when not compiled with -O0. if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND) continue; MVT SrcVT = N->getOperand(0).getSimpleValueType(); MVT DstVT = N->getSimpleValueType(0); // If any of the sources are vectors, no fp stack involved. if (SrcVT.isVector() || DstVT.isVector()) continue; // If the source and destination are SSE registers, then this is a legal // conversion that should not be lowered. const X86TargetLowering *X86Lowering = static_cast<const X86TargetLowering *>(TLI); bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT); bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT); if (SrcIsSSE && DstIsSSE) continue; if (!SrcIsSSE && !DstIsSSE) { // If this is an FPStack extension, it is a noop. if (N->getOpcode() == ISD::FP_EXTEND) continue; // If this is a value-preserving FPStack truncation, it is a noop. if (N->getConstantOperandVal(1)) continue; } // Here we could have an FP stack truncation or an FPStack <-> SSE convert. // FPStack has extload and truncstore. SSE can fold direct loads into other // operations. Based on this, decide what we want to do. MVT MemVT; if (N->getOpcode() == ISD::FP_ROUND) MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'. else MemVT = SrcIsSSE ? SrcVT : DstVT; SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT); SDLoc dl(N); // FIXME: optimize the case where the src/dest is a load or store? SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl, N->getOperand(0), MemTmp, MachinePointerInfo(), MemVT); SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp, MachinePointerInfo(), MemVT); // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the // extload we created. This will cause general havok on the dag because // anything below the conversion could be folded into other existing nodes. // To avoid invalidating 'I', back it up to the convert node. --I; CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); // Now that we did that, the node is dead. Increment the iterator to the // next node to process, then delete N. ++I; CurDAG->DeleteNode(N); } } void X86DAGToDAGISel::PostprocessISelDAG() { // Skip peepholes at -O0. if (TM.getOptLevel() == CodeGenOpt::None) return; // Attempt to remove vectors moves that were inserted to zero upper bits. SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode()); ++Position; while (Position != CurDAG->allnodes_begin()) { SDNode *N = &*--Position; // Skip dead nodes and any non-machine opcodes. if (N->use_empty() || !N->isMachineOpcode()) continue; if (N->getMachineOpcode() != TargetOpcode::SUBREG_TO_REG) continue; unsigned SubRegIdx = N->getConstantOperandVal(2); if (SubRegIdx != X86::sub_xmm && SubRegIdx != X86::sub_ymm) continue; SDValue Move = N->getOperand(1); if (!Move.isMachineOpcode()) continue; // Make sure its one of the move opcodes we recognize. switch (Move.getMachineOpcode()) { default: continue; case X86::VMOVAPDrr: case X86::VMOVUPDrr: case X86::VMOVAPSrr: case X86::VMOVUPSrr: case X86::VMOVDQArr: case X86::VMOVDQUrr: case X86::VMOVAPDYrr: case X86::VMOVUPDYrr: case X86::VMOVAPSYrr: case X86::VMOVUPSYrr: case X86::VMOVDQAYrr: case X86::VMOVDQUYrr: case X86::VMOVAPDZ128rr: case X86::VMOVUPDZ128rr: case X86::VMOVAPSZ128rr: case X86::VMOVUPSZ128rr: case X86::VMOVDQA32Z128rr: case X86::VMOVDQU32Z128rr: case X86::VMOVDQA64Z128rr: case X86::VMOVDQU64Z128rr: case X86::VMOVAPDZ256rr: case X86::VMOVUPDZ256rr: case X86::VMOVAPSZ256rr: case X86::VMOVUPSZ256rr: case X86::VMOVDQA32Z256rr: case X86::VMOVDQU32Z256rr: case X86::VMOVDQA64Z256rr: case X86::VMOVDQU64Z256rr: break; } SDValue In = Move.getOperand(0); if (!In.isMachineOpcode() || In.getMachineOpcode() <= TargetOpcode::GENERIC_OP_END) continue; // Producing instruction is another vector instruction. We can drop the // move. CurDAG->UpdateNodeOperands(N, N->getOperand(0), In, N->getOperand(2)); // If the move is now dead, delete it. if (Move.getNode()->use_empty()) CurDAG->RemoveDeadNode(Move.getNode()); } } /// Emit any code that needs to be executed only in the main function. void X86DAGToDAGISel::emitSpecialCodeForMain() { if (Subtarget->isTargetCygMing()) { TargetLowering::ArgListTy Args; auto &DL = CurDAG->getDataLayout(); TargetLowering::CallLoweringInfo CLI(*CurDAG); CLI.setChain(CurDAG->getRoot()) .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()), CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)), std::move(Args)); const TargetLowering &TLI = CurDAG->getTargetLoweringInfo(); std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); CurDAG->setRoot(Result.second); } } void X86DAGToDAGISel::EmitFunctionEntryCode() { // If this is main, emit special code for main. const Function &F = MF->getFunction(); if (F.hasExternalLinkage() && F.getName() == "main") emitSpecialCodeForMain(); } static bool isDispSafeForFrameIndex(int64_t Val) { // On 64-bit platforms, we can run into an issue where a frame index // includes a displacement that, when added to the explicit displacement, // will overflow the displacement field. Assuming that the frame index // displacement fits into a 31-bit integer (which is only slightly more // aggressive than the current fundamental assumption that it fits into // a 32-bit integer), a 31-bit disp should always be safe. return isInt<31>(Val); } bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM) { // If there's no offset to fold, we don't need to do any work. if (Offset == 0) return false; // Cannot combine ExternalSymbol displacements with integer offsets. if (AM.ES || AM.MCSym) return true; int64_t Val = AM.Disp + Offset; CodeModel::Model M = TM.getCodeModel(); if (Subtarget->is64Bit()) { if (!X86::isOffsetSuitableForCodeModel(Val, M, AM.hasSymbolicDisplacement())) return true; // In addition to the checks required for a register base, check that // we do not try to use an unsafe Disp with a frame index. if (AM.BaseType == X86ISelAddressMode::FrameIndexBase && !isDispSafeForFrameIndex(Val)) return true; } AM.Disp = Val; return false; } bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){ SDValue Address = N->getOperand(1); // load gs:0 -> GS segment register. // load fs:0 -> FS segment register. // // This optimization is valid because the GNU TLS model defines that // gs:0 (or fs:0 on X86-64) contains its own address. // For more information see http://people.redhat.com/drepper/tls.pdf if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address)) if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr && (Subtarget->isTargetGlibc() || Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia())) switch (N->getPointerInfo().getAddrSpace()) { case 256: AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); return false; case 257: AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); return false; // Address space 258 is not handled here, because it is not used to // address TLS areas. } return true; } /// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing /// mode. These wrap things that will resolve down into a symbol reference. /// If no match is possible, this returns true, otherwise it returns false. bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) { // If the addressing mode already has a symbol as the displacement, we can // never match another symbol. if (AM.hasSymbolicDisplacement()) return true; bool IsRIPRel = N.getOpcode() == X86ISD::WrapperRIP; // We can't use an addressing mode in the 64-bit large code model. In the // medium code model, we use can use an mode when RIP wrappers are present. // That signifies access to globals that are known to be "near", such as the // GOT itself. CodeModel::Model M = TM.getCodeModel(); if (Subtarget->is64Bit() && (M == CodeModel::Large || (M == CodeModel::Medium && !IsRIPRel))) return true; // Base and index reg must be 0 in order to use %rip as base. if (IsRIPRel && AM.hasBaseOrIndexReg()) return true; // Make a local copy in case we can't do this fold. X86ISelAddressMode Backup = AM; int64_t Offset = 0; SDValue N0 = N.getOperand(0); if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { AM.GV = G->getGlobal(); AM.SymbolFlags = G->getTargetFlags(); Offset = G->getOffset(); } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { AM.CP = CP->getConstVal(); AM.Align = CP->getAlignment(); AM.SymbolFlags = CP->getTargetFlags(); Offset = CP->getOffset(); } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { AM.ES = S->getSymbol(); AM.SymbolFlags = S->getTargetFlags(); } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) { AM.MCSym = S->getMCSymbol(); } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { AM.JT = J->getIndex(); AM.SymbolFlags = J->getTargetFlags(); } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) { AM.BlockAddr = BA->getBlockAddress(); AM.SymbolFlags = BA->getTargetFlags(); Offset = BA->getOffset(); } else llvm_unreachable("Unhandled symbol reference node."); if (foldOffsetIntoAddress(Offset, AM)) { AM = Backup; return true; } if (IsRIPRel) AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64)); // Commit the changes now that we know this fold is safe. return false; } /// Add the specified node to the specified addressing mode, returning true if /// it cannot be done. This just pattern matches for the addressing mode. bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) { if (matchAddressRecursively(N, AM, 0)) return true; // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has // a smaller encoding and avoids a scaled-index. if (AM.Scale == 2 && AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() == nullptr) { AM.Base_Reg = AM.IndexReg; AM.Scale = 1; } // Post-processing: Convert foo to foo(%rip), even in non-PIC mode, // because it has a smaller encoding. // TODO: Which other code models can use this? if (TM.getCodeModel() == CodeModel::Small && Subtarget->is64Bit() && AM.Scale == 1 && AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() == nullptr && AM.IndexReg.getNode() == nullptr && AM.SymbolFlags == X86II::MO_NO_FLAG && AM.hasSymbolicDisplacement()) AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64); return false; } bool X86DAGToDAGISel::matchAdd(SDValue N, X86ISelAddressMode &AM, unsigned Depth) { // Add an artificial use to this node so that we can keep track of // it if it gets CSE'd with a different node. HandleSDNode Handle(N); X86ISelAddressMode Backup = AM; if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) && !matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)) return false; AM = Backup; // Try again after commuting the operands. if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1) && !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1)) return false; AM = Backup; // If we couldn't fold both operands into the address at the same time, // see if we can just put each operand into a register and fold at least // the add. if (AM.BaseType == X86ISelAddressMode::RegBase && !AM.Base_Reg.getNode() && !AM.IndexReg.getNode()) { N = Handle.getValue(); AM.Base_Reg = N.getOperand(0); AM.IndexReg = N.getOperand(1); AM.Scale = 1; return false; } N = Handle.getValue(); return true; } // Insert a node into the DAG at least before the Pos node's position. This // will reposition the node as needed, and will assign it a node ID that is <= // the Pos node's ID. Note that this does *not* preserve the uniqueness of node // IDs! The selection DAG must no longer depend on their uniqueness when this // is used. static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) { if (N->getNodeId() == -1 || (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) > SelectionDAGISel::getUninvalidatedNodeId(Pos.getNode()))) { DAG.RepositionNode(Pos->getIterator(), N.getNode()); // Mark Node as invalid for pruning as after this it may be a successor to a // selected node but otherwise be in the same position of Pos. // Conservatively mark it with the same -abs(Id) to assure node id // invariant is preserved. N->setNodeId(Pos->getNodeId()); SelectionDAGISel::InvalidateNodeId(N.getNode()); } } // Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if // safe. This allows us to convert the shift and and into an h-register // extract and a scaled index. Returns false if the simplification is // performed. static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N, uint64_t Mask, SDValue Shift, SDValue X, X86ISelAddressMode &AM) { if (Shift.getOpcode() != ISD::SRL || !isa<ConstantSDNode>(Shift.getOperand(1)) || !Shift.hasOneUse()) return true; int ScaleLog = 8 - Shift.getConstantOperandVal(1); if (ScaleLog <= 0 || ScaleLog >= 4 || Mask != (0xffu << ScaleLog)) return true; MVT VT = N.getSimpleValueType(); SDLoc DL(N); SDValue Eight = DAG.getConstant(8, DL, MVT::i8); SDValue NewMask = DAG.getConstant(0xff, DL, VT); SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight); SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask); SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8); SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount); // Insert the new nodes into the topological ordering. We must do this in // a valid topological ordering as nothing is going to go back and re-sort // these nodes. We continually insert before 'N' in sequence as this is // essentially a pre-flattened and pre-sorted sequence of nodes. There is no // hierarchy left to express. insertDAGNode(DAG, N, Eight); insertDAGNode(DAG, N, Srl); insertDAGNode(DAG, N, NewMask); insertDAGNode(DAG, N, And); insertDAGNode(DAG, N, ShlCount); insertDAGNode(DAG, N, Shl); DAG.ReplaceAllUsesWith(N, Shl); AM.IndexReg = And; AM.Scale = (1 << ScaleLog); return false; } // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this // allows us to fold the shift into this addressing mode. Returns false if the // transform succeeded. static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N, uint64_t Mask, SDValue Shift, SDValue X, X86ISelAddressMode &AM) { if (Shift.getOpcode() != ISD::SHL || !isa<ConstantSDNode>(Shift.getOperand(1))) return true; // Not likely to be profitable if either the AND or SHIFT node has more // than one use (unless all uses are for address computation). Besides, // isel mechanism requires their node ids to be reused. if (!N.hasOneUse() || !Shift.hasOneUse()) return true; // Verify that the shift amount is something we can fold. unsigned ShiftAmt = Shift.getConstantOperandVal(1); if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3) return true; MVT VT = N.getSimpleValueType(); SDLoc DL(N); SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT); SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask); SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1)); // Insert the new nodes into the topological ordering. We must do this in // a valid topological ordering as nothing is going to go back and re-sort // these nodes. We continually insert before 'N' in sequence as this is // essentially a pre-flattened and pre-sorted sequence of nodes. There is no // hierarchy left to express. insertDAGNode(DAG, N, NewMask); insertDAGNode(DAG, N, NewAnd); insertDAGNode(DAG, N, NewShift); DAG.ReplaceAllUsesWith(N, NewShift); AM.Scale = 1 << ShiftAmt; AM.IndexReg = NewAnd; return false; } // Implement some heroics to detect shifts of masked values where the mask can // be replaced by extending the shift and undoing that in the addressing mode // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in // the addressing mode. This results in code such as: // // int f(short *y, int *lookup_table) { // ... // return *y + lookup_table[*y >> 11]; // } // // Turning into: // movzwl (%rdi), %eax // movl %eax, %ecx // shrl $11, %ecx // addl (%rsi,%rcx,4), %eax // // Instead of: // movzwl (%rdi), %eax // movl %eax, %ecx // shrl $9, %ecx // andl $124, %rcx // addl (%rsi,%rcx), %eax // // Note that this function assumes the mask is provided as a mask *after* the // value is shifted. The input chain may or may not match that, but computing // such a mask is trivial. static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N, uint64_t Mask, SDValue Shift, SDValue X, X86ISelAddressMode &AM) { if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() || !isa<ConstantSDNode>(Shift.getOperand(1))) return true; unsigned ShiftAmt = Shift.getConstantOperandVal(1); unsigned MaskLZ = countLeadingZeros(Mask); unsigned MaskTZ = countTrailingZeros(Mask); // The amount of shift we're trying to fit into the addressing mode is taken // from the trailing zeros of the mask. unsigned AMShiftAmt = MaskTZ; // There is nothing we can do here unless the mask is removing some bits. // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits. if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true; // We also need to ensure that mask is a continuous run of bits. if (countTrailingOnes(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true; // Scale the leading zero count down based on the actual size of the value. // Also scale it down based on the size of the shift. unsigned ScaleDown = (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt; if (MaskLZ < ScaleDown) return true; MaskLZ -= ScaleDown; // The final check is to ensure that any masked out high bits of X are // already known to be zero. Otherwise, the mask has a semantic impact // other than masking out a couple of low bits. Unfortunately, because of // the mask, zero extensions will be removed from operands in some cases. // This code works extra hard to look through extensions because we can // replace them with zero extensions cheaply if necessary. bool ReplacingAnyExtend = false; if (X.getOpcode() == ISD::ANY_EXTEND) { unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() - X.getOperand(0).getSimpleValueType().getSizeInBits(); // Assume that we'll replace the any-extend with a zero-extend, and // narrow the search to the extended value. X = X.getOperand(0); MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits; ReplacingAnyExtend = true; } APInt MaskedHighBits = APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ); KnownBits Known; DAG.computeKnownBits(X, Known); if (MaskedHighBits != Known.Zero) return true; // We've identified a pattern that can be transformed into a single shift // and an addressing mode. Make it so. MVT VT = N.getSimpleValueType(); if (ReplacingAnyExtend) { assert(X.getValueType() != VT); // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND. SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X); insertDAGNode(DAG, N, NewX); X = NewX; } SDLoc DL(N); SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8); SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt); SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8); SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt); // Insert the new nodes into the topological ordering. We must do this in // a valid topological ordering as nothing is going to go back and re-sort // these nodes. We continually insert before 'N' in sequence as this is // essentially a pre-flattened and pre-sorted sequence of nodes. There is no // hierarchy left to express. insertDAGNode(DAG, N, NewSRLAmt); insertDAGNode(DAG, N, NewSRL); insertDAGNode(DAG, N, NewSHLAmt); insertDAGNode(DAG, N, NewSHL); DAG.ReplaceAllUsesWith(N, NewSHL); AM.Scale = 1 << AMShiftAmt; AM.IndexReg = NewSRL; return false; } bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM, unsigned Depth) { SDLoc dl(N); LLVM_DEBUG({ dbgs() << "MatchAddress: "; AM.dump(CurDAG); }); // Limit recursion. if (Depth > 5) return matchAddressBase(N, AM); // If this is already a %rip relative address, we can only merge immediates // into it. Instead of handling this in every case, we handle it here. // RIP relative addressing: %rip + 32-bit displacement! if (AM.isRIPRelative()) { // FIXME: JumpTable and ExternalSymbol address currently don't like // displacements. It isn't very important, but this should be fixed for // consistency. if (!(AM.ES || AM.MCSym) && AM.JT != -1) return true; if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM)) return false; return true; } switch (N.getOpcode()) { default: break; case ISD::LOCAL_RECOVER: { if (!AM.hasSymbolicDisplacement() && AM.Disp == 0) if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) { // Use the symbol and don't prefix it. AM.MCSym = ESNode->getMCSymbol(); return false; } break; } case ISD::Constant: { uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue(); if (!foldOffsetIntoAddress(Val, AM)) return false; break; } case X86ISD::Wrapper: case X86ISD::WrapperRIP: if (!matchWrapper(N, AM)) return false; break; case ISD::LOAD: if (!matchLoadInAddress(cast<LoadSDNode>(N), AM)) return false; break; case ISD::FrameIndex: if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() == nullptr && (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) { AM.BaseType = X86ISelAddressMode::FrameIndexBase; AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex(); return false; } break; case ISD::SHL: if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break; if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { unsigned Val = CN->getZExtValue(); // Note that we handle x<<1 as (,x,2) rather than (x,x) here so // that the base operand remains free for further matching. If // the base doesn't end up getting used, a post-processing step // in MatchAddress turns (,x,2) into (x,x), which is cheaper. if (Val == 1 || Val == 2 || Val == 3) { AM.Scale = 1 << Val; SDValue ShVal = N.getOperand(0); // Okay, we know that we have a scale by now. However, if the scaled // value is an add of something and a constant, we can fold the // constant into the disp field here. if (CurDAG->isBaseWithConstantOffset(ShVal)) { AM.IndexReg = ShVal.getOperand(0); ConstantSDNode *AddVal = cast<ConstantSDNode>(ShVal.getOperand(1)); uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val; if (!foldOffsetIntoAddress(Disp, AM)) return false; } AM.IndexReg = ShVal; return false; } } break; case ISD::SRL: { // Scale must not be used already. if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break; SDValue And = N.getOperand(0); if (And.getOpcode() != ISD::AND) break; SDValue X = And.getOperand(0); // We only handle up to 64-bit values here as those are what matter for // addressing mode optimizations. if (X.getSimpleValueType().getSizeInBits() > 64) break; // The mask used for the transform is expected to be post-shift, but we // found the shift first so just apply the shift to the mask before passing // it down. if (!isa<ConstantSDNode>(N.getOperand(1)) || !isa<ConstantSDNode>(And.getOperand(1))) break; uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1); // Try to fold the mask and shift into the scale, and return false if we // succeed. if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM)) return false; break; } case ISD::SMUL_LOHI: case ISD::UMUL_LOHI: // A mul_lohi where we need the low part can be folded as a plain multiply. if (N.getResNo() != 0) break; LLVM_FALLTHROUGH; case ISD::MUL: case X86ISD::MUL_IMM: // X*[3,5,9] -> X+X*[2,4,8] if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() == nullptr && AM.IndexReg.getNode() == nullptr) { if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 || CN->getZExtValue() == 9) { AM.Scale = unsigned(CN->getZExtValue())-1; SDValue MulVal = N.getOperand(0); SDValue Reg; // Okay, we know that we have a scale by now. However, if the scaled // value is an add of something and a constant, we can fold the // constant into the disp field here. if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() && isa<ConstantSDNode>(MulVal.getOperand(1))) { Reg = MulVal.getOperand(0); ConstantSDNode *AddVal = cast<ConstantSDNode>(MulVal.getOperand(1)); uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue(); if (foldOffsetIntoAddress(Disp, AM)) Reg = N.getOperand(0); } else { Reg = N.getOperand(0); } AM.IndexReg = AM.Base_Reg = Reg; return false; } } break; case ISD::SUB: { // Given A-B, if A can be completely folded into the address and // the index field with the index field unused, use -B as the index. // This is a win if a has multiple parts that can be folded into // the address. Also, this saves a mov if the base register has // other uses, since it avoids a two-address sub instruction, however // it costs an additional mov if the index register has other uses. // Add an artificial use to this node so that we can keep track of // it if it gets CSE'd with a different node. HandleSDNode Handle(N); // Test if the LHS of the sub can be folded. X86ISelAddressMode Backup = AM; if (matchAddressRecursively(N.getOperand(0), AM, Depth+1)) { AM = Backup; break; } // Test if the index field is free for use. if (AM.IndexReg.getNode() || AM.isRIPRelative()) { AM = Backup; break; } int Cost = 0; SDValue RHS = Handle.getValue().getOperand(1); // If the RHS involves a register with multiple uses, this // transformation incurs an extra mov, due to the neg instruction // clobbering its operand. if (!RHS.getNode()->hasOneUse() || RHS.getNode()->getOpcode() == ISD::CopyFromReg || RHS.getNode()->getOpcode() == ISD::TRUNCATE || RHS.getNode()->getOpcode() == ISD::ANY_EXTEND || (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND && RHS.getOperand(0).getValueType() == MVT::i32)) ++Cost; // If the base is a register with multiple uses, this // transformation may save a mov. // FIXME: Don't rely on DELETED_NODEs. if ((AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() && AM.Base_Reg->getOpcode() != ISD::DELETED_NODE && !AM.Base_Reg.getNode()->hasOneUse()) || AM.BaseType == X86ISelAddressMode::FrameIndexBase) --Cost; // If the folded LHS was interesting, this transformation saves // address arithmetic. if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) + ((AM.Disp != 0) && (Backup.Disp == 0)) + (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2) --Cost; // If it doesn't look like it may be an overall win, don't do it. if (Cost >= 0) { AM = Backup; break; } // Ok, the transformation is legal and appears profitable. Go for it. SDValue Zero = CurDAG->getConstant(0, dl, N.getValueType()); SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS); AM.IndexReg = Neg; AM.Scale = 1; // Insert the new nodes into the topological ordering. insertDAGNode(*CurDAG, Handle.getValue(), Zero); insertDAGNode(*CurDAG, Handle.getValue(), Neg); return false; } case ISD::ADD: if (!matchAdd(N, AM, Depth)) return false; break; case ISD::OR: // We want to look through a transform in InstCombine and DAGCombiner that // turns 'add' into 'or', so we can treat this 'or' exactly like an 'add'. // Example: (or (and x, 1), (shl y, 3)) --> (add (and x, 1), (shl y, 3)) // An 'lea' can then be used to match the shift (multiply) and add: // and $1, %esi // lea (%rsi, %rdi, 8), %rax if (CurDAG->haveNoCommonBitsSet(N.getOperand(0), N.getOperand(1)) && !matchAdd(N, AM, Depth)) return false; break; case ISD::AND: { // Perform some heroic transforms on an and of a constant-count shift // with a constant to enable use of the scaled offset field. // Scale must not be used already. if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break; SDValue Shift = N.getOperand(0); if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break; SDValue X = Shift.getOperand(0); // We only handle up to 64-bit values here as those are what matter for // addressing mode optimizations. if (X.getSimpleValueType().getSizeInBits() > 64) break; if (!isa<ConstantSDNode>(N.getOperand(1))) break; uint64_t Mask = N.getConstantOperandVal(1); // Try to fold the mask and shift into an extract and scale. if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM)) return false; // Try to fold the mask and shift directly into the scale. if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM)) return false; // Try to swap the mask and shift to place shifts which can be done as // a scale on the outside of the mask. if (!foldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM)) return false; break; } } return matchAddressBase(N, AM); } /// Helper for MatchAddress. Add the specified node to the /// specified addressing mode without any further recursion. bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) { // Is the base register already occupied? if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) { // If so, check to see if the scale index register is set. if (!AM.IndexReg.getNode()) { AM.IndexReg = N; AM.Scale = 1; return false; } // Otherwise, we cannot select it. return true; } // Default, generate it as a register. AM.BaseType = X86ISelAddressMode::RegBase; AM.Base_Reg = N; return false; } /// Helper for selectVectorAddr. Handles things that can be folded into a /// gather scatter address. The index register and scale should have already /// been handled. bool X86DAGToDAGISel::matchVectorAddress(SDValue N, X86ISelAddressMode &AM) { // TODO: Support other operations. switch (N.getOpcode()) { case ISD::Constant: { uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue(); if (!foldOffsetIntoAddress(Val, AM)) return false; break; } case X86ISD::Wrapper: if (!matchWrapper(N, AM)) return false; break; } return matchAddressBase(N, AM); } bool X86DAGToDAGISel::selectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment) { X86ISelAddressMode AM; auto *Mgs = cast<X86MaskedGatherScatterSDNode>(Parent); AM.IndexReg = Mgs->getIndex(); AM.Scale = cast<ConstantSDNode>(Mgs->getScale())->getZExtValue(); unsigned AddrSpace = cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace(); // AddrSpace 256 -> GS, 257 -> FS, 258 -> SS. if (AddrSpace == 256) AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); if (AddrSpace == 257) AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); if (AddrSpace == 258) AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16); // Try to match into the base and displacement fields. if (matchVectorAddress(N, AM)) return false; MVT VT = N.getSimpleValueType(); if (AM.BaseType == X86ISelAddressMode::RegBase) { if (!AM.Base_Reg.getNode()) AM.Base_Reg = CurDAG->getRegister(0, VT); } getAddressOperands(AM, SDLoc(N), Base, Scale, Index, Disp, Segment); return true; } /// Returns true if it is able to pattern match an addressing mode. /// It returns the operands which make up the maximal addressing mode it can /// match by reference. /// /// Parent is the parent node of the addr operand that is being matched. It /// is always a load, store, atomic node, or null. It is only null when /// checking memory operands for inline asm nodes. bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment) { X86ISelAddressMode AM; if (Parent && // This list of opcodes are all the nodes that have an "addr:$ptr" operand // that are not a MemSDNode, and thus don't have proper addrspace info. Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores Parent->getOpcode() != X86ISD::TLSCALL && // Fixme Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp unsigned AddrSpace = cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace(); // AddrSpace 256 -> GS, 257 -> FS, 258 -> SS. if (AddrSpace == 256) AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); if (AddrSpace == 257) AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); if (AddrSpace == 258) AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16); } if (matchAddress(N, AM)) return false; MVT VT = N.getSimpleValueType(); if (AM.BaseType == X86ISelAddressMode::RegBase) { if (!AM.Base_Reg.getNode()) AM.Base_Reg = CurDAG->getRegister(0, VT); } if (!AM.IndexReg.getNode()) AM.IndexReg = CurDAG->getRegister(0, VT); getAddressOperands(AM, SDLoc(N), Base, Scale, Index, Disp, Segment); return true; } // We can only fold a load if all nodes between it and the root node have a // single use. If there are additional uses, we could end up duplicating the // load. static bool hasSingleUsesFromRoot(SDNode *Root, SDNode *User) { while (User != Root) { if (!User->hasOneUse()) return false; User = *User->use_begin(); } return true; } /// Match a scalar SSE load. In particular, we want to match a load whose top /// elements are either undef or zeros. The load flavor is derived from the /// type of N, which is either v4f32 or v2f64. /// /// We also return: /// PatternChainNode: this is the matched node that has a chain input and /// output. bool X86DAGToDAGISel::selectScalarSSELoad(SDNode *Root, SDNode *Parent, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment, SDValue &PatternNodeWithChain) { if (!hasSingleUsesFromRoot(Root, Parent)) return false; // We can allow a full vector load here since narrowing a load is ok. if (ISD::isNON_EXTLoad(N.getNode())) { PatternNodeWithChain = N; if (IsProfitableToFold(PatternNodeWithChain, N.getNode(), Root) && IsLegalToFold(PatternNodeWithChain, Parent, Root, OptLevel)) { LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain); return selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment); } } // We can also match the special zero extended load opcode. if (N.getOpcode() == X86ISD::VZEXT_LOAD) { PatternNodeWithChain = N; if (IsProfitableToFold(PatternNodeWithChain, N.getNode(), Root) && IsLegalToFold(PatternNodeWithChain, Parent, Root, OptLevel)) { auto *MI = cast<MemIntrinsicSDNode>(PatternNodeWithChain); return selectAddr(MI, MI->getBasePtr(), Base, Scale, Index, Disp, Segment); } } // Need to make sure that the SCALAR_TO_VECTOR and load are both only used // once. Otherwise the load might get duplicated and the chain output of the // duplicate load will not be observed by all dependencies. if (N.getOpcode() == ISD::SCALAR_TO_VECTOR && N.getNode()->hasOneUse()) { PatternNodeWithChain = N.getOperand(0); if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) && IsProfitableToFold(PatternNodeWithChain, N.getNode(), Root) && IsLegalToFold(PatternNodeWithChain, N.getNode(), Root, OptLevel)) { LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain); return selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment); } } // Also handle the case where we explicitly require zeros in the top // elements. This is a vector shuffle from the zero vector. if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() && // Check to see if the top elements are all zeros (or bitcast of zeros). N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && N.getOperand(0).getNode()->hasOneUse()) { PatternNodeWithChain = N.getOperand(0).getOperand(0); if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) && IsProfitableToFold(PatternNodeWithChain, N.getNode(), Root) && IsLegalToFold(PatternNodeWithChain, N.getNode(), Root, OptLevel)) { // Okay, this is a zero extending load. Fold it. LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain); return selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment); } } return false; } bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) { if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { uint64_t ImmVal = CN->getZExtValue(); if (!isUInt<32>(ImmVal)) return false; Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), MVT::i64); return true; } // In static codegen with small code model, we can get the address of a label // into a register with 'movl' if (N->getOpcode() != X86ISD::Wrapper) return false; N = N.getOperand(0); // At least GNU as does not accept 'movl' for TPOFF relocations. // FIXME: We could use 'movl' when we know we are targeting MC. if (N->getOpcode() == ISD::TargetGlobalTLSAddress) return false; Imm = N; if (N->getOpcode() != ISD::TargetGlobalAddress) return TM.getCodeModel() == CodeModel::Small; Optional<ConstantRange> CR = cast<GlobalAddressSDNode>(N)->getGlobal()->getAbsoluteSymbolRange(); if (!CR) return TM.getCodeModel() == CodeModel::Small; return CR->getUnsignedMax().ult(1ull << 32); } bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment) { // Save the debug loc before calling selectLEAAddr, in case it invalidates N. SDLoc DL(N); if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment)) return false; RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base); if (RN && RN->getReg() == 0) Base = CurDAG->getRegister(0, MVT::i64); else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(Base)) { // Base could already be %rip, particularly in the x32 ABI. Base = SDValue(CurDAG->getMachineNode( TargetOpcode::SUBREG_TO_REG, DL, MVT::i64, CurDAG->getTargetConstant(0, DL, MVT::i64), Base, CurDAG->getTargetConstant(X86::sub_32bit, DL, MVT::i32)), 0); } RN = dyn_cast<RegisterSDNode>(Index); if (RN && RN->getReg() == 0) Index = CurDAG->getRegister(0, MVT::i64); else { assert(Index.getValueType() == MVT::i32 && "Expect to be extending 32-bit registers for use in LEA"); Index = SDValue(CurDAG->getMachineNode( TargetOpcode::SUBREG_TO_REG, DL, MVT::i64, CurDAG->getTargetConstant(0, DL, MVT::i64), Index, CurDAG->getTargetConstant(X86::sub_32bit, DL, MVT::i32)), 0); } return true; } /// Calls SelectAddr and determines if the maximal addressing /// mode it matches can be cost effectively emitted as an LEA instruction. bool X86DAGToDAGISel::selectLEAAddr(SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment) { X86ISelAddressMode AM; // Save the DL and VT before calling matchAddress, it can invalidate N. SDLoc DL(N); MVT VT = N.getSimpleValueType(); // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support // segments. SDValue Copy = AM.Segment; SDValue T = CurDAG->getRegister(0, MVT::i32); AM.Segment = T; if (matchAddress(N, AM)) return false; assert (T == AM.Segment); AM.Segment = Copy; unsigned Complexity = 0; if (AM.BaseType == X86ISelAddressMode::RegBase) if (AM.Base_Reg.getNode()) Complexity = 1; else AM.Base_Reg = CurDAG->getRegister(0, VT); else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase) Complexity = 4; if (AM.IndexReg.getNode()) Complexity++; else AM.IndexReg = CurDAG->getRegister(0, VT); // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with // a simple shift. if (AM.Scale > 1) Complexity++; // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA // to a LEA. This is determined with some experimentation but is by no means // optimal (especially for code size consideration). LEA is nice because of // its three-address nature. Tweak the cost function again when we can run // convertToThreeAddress() at register allocation time. if (AM.hasSymbolicDisplacement()) { // For X86-64, always use LEA to materialize RIP-relative addresses. if (Subtarget->is64Bit()) Complexity = 4; else Complexity += 2; } if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode())) Complexity++; // If it isn't worth using an LEA, reject it. if (Complexity <= 2) return false; getAddressOperands(AM, DL, Base, Scale, Index, Disp, Segment); return true; } /// This is only run on TargetGlobalTLSAddress nodes. bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment) { assert(N.getOpcode() == ISD::TargetGlobalTLSAddress); const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); X86ISelAddressMode AM; AM.GV = GA->getGlobal(); AM.Disp += GA->getOffset(); AM.Base_Reg = CurDAG->getRegister(0, N.getValueType()); AM.SymbolFlags = GA->getTargetFlags(); if (N.getValueType() == MVT::i32) { AM.Scale = 1; AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32); } else { AM.IndexReg = CurDAG->getRegister(0, MVT::i64); } getAddressOperands(AM, SDLoc(N), Base, Scale, Index, Disp, Segment); return true; } bool X86DAGToDAGISel::selectRelocImm(SDValue N, SDValue &Op) { if (auto *CN = dyn_cast<ConstantSDNode>(N)) { Op = CurDAG->getTargetConstant(CN->getAPIntValue(), SDLoc(CN), N.getValueType()); return true; } // Keep track of the original value type and whether this value was // truncated. If we see a truncation from pointer type to VT that truncates // bits that are known to be zero, we can use a narrow reference. EVT VT = N.getValueType(); bool WasTruncated = false; if (N.getOpcode() == ISD::TRUNCATE) { WasTruncated = true; N = N.getOperand(0); } if (N.getOpcode() != X86ISD::Wrapper) return false; // We can only use non-GlobalValues as immediates if they were not truncated, // as we do not have any range information. If we have a GlobalValue and the // address was not truncated, we can select it as an operand directly. unsigned Opc = N.getOperand(0)->getOpcode(); if (Opc != ISD::TargetGlobalAddress || !WasTruncated) { Op = N.getOperand(0); // We can only select the operand directly if we didn't have to look past a // truncate. return !WasTruncated; } // Check that the global's range fits into VT. auto *GA = cast<GlobalAddressSDNode>(N.getOperand(0)); Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange(); if (!CR || CR->getUnsignedMax().uge(1ull << VT.getSizeInBits())) return false; // Okay, we can use a narrow reference. Op = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(N), VT, GA->getOffset(), GA->getTargetFlags()); return true; } bool X86DAGToDAGISel::tryFoldLoad(SDNode *Root, SDNode *P, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment) { if (!ISD::isNON_EXTLoad(N.getNode()) || !IsProfitableToFold(N, P, Root) || !IsLegalToFold(N, P, Root, OptLevel)) return false; return selectAddr(N.getNode(), N.getOperand(1), Base, Scale, Index, Disp, Segment); } bool X86DAGToDAGISel::tryFoldVecLoad(SDNode *Root, SDNode *P, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment) { if (!ISD::isNON_EXTLoad(N.getNode()) || useNonTemporalLoad(cast<LoadSDNode>(N)) || !IsProfitableToFold(N, P, Root) || !IsLegalToFold(N, P, Root, OptLevel)) return false; return selectAddr(N.getNode(), N.getOperand(1), Base, Scale, Index, Disp, Segment); } /// Return an SDNode that returns the value of the global base register. /// Output instructions required to initialize the global base register, /// if necessary. SDNode *X86DAGToDAGISel::getGlobalBaseReg() { unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF); auto &DL = MF->getDataLayout(); return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode(); } bool X86DAGToDAGISel::isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const { if (N->getOpcode() == ISD::TRUNCATE) N = N->getOperand(0).getNode(); if (N->getOpcode() != X86ISD::Wrapper) return false; auto *GA = dyn_cast<GlobalAddressSDNode>(N->getOperand(0)); if (!GA) return false; Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange(); return CR && CR->getSignedMin().sge(-1ull << Width) && CR->getSignedMax().slt(1ull << Width); } /// Test whether the given X86ISD::CMP node has any uses which require the SF /// or OF bits to be accurate. static bool hasNoSignedComparisonUses(SDNode *N) { // Examine each user of the node. for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE; ++UI) { // Only examine CopyToReg uses. if (UI->getOpcode() != ISD::CopyToReg) return false; // Only examine CopyToReg uses that copy to EFLAGS. if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS) return false; // Examine each user of the CopyToReg use. for (SDNode::use_iterator FlagUI = UI->use_begin(), FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) { // Only examine the Flag result. if (FlagUI.getUse().getResNo() != 1) continue; // Anything unusual: assume conservatively. if (!FlagUI->isMachineOpcode()) return false; // Examine the opcode of the user. switch (FlagUI->getMachineOpcode()) { // These comparisons don't treat the most significant bit specially. case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr: case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr: case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm: case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm: case X86::JA_1: case X86::JAE_1: case X86::JB_1: case X86::JBE_1: case X86::JE_1: case X86::JNE_1: case X86::JP_1: case X86::JNP_1: case X86::CMOVA16rr: case X86::CMOVA16rm: case X86::CMOVA32rr: case X86::CMOVA32rm: case X86::CMOVA64rr: case X86::CMOVA64rm: case X86::CMOVAE16rr: case X86::CMOVAE16rm: case X86::CMOVAE32rr: case X86::CMOVAE32rm: case X86::CMOVAE64rr: case X86::CMOVAE64rm: case X86::CMOVB16rr: case X86::CMOVB16rm: case X86::CMOVB32rr: case X86::CMOVB32rm: case X86::CMOVB64rr: case X86::CMOVB64rm: case X86::CMOVBE16rr: case X86::CMOVBE16rm: case X86::CMOVBE32rr: case X86::CMOVBE32rm: case X86::CMOVBE64rr: case X86::CMOVBE64rm: case X86::CMOVE16rr: case X86::CMOVE16rm: case X86::CMOVE32rr: case X86::CMOVE32rm: case X86::CMOVE64rr: case X86::CMOVE64rm: case X86::CMOVNE16rr: case X86::CMOVNE16rm: case X86::CMOVNE32rr: case X86::CMOVNE32rm: case X86::CMOVNE64rr: case X86::CMOVNE64rm: case X86::CMOVNP16rr: case X86::CMOVNP16rm: case X86::CMOVNP32rr: case X86::CMOVNP32rm: case X86::CMOVNP64rr: case X86::CMOVNP64rm: case X86::CMOVP16rr: case X86::CMOVP16rm: case X86::CMOVP32rr: case X86::CMOVP32rm: case X86::CMOVP64rr: case X86::CMOVP64rm: continue; // Anything else: assume conservatively. default: return false; } } } return true; } /// Test whether the given node which sets flags has any uses which require the /// CF flag to be accurate. static bool hasNoCarryFlagUses(SDNode *N) { // Examine each user of the node. for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE; ++UI) { // Only check things that use the flags. if (UI.getUse().getResNo() != 1) continue; // Only examine CopyToReg uses. if (UI->getOpcode() != ISD::CopyToReg) return false; // Only examine CopyToReg uses that copy to EFLAGS. if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS) return false; // Examine each user of the CopyToReg use. for (SDNode::use_iterator FlagUI = UI->use_begin(), FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) { // Only examine the Flag result. if (FlagUI.getUse().getResNo() != 1) continue; // Anything unusual: assume conservatively. if (!FlagUI->isMachineOpcode()) return false; // Examine the opcode of the user. switch (FlagUI->getMachineOpcode()) { // Comparisons which don't examine the CF flag. case X86::SETOr: case X86::SETNOr: case X86::SETEr: case X86::SETNEr: case X86::SETSr: case X86::SETNSr: case X86::SETPr: case X86::SETNPr: case X86::SETLr: case X86::SETGEr: case X86::SETLEr: case X86::SETGr: case X86::JO_1: case X86::JNO_1: case X86::JE_1: case X86::JNE_1: case X86::JS_1: case X86::JNS_1: case X86::JP_1: case X86::JNP_1: case X86::JL_1: case X86::JGE_1: case X86::JLE_1: case X86::JG_1: case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr: case X86::CMOVO16rm: case X86::CMOVO32rm: case X86::CMOVO64rm: case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: case X86::CMOVNO16rm: case X86::CMOVNO32rm: case X86::CMOVNO64rm: case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr: case X86::CMOVE16rm: case X86::CMOVE32rm: case X86::CMOVE64rm: case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr: case X86::CMOVNE16rm: case X86::CMOVNE32rm: case X86::CMOVNE64rm: case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr: case X86::CMOVS16rm: case X86::CMOVS32rm: case X86::CMOVS64rm: case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr: case X86::CMOVNS16rm: case X86::CMOVNS32rm: case X86::CMOVNS64rm: case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr: case X86::CMOVP16rm: case X86::CMOVP32rm: case X86::CMOVP64rm: case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr: case X86::CMOVNP16rm: case X86::CMOVNP32rm: case X86::CMOVNP64rm: case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr: case X86::CMOVL16rm: case X86::CMOVL32rm: case X86::CMOVL64rm: case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr: case X86::CMOVGE16rm: case X86::CMOVGE32rm: case X86::CMOVGE64rm: case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr: case X86::CMOVLE16rm: case X86::CMOVLE32rm: case X86::CMOVLE64rm: case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr: case X86::CMOVG16rm: case X86::CMOVG32rm: case X86::CMOVG64rm: continue; // Anything else: assume conservatively. default: return false; } } } return true; } /// Check whether or not the chain ending in StoreNode is suitable for doing /// the {load; op; store} to modify transformation. static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode, SDValue StoredVal, SelectionDAG *CurDAG, LoadSDNode *&LoadNode, SDValue &InputChain) { // is the stored value result 0 of the load? if (StoredVal.getResNo() != 0) return false; // are there other uses of the loaded value than the inc or dec? if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false; // is the store non-extending and non-indexed? if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal()) return false; SDValue Load = StoredVal->getOperand(0); // Is the stored value a non-extending and non-indexed load? if (!ISD::isNormalLoad(Load.getNode())) return false; // Return LoadNode by reference. LoadNode = cast<LoadSDNode>(Load); // Is store the only read of the loaded value? if (!Load.hasOneUse()) return false; // Is the address of the store the same as the load? if (LoadNode->getBasePtr() != StoreNode->getBasePtr() || LoadNode->getOffset() != StoreNode->getOffset()) return false; bool FoundLoad = false; SmallVector<SDValue, 4> ChainOps; SmallVector<const SDNode *, 4> LoopWorklist; SmallPtrSet<const SDNode *, 16> Visited; const unsigned int Max = 1024; // Visualization of Load-Op-Store fusion: // ------------------------- // Legend: // *-lines = Chain operand dependencies. // |-lines = Normal operand dependencies. // Dependencies flow down and right. n-suffix references multiple nodes. // // C Xn C // * * * // * * * // Xn A-LD Yn TF Yn // * * \ | * | // * * \ | * | // * * \ | => A--LD_OP_ST // * * \| \ // TF OP \ // * | \ Zn // * | \ // A-ST Zn // // This merge induced dependences from: #1: Xn -> LD, OP, Zn // #2: Yn -> LD // #3: ST -> Zn // Ensure the transform is safe by checking for the dual // dependencies to make sure we do not induce a loop. // As LD is a predecessor to both OP and ST we can do this by checking: // a). if LD is a predecessor to a member of Xn or Yn. // b). if a Zn is a predecessor to ST. // However, (b) can only occur through being a chain predecessor to // ST, which is the same as Zn being a member or predecessor of Xn, // which is a subset of LD being a predecessor of Xn. So it's // subsumed by check (a). SDValue Chain = StoreNode->getChain(); // Gather X elements in ChainOps. if (Chain == Load.getValue(1)) { FoundLoad = true; ChainOps.push_back(Load.getOperand(0)); } else if (Chain.getOpcode() == ISD::TokenFactor) { for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) { SDValue Op = Chain.getOperand(i); if (Op == Load.getValue(1)) { FoundLoad = true; // Drop Load, but keep its chain. No cycle check necessary. ChainOps.push_back(Load.getOperand(0)); continue; } LoopWorklist.push_back(Op.getNode()); ChainOps.push_back(Op); } } if (!FoundLoad) return false; // Worklist is currently Xn. Add Yn to worklist. for (SDValue Op : StoredVal->ops()) if (Op.getNode() != LoadNode) LoopWorklist.push_back(Op.getNode()); // Check (a) if Load is a predecessor to Xn + Yn if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max, true)) return false; InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ChainOps); return true; } // Change a chain of {load; op; store} of the same value into a simple op // through memory of that value, if the uses of the modified value and its // address are suitable. // // The tablegen pattern memory operand pattern is currently not able to match // the case where the EFLAGS on the original operation are used. // // To move this to tablegen, we'll need to improve tablegen to allow flags to // be transferred from a node in the pattern to the result node, probably with // a new keyword. For example, we have this // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", // [(store (add (loadi64 addr:$dst), -1), addr:$dst), // (implicit EFLAGS)]>; // but maybe need something like this // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", // [(store (add (loadi64 addr:$dst), -1), addr:$dst), // (transferrable EFLAGS)]>; // // Until then, we manually fold these and instruction select the operation // here. bool X86DAGToDAGISel::foldLoadStoreIntoMemOperand(SDNode *Node) { StoreSDNode *StoreNode = cast<StoreSDNode>(Node); SDValue StoredVal = StoreNode->getOperand(1); unsigned Opc = StoredVal->getOpcode(); // Before we try to select anything, make sure this is memory operand size // and opcode we can handle. Note that this must match the code below that // actually lowers the opcodes. EVT MemVT = StoreNode->getMemoryVT(); if (MemVT != MVT::i64 && MemVT != MVT::i32 && MemVT != MVT::i16 && MemVT != MVT::i8) return false; switch (Opc) { default: return false; case X86ISD::INC: case X86ISD::DEC: case X86ISD::ADD: case X86ISD::ADC: case X86ISD::SUB: case X86ISD::SBB: case X86ISD::AND: case X86ISD::OR: case X86ISD::XOR: break; } LoadSDNode *LoadNode = nullptr; SDValue InputChain; if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadNode, InputChain)) return false; SDValue Base, Scale, Index, Disp, Segment; if (!selectAddr(LoadNode, LoadNode->getBasePtr(), Base, Scale, Index, Disp, Segment)) return false; auto SelectOpcode = [&](unsigned Opc64, unsigned Opc32, unsigned Opc16, unsigned Opc8) { switch (MemVT.getSimpleVT().SimpleTy) { case MVT::i64: return Opc64; case MVT::i32: return Opc32; case MVT::i16: return Opc16; case MVT::i8: return Opc8; default: llvm_unreachable("Invalid size!"); } }; MachineSDNode *Result; switch (Opc) { case X86ISD::INC: case X86ISD::DEC: { unsigned NewOpc = Opc == X86ISD::INC ? SelectOpcode(X86::INC64m, X86::INC32m, X86::INC16m, X86::INC8m) : SelectOpcode(X86::DEC64m, X86::DEC32m, X86::DEC16m, X86::DEC8m); const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain}; Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other, Ops); break; } case X86ISD::ADD: case X86ISD::ADC: case X86ISD::SUB: case X86ISD::SBB: case X86ISD::AND: case X86ISD::OR: case X86ISD::XOR: { auto SelectRegOpcode = [SelectOpcode](unsigned Opc) { switch (Opc) { case X86ISD::ADD: return SelectOpcode(X86::ADD64mr, X86::ADD32mr, X86::ADD16mr, X86::ADD8mr); case X86ISD::ADC: return SelectOpcode(X86::ADC64mr, X86::ADC32mr, X86::ADC16mr, X86::ADC8mr); case X86ISD::SUB: return SelectOpcode(X86::SUB64mr, X86::SUB32mr, X86::SUB16mr, X86::SUB8mr); case X86ISD::SBB: return SelectOpcode(X86::SBB64mr, X86::SBB32mr, X86::SBB16mr, X86::SBB8mr); case X86ISD::AND: return SelectOpcode(X86::AND64mr, X86::AND32mr, X86::AND16mr, X86::AND8mr); case X86ISD::OR: return SelectOpcode(X86::OR64mr, X86::OR32mr, X86::OR16mr, X86::OR8mr); case X86ISD::XOR: return SelectOpcode(X86::XOR64mr, X86::XOR32mr, X86::XOR16mr, X86::XOR8mr); default: llvm_unreachable("Invalid opcode!"); } }; auto SelectImm8Opcode = [SelectOpcode](unsigned Opc) { switch (Opc) { case X86ISD::ADD: return SelectOpcode(X86::ADD64mi8, X86::ADD32mi8, X86::ADD16mi8, 0); case X86ISD::ADC: return SelectOpcode(X86::ADC64mi8, X86::ADC32mi8, X86::ADC16mi8, 0); case X86ISD::SUB: return SelectOpcode(X86::SUB64mi8, X86::SUB32mi8, X86::SUB16mi8, 0); case X86ISD::SBB: return SelectOpcode(X86::SBB64mi8, X86::SBB32mi8, X86::SBB16mi8, 0); case X86ISD::AND: return SelectOpcode(X86::AND64mi8, X86::AND32mi8, X86::AND16mi8, 0); case X86ISD::OR: return SelectOpcode(X86::OR64mi8, X86::OR32mi8, X86::OR16mi8, 0); case X86ISD::XOR: return SelectOpcode(X86::XOR64mi8, X86::XOR32mi8, X86::XOR16mi8, 0); default: llvm_unreachable("Invalid opcode!"); } }; auto SelectImmOpcode = [SelectOpcode](unsigned Opc) { switch (Opc) { case X86ISD::ADD: return SelectOpcode(X86::ADD64mi32, X86::ADD32mi, X86::ADD16mi, X86::ADD8mi); case X86ISD::ADC: return SelectOpcode(X86::ADC64mi32, X86::ADC32mi, X86::ADC16mi, X86::ADC8mi); case X86ISD::SUB: return SelectOpcode(X86::SUB64mi32, X86::SUB32mi, X86::SUB16mi, X86::SUB8mi); case X86ISD::SBB: return SelectOpcode(X86::SBB64mi32, X86::SBB32mi, X86::SBB16mi, X86::SBB8mi); case X86ISD::AND: return SelectOpcode(X86::AND64mi32, X86::AND32mi, X86::AND16mi, X86::AND8mi); case X86ISD::OR: return SelectOpcode(X86::OR64mi32, X86::OR32mi, X86::OR16mi, X86::OR8mi); case X86ISD::XOR: return SelectOpcode(X86::XOR64mi32, X86::XOR32mi, X86::XOR16mi, X86::XOR8mi); default: llvm_unreachable("Invalid opcode!"); } }; unsigned NewOpc = SelectRegOpcode(Opc); SDValue Operand = StoredVal->getOperand(1); // See if the operand is a constant that we can fold into an immediate // operand. if (auto *OperandC = dyn_cast<ConstantSDNode>(Operand)) { auto OperandV = OperandC->getAPIntValue(); // Check if we can shrink the operand enough to fit in an immediate (or // fit into a smaller immediate) by negating it and switching the // operation. if ((Opc == X86ISD::ADD || Opc == X86ISD::SUB) && ((MemVT != MVT::i8 && OperandV.getMinSignedBits() > 8 && (-OperandV).getMinSignedBits() <= 8) || (MemVT == MVT::i64 && OperandV.getMinSignedBits() > 32 && (-OperandV).getMinSignedBits() <= 32)) && hasNoCarryFlagUses(StoredVal.getNode())) { OperandV = -OperandV; Opc = Opc == X86ISD::ADD ? X86ISD::SUB : X86ISD::ADD; } // First try to fit this into an Imm8 operand. If it doesn't fit, then try // the larger immediate operand. if (MemVT != MVT::i8 && OperandV.getMinSignedBits() <= 8) { Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT); NewOpc = SelectImm8Opcode(Opc); } else if (OperandV.getActiveBits() <= MemVT.getSizeInBits() && (MemVT != MVT::i64 || OperandV.getMinSignedBits() <= 32)) { Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT); NewOpc = SelectImmOpcode(Opc); } } if (Opc == X86ISD::ADC || Opc == X86ISD::SBB) { SDValue CopyTo = CurDAG->getCopyToReg(InputChain, SDLoc(Node), X86::EFLAGS, StoredVal.getOperand(2), SDValue()); const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, Operand, CopyTo, CopyTo.getValue(1)}; Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other, Ops); } else { const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, Operand, InputChain}; Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other, Ops); } break; } default: llvm_unreachable("Invalid opcode!"); } MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2); MemOp[0] = StoreNode->getMemOperand(); MemOp[1] = LoadNode->getMemOperand(); Result->setMemRefs(MemOp, MemOp + 2); // Update Load Chain uses as well. ReplaceUses(SDValue(LoadNode, 1), SDValue(Result, 1)); ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1)); ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0)); CurDAG->RemoveDeadNode(Node); return true; } // See if this is an (X >> C1) & C2 that we can match to BEXTR/BEXTRI. bool X86DAGToDAGISel::matchBEXTRFromAnd(SDNode *Node) { MVT NVT = Node->getSimpleValueType(0); SDLoc dl(Node); SDValue N0 = Node->getOperand(0); SDValue N1 = Node->getOperand(1); if (!Subtarget->hasBMI() && !Subtarget->hasTBM()) return false; // Must have a shift right. if (N0->getOpcode() != ISD::SRL && N0->getOpcode() != ISD::SRA) return false; // Shift can't have additional users. if (!N0->hasOneUse()) return false; // Only supported for 32 and 64 bits. if (NVT != MVT::i32 && NVT != MVT::i64) return false; // Shift amount and RHS of and must be constant. ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(N1); ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(N0->getOperand(1)); if (!MaskCst || !ShiftCst) return false; // And RHS must be a mask. uint64_t Mask = MaskCst->getZExtValue(); if (!isMask_64(Mask)) return false; uint64_t Shift = ShiftCst->getZExtValue(); uint64_t MaskSize = countPopulation(Mask); // Don't interfere with something that can be handled by extracting AH. // TODO: If we are able to fold a load, BEXTR might still be better than AH. if (Shift == 8 && MaskSize == 8) return false; // Make sure we are only using bits that were in the original value, not // shifted in. if (Shift + MaskSize > NVT.getSizeInBits()) return false; // Create a BEXTR node and run it through selection. SDValue C = CurDAG->getConstant(Shift | (MaskSize << 8), dl, NVT); SDValue New = CurDAG->getNode(X86ISD::BEXTR, dl, NVT, N0->getOperand(0), C); ReplaceNode(Node, New.getNode()); SelectCode(New.getNode()); return true; } // Emit a PCMISTR(I/M) instruction. MachineSDNode *X86DAGToDAGISel::emitPCMPISTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad, const SDLoc &dl, MVT VT, SDNode *Node) { SDValue N0 = Node->getOperand(0); SDValue N1 = Node->getOperand(1); SDValue Imm = Node->getOperand(2); const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue(); Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType()); // If there is a load, it will be behind a bitcast. We don't need to check // alignment on this load. SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; if (MayFoldLoad && N1->getOpcode() == ISD::BITCAST && N1->hasOneUse() && tryFoldVecLoad(Node, N1.getNode(), N1.getOperand(0), Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { SDValue Load = N1.getOperand(0); SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm, Load.getOperand(0) }; SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other); MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); // Update the chain. ReplaceUses(Load.getValue(1), SDValue(CNode, 2)); // Record the mem-refs MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); MemOp[0] = cast<LoadSDNode>(Load)->getMemOperand(); CNode->setMemRefs(MemOp, MemOp + 1); return CNode; } SDValue Ops[] = { N0, N1, Imm }; SDVTList VTs = CurDAG->getVTList(VT, MVT::i32); MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops); return CNode; } // Emit a PCMESTR(I/M) instruction. Also return the Glue result in case we need // to emit a second instruction after this one. This is needed since we have two // copyToReg nodes glued before this and we need to continue that glue through. MachineSDNode *X86DAGToDAGISel::emitPCMPESTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad, const SDLoc &dl, MVT VT, SDNode *Node, SDValue &InFlag) { SDValue N0 = Node->getOperand(0); SDValue N2 = Node->getOperand(2); SDValue Imm = Node->getOperand(4); const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue(); Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType()); // If there is a load, it will be behind a bitcast. We don't need to check // alignment on this load. SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; if (MayFoldLoad && N2->getOpcode() == ISD::BITCAST && N2->hasOneUse() && tryFoldVecLoad(Node, N2.getNode(), N2.getOperand(0), Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { SDValue Load = N2.getOperand(0); SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm, Load.getOperand(0), InFlag }; SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other, MVT::Glue); MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); InFlag = SDValue(CNode, 3); // Update the chain. ReplaceUses(Load.getValue(1), SDValue(CNode, 2)); // Record the mem-refs MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); MemOp[0] = cast<LoadSDNode>(Load)->getMemOperand(); CNode->setMemRefs(MemOp, MemOp + 1); return CNode; } SDValue Ops[] = { N0, N2, Imm, InFlag }; SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Glue); MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops); InFlag = SDValue(CNode, 2); return CNode; } /// If the high bits of an 'and' operand are known zero, try setting the /// high bits of an 'and' constant operand to produce a smaller encoding by /// creating a small, sign-extended negative immediate rather than a large /// positive one. This reverses a transform in SimplifyDemandedBits that /// shrinks mask constants by clearing bits. There is also a possibility that /// the 'and' mask can be made -1, so the 'and' itself is unnecessary. In that /// case, just replace the 'and'. Return 'true' if the node is replaced. bool X86DAGToDAGISel::shrinkAndImmediate(SDNode *And) { // i8 is unshrinkable, i16 should be promoted to i32, and vector ops don't // have immediate operands. MVT VT = And->getSimpleValueType(0); if (VT != MVT::i32 && VT != MVT::i64) return false; auto *And1C = dyn_cast<ConstantSDNode>(And->getOperand(1)); if (!And1C) return false; // Bail out if the mask constant is already negative. It's can't shrink more. // If the upper 32 bits of a 64 bit mask are all zeros, we have special isel // patterns to use a 32-bit and instead of a 64-bit and by relying on the // implicit zeroing of 32 bit ops. So we should check if the lower 32 bits // are negative too. APInt MaskVal = And1C->getAPIntValue(); unsigned MaskLZ = MaskVal.countLeadingZeros(); if (!MaskLZ || (VT == MVT::i64 && MaskLZ == 32)) return false; // Don't extend into the upper 32 bits of a 64 bit mask. if (VT == MVT::i64 && MaskLZ >= 32) { MaskLZ -= 32; MaskVal = MaskVal.trunc(32); } SDValue And0 = And->getOperand(0); APInt HighZeros = APInt::getHighBitsSet(MaskVal.getBitWidth(), MaskLZ); APInt NegMaskVal = MaskVal | HighZeros; // If a negative constant would not allow a smaller encoding, there's no need // to continue. Only change the constant when we know it's a win. unsigned MinWidth = NegMaskVal.getMinSignedBits(); if (MinWidth > 32 || (MinWidth > 8 && MaskVal.getMinSignedBits() <= 32)) return false; // Extend masks if we truncated above. if (VT == MVT::i64 && MaskVal.getBitWidth() < 64) { NegMaskVal = NegMaskVal.zext(64); HighZeros = HighZeros.zext(64); } // The variable operand must be all zeros in the top bits to allow using the // new, negative constant as the mask. if (!CurDAG->MaskedValueIsZero(And0, HighZeros)) return false; // Check if the mask is -1. In that case, this is an unnecessary instruction // that escaped earlier analysis. if (NegMaskVal.isAllOnesValue()) { ReplaceNode(And, And0.getNode()); return true; } // A negative mask allows a smaller encoding. Create a new 'and' node. SDValue NewMask = CurDAG->getConstant(NegMaskVal, SDLoc(And), VT); SDValue NewAnd = CurDAG->getNode(ISD::AND, SDLoc(And), VT, And0, NewMask); ReplaceNode(And, NewAnd.getNode()); SelectCode(NewAnd.getNode()); return true; } void X86DAGToDAGISel::Select(SDNode *Node) { MVT NVT = Node->getSimpleValueType(0); unsigned Opcode = Node->getOpcode(); SDLoc dl(Node); if (Node->isMachineOpcode()) { LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n'); Node->setNodeId(-1); return; // Already selected. } switch (Opcode) { default: break; case ISD::BRIND: { if (Subtarget->isTargetNaCl()) // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We // leave the instruction alone. break; if (Subtarget->isTarget64BitILP32()) { // Converts a 32-bit register to a 64-bit, zero-extended version of // it. This is needed because x86-64 can do many things, but jmp %r32 // ain't one of them. const SDValue &Target = Node->getOperand(1); assert(Target.getSimpleValueType() == llvm::MVT::i32); SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, EVT(MVT::i64)); SDValue Brind = CurDAG->getNode(ISD::BRIND, dl, MVT::Other, Node->getOperand(0), ZextTarget); ReplaceNode(Node, Brind.getNode()); SelectCode(ZextTarget.getNode()); SelectCode(Brind.getNode()); return; } break; } case X86ISD::GlobalBaseReg: ReplaceNode(Node, getGlobalBaseReg()); return; case X86ISD::SELECT: case X86ISD::SHRUNKBLEND: { // SHRUNKBLEND selects like a regular VSELECT. Same with X86ISD::SELECT. SDValue VSelect = CurDAG->getNode( ISD::VSELECT, SDLoc(Node), Node->getValueType(0), Node->getOperand(0), Node->getOperand(1), Node->getOperand(2)); ReplaceNode(Node, VSelect.getNode()); SelectCode(VSelect.getNode()); // We already called ReplaceUses. return; } case ISD::AND: if (matchBEXTRFromAnd(Node)) return; if (shrinkAndImmediate(Node)) return; LLVM_FALLTHROUGH; case ISD::OR: case ISD::XOR: { // For operations of the form (x << C1) op C2, check if we can use a smaller // encoding for C2 by transforming it into (x op (C2>>C1)) << C1. SDValue N0 = Node->getOperand(0); SDValue N1 = Node->getOperand(1); if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse()) break; // i8 is unshrinkable, i16 should be promoted to i32. if (NVT != MVT::i32 && NVT != MVT::i64) break; ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1); ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1)); if (!Cst || !ShlCst) break; int64_t Val = Cst->getSExtValue(); uint64_t ShlVal = ShlCst->getZExtValue(); // Make sure that we don't change the operation by removing bits. // This only matters for OR and XOR, AND is unaffected. uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1; if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0) break; unsigned ShlOp, AddOp, Op; MVT CstVT = NVT; // Check the minimum bitwidth for the new constant. // TODO: AND32ri is the same as AND64ri32 with zext imm. // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32. if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal)) CstVT = MVT::i8; else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal)) CstVT = MVT::i32; // Bail if there is no smaller encoding. if (NVT == CstVT) break; switch (NVT.SimpleTy) { default: llvm_unreachable("Unsupported VT!"); case MVT::i32: assert(CstVT == MVT::i8); ShlOp = X86::SHL32ri; AddOp = X86::ADD32rr; switch (Opcode) { default: llvm_unreachable("Impossible opcode"); case ISD::AND: Op = X86::AND32ri8; break; case ISD::OR: Op = X86::OR32ri8; break; case ISD::XOR: Op = X86::XOR32ri8; break; } break; case MVT::i64: assert(CstVT == MVT::i8 || CstVT == MVT::i32); ShlOp = X86::SHL64ri; AddOp = X86::ADD64rr; switch (Opcode) { default: llvm_unreachable("Impossible opcode"); case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break; case ISD::OR: Op = CstVT==MVT::i8? X86::OR64ri8 : X86::OR64ri32; break; case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break; } break; } // Emit the smaller op and the shift. SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, dl, CstVT); SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst); if (ShlVal == 1) CurDAG->SelectNodeTo(Node, AddOp, NVT, SDValue(New, 0), SDValue(New, 0)); else CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0), getI8Imm(ShlVal, dl)); return; } case X86ISD::UMUL8: case X86ISD::SMUL8: { SDValue N0 = Node->getOperand(0); SDValue N1 = Node->getOperand(1); unsigned Opc = (Opcode == X86ISD::SMUL8 ? X86::IMUL8r : X86::MUL8r); SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::AL, N0, SDValue()).getValue(1); SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32); SDValue Ops[] = {N1, InFlag}; SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); ReplaceNode(Node, CNode); return; } case X86ISD::UMUL: { SDValue N0 = Node->getOperand(0); SDValue N1 = Node->getOperand(1); unsigned LoReg, Opc; switch (NVT.SimpleTy) { default: llvm_unreachable("Unsupported VT!"); // MVT::i8 is handled by X86ISD::UMUL8. case MVT::i16: LoReg = X86::AX; Opc = X86::MUL16r; break; case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break; case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break; } SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, N0, SDValue()).getValue(1); SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32); SDValue Ops[] = {N1, InFlag}; SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); ReplaceNode(Node, CNode); return; } case ISD::SMUL_LOHI: case ISD::UMUL_LOHI: { SDValue N0 = Node->getOperand(0); SDValue N1 = Node->getOperand(1); unsigned Opc, MOpc; bool isSigned = Opcode == ISD::SMUL_LOHI; bool hasBMI2 = Subtarget->hasBMI2(); if (!isSigned) { switch (NVT.SimpleTy) { default: llvm_unreachable("Unsupported VT!"); case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r; MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break; case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r; MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break; } } else { switch (NVT.SimpleTy) { default: llvm_unreachable("Unsupported VT!"); case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break; case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break; } } unsigned SrcReg, LoReg, HiReg; switch (Opc) { default: llvm_unreachable("Unknown MUL opcode!"); case X86::IMUL32r: case X86::MUL32r: SrcReg = LoReg = X86::EAX; HiReg = X86::EDX; break; case X86::IMUL64r: case X86::MUL64r: SrcReg = LoReg = X86::RAX; HiReg = X86::RDX; break; case X86::MULX32rr: SrcReg = X86::EDX; LoReg = HiReg = 0; break; case X86::MULX64rr: SrcReg = X86::RDX; LoReg = HiReg = 0; break; } SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); // Multiply is commmutative. if (!foldedLoad) { foldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); if (foldedLoad) std::swap(N0, N1); } SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg, N0, SDValue()).getValue(1); SDValue ResHi, ResLo; if (foldedLoad) { SDValue Chain; MachineSDNode *CNode = nullptr; SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), InFlag }; if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) { SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue); CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); ResHi = SDValue(CNode, 0); ResLo = SDValue(CNode, 1); Chain = SDValue(CNode, 2); InFlag = SDValue(CNode, 3); } else { SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue); CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); Chain = SDValue(CNode, 0); InFlag = SDValue(CNode, 1); } // Update the chain. ReplaceUses(N1.getValue(1), Chain); // Record the mem-refs MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); MemOp[0] = cast<LoadSDNode>(N1)->getMemOperand(); CNode->setMemRefs(MemOp, MemOp + 1); } else { SDValue Ops[] = { N1, InFlag }; if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) { SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue); SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); ResHi = SDValue(CNode, 0); ResLo = SDValue(CNode, 1); InFlag = SDValue(CNode, 2); } else { SDVTList VTs = CurDAG->getVTList(MVT::Glue); SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); InFlag = SDValue(CNode, 0); } } // Copy the low half of the result, if it is needed. if (!SDValue(Node, 0).use_empty()) { if (!ResLo.getNode()) { assert(LoReg && "Register for low half is not defined!"); ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT, InFlag); InFlag = ResLo.getValue(2); } ReplaceUses(SDValue(Node, 0), ResLo); LLVM_DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n'); } // Copy the high half of the result, if it is needed. if (!SDValue(Node, 1).use_empty()) { if (!ResHi.getNode()) { assert(HiReg && "Register for high half is not defined!"); ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT, InFlag); InFlag = ResHi.getValue(2); } ReplaceUses(SDValue(Node, 1), ResHi); LLVM_DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n'); } CurDAG->RemoveDeadNode(Node); return; } case ISD::SDIVREM: case ISD::UDIVREM: case X86ISD::SDIVREM8_SEXT_HREG: case X86ISD::UDIVREM8_ZEXT_HREG: { SDValue N0 = Node->getOperand(0); SDValue N1 = Node->getOperand(1); unsigned Opc, MOpc; bool isSigned = (Opcode == ISD::SDIVREM || Opcode == X86ISD::SDIVREM8_SEXT_HREG); if (!isSigned) { switch (NVT.SimpleTy) { default: llvm_unreachable("Unsupported VT!"); case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break; case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break; case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break; case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break; } } else { switch (NVT.SimpleTy) { default: llvm_unreachable("Unsupported VT!"); case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break; case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break; case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break; case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break; } } unsigned LoReg, HiReg, ClrReg; unsigned SExtOpcode; switch (NVT.SimpleTy) { default: llvm_unreachable("Unsupported VT!"); case MVT::i8: LoReg = X86::AL; ClrReg = HiReg = X86::AH; SExtOpcode = X86::CBW; break; case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; ClrReg = X86::DX; SExtOpcode = X86::CWD; break; case MVT::i32: LoReg = X86::EAX; ClrReg = HiReg = X86::EDX; SExtOpcode = X86::CDQ; break; case MVT::i64: LoReg = X86::RAX; ClrReg = HiReg = X86::RDX; SExtOpcode = X86::CQO; break; } SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); bool signBitIsZero = CurDAG->SignBitIsZero(N0); SDValue InFlag; if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) { // Special case for div8, just use a move with zero extension to AX to // clear the upper 8 bits (AH). SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain; if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) }; Move = SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32, MVT::Other, Ops), 0); Chain = Move.getValue(1); ReplaceUses(N0.getValue(1), Chain); } else { Move = SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0); Chain = CurDAG->getEntryNode(); } Chain = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue()); InFlag = Chain.getValue(1); } else { InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, N0, SDValue()).getValue(1); if (isSigned && !signBitIsZero) { // Sign extend the low part into the high part. InFlag = SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0); } else { // Zero out the high part, effectively zero extending the input. SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0); switch (NVT.SimpleTy) { case MVT::i16: ClrNode = SDValue(CurDAG->getMachineNode( TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode, CurDAG->getTargetConstant(X86::sub_16bit, dl, MVT::i32)), 0); break; case MVT::i32: break; case MVT::i64: ClrNode = SDValue(CurDAG->getMachineNode( TargetOpcode::SUBREG_TO_REG, dl, MVT::i64, CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode, CurDAG->getTargetConstant(X86::sub_32bit, dl, MVT::i32)), 0); break; default: llvm_unreachable("Unexpected division source"); } InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg, ClrNode, InFlag).getValue(1); } } if (foldedLoad) { SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), InFlag }; MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops); InFlag = SDValue(CNode, 1); // Update the chain. ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); // Record the mem-refs MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); MemOp[0] = cast<LoadSDNode>(N1)->getMemOperand(); CNode->setMemRefs(MemOp, MemOp + 1); } else { InFlag = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0); } // Prevent use of AH in a REX instruction by explicitly copying it to // an ABCD_L register. // // The current assumption of the register allocator is that isel // won't generate explicit references to the GR8_ABCD_H registers. If // the allocator and/or the backend get enhanced to be more robust in // that regard, this can be, and should be, removed. if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) { SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8); unsigned AHExtOpcode = isSigned ? X86::MOVSX32rr8_NOREX : X86::MOVZX32rr8_NOREX; SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32, MVT::Glue, AHCopy, InFlag); SDValue Result(RNode, 0); InFlag = SDValue(RNode, 1); if (Opcode == X86ISD::UDIVREM8_ZEXT_HREG || Opcode == X86ISD::SDIVREM8_SEXT_HREG) { assert(Node->getValueType(1) == MVT::i32 && "Unexpected result type!"); } else { Result = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result); } ReplaceUses(SDValue(Node, 1), Result); LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); } // Copy the division (low) result, if it is needed. if (!SDValue(Node, 0).use_empty()) { SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT, InFlag); InFlag = Result.getValue(2); ReplaceUses(SDValue(Node, 0), Result); LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); } // Copy the remainder (high) result, if it is needed. if (!SDValue(Node, 1).use_empty()) { SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT, InFlag); InFlag = Result.getValue(2); ReplaceUses(SDValue(Node, 1), Result); LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n'); } CurDAG->RemoveDeadNode(Node); return; } case X86ISD::CMP: { SDValue N0 = Node->getOperand(0); SDValue N1 = Node->getOperand(1); if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && hasNoSignedComparisonUses(Node)) N0 = N0.getOperand(0); // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to // use a smaller encoding. // Look past the truncate if CMP is the only use of it. if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && N0.getValueType() != MVT::i8 && X86::isZeroNode(N1)) { ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); if (!C) break; uint64_t Mask = C->getZExtValue(); MVT VT; int SubRegOp; unsigned Op; if (isUInt<8>(Mask) && (!(Mask & 0x80) || hasNoSignedComparisonUses(Node))) { // For example, convert "testl %eax, $8" to "testb %al, $8" VT = MVT::i8; SubRegOp = X86::sub_8bit; Op = X86::TEST8ri; } else if (OptForMinSize && isUInt<16>(Mask) && (!(Mask & 0x8000) || hasNoSignedComparisonUses(Node))) { // For example, "testl %eax, $32776" to "testw %ax, $32776". // NOTE: We only want to form TESTW instructions if optimizing for // min size. Otherwise we only save one byte and possibly get a length // changing prefix penalty in the decoders. VT = MVT::i16; SubRegOp = X86::sub_16bit; Op = X86::TEST16ri; } else if (isUInt<32>(Mask) && N0.getValueType() != MVT::i16 && (!(Mask & 0x80000000) || hasNoSignedComparisonUses(Node))) { // For example, "testq %rax, $268468232" to "testl %eax, $268468232". // NOTE: We only want to run that transform if N0 is 32 or 64 bits. // Otherwize, we find ourselves in a position where we have to do // promotion. If previous passes did not promote the and, we assume // they had a good reason not to and do not promote here. VT = MVT::i32; SubRegOp = X86::sub_32bit; Op = X86::TEST32ri; } else { // No eligible transformation was found. break; } SDValue Imm = CurDAG->getTargetConstant(Mask, dl, VT); SDValue Reg = N0.getOperand(0); // Extract the subregister if necessary. if (N0.getValueType() != VT) Reg = CurDAG->getTargetExtractSubreg(SubRegOp, dl, VT, Reg); // Emit a testl or testw. SDNode *NewNode = CurDAG->getMachineNode(Op, dl, MVT::i32, Reg, Imm); // Replace CMP with TEST. ReplaceNode(Node, NewNode); return; } break; } case X86ISD::PCMPISTR: { if (!Subtarget->hasSSE42()) break; bool NeedIndex = !SDValue(Node, 0).use_empty(); bool NeedMask = !SDValue(Node, 1).use_empty(); // We can't fold a load if we are going to make two instructions. bool MayFoldLoad = !NeedIndex || !NeedMask; MachineSDNode *CNode; if (NeedMask) { unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrr : X86::PCMPISTRMrr; unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrm : X86::PCMPISTRMrm; CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node); ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0)); } if (NeedIndex || !NeedMask) { unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr : X86::PCMPISTRIrr; unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrm : X86::PCMPISTRIrm; CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node); ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0)); } // Connect the flag usage to the last instruction created. ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1)); CurDAG->RemoveDeadNode(Node); return; } case X86ISD::PCMPESTR: { if (!Subtarget->hasSSE42()) break; // Copy the two implicit register inputs. SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EAX, Node->getOperand(1), SDValue()).getValue(1); InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX, Node->getOperand(3), InFlag).getValue(1); bool NeedIndex = !SDValue(Node, 0).use_empty(); bool NeedMask = !SDValue(Node, 1).use_empty(); // We can't fold a load if we are going to make two instructions. bool MayFoldLoad = !NeedIndex || !NeedMask; MachineSDNode *CNode; if (NeedMask) { unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrr : X86::PCMPESTRMrr; unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrm : X86::PCMPESTRMrm; CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node, InFlag); ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0)); } if (NeedIndex || !NeedMask) { unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr : X86::PCMPESTRIrr; unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrm : X86::PCMPESTRIrm; CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node, InFlag); ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0)); } // Connect the flag usage to the last instruction created. ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1)); CurDAG->RemoveDeadNode(Node); return; } case ISD::STORE: if (foldLoadStoreIntoMemOperand(Node)) return; break; } SelectCode(Node); } bool X86DAGToDAGISel:: SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) { SDValue Op0, Op1, Op2, Op3, Op4; switch (ConstraintID) { default: llvm_unreachable("Unexpected asm memory constraint"); case InlineAsm::Constraint_i: // FIXME: It seems strange that 'i' is needed here since it's supposed to // be an immediate and not a memory constraint. LLVM_FALLTHROUGH; case InlineAsm::Constraint_o: // offsetable ?? case InlineAsm::Constraint_v: // not offsetable ?? case InlineAsm::Constraint_m: // memory case InlineAsm::Constraint_X: if (!selectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4)) return true; break; } OutOps.push_back(Op0); OutOps.push_back(Op1); OutOps.push_back(Op2); OutOps.push_back(Op3); OutOps.push_back(Op4); return false; } /// This pass converts a legalized DAG into a X86-specific DAG, /// ready for instruction scheduling. FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, CodeGenOpt::Level OptLevel) { return new X86DAGToDAGISel(TM, OptLevel); }