//===-- X86InstrAVX512.td - AVX512 Instruction Set ---------*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the X86 AVX512 instruction set, defining the // instructions, and properties of the instructions which are needed for code // generation, machine code emission, and analysis. // //===----------------------------------------------------------------------===// // Group template arguments that can be derived from the vector type (EltNum x // EltVT). These are things like the register class for the writemask, etc. // The idea is to pass one of these as the template argument rather than the // individual arguments. // The template is also used for scalar types, in this case numelts is 1. class X86VectorVTInfo<int numelts, ValueType eltvt, RegisterClass rc, string suffix = ""> { RegisterClass RC = rc; ValueType EltVT = eltvt; int NumElts = numelts; // Corresponding mask register class. RegisterClass KRC = !cast<RegisterClass>("VK" # NumElts); // Corresponding write-mask register class. RegisterClass KRCWM = !cast<RegisterClass>("VK" # NumElts # "WM"); // The mask VT. ValueType KVT = !cast<ValueType>("v" # NumElts # "i1"); // Suffix used in the instruction mnemonic. string Suffix = suffix; // VTName is a string name for vector VT. For vector types it will be // v # NumElts # EltVT, so for vector of 8 elements of i32 it will be v8i32 // It is a little bit complex for scalar types, where NumElts = 1. // In this case we build v4f32 or v2f64 string VTName = "v" # !if (!eq (NumElts, 1), !if (!eq (EltVT.Size, 32), 4, !if (!eq (EltVT.Size, 64), 2, NumElts)), NumElts) # EltVT; // The vector VT. ValueType VT = !cast<ValueType>(VTName); string EltTypeName = !cast<string>(EltVT); // Size of the element type in bits, e.g. 32 for v16i32. string EltSizeName = !subst("i", "", !subst("f", "", EltTypeName)); int EltSize = EltVT.Size; // "i" for integer types and "f" for floating-point types string TypeVariantName = !subst(EltSizeName, "", EltTypeName); // Size of RC in bits, e.g. 512 for VR512. int Size = VT.Size; // The corresponding memory operand, e.g. i512mem for VR512. X86MemOperand MemOp = !cast<X86MemOperand>(TypeVariantName # Size # "mem"); X86MemOperand ScalarMemOp = !cast<X86MemOperand>(EltVT # "mem"); // FP scalar memory operand for intrinsics - ssmem/sdmem. Operand IntScalarMemOp = !if (!eq (EltTypeName, "f32"), !cast<Operand>("ssmem"), !if (!eq (EltTypeName, "f64"), !cast<Operand>("sdmem"), ?)); // Load patterns // Note: For 128/256-bit integer VT we choose loadv2i64/loadv4i64 // due to load promotion during legalization PatFrag LdFrag = !cast<PatFrag>("load" # !if (!eq (TypeVariantName, "i"), !if (!eq (Size, 128), "v2i64", !if (!eq (Size, 256), "v4i64", !if (!eq (Size, 512), "v8i64", VTName))), VTName)); PatFrag AlignedLdFrag = !cast<PatFrag>("alignedload" # !if (!eq (TypeVariantName, "i"), !if (!eq (Size, 128), "v2i64", !if (!eq (Size, 256), "v4i64", !if (!eq (Size, 512), "v8i64", VTName))), VTName)); PatFrag ScalarLdFrag = !cast<PatFrag>("load" # EltVT); ComplexPattern ScalarIntMemCPat = !if (!eq (EltTypeName, "f32"), !cast<ComplexPattern>("sse_load_f32"), !if (!eq (EltTypeName, "f64"), !cast<ComplexPattern>("sse_load_f64"), ?)); // The string to specify embedded broadcast in assembly. string BroadcastStr = "{1to" # NumElts # "}"; // 8-bit compressed displacement tuple/subvector format. This is only // defined for NumElts <= 8. CD8VForm CD8TupleForm = !if (!eq (!srl(NumElts, 4), 0), !cast<CD8VForm>("CD8VT" # NumElts), ?); SubRegIndex SubRegIdx = !if (!eq (Size, 128), sub_xmm, !if (!eq (Size, 256), sub_ymm, ?)); Domain ExeDomain = !if (!eq (EltTypeName, "f32"), SSEPackedSingle, !if (!eq (EltTypeName, "f64"), SSEPackedDouble, SSEPackedInt)); RegisterClass FRC = !if (!eq (EltTypeName, "f32"), FR32X, FR64X); // A vector tye of the same width with element type i64. This is used to // create patterns for logic ops. ValueType i64VT = !cast<ValueType>("v" # !srl(Size, 6) # "i64"); // A vector type of the same width with element type i32. This is used to // create the canonical constant zero node ImmAllZerosV. ValueType i32VT = !cast<ValueType>("v" # !srl(Size, 5) # "i32"); dag ImmAllZerosV = (VT (bitconvert (i32VT immAllZerosV))); string ZSuffix = !if (!eq (Size, 128), "Z128", !if (!eq (Size, 256), "Z256", "Z")); } def v64i8_info : X86VectorVTInfo<64, i8, VR512, "b">; def v32i16_info : X86VectorVTInfo<32, i16, VR512, "w">; def v16i32_info : X86VectorVTInfo<16, i32, VR512, "d">; def v8i64_info : X86VectorVTInfo<8, i64, VR512, "q">; def v16f32_info : X86VectorVTInfo<16, f32, VR512, "ps">; def v8f64_info : X86VectorVTInfo<8, f64, VR512, "pd">; // "x" in v32i8x_info means RC = VR256X def v32i8x_info : X86VectorVTInfo<32, i8, VR256X, "b">; def v16i16x_info : X86VectorVTInfo<16, i16, VR256X, "w">; def v8i32x_info : X86VectorVTInfo<8, i32, VR256X, "d">; def v4i64x_info : X86VectorVTInfo<4, i64, VR256X, "q">; def v8f32x_info : X86VectorVTInfo<8, f32, VR256X, "ps">; def v4f64x_info : X86VectorVTInfo<4, f64, VR256X, "pd">; def v16i8x_info : X86VectorVTInfo<16, i8, VR128X, "b">; def v8i16x_info : X86VectorVTInfo<8, i16, VR128X, "w">; def v4i32x_info : X86VectorVTInfo<4, i32, VR128X, "d">; def v2i64x_info : X86VectorVTInfo<2, i64, VR128X, "q">; def v4f32x_info : X86VectorVTInfo<4, f32, VR128X, "ps">; def v2f64x_info : X86VectorVTInfo<2, f64, VR128X, "pd">; // We map scalar types to the smallest (128-bit) vector type // with the appropriate element type. This allows to use the same masking logic. def i32x_info : X86VectorVTInfo<1, i32, GR32, "si">; def i64x_info : X86VectorVTInfo<1, i64, GR64, "sq">; def f32x_info : X86VectorVTInfo<1, f32, VR128X, "ss">; def f64x_info : X86VectorVTInfo<1, f64, VR128X, "sd">; class AVX512VLVectorVTInfo<X86VectorVTInfo i512, X86VectorVTInfo i256, X86VectorVTInfo i128> { X86VectorVTInfo info512 = i512; X86VectorVTInfo info256 = i256; X86VectorVTInfo info128 = i128; } def avx512vl_i8_info : AVX512VLVectorVTInfo<v64i8_info, v32i8x_info, v16i8x_info>; def avx512vl_i16_info : AVX512VLVectorVTInfo<v32i16_info, v16i16x_info, v8i16x_info>; def avx512vl_i32_info : AVX512VLVectorVTInfo<v16i32_info, v8i32x_info, v4i32x_info>; def avx512vl_i64_info : AVX512VLVectorVTInfo<v8i64_info, v4i64x_info, v2i64x_info>; def avx512vl_f32_info : AVX512VLVectorVTInfo<v16f32_info, v8f32x_info, v4f32x_info>; def avx512vl_f64_info : AVX512VLVectorVTInfo<v8f64_info, v4f64x_info, v2f64x_info>; class X86KVectorVTInfo<RegisterClass _krc, RegisterClass _krcwm, ValueType _vt> { RegisterClass KRC = _krc; RegisterClass KRCWM = _krcwm; ValueType KVT = _vt; } def v1i1_info : X86KVectorVTInfo<VK1, VK1WM, v1i1>; def v2i1_info : X86KVectorVTInfo<VK2, VK2WM, v2i1>; def v4i1_info : X86KVectorVTInfo<VK4, VK4WM, v4i1>; def v8i1_info : X86KVectorVTInfo<VK8, VK8WM, v8i1>; def v16i1_info : X86KVectorVTInfo<VK16, VK16WM, v16i1>; def v32i1_info : X86KVectorVTInfo<VK32, VK32WM, v32i1>; def v64i1_info : X86KVectorVTInfo<VK64, VK64WM, v64i1>; // This multiclass generates the masking variants from the non-masking // variant. It only provides the assembly pieces for the masking variants. // It assumes custom ISel patterns for masking which can be provided as // template arguments. multiclass AVX512_maskable_custom<bits<8> O, Format F, dag Outs, dag Ins, dag MaskingIns, dag ZeroMaskingIns, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, list<dag> Pattern, list<dag> MaskingPattern, list<dag> ZeroMaskingPattern, string MaskingConstraint = "", bit IsCommutable = 0, bit IsKCommutable = 0, bit IsKZCommutable = IsCommutable> { let isCommutable = IsCommutable in def NAME: AVX512<O, F, Outs, Ins, OpcodeStr#"\t{"#AttSrcAsm#", $dst|"# "$dst, "#IntelSrcAsm#"}", Pattern>; // Prefer over VMOV*rrk Pat<> let isCommutable = IsKCommutable in def NAME#k: AVX512<O, F, Outs, MaskingIns, OpcodeStr#"\t{"#AttSrcAsm#", $dst {${mask}}|"# "$dst {${mask}}, "#IntelSrcAsm#"}", MaskingPattern>, EVEX_K { // In case of the 3src subclass this is overridden with a let. string Constraints = MaskingConstraint; } // Zero mask does not add any restrictions to commute operands transformation. // So, it is Ok to use IsCommutable instead of IsKCommutable. let isCommutable = IsKZCommutable in // Prefer over VMOV*rrkz Pat<> def NAME#kz: AVX512<O, F, Outs, ZeroMaskingIns, OpcodeStr#"\t{"#AttSrcAsm#", $dst {${mask}} {z}|"# "$dst {${mask}} {z}, "#IntelSrcAsm#"}", ZeroMaskingPattern>, EVEX_KZ; } // Common base class of AVX512_maskable and AVX512_maskable_3src. multiclass AVX512_maskable_common<bits<8> O, Format F, X86VectorVTInfo _, dag Outs, dag Ins, dag MaskingIns, dag ZeroMaskingIns, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, dag RHS, dag MaskingRHS, SDNode Select = vselect, string MaskingConstraint = "", bit IsCommutable = 0, bit IsKCommutable = 0, bit IsKZCommutable = IsCommutable> : AVX512_maskable_custom<O, F, Outs, Ins, MaskingIns, ZeroMaskingIns, OpcodeStr, AttSrcAsm, IntelSrcAsm, [(set _.RC:$dst, RHS)], [(set _.RC:$dst, MaskingRHS)], [(set _.RC:$dst, (Select _.KRCWM:$mask, RHS, _.ImmAllZerosV))], MaskingConstraint, IsCommutable, IsKCommutable, IsKZCommutable>; // This multiclass generates the unconditional/non-masking, the masking and // the zero-masking variant of the vector instruction. In the masking case, the // perserved vector elements come from a new dummy input operand tied to $dst. // This version uses a separate dag for non-masking and masking. multiclass AVX512_maskable_split<bits<8> O, Format F, X86VectorVTInfo _, dag Outs, dag Ins, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, dag RHS, dag MaskRHS, bit IsCommutable = 0, bit IsKCommutable = 0, SDNode Select = vselect> : AVX512_maskable_custom<O, F, Outs, Ins, !con((ins _.RC:$src0, _.KRCWM:$mask), Ins), !con((ins _.KRCWM:$mask), Ins), OpcodeStr, AttSrcAsm, IntelSrcAsm, [(set _.RC:$dst, RHS)], [(set _.RC:$dst, (Select _.KRCWM:$mask, MaskRHS, _.RC:$src0))], [(set _.RC:$dst, (Select _.KRCWM:$mask, MaskRHS, _.ImmAllZerosV))], "$src0 = $dst", IsCommutable, IsKCommutable>; // This multiclass generates the unconditional/non-masking, the masking and // the zero-masking variant of the vector instruction. In the masking case, the // perserved vector elements come from a new dummy input operand tied to $dst. multiclass AVX512_maskable<bits<8> O, Format F, X86VectorVTInfo _, dag Outs, dag Ins, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, dag RHS, bit IsCommutable = 0, bit IsKCommutable = 0, bit IsKZCommutable = IsCommutable, SDNode Select = vselect> : AVX512_maskable_common<O, F, _, Outs, Ins, !con((ins _.RC:$src0, _.KRCWM:$mask), Ins), !con((ins _.KRCWM:$mask), Ins), OpcodeStr, AttSrcAsm, IntelSrcAsm, RHS, (Select _.KRCWM:$mask, RHS, _.RC:$src0), Select, "$src0 = $dst", IsCommutable, IsKCommutable, IsKZCommutable>; // This multiclass generates the unconditional/non-masking, the masking and // the zero-masking variant of the scalar instruction. multiclass AVX512_maskable_scalar<bits<8> O, Format F, X86VectorVTInfo _, dag Outs, dag Ins, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, dag RHS, bit IsCommutable = 0> : AVX512_maskable<O, F, _, Outs, Ins, OpcodeStr, AttSrcAsm, IntelSrcAsm, RHS, IsCommutable, 0, IsCommutable, X86selects>; // Similar to AVX512_maskable but in this case one of the source operands // ($src1) is already tied to $dst so we just use that for the preserved // vector elements. NOTE that the NonTiedIns (the ins dag) should exclude // $src1. multiclass AVX512_maskable_3src<bits<8> O, Format F, X86VectorVTInfo _, dag Outs, dag NonTiedIns, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, dag RHS, bit IsCommutable = 0, bit IsKCommutable = 0, SDNode Select = vselect, bit MaskOnly = 0> : AVX512_maskable_common<O, F, _, Outs, !con((ins _.RC:$src1), NonTiedIns), !con((ins _.RC:$src1, _.KRCWM:$mask), NonTiedIns), !con((ins _.RC:$src1, _.KRCWM:$mask), NonTiedIns), OpcodeStr, AttSrcAsm, IntelSrcAsm, !if(MaskOnly, (null_frag), RHS), (Select _.KRCWM:$mask, RHS, _.RC:$src1), Select, "", IsCommutable, IsKCommutable>; // Similar to AVX512_maskable_3src but in this case the input VT for the tied // operand differs from the output VT. This requires a bitconvert on // the preserved vector going into the vselect. // NOTE: The unmasked pattern is disabled. multiclass AVX512_maskable_3src_cast<bits<8> O, Format F, X86VectorVTInfo OutVT, X86VectorVTInfo InVT, dag Outs, dag NonTiedIns, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, dag RHS, bit IsCommutable = 0> : AVX512_maskable_common<O, F, OutVT, Outs, !con((ins InVT.RC:$src1), NonTiedIns), !con((ins InVT.RC:$src1, InVT.KRCWM:$mask), NonTiedIns), !con((ins InVT.RC:$src1, InVT.KRCWM:$mask), NonTiedIns), OpcodeStr, AttSrcAsm, IntelSrcAsm, (null_frag), (vselect InVT.KRCWM:$mask, RHS, (bitconvert InVT.RC:$src1)), vselect, "", IsCommutable>; multiclass AVX512_maskable_3src_scalar<bits<8> O, Format F, X86VectorVTInfo _, dag Outs, dag NonTiedIns, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, dag RHS, bit IsCommutable = 0, bit IsKCommutable = 0, bit MaskOnly = 0> : AVX512_maskable_3src<O, F, _, Outs, NonTiedIns, OpcodeStr, AttSrcAsm, IntelSrcAsm, RHS, IsCommutable, IsKCommutable, X86selects, MaskOnly>; multiclass AVX512_maskable_in_asm<bits<8> O, Format F, X86VectorVTInfo _, dag Outs, dag Ins, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, list<dag> Pattern> : AVX512_maskable_custom<O, F, Outs, Ins, !con((ins _.RC:$src0, _.KRCWM:$mask), Ins), !con((ins _.KRCWM:$mask), Ins), OpcodeStr, AttSrcAsm, IntelSrcAsm, Pattern, [], [], "$src0 = $dst">; multiclass AVX512_maskable_3src_in_asm<bits<8> O, Format F, X86VectorVTInfo _, dag Outs, dag NonTiedIns, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, list<dag> Pattern> : AVX512_maskable_custom<O, F, Outs, !con((ins _.RC:$src1), NonTiedIns), !con((ins _.RC:$src1, _.KRCWM:$mask), NonTiedIns), !con((ins _.RC:$src1, _.KRCWM:$mask), NonTiedIns), OpcodeStr, AttSrcAsm, IntelSrcAsm, Pattern, [], [], "">; // Instruction with mask that puts result in mask register, // like "compare" and "vptest" multiclass AVX512_maskable_custom_cmp<bits<8> O, Format F, dag Outs, dag Ins, dag MaskingIns, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, list<dag> Pattern, list<dag> MaskingPattern, bit IsCommutable = 0> { let isCommutable = IsCommutable in def NAME: AVX512<O, F, Outs, Ins, OpcodeStr#"\t{"#AttSrcAsm#", $dst|"# "$dst, "#IntelSrcAsm#"}", Pattern>; def NAME#k: AVX512<O, F, Outs, MaskingIns, OpcodeStr#"\t{"#AttSrcAsm#", $dst {${mask}}|"# "$dst {${mask}}, "#IntelSrcAsm#"}", MaskingPattern>, EVEX_K; } multiclass AVX512_maskable_common_cmp<bits<8> O, Format F, X86VectorVTInfo _, dag Outs, dag Ins, dag MaskingIns, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, dag RHS, dag MaskingRHS, bit IsCommutable = 0> : AVX512_maskable_custom_cmp<O, F, Outs, Ins, MaskingIns, OpcodeStr, AttSrcAsm, IntelSrcAsm, [(set _.KRC:$dst, RHS)], [(set _.KRC:$dst, MaskingRHS)], IsCommutable>; multiclass AVX512_maskable_cmp<bits<8> O, Format F, X86VectorVTInfo _, dag Outs, dag Ins, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, dag RHS, bit IsCommutable = 0> : AVX512_maskable_common_cmp<O, F, _, Outs, Ins, !con((ins _.KRCWM:$mask), Ins), OpcodeStr, AttSrcAsm, IntelSrcAsm, RHS, (and _.KRCWM:$mask, RHS), IsCommutable>; multiclass AVX512_maskable_cmp_alt<bits<8> O, Format F, X86VectorVTInfo _, dag Outs, dag Ins, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm> : AVX512_maskable_custom_cmp<O, F, Outs, Ins, !con((ins _.KRCWM:$mask),Ins), OpcodeStr, AttSrcAsm, IntelSrcAsm, [], []>; // This multiclass generates the unconditional/non-masking, the masking and // the zero-masking variant of the vector instruction. In the masking case, the // perserved vector elements come from a new dummy input operand tied to $dst. multiclass AVX512_maskable_logic<bits<8> O, Format F, X86VectorVTInfo _, dag Outs, dag Ins, string OpcodeStr, string AttSrcAsm, string IntelSrcAsm, dag RHS, dag MaskedRHS, bit IsCommutable = 0, SDNode Select = vselect> : AVX512_maskable_custom<O, F, Outs, Ins, !con((ins _.RC:$src0, _.KRCWM:$mask), Ins), !con((ins _.KRCWM:$mask), Ins), OpcodeStr, AttSrcAsm, IntelSrcAsm, [(set _.RC:$dst, RHS)], [(set _.RC:$dst, (Select _.KRCWM:$mask, MaskedRHS, _.RC:$src0))], [(set _.RC:$dst, (Select _.KRCWM:$mask, MaskedRHS, _.ImmAllZerosV))], "$src0 = $dst", IsCommutable>; // Alias instruction that maps zero vector to pxor / xorp* for AVX-512. // This is expanded by ExpandPostRAPseudos to an xorps / vxorps, and then // swizzled by ExecutionDomainFix to pxor. // We set canFoldAsLoad because this can be converted to a constant-pool // load of an all-zeros value if folding it would be beneficial. let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, isPseudo = 1, Predicates = [HasAVX512], SchedRW = [WriteZero] in { def AVX512_512_SET0 : I<0, Pseudo, (outs VR512:$dst), (ins), "", [(set VR512:$dst, (v16i32 immAllZerosV))]>; def AVX512_512_SETALLONES : I<0, Pseudo, (outs VR512:$dst), (ins), "", [(set VR512:$dst, (v16i32 immAllOnesV))]>; } // Alias instructions that allow VPTERNLOG to be used with a mask to create // a mix of all ones and all zeros elements. This is done this way to force // the same register to be used as input for all three sources. let isPseudo = 1, Predicates = [HasAVX512], SchedRW = [WriteVecALU] in { def AVX512_512_SEXT_MASK_32 : I<0, Pseudo, (outs VR512:$dst), (ins VK16WM:$mask), "", [(set VR512:$dst, (vselect (v16i1 VK16WM:$mask), (v16i32 immAllOnesV), (v16i32 immAllZerosV)))]>; def AVX512_512_SEXT_MASK_64 : I<0, Pseudo, (outs VR512:$dst), (ins VK8WM:$mask), "", [(set VR512:$dst, (vselect (v8i1 VK8WM:$mask), (bc_v8i64 (v16i32 immAllOnesV)), (bc_v8i64 (v16i32 immAllZerosV))))]>; } let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, isPseudo = 1, Predicates = [HasAVX512], SchedRW = [WriteZero] in { def AVX512_128_SET0 : I<0, Pseudo, (outs VR128X:$dst), (ins), "", [(set VR128X:$dst, (v4i32 immAllZerosV))]>; def AVX512_256_SET0 : I<0, Pseudo, (outs VR256X:$dst), (ins), "", [(set VR256X:$dst, (v8i32 immAllZerosV))]>; } // Alias instructions that map fld0 to xorps for sse or vxorps for avx. // This is expanded by ExpandPostRAPseudos. let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, isPseudo = 1, SchedRW = [WriteZero], Predicates = [HasAVX512] in { def AVX512_FsFLD0SS : I<0, Pseudo, (outs FR32X:$dst), (ins), "", [(set FR32X:$dst, fp32imm0)]>; def AVX512_FsFLD0SD : I<0, Pseudo, (outs FR64X:$dst), (ins), "", [(set FR64X:$dst, fpimm0)]>; } //===----------------------------------------------------------------------===// // AVX-512 - VECTOR INSERT // // Supports two different pattern operators for mask and unmasked ops. Allows // null_frag to be passed for one. multiclass vinsert_for_size_split<int Opcode, X86VectorVTInfo From, X86VectorVTInfo To, SDPatternOperator vinsert_insert, SDPatternOperator vinsert_for_mask, X86FoldableSchedWrite sched> { let hasSideEffects = 0, ExeDomain = To.ExeDomain in { defm rr : AVX512_maskable_split<Opcode, MRMSrcReg, To, (outs To.RC:$dst), (ins To.RC:$src1, From.RC:$src2, u8imm:$src3), "vinsert" # From.EltTypeName # "x" # From.NumElts, "$src3, $src2, $src1", "$src1, $src2, $src3", (vinsert_insert:$src3 (To.VT To.RC:$src1), (From.VT From.RC:$src2), (iPTR imm)), (vinsert_for_mask:$src3 (To.VT To.RC:$src1), (From.VT From.RC:$src2), (iPTR imm))>, AVX512AIi8Base, EVEX_4V, Sched<[sched]>; let mayLoad = 1 in defm rm : AVX512_maskable_split<Opcode, MRMSrcMem, To, (outs To.RC:$dst), (ins To.RC:$src1, From.MemOp:$src2, u8imm:$src3), "vinsert" # From.EltTypeName # "x" # From.NumElts, "$src3, $src2, $src1", "$src1, $src2, $src3", (vinsert_insert:$src3 (To.VT To.RC:$src1), (From.VT (bitconvert (From.LdFrag addr:$src2))), (iPTR imm)), (vinsert_for_mask:$src3 (To.VT To.RC:$src1), (From.VT (bitconvert (From.LdFrag addr:$src2))), (iPTR imm))>, AVX512AIi8Base, EVEX_4V, EVEX_CD8<From.EltSize, From.CD8TupleForm>, Sched<[sched.Folded, ReadAfterLd]>; } } // Passes the same pattern operator for masked and unmasked ops. multiclass vinsert_for_size<int Opcode, X86VectorVTInfo From, X86VectorVTInfo To, SDPatternOperator vinsert_insert, X86FoldableSchedWrite sched> : vinsert_for_size_split<Opcode, From, To, vinsert_insert, vinsert_insert, sched>; multiclass vinsert_for_size_lowering<string InstrStr, X86VectorVTInfo From, X86VectorVTInfo To, PatFrag vinsert_insert, SDNodeXForm INSERT_get_vinsert_imm , list<Predicate> p> { let Predicates = p in { def : Pat<(vinsert_insert:$ins (To.VT To.RC:$src1), (From.VT From.RC:$src2), (iPTR imm)), (To.VT (!cast<Instruction>(InstrStr#"rr") To.RC:$src1, From.RC:$src2, (INSERT_get_vinsert_imm To.RC:$ins)))>; def : Pat<(vinsert_insert:$ins (To.VT To.RC:$src1), (From.VT (bitconvert (From.LdFrag addr:$src2))), (iPTR imm)), (To.VT (!cast<Instruction>(InstrStr#"rm") To.RC:$src1, addr:$src2, (INSERT_get_vinsert_imm To.RC:$ins)))>; } } multiclass vinsert_for_type<ValueType EltVT32, int Opcode128, ValueType EltVT64, int Opcode256, X86FoldableSchedWrite sched> { let Predicates = [HasVLX] in defm NAME # "32x4Z256" : vinsert_for_size<Opcode128, X86VectorVTInfo< 4, EltVT32, VR128X>, X86VectorVTInfo< 8, EltVT32, VR256X>, vinsert128_insert, sched>, EVEX_V256; defm NAME # "32x4Z" : vinsert_for_size<Opcode128, X86VectorVTInfo< 4, EltVT32, VR128X>, X86VectorVTInfo<16, EltVT32, VR512>, vinsert128_insert, sched>, EVEX_V512; defm NAME # "64x4Z" : vinsert_for_size<Opcode256, X86VectorVTInfo< 4, EltVT64, VR256X>, X86VectorVTInfo< 8, EltVT64, VR512>, vinsert256_insert, sched>, VEX_W, EVEX_V512; // Even with DQI we'd like to only use these instructions for masking. let Predicates = [HasVLX, HasDQI] in defm NAME # "64x2Z256" : vinsert_for_size_split<Opcode128, X86VectorVTInfo< 2, EltVT64, VR128X>, X86VectorVTInfo< 4, EltVT64, VR256X>, null_frag, vinsert128_insert, sched>, VEX_W1X, EVEX_V256; // Even with DQI we'd like to only use these instructions for masking. let Predicates = [HasDQI] in { defm NAME # "64x2Z" : vinsert_for_size_split<Opcode128, X86VectorVTInfo< 2, EltVT64, VR128X>, X86VectorVTInfo< 8, EltVT64, VR512>, null_frag, vinsert128_insert, sched>, VEX_W, EVEX_V512; defm NAME # "32x8Z" : vinsert_for_size_split<Opcode256, X86VectorVTInfo< 8, EltVT32, VR256X>, X86VectorVTInfo<16, EltVT32, VR512>, null_frag, vinsert256_insert, sched>, EVEX_V512; } } // FIXME: Is there a better scheduler class for VINSERTF/VINSERTI? defm VINSERTF : vinsert_for_type<f32, 0x18, f64, 0x1a, WriteFShuffle256>; defm VINSERTI : vinsert_for_type<i32, 0x38, i64, 0x3a, WriteShuffle256>; // Codegen pattern with the alternative types, // Even with AVX512DQ we'll still use these for unmasked operations. defm : vinsert_for_size_lowering<"VINSERTF32x4Z256", v2f64x_info, v4f64x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasVLX]>; defm : vinsert_for_size_lowering<"VINSERTI32x4Z256", v2i64x_info, v4i64x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasVLX]>; defm : vinsert_for_size_lowering<"VINSERTF32x4Z", v2f64x_info, v8f64_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasAVX512]>; defm : vinsert_for_size_lowering<"VINSERTI32x4Z", v2i64x_info, v8i64_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasAVX512]>; defm : vinsert_for_size_lowering<"VINSERTF64x4Z", v8f32x_info, v16f32_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasAVX512]>; defm : vinsert_for_size_lowering<"VINSERTI64x4Z", v8i32x_info, v16i32_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasAVX512]>; // Codegen pattern with the alternative types insert VEC128 into VEC256 defm : vinsert_for_size_lowering<"VINSERTI32x4Z256", v8i16x_info, v16i16x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasVLX]>; defm : vinsert_for_size_lowering<"VINSERTI32x4Z256", v16i8x_info, v32i8x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasVLX]>; // Codegen pattern with the alternative types insert VEC128 into VEC512 defm : vinsert_for_size_lowering<"VINSERTI32x4Z", v8i16x_info, v32i16_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasAVX512]>; defm : vinsert_for_size_lowering<"VINSERTI32x4Z", v16i8x_info, v64i8_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasAVX512]>; // Codegen pattern with the alternative types insert VEC256 into VEC512 defm : vinsert_for_size_lowering<"VINSERTI64x4Z", v16i16x_info, v32i16_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasAVX512]>; defm : vinsert_for_size_lowering<"VINSERTI64x4Z", v32i8x_info, v64i8_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasAVX512]>; multiclass vinsert_for_mask_cast<string InstrStr, X86VectorVTInfo From, X86VectorVTInfo To, X86VectorVTInfo Cast, PatFrag vinsert_insert, SDNodeXForm INSERT_get_vinsert_imm, list<Predicate> p> { let Predicates = p in { def : Pat<(Cast.VT (vselect Cast.KRCWM:$mask, (bitconvert (vinsert_insert:$ins (To.VT To.RC:$src1), (From.VT From.RC:$src2), (iPTR imm))), Cast.RC:$src0)), (!cast<Instruction>(InstrStr#"rrk") Cast.RC:$src0, Cast.KRCWM:$mask, To.RC:$src1, From.RC:$src2, (INSERT_get_vinsert_imm To.RC:$ins))>; def : Pat<(Cast.VT (vselect Cast.KRCWM:$mask, (bitconvert (vinsert_insert:$ins (To.VT To.RC:$src1), (From.VT (bitconvert (From.LdFrag addr:$src2))), (iPTR imm))), Cast.RC:$src0)), (!cast<Instruction>(InstrStr#"rmk") Cast.RC:$src0, Cast.KRCWM:$mask, To.RC:$src1, addr:$src2, (INSERT_get_vinsert_imm To.RC:$ins))>; def : Pat<(Cast.VT (vselect Cast.KRCWM:$mask, (bitconvert (vinsert_insert:$ins (To.VT To.RC:$src1), (From.VT From.RC:$src2), (iPTR imm))), Cast.ImmAllZerosV)), (!cast<Instruction>(InstrStr#"rrkz") Cast.KRCWM:$mask, To.RC:$src1, From.RC:$src2, (INSERT_get_vinsert_imm To.RC:$ins))>; def : Pat<(Cast.VT (vselect Cast.KRCWM:$mask, (bitconvert (vinsert_insert:$ins (To.VT To.RC:$src1), (From.VT (bitconvert (From.LdFrag addr:$src2))), (iPTR imm))), Cast.ImmAllZerosV)), (!cast<Instruction>(InstrStr#"rmkz") Cast.KRCWM:$mask, To.RC:$src1, addr:$src2, (INSERT_get_vinsert_imm To.RC:$ins))>; } } defm : vinsert_for_mask_cast<"VINSERTF32x4Z256", v2f64x_info, v4f64x_info, v8f32x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasVLX]>; defm : vinsert_for_mask_cast<"VINSERTF64x2Z256", v4f32x_info, v8f32x_info, v4f64x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasDQI, HasVLX]>; defm : vinsert_for_mask_cast<"VINSERTI32x4Z256", v2i64x_info, v4i64x_info, v8i32x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasVLX]>; defm : vinsert_for_mask_cast<"VINSERTI32x4Z256", v8i16x_info, v16i16x_info, v8i32x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasVLX]>; defm : vinsert_for_mask_cast<"VINSERTI32x4Z256", v16i8x_info, v32i8x_info, v8i32x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasVLX]>; defm : vinsert_for_mask_cast<"VINSERTF64x2Z256", v4i32x_info, v8i32x_info, v4i64x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasDQI, HasVLX]>; defm : vinsert_for_mask_cast<"VINSERTF64x2Z256", v8i16x_info, v16i16x_info, v4i64x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasDQI, HasVLX]>; defm : vinsert_for_mask_cast<"VINSERTF64x2Z256", v16i8x_info, v32i8x_info, v4i64x_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasDQI, HasVLX]>; defm : vinsert_for_mask_cast<"VINSERTF32x4Z", v2f64x_info, v8f64_info, v16f32_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasAVX512]>; defm : vinsert_for_mask_cast<"VINSERTF64x2Z", v4f32x_info, v16f32_info, v8f64_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasDQI]>; defm : vinsert_for_mask_cast<"VINSERTI32x4Z", v2i64x_info, v8i64_info, v16i32_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasAVX512]>; defm : vinsert_for_mask_cast<"VINSERTI32x4Z", v8i16x_info, v32i16_info, v16i32_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasAVX512]>; defm : vinsert_for_mask_cast<"VINSERTI32x4Z", v16i8x_info, v64i8_info, v16i32_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasAVX512]>; defm : vinsert_for_mask_cast<"VINSERTI64x2Z", v4i32x_info, v16i32_info, v8i64_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasDQI]>; defm : vinsert_for_mask_cast<"VINSERTI64x2Z", v8i16x_info, v32i16_info, v8i64_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasDQI]>; defm : vinsert_for_mask_cast<"VINSERTI64x2Z", v16i8x_info, v64i8_info, v8i64_info, vinsert128_insert, INSERT_get_vinsert128_imm, [HasDQI]>; defm : vinsert_for_mask_cast<"VINSERTF32x8Z", v4f64x_info, v8f64_info, v16f32_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasDQI]>; defm : vinsert_for_mask_cast<"VINSERTF64x4Z", v8f32x_info, v16f32_info, v8f64_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasAVX512]>; defm : vinsert_for_mask_cast<"VINSERTI32x8Z", v4i64x_info, v8i64_info, v16i32_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasDQI]>; defm : vinsert_for_mask_cast<"VINSERTI32x8Z", v16i16x_info, v32i16_info, v16i32_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasDQI]>; defm : vinsert_for_mask_cast<"VINSERTI32x8Z", v32i8x_info, v64i8_info, v16i32_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasDQI]>; defm : vinsert_for_mask_cast<"VINSERTI64x4Z", v8i32x_info, v16i32_info, v8i64_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasAVX512]>; defm : vinsert_for_mask_cast<"VINSERTI64x4Z", v16i16x_info, v32i16_info, v8i64_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasAVX512]>; defm : vinsert_for_mask_cast<"VINSERTI64x4Z", v32i8x_info, v64i8_info, v8i64_info, vinsert256_insert, INSERT_get_vinsert256_imm, [HasAVX512]>; // vinsertps - insert f32 to XMM let ExeDomain = SSEPackedSingle in { def VINSERTPSZrr : AVX512AIi8<0x21, MRMSrcReg, (outs VR128X:$dst), (ins VR128X:$src1, VR128X:$src2, u8imm:$src3), "vinsertps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", [(set VR128X:$dst, (X86insertps VR128X:$src1, VR128X:$src2, imm:$src3))]>, EVEX_4V, Sched<[SchedWriteFShuffle.XMM]>; def VINSERTPSZrm: AVX512AIi8<0x21, MRMSrcMem, (outs VR128X:$dst), (ins VR128X:$src1, f32mem:$src2, u8imm:$src3), "vinsertps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", [(set VR128X:$dst, (X86insertps VR128X:$src1, (v4f32 (scalar_to_vector (loadf32 addr:$src2))), imm:$src3))]>, EVEX_4V, EVEX_CD8<32, CD8VT1>, Sched<[SchedWriteFShuffle.XMM.Folded, ReadAfterLd]>; } //===----------------------------------------------------------------------===// // AVX-512 VECTOR EXTRACT //--- // Supports two different pattern operators for mask and unmasked ops. Allows // null_frag to be passed for one. multiclass vextract_for_size_split<int Opcode, X86VectorVTInfo From, X86VectorVTInfo To, SDPatternOperator vextract_extract, SDPatternOperator vextract_for_mask, SchedWrite SchedRR, SchedWrite SchedMR> { let hasSideEffects = 0, ExeDomain = To.ExeDomain in { defm rr : AVX512_maskable_split<Opcode, MRMDestReg, To, (outs To.RC:$dst), (ins From.RC:$src1, u8imm:$idx), "vextract" # To.EltTypeName # "x" # To.NumElts, "$idx, $src1", "$src1, $idx", (vextract_extract:$idx (From.VT From.RC:$src1), (iPTR imm)), (vextract_for_mask:$idx (From.VT From.RC:$src1), (iPTR imm))>, AVX512AIi8Base, EVEX, Sched<[SchedRR]>; def mr : AVX512AIi8<Opcode, MRMDestMem, (outs), (ins To.MemOp:$dst, From.RC:$src1, u8imm:$idx), "vextract" # To.EltTypeName # "x" # To.NumElts # "\t{$idx, $src1, $dst|$dst, $src1, $idx}", [(store (To.VT (vextract_extract:$idx (From.VT From.RC:$src1), (iPTR imm))), addr:$dst)]>, EVEX, Sched<[SchedMR]>; let mayStore = 1, hasSideEffects = 0 in def mrk : AVX512AIi8<Opcode, MRMDestMem, (outs), (ins To.MemOp:$dst, To.KRCWM:$mask, From.RC:$src1, u8imm:$idx), "vextract" # To.EltTypeName # "x" # To.NumElts # "\t{$idx, $src1, $dst {${mask}}|" "$dst {${mask}}, $src1, $idx}", []>, EVEX_K, EVEX, Sched<[SchedMR]>, NotMemoryFoldable; } } // Passes the same pattern operator for masked and unmasked ops. multiclass vextract_for_size<int Opcode, X86VectorVTInfo From, X86VectorVTInfo To, SDPatternOperator vextract_extract, SchedWrite SchedRR, SchedWrite SchedMR> : vextract_for_size_split<Opcode, From, To, vextract_extract, vextract_extract, SchedRR, SchedMR>; // Codegen pattern for the alternative types multiclass vextract_for_size_lowering<string InstrStr, X86VectorVTInfo From, X86VectorVTInfo To, PatFrag vextract_extract, SDNodeXForm EXTRACT_get_vextract_imm, list<Predicate> p> { let Predicates = p in { def : Pat<(vextract_extract:$ext (From.VT From.RC:$src1), (iPTR imm)), (To.VT (!cast<Instruction>(InstrStr#"rr") From.RC:$src1, (EXTRACT_get_vextract_imm To.RC:$ext)))>; def : Pat<(store (To.VT (vextract_extract:$ext (From.VT From.RC:$src1), (iPTR imm))), addr:$dst), (!cast<Instruction>(InstrStr#"mr") addr:$dst, From.RC:$src1, (EXTRACT_get_vextract_imm To.RC:$ext))>; } } multiclass vextract_for_type<ValueType EltVT32, int Opcode128, ValueType EltVT64, int Opcode256, SchedWrite SchedRR, SchedWrite SchedMR> { let Predicates = [HasAVX512] in { defm NAME # "32x4Z" : vextract_for_size<Opcode128, X86VectorVTInfo<16, EltVT32, VR512>, X86VectorVTInfo< 4, EltVT32, VR128X>, vextract128_extract, SchedRR, SchedMR>, EVEX_V512, EVEX_CD8<32, CD8VT4>; defm NAME # "64x4Z" : vextract_for_size<Opcode256, X86VectorVTInfo< 8, EltVT64, VR512>, X86VectorVTInfo< 4, EltVT64, VR256X>, vextract256_extract, SchedRR, SchedMR>, VEX_W, EVEX_V512, EVEX_CD8<64, CD8VT4>; } let Predicates = [HasVLX] in defm NAME # "32x4Z256" : vextract_for_size<Opcode128, X86VectorVTInfo< 8, EltVT32, VR256X>, X86VectorVTInfo< 4, EltVT32, VR128X>, vextract128_extract, SchedRR, SchedMR>, EVEX_V256, EVEX_CD8<32, CD8VT4>; // Even with DQI we'd like to only use these instructions for masking. let Predicates = [HasVLX, HasDQI] in defm NAME # "64x2Z256" : vextract_for_size_split<Opcode128, X86VectorVTInfo< 4, EltVT64, VR256X>, X86VectorVTInfo< 2, EltVT64, VR128X>, null_frag, vextract128_extract, SchedRR, SchedMR>, VEX_W1X, EVEX_V256, EVEX_CD8<64, CD8VT2>; // Even with DQI we'd like to only use these instructions for masking. let Predicates = [HasDQI] in { defm NAME # "64x2Z" : vextract_for_size_split<Opcode128, X86VectorVTInfo< 8, EltVT64, VR512>, X86VectorVTInfo< 2, EltVT64, VR128X>, null_frag, vextract128_extract, SchedRR, SchedMR>, VEX_W, EVEX_V512, EVEX_CD8<64, CD8VT2>; defm NAME # "32x8Z" : vextract_for_size_split<Opcode256, X86VectorVTInfo<16, EltVT32, VR512>, X86VectorVTInfo< 8, EltVT32, VR256X>, null_frag, vextract256_extract, SchedRR, SchedMR>, EVEX_V512, EVEX_CD8<32, CD8VT8>; } } // TODO - replace WriteFStore/WriteVecStore with X86SchedWriteMoveLSWidths types. defm VEXTRACTF : vextract_for_type<f32, 0x19, f64, 0x1b, WriteFShuffle256, WriteFStore>; defm VEXTRACTI : vextract_for_type<i32, 0x39, i64, 0x3b, WriteShuffle256, WriteVecStore>; // extract_subvector codegen patterns with the alternative types. // Even with AVX512DQ we'll still use these for unmasked operations. defm : vextract_for_size_lowering<"VEXTRACTF32x4Z", v8f64_info, v2f64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasAVX512]>; defm : vextract_for_size_lowering<"VEXTRACTI32x4Z", v8i64_info, v2i64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasAVX512]>; defm : vextract_for_size_lowering<"VEXTRACTF64x4Z", v16f32_info, v8f32x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasAVX512]>; defm : vextract_for_size_lowering<"VEXTRACTI64x4Z", v16i32_info, v8i32x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasAVX512]>; defm : vextract_for_size_lowering<"VEXTRACTF32x4Z256", v4f64x_info, v2f64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasVLX]>; defm : vextract_for_size_lowering<"VEXTRACTI32x4Z256", v4i64x_info, v2i64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasVLX]>; // Codegen pattern with the alternative types extract VEC128 from VEC256 defm : vextract_for_size_lowering<"VEXTRACTI32x4Z256", v16i16x_info, v8i16x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasVLX]>; defm : vextract_for_size_lowering<"VEXTRACTI32x4Z256", v32i8x_info, v16i8x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasVLX]>; // Codegen pattern with the alternative types extract VEC128 from VEC512 defm : vextract_for_size_lowering<"VEXTRACTI32x4Z", v32i16_info, v8i16x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasAVX512]>; defm : vextract_for_size_lowering<"VEXTRACTI32x4Z", v64i8_info, v16i8x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasAVX512]>; // Codegen pattern with the alternative types extract VEC256 from VEC512 defm : vextract_for_size_lowering<"VEXTRACTI64x4Z", v32i16_info, v16i16x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasAVX512]>; defm : vextract_for_size_lowering<"VEXTRACTI64x4Z", v64i8_info, v32i8x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasAVX512]>; // A 128-bit extract from bits [255:128] of a 512-bit vector should use a // smaller extract to enable EVEX->VEX. let Predicates = [NoVLX] in { def : Pat<(v2i64 (extract_subvector (v8i64 VR512:$src), (iPTR 2))), (v2i64 (VEXTRACTI128rr (v4i64 (EXTRACT_SUBREG (v8i64 VR512:$src), sub_ymm)), (iPTR 1)))>; def : Pat<(v2f64 (extract_subvector (v8f64 VR512:$src), (iPTR 2))), (v2f64 (VEXTRACTF128rr (v4f64 (EXTRACT_SUBREG (v8f64 VR512:$src), sub_ymm)), (iPTR 1)))>; def : Pat<(v4i32 (extract_subvector (v16i32 VR512:$src), (iPTR 4))), (v4i32 (VEXTRACTI128rr (v8i32 (EXTRACT_SUBREG (v16i32 VR512:$src), sub_ymm)), (iPTR 1)))>; def : Pat<(v4f32 (extract_subvector (v16f32 VR512:$src), (iPTR 4))), (v4f32 (VEXTRACTF128rr (v8f32 (EXTRACT_SUBREG (v16f32 VR512:$src), sub_ymm)), (iPTR 1)))>; def : Pat<(v8i16 (extract_subvector (v32i16 VR512:$src), (iPTR 8))), (v8i16 (VEXTRACTI128rr (v16i16 (EXTRACT_SUBREG (v32i16 VR512:$src), sub_ymm)), (iPTR 1)))>; def : Pat<(v16i8 (extract_subvector (v64i8 VR512:$src), (iPTR 16))), (v16i8 (VEXTRACTI128rr (v32i8 (EXTRACT_SUBREG (v64i8 VR512:$src), sub_ymm)), (iPTR 1)))>; } // A 128-bit extract from bits [255:128] of a 512-bit vector should use a // smaller extract to enable EVEX->VEX. let Predicates = [HasVLX] in { def : Pat<(v2i64 (extract_subvector (v8i64 VR512:$src), (iPTR 2))), (v2i64 (VEXTRACTI32x4Z256rr (v4i64 (EXTRACT_SUBREG (v8i64 VR512:$src), sub_ymm)), (iPTR 1)))>; def : Pat<(v2f64 (extract_subvector (v8f64 VR512:$src), (iPTR 2))), (v2f64 (VEXTRACTF32x4Z256rr (v4f64 (EXTRACT_SUBREG (v8f64 VR512:$src), sub_ymm)), (iPTR 1)))>; def : Pat<(v4i32 (extract_subvector (v16i32 VR512:$src), (iPTR 4))), (v4i32 (VEXTRACTI32x4Z256rr (v8i32 (EXTRACT_SUBREG (v16i32 VR512:$src), sub_ymm)), (iPTR 1)))>; def : Pat<(v4f32 (extract_subvector (v16f32 VR512:$src), (iPTR 4))), (v4f32 (VEXTRACTF32x4Z256rr (v8f32 (EXTRACT_SUBREG (v16f32 VR512:$src), sub_ymm)), (iPTR 1)))>; def : Pat<(v8i16 (extract_subvector (v32i16 VR512:$src), (iPTR 8))), (v8i16 (VEXTRACTI32x4Z256rr (v16i16 (EXTRACT_SUBREG (v32i16 VR512:$src), sub_ymm)), (iPTR 1)))>; def : Pat<(v16i8 (extract_subvector (v64i8 VR512:$src), (iPTR 16))), (v16i8 (VEXTRACTI32x4Z256rr (v32i8 (EXTRACT_SUBREG (v64i8 VR512:$src), sub_ymm)), (iPTR 1)))>; } // Additional patterns for handling a bitcast between the vselect and the // extract_subvector. multiclass vextract_for_mask_cast<string InstrStr, X86VectorVTInfo From, X86VectorVTInfo To, X86VectorVTInfo Cast, PatFrag vextract_extract, SDNodeXForm EXTRACT_get_vextract_imm, list<Predicate> p> { let Predicates = p in { def : Pat<(Cast.VT (vselect Cast.KRCWM:$mask, (bitconvert (To.VT (vextract_extract:$ext (From.VT From.RC:$src), (iPTR imm)))), To.RC:$src0)), (Cast.VT (!cast<Instruction>(InstrStr#"rrk") Cast.RC:$src0, Cast.KRCWM:$mask, From.RC:$src, (EXTRACT_get_vextract_imm To.RC:$ext)))>; def : Pat<(Cast.VT (vselect Cast.KRCWM:$mask, (bitconvert (To.VT (vextract_extract:$ext (From.VT From.RC:$src), (iPTR imm)))), Cast.ImmAllZerosV)), (Cast.VT (!cast<Instruction>(InstrStr#"rrkz") Cast.KRCWM:$mask, From.RC:$src, (EXTRACT_get_vextract_imm To.RC:$ext)))>; } } defm : vextract_for_mask_cast<"VEXTRACTF32x4Z256", v4f64x_info, v2f64x_info, v4f32x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasVLX]>; defm : vextract_for_mask_cast<"VEXTRACTF64x2Z256", v8f32x_info, v4f32x_info, v2f64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasDQI, HasVLX]>; defm : vextract_for_mask_cast<"VEXTRACTI32x4Z256", v4i64x_info, v2i64x_info, v4i32x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasVLX]>; defm : vextract_for_mask_cast<"VEXTRACTI32x4Z256", v16i16x_info, v8i16x_info, v4i32x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasVLX]>; defm : vextract_for_mask_cast<"VEXTRACTI32x4Z256", v32i8x_info, v16i8x_info, v4i32x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasVLX]>; defm : vextract_for_mask_cast<"VEXTRACTI64x2Z256", v8i32x_info, v4i32x_info, v2i64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasDQI, HasVLX]>; defm : vextract_for_mask_cast<"VEXTRACTI64x2Z256", v16i16x_info, v8i16x_info, v2i64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasDQI, HasVLX]>; defm : vextract_for_mask_cast<"VEXTRACTI64x2Z256", v32i8x_info, v16i8x_info, v2i64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasDQI, HasVLX]>; defm : vextract_for_mask_cast<"VEXTRACTF32x4Z", v8f64_info, v2f64x_info, v4f32x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasAVX512]>; defm : vextract_for_mask_cast<"VEXTRACTF64x2Z", v16f32_info, v4f32x_info, v2f64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasDQI]>; defm : vextract_for_mask_cast<"VEXTRACTI32x4Z", v8i64_info, v2i64x_info, v4i32x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasAVX512]>; defm : vextract_for_mask_cast<"VEXTRACTI32x4Z", v32i16_info, v8i16x_info, v4i32x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasAVX512]>; defm : vextract_for_mask_cast<"VEXTRACTI32x4Z", v64i8_info, v16i8x_info, v4i32x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasAVX512]>; defm : vextract_for_mask_cast<"VEXTRACTI64x2Z", v16i32_info, v4i32x_info, v2i64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasDQI]>; defm : vextract_for_mask_cast<"VEXTRACTI64x2Z", v32i16_info, v8i16x_info, v2i64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasDQI]>; defm : vextract_for_mask_cast<"VEXTRACTI64x2Z", v64i8_info, v16i8x_info, v2i64x_info, vextract128_extract, EXTRACT_get_vextract128_imm, [HasDQI]>; defm : vextract_for_mask_cast<"VEXTRACTF32x8Z", v8f64_info, v4f64x_info, v8f32x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasDQI]>; defm : vextract_for_mask_cast<"VEXTRACTF64x4Z", v16f32_info, v8f32x_info, v4f64x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasAVX512]>; defm : vextract_for_mask_cast<"VEXTRACTI32x8Z", v8i64_info, v4i64x_info, v8i32x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasDQI]>; defm : vextract_for_mask_cast<"VEXTRACTI32x8Z", v32i16_info, v16i16x_info, v8i32x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasDQI]>; defm : vextract_for_mask_cast<"VEXTRACTI32x8Z", v64i8_info, v32i8x_info, v8i32x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasDQI]>; defm : vextract_for_mask_cast<"VEXTRACTI64x4Z", v16i32_info, v8i32x_info, v4i64x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasAVX512]>; defm : vextract_for_mask_cast<"VEXTRACTI64x4Z", v32i16_info, v16i16x_info, v4i64x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasAVX512]>; defm : vextract_for_mask_cast<"VEXTRACTI64x4Z", v64i8_info, v32i8x_info, v4i64x_info, vextract256_extract, EXTRACT_get_vextract256_imm, [HasAVX512]>; // vextractps - extract 32 bits from XMM def VEXTRACTPSZrr : AVX512AIi8<0x17, MRMDestReg, (outs GR32:$dst), (ins VR128X:$src1, u8imm:$src2), "vextractps\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32:$dst, (extractelt (bc_v4i32 (v4f32 VR128X:$src1)), imm:$src2))]>, EVEX, VEX_WIG, Sched<[WriteVecExtract]>; def VEXTRACTPSZmr : AVX512AIi8<0x17, MRMDestMem, (outs), (ins f32mem:$dst, VR128X:$src1, u8imm:$src2), "vextractps\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(store (extractelt (bc_v4i32 (v4f32 VR128X:$src1)), imm:$src2), addr:$dst)]>, EVEX, VEX_WIG, EVEX_CD8<32, CD8VT1>, Sched<[WriteVecExtractSt]>; //===---------------------------------------------------------------------===// // AVX-512 BROADCAST //--- // broadcast with a scalar argument. multiclass avx512_broadcast_scalar<bits<8> opc, string OpcodeStr, string Name, X86VectorVTInfo DestInfo, X86VectorVTInfo SrcInfo> { def : Pat<(DestInfo.VT (X86VBroadcast SrcInfo.FRC:$src)), (!cast<Instruction>(Name#DestInfo.ZSuffix#r) (SrcInfo.VT (COPY_TO_REGCLASS SrcInfo.FRC:$src, SrcInfo.RC)))>; def : Pat<(DestInfo.VT (vselect DestInfo.KRCWM:$mask, (X86VBroadcast SrcInfo.FRC:$src), DestInfo.RC:$src0)), (!cast<Instruction>(Name#DestInfo.ZSuffix#rk) DestInfo.RC:$src0, DestInfo.KRCWM:$mask, (SrcInfo.VT (COPY_TO_REGCLASS SrcInfo.FRC:$src, SrcInfo.RC)))>; def : Pat<(DestInfo.VT (vselect DestInfo.KRCWM:$mask, (X86VBroadcast SrcInfo.FRC:$src), DestInfo.ImmAllZerosV)), (!cast<Instruction>(Name#DestInfo.ZSuffix#rkz) DestInfo.KRCWM:$mask, (SrcInfo.VT (COPY_TO_REGCLASS SrcInfo.FRC:$src, SrcInfo.RC)))>; } // Split version to allow mask and broadcast node to be different types. This // helps support the 32x2 broadcasts. multiclass avx512_broadcast_rm_split<bits<8> opc, string OpcodeStr, string Name, SchedWrite SchedRR, SchedWrite SchedRM, X86VectorVTInfo MaskInfo, X86VectorVTInfo DestInfo, X86VectorVTInfo SrcInfo, SDPatternOperator UnmaskedOp = X86VBroadcast> { let ExeDomain = DestInfo.ExeDomain, hasSideEffects = 0 in { defm r : AVX512_maskable_split<opc, MRMSrcReg, MaskInfo, (outs MaskInfo.RC:$dst), (ins SrcInfo.RC:$src), OpcodeStr, "$src", "$src", (MaskInfo.VT (bitconvert (DestInfo.VT (UnmaskedOp (SrcInfo.VT SrcInfo.RC:$src))))), (MaskInfo.VT (bitconvert (DestInfo.VT (X86VBroadcast (SrcInfo.VT SrcInfo.RC:$src)))))>, T8PD, EVEX, Sched<[SchedRR]>; let mayLoad = 1 in defm m : AVX512_maskable_split<opc, MRMSrcMem, MaskInfo, (outs MaskInfo.RC:$dst), (ins SrcInfo.ScalarMemOp:$src), OpcodeStr, "$src", "$src", (MaskInfo.VT (bitconvert (DestInfo.VT (UnmaskedOp (SrcInfo.ScalarLdFrag addr:$src))))), (MaskInfo.VT (bitconvert (DestInfo.VT (X86VBroadcast (SrcInfo.ScalarLdFrag addr:$src)))))>, T8PD, EVEX, EVEX_CD8<SrcInfo.EltSize, CD8VT1>, Sched<[SchedRM]>; } def : Pat<(MaskInfo.VT (bitconvert (DestInfo.VT (UnmaskedOp (SrcInfo.VT (scalar_to_vector (SrcInfo.ScalarLdFrag addr:$src))))))), (!cast<Instruction>(Name#MaskInfo.ZSuffix#m) addr:$src)>; def : Pat<(MaskInfo.VT (vselect MaskInfo.KRCWM:$mask, (bitconvert (DestInfo.VT (X86VBroadcast (SrcInfo.VT (scalar_to_vector (SrcInfo.ScalarLdFrag addr:$src)))))), MaskInfo.RC:$src0)), (!cast<Instruction>(Name#DestInfo.ZSuffix#mk) MaskInfo.RC:$src0, MaskInfo.KRCWM:$mask, addr:$src)>; def : Pat<(MaskInfo.VT (vselect MaskInfo.KRCWM:$mask, (bitconvert (DestInfo.VT (X86VBroadcast (SrcInfo.VT (scalar_to_vector (SrcInfo.ScalarLdFrag addr:$src)))))), MaskInfo.ImmAllZerosV)), (!cast<Instruction>(Name#MaskInfo.ZSuffix#mkz) MaskInfo.KRCWM:$mask, addr:$src)>; } // Helper class to force mask and broadcast result to same type. multiclass avx512_broadcast_rm<bits<8> opc, string OpcodeStr, string Name, SchedWrite SchedRR, SchedWrite SchedRM, X86VectorVTInfo DestInfo, X86VectorVTInfo SrcInfo> : avx512_broadcast_rm_split<opc, OpcodeStr, Name, SchedRR, SchedRM, DestInfo, DestInfo, SrcInfo>; multiclass avx512_fp_broadcast_sd<bits<8> opc, string OpcodeStr, AVX512VLVectorVTInfo _> { let Predicates = [HasAVX512] in { defm Z : avx512_broadcast_rm<opc, OpcodeStr, NAME, WriteFShuffle256, WriteFShuffle256Ld, _.info512, _.info128>, avx512_broadcast_scalar<opc, OpcodeStr, NAME, _.info512, _.info128>, EVEX_V512; } let Predicates = [HasVLX] in { defm Z256 : avx512_broadcast_rm<opc, OpcodeStr, NAME, WriteFShuffle256, WriteFShuffle256Ld, _.info256, _.info128>, avx512_broadcast_scalar<opc, OpcodeStr, NAME, _.info256, _.info128>, EVEX_V256; } } multiclass avx512_fp_broadcast_ss<bits<8> opc, string OpcodeStr, AVX512VLVectorVTInfo _> { let Predicates = [HasAVX512] in { defm Z : avx512_broadcast_rm<opc, OpcodeStr, NAME, WriteFShuffle256, WriteFShuffle256Ld, _.info512, _.info128>, avx512_broadcast_scalar<opc, OpcodeStr, NAME, _.info512, _.info128>, EVEX_V512; } let Predicates = [HasVLX] in { defm Z256 : avx512_broadcast_rm<opc, OpcodeStr, NAME, WriteFShuffle256, WriteFShuffle256Ld, _.info256, _.info128>, avx512_broadcast_scalar<opc, OpcodeStr, NAME, _.info256, _.info128>, EVEX_V256; defm Z128 : avx512_broadcast_rm<opc, OpcodeStr, NAME, WriteFShuffle256, WriteFShuffle256Ld, _.info128, _.info128>, avx512_broadcast_scalar<opc, OpcodeStr, NAME, _.info128, _.info128>, EVEX_V128; } } defm VBROADCASTSS : avx512_fp_broadcast_ss<0x18, "vbroadcastss", avx512vl_f32_info>; defm VBROADCASTSD : avx512_fp_broadcast_sd<0x19, "vbroadcastsd", avx512vl_f64_info>, VEX_W1X; multiclass avx512_int_broadcast_reg<bits<8> opc, SchedWrite SchedRR, X86VectorVTInfo _, SDPatternOperator OpNode, RegisterClass SrcRC> { let ExeDomain = _.ExeDomain in defm r : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins SrcRC:$src), "vpbroadcast"##_.Suffix, "$src", "$src", (_.VT (OpNode SrcRC:$src))>, T8PD, EVEX, Sched<[SchedRR]>; } multiclass avx512_int_broadcastbw_reg<bits<8> opc, string Name, SchedWrite SchedRR, X86VectorVTInfo _, SDPatternOperator OpNode, RegisterClass SrcRC, SubRegIndex Subreg> { let hasSideEffects = 0, ExeDomain = _.ExeDomain in defm r : AVX512_maskable_custom<opc, MRMSrcReg, (outs _.RC:$dst), (ins GR32:$src), !con((ins _.RC:$src0, _.KRCWM:$mask), (ins GR32:$src)), !con((ins _.KRCWM:$mask), (ins GR32:$src)), "vpbroadcast"##_.Suffix, "$src", "$src", [], [], [], "$src0 = $dst">, T8PD, EVEX, Sched<[SchedRR]>; def : Pat <(_.VT (OpNode SrcRC:$src)), (!cast<Instruction>(Name#r) (i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), SrcRC:$src, Subreg)))>; def : Pat <(vselect _.KRCWM:$mask, (_.VT (OpNode SrcRC:$src)), _.RC:$src0), (!cast<Instruction>(Name#rk) _.RC:$src0, _.KRCWM:$mask, (i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), SrcRC:$src, Subreg)))>; def : Pat <(vselect _.KRCWM:$mask, (_.VT (OpNode SrcRC:$src)), _.ImmAllZerosV), (!cast<Instruction>(Name#rkz) _.KRCWM:$mask, (i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), SrcRC:$src, Subreg)))>; } multiclass avx512_int_broadcastbw_reg_vl<bits<8> opc, string Name, AVX512VLVectorVTInfo _, SDPatternOperator OpNode, RegisterClass SrcRC, SubRegIndex Subreg, Predicate prd> { let Predicates = [prd] in defm Z : avx512_int_broadcastbw_reg<opc, Name#Z, WriteShuffle256, _.info512, OpNode, SrcRC, Subreg>, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_int_broadcastbw_reg<opc, Name#Z256, WriteShuffle256, _.info256, OpNode, SrcRC, Subreg>, EVEX_V256; defm Z128 : avx512_int_broadcastbw_reg<opc, Name#Z128, WriteShuffle, _.info128, OpNode, SrcRC, Subreg>, EVEX_V128; } } multiclass avx512_int_broadcast_reg_vl<bits<8> opc, AVX512VLVectorVTInfo _, SDPatternOperator OpNode, RegisterClass SrcRC, Predicate prd> { let Predicates = [prd] in defm Z : avx512_int_broadcast_reg<opc, WriteShuffle256, _.info512, OpNode, SrcRC>, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_int_broadcast_reg<opc, WriteShuffle256, _.info256, OpNode, SrcRC>, EVEX_V256; defm Z128 : avx512_int_broadcast_reg<opc, WriteShuffle, _.info128, OpNode, SrcRC>, EVEX_V128; } } defm VPBROADCASTBr : avx512_int_broadcastbw_reg_vl<0x7A, "VPBROADCASTBr", avx512vl_i8_info, X86VBroadcast, GR8, sub_8bit, HasBWI>; defm VPBROADCASTWr : avx512_int_broadcastbw_reg_vl<0x7B, "VPBROADCASTWr", avx512vl_i16_info, X86VBroadcast, GR16, sub_16bit, HasBWI>; defm VPBROADCASTDr : avx512_int_broadcast_reg_vl<0x7C, avx512vl_i32_info, X86VBroadcast, GR32, HasAVX512>; defm VPBROADCASTQr : avx512_int_broadcast_reg_vl<0x7C, avx512vl_i64_info, X86VBroadcast, GR64, HasAVX512>, VEX_W; // Provide aliases for broadcast from the same register class that // automatically does the extract. multiclass avx512_int_broadcast_rm_lowering<string Name, X86VectorVTInfo DestInfo, X86VectorVTInfo SrcInfo, X86VectorVTInfo ExtInfo> { def : Pat<(DestInfo.VT (X86VBroadcast (SrcInfo.VT SrcInfo.RC:$src))), (!cast<Instruction>(Name#DestInfo.ZSuffix#"r") (ExtInfo.VT (EXTRACT_SUBREG (SrcInfo.VT SrcInfo.RC:$src), sub_xmm)))>; } multiclass avx512_int_broadcast_rm_vl<bits<8> opc, string OpcodeStr, AVX512VLVectorVTInfo _, Predicate prd> { let Predicates = [prd] in { defm Z : avx512_broadcast_rm<opc, OpcodeStr, NAME, WriteShuffle256, WriteShuffle256Ld, _.info512, _.info128>, avx512_int_broadcast_rm_lowering<NAME, _.info512, _.info256, _.info128>, EVEX_V512; // Defined separately to avoid redefinition. defm Z_Alt : avx512_int_broadcast_rm_lowering<NAME, _.info512, _.info512, _.info128>; } let Predicates = [prd, HasVLX] in { defm Z256 : avx512_broadcast_rm<opc, OpcodeStr, NAME, WriteShuffle256, WriteShuffle256Ld, _.info256, _.info128>, avx512_int_broadcast_rm_lowering<NAME, _.info256, _.info256, _.info128>, EVEX_V256; defm Z128 : avx512_broadcast_rm<opc, OpcodeStr, NAME, WriteShuffle, WriteShuffleXLd, _.info128, _.info128>, EVEX_V128; } } defm VPBROADCASTB : avx512_int_broadcast_rm_vl<0x78, "vpbroadcastb", avx512vl_i8_info, HasBWI>; defm VPBROADCASTW : avx512_int_broadcast_rm_vl<0x79, "vpbroadcastw", avx512vl_i16_info, HasBWI>; defm VPBROADCASTD : avx512_int_broadcast_rm_vl<0x58, "vpbroadcastd", avx512vl_i32_info, HasAVX512>; defm VPBROADCASTQ : avx512_int_broadcast_rm_vl<0x59, "vpbroadcastq", avx512vl_i64_info, HasAVX512>, VEX_W1X; multiclass avx512_subvec_broadcast_rm<bits<8> opc, string OpcodeStr, X86VectorVTInfo _Dst, X86VectorVTInfo _Src> { defm rm : AVX512_maskable<opc, MRMSrcMem, _Dst, (outs _Dst.RC:$dst), (ins _Src.MemOp:$src), OpcodeStr, "$src", "$src", (_Dst.VT (X86SubVBroadcast (_Src.VT (bitconvert (_Src.LdFrag addr:$src)))))>, Sched<[SchedWriteShuffle.YMM.Folded]>, AVX5128IBase, EVEX; } // This should be used for the AVX512DQ broadcast instructions. It disables // the unmasked patterns so that we only use the DQ instructions when masking // is requested. multiclass avx512_subvec_broadcast_rm_dq<bits<8> opc, string OpcodeStr, X86VectorVTInfo _Dst, X86VectorVTInfo _Src> { let hasSideEffects = 0, mayLoad = 1 in defm rm : AVX512_maskable_split<opc, MRMSrcMem, _Dst, (outs _Dst.RC:$dst), (ins _Src.MemOp:$src), OpcodeStr, "$src", "$src", (null_frag), (_Dst.VT (X86SubVBroadcast (_Src.VT (bitconvert (_Src.LdFrag addr:$src)))))>, Sched<[SchedWriteShuffle.YMM.Folded]>, AVX5128IBase, EVEX; } let Predicates = [HasAVX512] in { // 32-bit targets will fail to load a i64 directly but can use ZEXT_LOAD. def : Pat<(v8i64 (X86VBroadcast (v8i64 (X86vzload addr:$src)))), (VPBROADCASTQZm addr:$src)>; } let Predicates = [HasVLX] in { // 32-bit targets will fail to load a i64 directly but can use ZEXT_LOAD. def : Pat<(v2i64 (X86VBroadcast (v2i64 (X86vzload addr:$src)))), (VPBROADCASTQZ128m addr:$src)>; def : Pat<(v4i64 (X86VBroadcast (v4i64 (X86vzload addr:$src)))), (VPBROADCASTQZ256m addr:$src)>; } let Predicates = [HasVLX, HasBWI] in { // loadi16 is tricky to fold, because !isTypeDesirableForOp, justifiably. // This means we'll encounter truncated i32 loads; match that here. def : Pat<(v8i16 (X86VBroadcast (i16 (trunc (i32 (load addr:$src)))))), (VPBROADCASTWZ128m addr:$src)>; def : Pat<(v16i16 (X86VBroadcast (i16 (trunc (i32 (load addr:$src)))))), (VPBROADCASTWZ256m addr:$src)>; def : Pat<(v8i16 (X86VBroadcast (i16 (trunc (i32 (zextloadi16 addr:$src)))))), (VPBROADCASTWZ128m addr:$src)>; def : Pat<(v16i16 (X86VBroadcast (i16 (trunc (i32 (zextloadi16 addr:$src)))))), (VPBROADCASTWZ256m addr:$src)>; } //===----------------------------------------------------------------------===// // AVX-512 BROADCAST SUBVECTORS // defm VBROADCASTI32X4 : avx512_subvec_broadcast_rm<0x5a, "vbroadcasti32x4", v16i32_info, v4i32x_info>, EVEX_V512, EVEX_CD8<32, CD8VT4>; defm VBROADCASTF32X4 : avx512_subvec_broadcast_rm<0x1a, "vbroadcastf32x4", v16f32_info, v4f32x_info>, EVEX_V512, EVEX_CD8<32, CD8VT4>; defm VBROADCASTI64X4 : avx512_subvec_broadcast_rm<0x5b, "vbroadcasti64x4", v8i64_info, v4i64x_info>, VEX_W, EVEX_V512, EVEX_CD8<64, CD8VT4>; defm VBROADCASTF64X4 : avx512_subvec_broadcast_rm<0x1b, "vbroadcastf64x4", v8f64_info, v4f64x_info>, VEX_W, EVEX_V512, EVEX_CD8<64, CD8VT4>; let Predicates = [HasAVX512] in { def : Pat<(v16f32 (X86SubVBroadcast (loadv8f32 addr:$src))), (VBROADCASTF64X4rm addr:$src)>; def : Pat<(v16i32 (X86SubVBroadcast (bc_v8i32 (loadv4i64 addr:$src)))), (VBROADCASTI64X4rm addr:$src)>; def : Pat<(v32i16 (X86SubVBroadcast (bc_v16i16 (loadv4i64 addr:$src)))), (VBROADCASTI64X4rm addr:$src)>; def : Pat<(v64i8 (X86SubVBroadcast (bc_v32i8 (loadv4i64 addr:$src)))), (VBROADCASTI64X4rm addr:$src)>; // Provide fallback in case the load node that is used in the patterns above // is used by additional users, which prevents the pattern selection. def : Pat<(v8f64 (X86SubVBroadcast (v4f64 VR256X:$src))), (VINSERTF64x4Zrr (INSERT_SUBREG (v8f64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm), (v4f64 VR256X:$src), 1)>; def : Pat<(v16f32 (X86SubVBroadcast (v8f32 VR256X:$src))), (VINSERTF64x4Zrr (INSERT_SUBREG (v16f32 (IMPLICIT_DEF)), VR256X:$src, sub_ymm), (v8f32 VR256X:$src), 1)>; def : Pat<(v8i64 (X86SubVBroadcast (v4i64 VR256X:$src))), (VINSERTI64x4Zrr (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm), (v4i64 VR256X:$src), 1)>; def : Pat<(v16i32 (X86SubVBroadcast (v8i32 VR256X:$src))), (VINSERTI64x4Zrr (INSERT_SUBREG (v16i32 (IMPLICIT_DEF)), VR256X:$src, sub_ymm), (v8i32 VR256X:$src), 1)>; def : Pat<(v32i16 (X86SubVBroadcast (v16i16 VR256X:$src))), (VINSERTI64x4Zrr (INSERT_SUBREG (v32i16 (IMPLICIT_DEF)), VR256X:$src, sub_ymm), (v16i16 VR256X:$src), 1)>; def : Pat<(v64i8 (X86SubVBroadcast (v32i8 VR256X:$src))), (VINSERTI64x4Zrr (INSERT_SUBREG (v64i8 (IMPLICIT_DEF)), VR256X:$src, sub_ymm), (v32i8 VR256X:$src), 1)>; def : Pat<(v8f64 (X86SubVBroadcast (loadv2f64 addr:$src))), (VBROADCASTF32X4rm addr:$src)>; def : Pat<(v8i64 (X86SubVBroadcast (loadv2i64 addr:$src))), (VBROADCASTI32X4rm addr:$src)>; def : Pat<(v32i16 (X86SubVBroadcast (bc_v8i16 (loadv2i64 addr:$src)))), (VBROADCASTI32X4rm addr:$src)>; def : Pat<(v64i8 (X86SubVBroadcast (bc_v16i8 (loadv2i64 addr:$src)))), (VBROADCASTI32X4rm addr:$src)>; // Patterns for selects of bitcasted operations. def : Pat<(vselect VK16WM:$mask, (bc_v16f32 (v8f64 (X86SubVBroadcast (loadv2f64 addr:$src)))), (bc_v16f32 (v16i32 immAllZerosV))), (VBROADCASTF32X4rmkz VK16WM:$mask, addr:$src)>; def : Pat<(vselect VK16WM:$mask, (bc_v16f32 (v8f64 (X86SubVBroadcast (loadv2f64 addr:$src)))), VR512:$src0), (VBROADCASTF32X4rmk VR512:$src0, VK16WM:$mask, addr:$src)>; def : Pat<(vselect VK16WM:$mask, (bc_v16i32 (v8i64 (X86SubVBroadcast (loadv2i64 addr:$src)))), (v16i32 immAllZerosV)), (VBROADCASTI32X4rmkz VK16WM:$mask, addr:$src)>; def : Pat<(vselect VK16WM:$mask, (bc_v16i32 (v8i64 (X86SubVBroadcast (loadv2i64 addr:$src)))), VR512:$src0), (VBROADCASTI32X4rmk VR512:$src0, VK16WM:$mask, addr:$src)>; def : Pat<(vselect VK8WM:$mask, (bc_v8f64 (v16f32 (X86SubVBroadcast (loadv8f32 addr:$src)))), (bc_v8f64 (v16i32 immAllZerosV))), (VBROADCASTF64X4rmkz VK8WM:$mask, addr:$src)>; def : Pat<(vselect VK8WM:$mask, (bc_v8f64 (v16f32 (X86SubVBroadcast (loadv8f32 addr:$src)))), VR512:$src0), (VBROADCASTF64X4rmk VR512:$src0, VK8WM:$mask, addr:$src)>; def : Pat<(vselect VK8WM:$mask, (bc_v8i64 (v16i32 (X86SubVBroadcast (bc_v8i32 (loadv4i64 addr:$src))))), (bc_v8i64 (v16i32 immAllZerosV))), (VBROADCASTI64X4rmkz VK8WM:$mask, addr:$src)>; def : Pat<(vselect VK8WM:$mask, (bc_v8i64 (v16i32 (X86SubVBroadcast (bc_v8i32 (loadv4i64 addr:$src))))), VR512:$src0), (VBROADCASTI64X4rmk VR512:$src0, VK8WM:$mask, addr:$src)>; } let Predicates = [HasVLX] in { defm VBROADCASTI32X4Z256 : avx512_subvec_broadcast_rm<0x5a, "vbroadcasti32x4", v8i32x_info, v4i32x_info>, EVEX_V256, EVEX_CD8<32, CD8VT4>; defm VBROADCASTF32X4Z256 : avx512_subvec_broadcast_rm<0x1a, "vbroadcastf32x4", v8f32x_info, v4f32x_info>, EVEX_V256, EVEX_CD8<32, CD8VT4>; def : Pat<(v4f64 (X86SubVBroadcast (loadv2f64 addr:$src))), (VBROADCASTF32X4Z256rm addr:$src)>; def : Pat<(v4i64 (X86SubVBroadcast (loadv2i64 addr:$src))), (VBROADCASTI32X4Z256rm addr:$src)>; def : Pat<(v16i16 (X86SubVBroadcast (bc_v8i16 (loadv2i64 addr:$src)))), (VBROADCASTI32X4Z256rm addr:$src)>; def : Pat<(v32i8 (X86SubVBroadcast (bc_v16i8 (loadv2i64 addr:$src)))), (VBROADCASTI32X4Z256rm addr:$src)>; // Patterns for selects of bitcasted operations. def : Pat<(vselect VK8WM:$mask, (bc_v8f32 (v4f64 (X86SubVBroadcast (loadv2f64 addr:$src)))), (bc_v8f32 (v8i32 immAllZerosV))), (VBROADCASTF32X4Z256rmkz VK8WM:$mask, addr:$src)>; def : Pat<(vselect VK8WM:$mask, (bc_v8f32 (v4f64 (X86SubVBroadcast (loadv2f64 addr:$src)))), VR256X:$src0), (VBROADCASTF32X4Z256rmk VR256X:$src0, VK8WM:$mask, addr:$src)>; def : Pat<(vselect VK8WM:$mask, (bc_v8i32 (v4i64 (X86SubVBroadcast (loadv2i64 addr:$src)))), (v8i32 immAllZerosV)), (VBROADCASTI32X4Z256rmkz VK8WM:$mask, addr:$src)>; def : Pat<(vselect VK8WM:$mask, (bc_v8i32 (v4i64 (X86SubVBroadcast (loadv2i64 addr:$src)))), VR256X:$src0), (VBROADCASTI32X4Z256rmk VR256X:$src0, VK8WM:$mask, addr:$src)>; // Provide fallback in case the load node that is used in the patterns above // is used by additional users, which prevents the pattern selection. def : Pat<(v4f64 (X86SubVBroadcast (v2f64 VR128X:$src))), (VINSERTF32x4Z256rr (INSERT_SUBREG (v4f64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (v2f64 VR128X:$src), 1)>; def : Pat<(v8f32 (X86SubVBroadcast (v4f32 VR128X:$src))), (VINSERTF32x4Z256rr (INSERT_SUBREG (v8f32 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (v4f32 VR128X:$src), 1)>; def : Pat<(v4i64 (X86SubVBroadcast (v2i64 VR128X:$src))), (VINSERTI32x4Z256rr (INSERT_SUBREG (v4i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (v2i64 VR128X:$src), 1)>; def : Pat<(v8i32 (X86SubVBroadcast (v4i32 VR128X:$src))), (VINSERTI32x4Z256rr (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (v4i32 VR128X:$src), 1)>; def : Pat<(v16i16 (X86SubVBroadcast (v8i16 VR128X:$src))), (VINSERTI32x4Z256rr (INSERT_SUBREG (v16i16 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (v8i16 VR128X:$src), 1)>; def : Pat<(v32i8 (X86SubVBroadcast (v16i8 VR128X:$src))), (VINSERTI32x4Z256rr (INSERT_SUBREG (v32i8 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (v16i8 VR128X:$src), 1)>; } let Predicates = [HasVLX, HasDQI] in { defm VBROADCASTI64X2Z128 : avx512_subvec_broadcast_rm_dq<0x5a, "vbroadcasti64x2", v4i64x_info, v2i64x_info>, VEX_W1X, EVEX_V256, EVEX_CD8<64, CD8VT2>; defm VBROADCASTF64X2Z128 : avx512_subvec_broadcast_rm_dq<0x1a, "vbroadcastf64x2", v4f64x_info, v2f64x_info>, VEX_W1X, EVEX_V256, EVEX_CD8<64, CD8VT2>; // Patterns for selects of bitcasted operations. def : Pat<(vselect VK4WM:$mask, (bc_v4f64 (v8f32 (X86SubVBroadcast (loadv4f32 addr:$src)))), (bc_v4f64 (v8i32 immAllZerosV))), (VBROADCASTF64X2Z128rmkz VK4WM:$mask, addr:$src)>; def : Pat<(vselect VK4WM:$mask, (bc_v4f64 (v8f32 (X86SubVBroadcast (loadv4f32 addr:$src)))), VR256X:$src0), (VBROADCASTF64X2Z128rmk VR256X:$src0, VK4WM:$mask, addr:$src)>; def : Pat<(vselect VK4WM:$mask, (bc_v4i64 (v8i32 (X86SubVBroadcast (bc_v4i32 (loadv2i64 addr:$src))))), (bc_v4i64 (v8i32 immAllZerosV))), (VBROADCASTI64X2Z128rmkz VK4WM:$mask, addr:$src)>; def : Pat<(vselect VK4WM:$mask, (bc_v4i64 (v8i32 (X86SubVBroadcast (bc_v4i32 (loadv2i64 addr:$src))))), VR256X:$src0), (VBROADCASTI64X2Z128rmk VR256X:$src0, VK4WM:$mask, addr:$src)>; } let Predicates = [HasDQI] in { defm VBROADCASTI64X2 : avx512_subvec_broadcast_rm_dq<0x5a, "vbroadcasti64x2", v8i64_info, v2i64x_info>, VEX_W, EVEX_V512, EVEX_CD8<64, CD8VT2>; defm VBROADCASTI32X8 : avx512_subvec_broadcast_rm_dq<0x5b, "vbroadcasti32x8", v16i32_info, v8i32x_info>, EVEX_V512, EVEX_CD8<32, CD8VT8>; defm VBROADCASTF64X2 : avx512_subvec_broadcast_rm_dq<0x1a, "vbroadcastf64x2", v8f64_info, v2f64x_info>, VEX_W, EVEX_V512, EVEX_CD8<64, CD8VT2>; defm VBROADCASTF32X8 : avx512_subvec_broadcast_rm_dq<0x1b, "vbroadcastf32x8", v16f32_info, v8f32x_info>, EVEX_V512, EVEX_CD8<32, CD8VT8>; // Patterns for selects of bitcasted operations. def : Pat<(vselect VK16WM:$mask, (bc_v16f32 (v8f64 (X86SubVBroadcast (loadv4f64 addr:$src)))), (bc_v16f32 (v16i32 immAllZerosV))), (VBROADCASTF32X8rmkz VK16WM:$mask, addr:$src)>; def : Pat<(vselect VK16WM:$mask, (bc_v16f32 (v8f64 (X86SubVBroadcast (loadv4f64 addr:$src)))), VR512:$src0), (VBROADCASTF32X8rmk VR512:$src0, VK16WM:$mask, addr:$src)>; def : Pat<(vselect VK16WM:$mask, (bc_v16i32 (v8i64 (X86SubVBroadcast (loadv4i64 addr:$src)))), (v16i32 immAllZerosV)), (VBROADCASTI32X8rmkz VK16WM:$mask, addr:$src)>; def : Pat<(vselect VK16WM:$mask, (bc_v16i32 (v8i64 (X86SubVBroadcast (loadv4i64 addr:$src)))), VR512:$src0), (VBROADCASTI32X8rmk VR512:$src0, VK16WM:$mask, addr:$src)>; def : Pat<(vselect VK8WM:$mask, (bc_v8f64 (v16f32 (X86SubVBroadcast (loadv4f32 addr:$src)))), (bc_v8f64 (v16i32 immAllZerosV))), (VBROADCASTF64X2rmkz VK8WM:$mask, addr:$src)>; def : Pat<(vselect VK8WM:$mask, (bc_v8f64 (v16f32 (X86SubVBroadcast (loadv4f32 addr:$src)))), VR512:$src0), (VBROADCASTF64X2rmk VR512:$src0, VK8WM:$mask, addr:$src)>; def : Pat<(vselect VK8WM:$mask, (bc_v8i64 (v16i32 (X86SubVBroadcast (bc_v4i32 (loadv2i64 addr:$src))))), (bc_v8i64 (v16i32 immAllZerosV))), (VBROADCASTI64X2rmkz VK8WM:$mask, addr:$src)>; def : Pat<(vselect VK8WM:$mask, (bc_v8i64 (v16i32 (X86SubVBroadcast (bc_v4i32 (loadv2i64 addr:$src))))), VR512:$src0), (VBROADCASTI64X2rmk VR512:$src0, VK8WM:$mask, addr:$src)>; } multiclass avx512_common_broadcast_32x2<bits<8> opc, string OpcodeStr, AVX512VLVectorVTInfo _Dst, AVX512VLVectorVTInfo _Src> { let Predicates = [HasDQI] in defm Z : avx512_broadcast_rm_split<opc, OpcodeStr, NAME, WriteShuffle256, WriteShuffle256Ld, _Dst.info512, _Src.info512, _Src.info128, null_frag>, EVEX_V512; let Predicates = [HasDQI, HasVLX] in defm Z256 : avx512_broadcast_rm_split<opc, OpcodeStr, NAME, WriteShuffle256, WriteShuffle256Ld, _Dst.info256, _Src.info256, _Src.info128, null_frag>, EVEX_V256; } multiclass avx512_common_broadcast_i32x2<bits<8> opc, string OpcodeStr, AVX512VLVectorVTInfo _Dst, AVX512VLVectorVTInfo _Src> : avx512_common_broadcast_32x2<opc, OpcodeStr, _Dst, _Src> { let Predicates = [HasDQI, HasVLX] in defm Z128 : avx512_broadcast_rm_split<opc, OpcodeStr, NAME, WriteShuffle, WriteShuffleXLd, _Dst.info128, _Src.info128, _Src.info128, null_frag>, EVEX_V128; } defm VBROADCASTI32X2 : avx512_common_broadcast_i32x2<0x59, "vbroadcasti32x2", avx512vl_i32_info, avx512vl_i64_info>; defm VBROADCASTF32X2 : avx512_common_broadcast_32x2<0x19, "vbroadcastf32x2", avx512vl_f32_info, avx512vl_f64_info>; let Predicates = [HasVLX] in { def : Pat<(v8f32 (X86VBroadcast (v8f32 VR256X:$src))), (VBROADCASTSSZ256r (v4f32 (EXTRACT_SUBREG (v8f32 VR256X:$src), sub_xmm)))>; def : Pat<(v4f64 (X86VBroadcast (v4f64 VR256X:$src))), (VBROADCASTSDZ256r (v2f64 (EXTRACT_SUBREG (v4f64 VR256X:$src), sub_xmm)))>; } def : Pat<(v16f32 (X86VBroadcast (v16f32 VR512:$src))), (VBROADCASTSSZr (v4f32 (EXTRACT_SUBREG (v16f32 VR512:$src), sub_xmm)))>; def : Pat<(v16f32 (X86VBroadcast (v8f32 VR256X:$src))), (VBROADCASTSSZr (v4f32 (EXTRACT_SUBREG (v8f32 VR256X:$src), sub_xmm)))>; def : Pat<(v8f64 (X86VBroadcast (v8f64 VR512:$src))), (VBROADCASTSDZr (v2f64 (EXTRACT_SUBREG (v8f64 VR512:$src), sub_xmm)))>; def : Pat<(v8f64 (X86VBroadcast (v4f64 VR256X:$src))), (VBROADCASTSDZr (v2f64 (EXTRACT_SUBREG (v4f64 VR256X:$src), sub_xmm)))>; //===----------------------------------------------------------------------===// // AVX-512 BROADCAST MASK TO VECTOR REGISTER //--- multiclass avx512_mask_broadcastm<bits<8> opc, string OpcodeStr, X86VectorVTInfo _, RegisterClass KRC> { def rr : AVX512XS8I<opc, MRMSrcReg, (outs _.RC:$dst), (ins KRC:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set _.RC:$dst, (_.VT (X86VBroadcastm KRC:$src)))]>, EVEX, Sched<[WriteShuffle]>; } multiclass avx512_mask_broadcast<bits<8> opc, string OpcodeStr, AVX512VLVectorVTInfo VTInfo, RegisterClass KRC> { let Predicates = [HasCDI] in defm Z : avx512_mask_broadcastm<opc, OpcodeStr, VTInfo.info512, KRC>, EVEX_V512; let Predicates = [HasCDI, HasVLX] in { defm Z256 : avx512_mask_broadcastm<opc, OpcodeStr, VTInfo.info256, KRC>, EVEX_V256; defm Z128 : avx512_mask_broadcastm<opc, OpcodeStr, VTInfo.info128, KRC>, EVEX_V128; } } defm VPBROADCASTMW2D : avx512_mask_broadcast<0x3A, "vpbroadcastmw2d", avx512vl_i32_info, VK16>; defm VPBROADCASTMB2Q : avx512_mask_broadcast<0x2A, "vpbroadcastmb2q", avx512vl_i64_info, VK8>, VEX_W; //===----------------------------------------------------------------------===// // -- VPERMI2 - 3 source operands form -- multiclass avx512_perm_i<bits<8> opc, string OpcodeStr, X86FoldableSchedWrite sched, X86VectorVTInfo _, X86VectorVTInfo IdxVT> { let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain, hasSideEffects = 0 in { defm rr: AVX512_maskable_3src_cast<opc, MRMSrcReg, _, IdxVT, (outs _.RC:$dst), (ins _.RC:$src2, _.RC:$src3), OpcodeStr, "$src3, $src2", "$src2, $src3", (_.VT (X86VPermt2 _.RC:$src2, IdxVT.RC:$src1, _.RC:$src3)), 1>, EVEX_4V, AVX5128IBase, Sched<[sched]>; let mayLoad = 1 in defm rm: AVX512_maskable_3src_cast<opc, MRMSrcMem, _, IdxVT, (outs _.RC:$dst), (ins _.RC:$src2, _.MemOp:$src3), OpcodeStr, "$src3, $src2", "$src2, $src3", (_.VT (X86VPermt2 _.RC:$src2, IdxVT.RC:$src1, (_.VT (bitconvert (_.LdFrag addr:$src3))))), 1>, EVEX_4V, AVX5128IBase, Sched<[sched.Folded, ReadAfterLd]>; } } multiclass avx512_perm_i_mb<bits<8> opc, string OpcodeStr, X86FoldableSchedWrite sched, X86VectorVTInfo _, X86VectorVTInfo IdxVT> { let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain, hasSideEffects = 0, mayLoad = 1 in defm rmb: AVX512_maskable_3src_cast<opc, MRMSrcMem, _, IdxVT, (outs _.RC:$dst), (ins _.RC:$src2, _.ScalarMemOp:$src3), OpcodeStr, !strconcat("${src3}", _.BroadcastStr,", $src2"), !strconcat("$src2, ${src3}", _.BroadcastStr ), (_.VT (X86VPermt2 _.RC:$src2, IdxVT.RC:$src1,(_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src3))))), 1>, AVX5128IBase, EVEX_4V, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; } multiclass avx512_perm_i_sizes<bits<8> opc, string OpcodeStr, X86FoldableSchedWrite sched, AVX512VLVectorVTInfo VTInfo, AVX512VLVectorVTInfo ShuffleMask> { defm NAME: avx512_perm_i<opc, OpcodeStr, sched, VTInfo.info512, ShuffleMask.info512>, avx512_perm_i_mb<opc, OpcodeStr, sched, VTInfo.info512, ShuffleMask.info512>, EVEX_V512; let Predicates = [HasVLX] in { defm NAME#128: avx512_perm_i<opc, OpcodeStr, sched, VTInfo.info128, ShuffleMask.info128>, avx512_perm_i_mb<opc, OpcodeStr, sched, VTInfo.info128, ShuffleMask.info128>, EVEX_V128; defm NAME#256: avx512_perm_i<opc, OpcodeStr, sched, VTInfo.info256, ShuffleMask.info256>, avx512_perm_i_mb<opc, OpcodeStr, sched, VTInfo.info256, ShuffleMask.info256>, EVEX_V256; } } multiclass avx512_perm_i_sizes_bw<bits<8> opc, string OpcodeStr, X86FoldableSchedWrite sched, AVX512VLVectorVTInfo VTInfo, AVX512VLVectorVTInfo Idx, Predicate Prd> { let Predicates = [Prd] in defm NAME: avx512_perm_i<opc, OpcodeStr, sched, VTInfo.info512, Idx.info512>, EVEX_V512; let Predicates = [Prd, HasVLX] in { defm NAME#128: avx512_perm_i<opc, OpcodeStr, sched, VTInfo.info128, Idx.info128>, EVEX_V128; defm NAME#256: avx512_perm_i<opc, OpcodeStr, sched, VTInfo.info256, Idx.info256>, EVEX_V256; } } defm VPERMI2D : avx512_perm_i_sizes<0x76, "vpermi2d", WriteVarShuffle256, avx512vl_i32_info, avx512vl_i32_info>, EVEX_CD8<32, CD8VF>; defm VPERMI2Q : avx512_perm_i_sizes<0x76, "vpermi2q", WriteVarShuffle256, avx512vl_i64_info, avx512vl_i64_info>, VEX_W, EVEX_CD8<64, CD8VF>; defm VPERMI2W : avx512_perm_i_sizes_bw<0x75, "vpermi2w", WriteVarShuffle256, avx512vl_i16_info, avx512vl_i16_info, HasBWI>, VEX_W, EVEX_CD8<16, CD8VF>; defm VPERMI2B : avx512_perm_i_sizes_bw<0x75, "vpermi2b", WriteVarShuffle256, avx512vl_i8_info, avx512vl_i8_info, HasVBMI>, EVEX_CD8<8, CD8VF>; defm VPERMI2PS : avx512_perm_i_sizes<0x77, "vpermi2ps", WriteFVarShuffle256, avx512vl_f32_info, avx512vl_i32_info>, EVEX_CD8<32, CD8VF>; defm VPERMI2PD : avx512_perm_i_sizes<0x77, "vpermi2pd", WriteFVarShuffle256, avx512vl_f64_info, avx512vl_i64_info>, VEX_W, EVEX_CD8<64, CD8VF>; // Extra patterns to deal with extra bitcasts due to passthru and index being // different types on the fp versions. multiclass avx512_perm_i_lowering<string InstrStr, X86VectorVTInfo _, X86VectorVTInfo IdxVT, X86VectorVTInfo CastVT> { def : Pat<(_.VT (vselect _.KRCWM:$mask, (X86VPermt2 (_.VT _.RC:$src2), (IdxVT.VT (bitconvert (CastVT.VT _.RC:$src1))), _.RC:$src3), (_.VT (bitconvert (CastVT.VT _.RC:$src1))))), (!cast<Instruction>(InstrStr#"rrk") _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, _.RC:$src3)>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (X86VPermt2 _.RC:$src2, (IdxVT.VT (bitconvert (CastVT.VT _.RC:$src1))), (_.LdFrag addr:$src3)), (_.VT (bitconvert (CastVT.VT _.RC:$src1))))), (!cast<Instruction>(InstrStr#"rmk") _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3)>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (X86VPermt2 _.RC:$src2, (IdxVT.VT (bitconvert (CastVT.VT _.RC:$src1))), (X86VBroadcast (_.ScalarLdFrag addr:$src3))), (_.VT (bitconvert (CastVT.VT _.RC:$src1))))), (!cast<Instruction>(InstrStr#"rmbk") _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3)>; } // TODO: Should we add more casts? The vXi64 case is common due to ABI. defm : avx512_perm_i_lowering<"VPERMI2PS", v16f32_info, v16i32_info, v8i64_info>; defm : avx512_perm_i_lowering<"VPERMI2PS256", v8f32x_info, v8i32x_info, v4i64x_info>; defm : avx512_perm_i_lowering<"VPERMI2PS128", v4f32x_info, v4i32x_info, v2i64x_info>; // VPERMT2 multiclass avx512_perm_t<bits<8> opc, string OpcodeStr, X86FoldableSchedWrite sched, X86VectorVTInfo _, X86VectorVTInfo IdxVT> { let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain in { defm rr: AVX512_maskable_3src<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins IdxVT.RC:$src2, _.RC:$src3), OpcodeStr, "$src3, $src2", "$src2, $src3", (_.VT (X86VPermt2 _.RC:$src1, IdxVT.RC:$src2, _.RC:$src3)), 1>, EVEX_4V, AVX5128IBase, Sched<[sched]>; defm rm: AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins IdxVT.RC:$src2, _.MemOp:$src3), OpcodeStr, "$src3, $src2", "$src2, $src3", (_.VT (X86VPermt2 _.RC:$src1, IdxVT.RC:$src2, (bitconvert (_.LdFrag addr:$src3)))), 1>, EVEX_4V, AVX5128IBase, Sched<[sched.Folded, ReadAfterLd]>; } } multiclass avx512_perm_t_mb<bits<8> opc, string OpcodeStr, X86FoldableSchedWrite sched, X86VectorVTInfo _, X86VectorVTInfo IdxVT> { let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain in defm rmb: AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins IdxVT.RC:$src2, _.ScalarMemOp:$src3), OpcodeStr, !strconcat("${src3}", _.BroadcastStr,", $src2"), !strconcat("$src2, ${src3}", _.BroadcastStr ), (_.VT (X86VPermt2 _.RC:$src1, IdxVT.RC:$src2,(_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src3))))), 1>, AVX5128IBase, EVEX_4V, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; } multiclass avx512_perm_t_sizes<bits<8> opc, string OpcodeStr, X86FoldableSchedWrite sched, AVX512VLVectorVTInfo VTInfo, AVX512VLVectorVTInfo ShuffleMask> { defm NAME: avx512_perm_t<opc, OpcodeStr, sched, VTInfo.info512, ShuffleMask.info512>, avx512_perm_t_mb<opc, OpcodeStr, sched, VTInfo.info512, ShuffleMask.info512>, EVEX_V512; let Predicates = [HasVLX] in { defm NAME#128: avx512_perm_t<opc, OpcodeStr, sched, VTInfo.info128, ShuffleMask.info128>, avx512_perm_t_mb<opc, OpcodeStr, sched, VTInfo.info128, ShuffleMask.info128>, EVEX_V128; defm NAME#256: avx512_perm_t<opc, OpcodeStr, sched, VTInfo.info256, ShuffleMask.info256>, avx512_perm_t_mb<opc, OpcodeStr, sched, VTInfo.info256, ShuffleMask.info256>, EVEX_V256; } } multiclass avx512_perm_t_sizes_bw<bits<8> opc, string OpcodeStr, X86FoldableSchedWrite sched, AVX512VLVectorVTInfo VTInfo, AVX512VLVectorVTInfo Idx, Predicate Prd> { let Predicates = [Prd] in defm NAME: avx512_perm_t<opc, OpcodeStr, sched, VTInfo.info512, Idx.info512>, EVEX_V512; let Predicates = [Prd, HasVLX] in { defm NAME#128: avx512_perm_t<opc, OpcodeStr, sched, VTInfo.info128, Idx.info128>, EVEX_V128; defm NAME#256: avx512_perm_t<opc, OpcodeStr, sched, VTInfo.info256, Idx.info256>, EVEX_V256; } } defm VPERMT2D : avx512_perm_t_sizes<0x7E, "vpermt2d", WriteVarShuffle256, avx512vl_i32_info, avx512vl_i32_info>, EVEX_CD8<32, CD8VF>; defm VPERMT2Q : avx512_perm_t_sizes<0x7E, "vpermt2q", WriteVarShuffle256, avx512vl_i64_info, avx512vl_i64_info>, VEX_W, EVEX_CD8<64, CD8VF>; defm VPERMT2W : avx512_perm_t_sizes_bw<0x7D, "vpermt2w", WriteVarShuffle256, avx512vl_i16_info, avx512vl_i16_info, HasBWI>, VEX_W, EVEX_CD8<16, CD8VF>; defm VPERMT2B : avx512_perm_t_sizes_bw<0x7D, "vpermt2b", WriteVarShuffle256, avx512vl_i8_info, avx512vl_i8_info, HasVBMI>, EVEX_CD8<8, CD8VF>; defm VPERMT2PS : avx512_perm_t_sizes<0x7F, "vpermt2ps", WriteFVarShuffle256, avx512vl_f32_info, avx512vl_i32_info>, EVEX_CD8<32, CD8VF>; defm VPERMT2PD : avx512_perm_t_sizes<0x7F, "vpermt2pd", WriteFVarShuffle256, avx512vl_f64_info, avx512vl_i64_info>, VEX_W, EVEX_CD8<64, CD8VF>; //===----------------------------------------------------------------------===// // AVX-512 - BLEND using mask // multiclass WriteFVarBlendask<bits<8> opc, string OpcodeStr, X86FoldableSchedWrite sched, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain, hasSideEffects = 0 in { def rr : AVX5128I<opc, MRMSrcReg, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, ${dst}|${dst}, $src1, $src2}"), []>, EVEX_4V, Sched<[sched]>; def rrk : AVX5128I<opc, MRMSrcReg, (outs _.RC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.RC:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, ${dst} {${mask}}|${dst} {${mask}}, $src1, $src2}"), []>, EVEX_4V, EVEX_K, Sched<[sched]>; def rrkz : AVX5128I<opc, MRMSrcReg, (outs _.RC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.RC:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src1, $src2}"), []>, EVEX_4V, EVEX_KZ, Sched<[sched]>, NotMemoryFoldable; let mayLoad = 1 in { def rm : AVX5128I<opc, MRMSrcMem, (outs _.RC:$dst), (ins _.RC:$src1, _.MemOp:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, ${dst}|${dst}, $src1, $src2}"), []>, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>, Sched<[sched.Folded, ReadAfterLd]>; def rmk : AVX5128I<opc, MRMSrcMem, (outs _.RC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.MemOp:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, ${dst} {${mask}}|${dst} {${mask}}, $src1, $src2}"), []>, EVEX_4V, EVEX_K, EVEX_CD8<_.EltSize, CD8VF>, Sched<[sched.Folded, ReadAfterLd]>; def rmkz : AVX5128I<opc, MRMSrcMem, (outs _.RC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.MemOp:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src1, $src2}"), []>, EVEX_4V, EVEX_KZ, EVEX_CD8<_.EltSize, CD8VF>, Sched<[sched.Folded, ReadAfterLd]>, NotMemoryFoldable; } } } multiclass WriteFVarBlendask_rmb<bits<8> opc, string OpcodeStr, X86FoldableSchedWrite sched, X86VectorVTInfo _> { let mayLoad = 1, hasSideEffects = 0 in { def rmbk : AVX5128I<opc, MRMSrcMem, (outs _.RC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.ScalarMemOp:$src2), !strconcat(OpcodeStr, "\t{${src2}", _.BroadcastStr, ", $src1, $dst {${mask}}|", "$dst {${mask}}, $src1, ${src2}", _.BroadcastStr, "}"), []>, EVEX_4V, EVEX_K, EVEX_B, EVEX_CD8<_.EltSize, CD8VF>, Sched<[sched.Folded, ReadAfterLd]>; def rmbkz : AVX5128I<opc, MRMSrcMem, (outs _.RC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.ScalarMemOp:$src2), !strconcat(OpcodeStr, "\t{${src2}", _.BroadcastStr, ", $src1, $dst {${mask}} {z}|", "$dst {${mask}} {z}, $src1, ${src2}", _.BroadcastStr, "}"), []>, EVEX_4V, EVEX_KZ, EVEX_B, EVEX_CD8<_.EltSize, CD8VF>, Sched<[sched.Folded, ReadAfterLd]>, NotMemoryFoldable; def rmb : AVX5128I<opc, MRMSrcMem, (outs _.RC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2), !strconcat(OpcodeStr, "\t{${src2}", _.BroadcastStr, ", $src1, $dst|", "$dst, $src1, ${src2}", _.BroadcastStr, "}"), []>, EVEX_4V, EVEX_B, EVEX_CD8<_.EltSize, CD8VF>, Sched<[sched.Folded, ReadAfterLd]>; } } multiclass blendmask_dq<bits<8> opc, string OpcodeStr, X86SchedWriteWidths sched, AVX512VLVectorVTInfo VTInfo> { defm Z : WriteFVarBlendask<opc, OpcodeStr, sched.ZMM, VTInfo.info512>, WriteFVarBlendask_rmb<opc, OpcodeStr, sched.ZMM, VTInfo.info512>, EVEX_V512; let Predicates = [HasVLX] in { defm Z256 : WriteFVarBlendask<opc, OpcodeStr, sched.YMM, VTInfo.info256>, WriteFVarBlendask_rmb<opc, OpcodeStr, sched.YMM, VTInfo.info256>, EVEX_V256; defm Z128 : WriteFVarBlendask<opc, OpcodeStr, sched.XMM, VTInfo.info128>, WriteFVarBlendask_rmb<opc, OpcodeStr, sched.XMM, VTInfo.info128>, EVEX_V128; } } multiclass blendmask_bw<bits<8> opc, string OpcodeStr, X86SchedWriteWidths sched, AVX512VLVectorVTInfo VTInfo> { let Predicates = [HasBWI] in defm Z : WriteFVarBlendask<opc, OpcodeStr, sched.ZMM, VTInfo.info512>, EVEX_V512; let Predicates = [HasBWI, HasVLX] in { defm Z256 : WriteFVarBlendask<opc, OpcodeStr, sched.YMM, VTInfo.info256>, EVEX_V256; defm Z128 : WriteFVarBlendask<opc, OpcodeStr, sched.XMM, VTInfo.info128>, EVEX_V128; } } defm VBLENDMPS : blendmask_dq<0x65, "vblendmps", SchedWriteFVarBlend, avx512vl_f32_info>; defm VBLENDMPD : blendmask_dq<0x65, "vblendmpd", SchedWriteFVarBlend, avx512vl_f64_info>, VEX_W; defm VPBLENDMD : blendmask_dq<0x64, "vpblendmd", SchedWriteVarBlend, avx512vl_i32_info>; defm VPBLENDMQ : blendmask_dq<0x64, "vpblendmq", SchedWriteVarBlend, avx512vl_i64_info>, VEX_W; defm VPBLENDMB : blendmask_bw<0x66, "vpblendmb", SchedWriteVarBlend, avx512vl_i8_info>; defm VPBLENDMW : blendmask_bw<0x66, "vpblendmw", SchedWriteVarBlend, avx512vl_i16_info>, VEX_W; //===----------------------------------------------------------------------===// // Compare Instructions //===----------------------------------------------------------------------===// // avx512_cmp_scalar - AVX512 CMPSS and CMPSD multiclass avx512_cmp_scalar<X86VectorVTInfo _, SDNode OpNode, SDNode OpNodeRnd, X86FoldableSchedWrite sched> { defm rr_Int : AVX512_maskable_cmp<0xC2, MRMSrcReg, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.RC:$src2, AVXCC:$cc), "vcmp${cc}"#_.Suffix, "$src2, $src1", "$src1, $src2", (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2), imm:$cc)>, EVEX_4V, Sched<[sched]>; let mayLoad = 1 in defm rm_Int : AVX512_maskable_cmp<0xC2, MRMSrcMem, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.IntScalarMemOp:$src2, AVXCC:$cc), "vcmp${cc}"#_.Suffix, "$src2, $src1", "$src1, $src2", (OpNode (_.VT _.RC:$src1), _.ScalarIntMemCPat:$src2, imm:$cc)>, EVEX_4V, EVEX_CD8<_.EltSize, CD8VT1>, Sched<[sched.Folded, ReadAfterLd]>; defm rrb_Int : AVX512_maskable_cmp<0xC2, MRMSrcReg, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.RC:$src2, AVXCC:$cc), "vcmp${cc}"#_.Suffix, "{sae}, $src2, $src1", "$src1, $src2, {sae}", (OpNodeRnd (_.VT _.RC:$src1), (_.VT _.RC:$src2), imm:$cc, (i32 FROUND_NO_EXC))>, EVEX_4V, EVEX_B, Sched<[sched]>; // Accept explicit immediate argument form instead of comparison code. let isAsmParserOnly = 1, hasSideEffects = 0 in { defm rri_alt : AVX512_maskable_cmp_alt<0xC2, MRMSrcReg, _, (outs VK1:$dst), (ins _.RC:$src1, _.RC:$src2, u8imm:$cc), "vcmp"#_.Suffix, "$cc, $src2, $src1", "$src1, $src2, $cc">, EVEX_4V, Sched<[sched]>, NotMemoryFoldable; let mayLoad = 1 in defm rmi_alt : AVX512_maskable_cmp_alt<0xC2, MRMSrcMem, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2, u8imm:$cc), "vcmp"#_.Suffix, "$cc, $src2, $src1", "$src1, $src2, $cc">, EVEX_4V, EVEX_CD8<_.EltSize, CD8VT1>, Sched<[sched.Folded, ReadAfterLd]>, NotMemoryFoldable; defm rrb_alt : AVX512_maskable_cmp_alt<0xC2, MRMSrcReg, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.RC:$src2, u8imm:$cc), "vcmp"#_.Suffix, "$cc, {sae}, $src2, $src1","$src1, $src2, {sae}, $cc">, EVEX_4V, EVEX_B, Sched<[sched]>, NotMemoryFoldable; }// let isAsmParserOnly = 1, hasSideEffects = 0 let isCodeGenOnly = 1 in { let isCommutable = 1 in def rr : AVX512Ii8<0xC2, MRMSrcReg, (outs _.KRC:$dst), (ins _.FRC:$src1, _.FRC:$src2, AVXCC:$cc), !strconcat("vcmp${cc}", _.Suffix, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set _.KRC:$dst, (OpNode _.FRC:$src1, _.FRC:$src2, imm:$cc))]>, EVEX_4V, Sched<[sched]>; def rm : AVX512Ii8<0xC2, MRMSrcMem, (outs _.KRC:$dst), (ins _.FRC:$src1, _.ScalarMemOp:$src2, AVXCC:$cc), !strconcat("vcmp${cc}", _.Suffix, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set _.KRC:$dst, (OpNode _.FRC:$src1, (_.ScalarLdFrag addr:$src2), imm:$cc))]>, EVEX_4V, EVEX_CD8<_.EltSize, CD8VT1>, Sched<[sched.Folded, ReadAfterLd]>; } } let Predicates = [HasAVX512] in { let ExeDomain = SSEPackedSingle in defm VCMPSSZ : avx512_cmp_scalar<f32x_info, X86cmpms, X86cmpmsRnd, SchedWriteFCmp.Scl>, AVX512XSIi8Base; let ExeDomain = SSEPackedDouble in defm VCMPSDZ : avx512_cmp_scalar<f64x_info, X86cmpms, X86cmpmsRnd, SchedWriteFCmp.Scl>, AVX512XDIi8Base, VEX_W; } multiclass avx512_icmp_packed<bits<8> opc, string OpcodeStr, PatFrag OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _, bit IsCommutable> { let isCommutable = IsCommutable in def rr : AVX512BI<opc, MRMSrcReg, (outs _.KRC:$dst), (ins _.RC:$src1, _.RC:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set _.KRC:$dst, (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2)))]>, EVEX_4V, Sched<[sched]>; def rm : AVX512BI<opc, MRMSrcMem, (outs _.KRC:$dst), (ins _.RC:$src1, _.MemOp:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set _.KRC:$dst, (OpNode (_.VT _.RC:$src1), (_.VT (bitconvert (_.LdFrag addr:$src2)))))]>, EVEX_4V, Sched<[sched.Folded, ReadAfterLd]>; let isCommutable = IsCommutable in def rrk : AVX512BI<opc, MRMSrcReg, (outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.RC:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst {${mask}}|", "$dst {${mask}}, $src1, $src2}"), [(set _.KRC:$dst, (and _.KRCWM:$mask, (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2))))]>, EVEX_4V, EVEX_K, Sched<[sched]>; def rmk : AVX512BI<opc, MRMSrcMem, (outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.MemOp:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst {${mask}}|", "$dst {${mask}}, $src1, $src2}"), [(set _.KRC:$dst, (and _.KRCWM:$mask, (OpNode (_.VT _.RC:$src1), (_.VT (bitconvert (_.LdFrag addr:$src2))))))]>, EVEX_4V, EVEX_K, Sched<[sched.Folded, ReadAfterLd]>; } multiclass avx512_icmp_packed_rmb<bits<8> opc, string OpcodeStr, PatFrag OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _, bit IsCommutable> : avx512_icmp_packed<opc, OpcodeStr, OpNode, sched, _, IsCommutable> { def rmb : AVX512BI<opc, MRMSrcMem, (outs _.KRC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2), !strconcat(OpcodeStr, "\t{${src2}", _.BroadcastStr, ", $src1, $dst", "|$dst, $src1, ${src2}", _.BroadcastStr, "}"), [(set _.KRC:$dst, (OpNode (_.VT _.RC:$src1), (X86VBroadcast (_.ScalarLdFrag addr:$src2))))]>, EVEX_4V, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; def rmbk : AVX512BI<opc, MRMSrcMem, (outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.ScalarMemOp:$src2), !strconcat(OpcodeStr, "\t{${src2}", _.BroadcastStr, ", $src1, $dst {${mask}}|", "$dst {${mask}}, $src1, ${src2}", _.BroadcastStr, "}"), [(set _.KRC:$dst, (and _.KRCWM:$mask, (OpNode (_.VT _.RC:$src1), (X86VBroadcast (_.ScalarLdFrag addr:$src2)))))]>, EVEX_4V, EVEX_K, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; } multiclass avx512_icmp_packed_vl<bits<8> opc, string OpcodeStr, PatFrag OpNode, X86SchedWriteWidths sched, AVX512VLVectorVTInfo VTInfo, Predicate prd, bit IsCommutable = 0> { let Predicates = [prd] in defm Z : avx512_icmp_packed<opc, OpcodeStr, OpNode, sched.ZMM, VTInfo.info512, IsCommutable>, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_icmp_packed<opc, OpcodeStr, OpNode, sched.YMM, VTInfo.info256, IsCommutable>, EVEX_V256; defm Z128 : avx512_icmp_packed<opc, OpcodeStr, OpNode, sched.XMM, VTInfo.info128, IsCommutable>, EVEX_V128; } } multiclass avx512_icmp_packed_rmb_vl<bits<8> opc, string OpcodeStr, PatFrag OpNode, X86SchedWriteWidths sched, AVX512VLVectorVTInfo VTInfo, Predicate prd, bit IsCommutable = 0> { let Predicates = [prd] in defm Z : avx512_icmp_packed_rmb<opc, OpcodeStr, OpNode, sched.ZMM, VTInfo.info512, IsCommutable>, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_icmp_packed_rmb<opc, OpcodeStr, OpNode, sched.YMM, VTInfo.info256, IsCommutable>, EVEX_V256; defm Z128 : avx512_icmp_packed_rmb<opc, OpcodeStr, OpNode, sched.XMM, VTInfo.info128, IsCommutable>, EVEX_V128; } } // This fragment treats X86cmpm as commutable to help match loads in both // operands for PCMPEQ. def X86setcc_commute : SDNode<"ISD::SETCC", SDTSetCC, [SDNPCommutative]>; def X86pcmpeqm_c : PatFrag<(ops node:$src1, node:$src2), (X86setcc_commute node:$src1, node:$src2, SETEQ)>; def X86pcmpgtm : PatFrag<(ops node:$src1, node:$src2), (setcc node:$src1, node:$src2, SETGT)>; // AddedComplexity is needed because the explicit SETEQ/SETGT CondCode doesn't // increase the pattern complexity the way an immediate would. let AddedComplexity = 2 in { // FIXME: Is there a better scheduler class for VPCMP? defm VPCMPEQB : avx512_icmp_packed_vl<0x74, "vpcmpeqb", X86pcmpeqm_c, SchedWriteVecALU, avx512vl_i8_info, HasBWI, 1>, EVEX_CD8<8, CD8VF>, VEX_WIG; defm VPCMPEQW : avx512_icmp_packed_vl<0x75, "vpcmpeqw", X86pcmpeqm_c, SchedWriteVecALU, avx512vl_i16_info, HasBWI, 1>, EVEX_CD8<16, CD8VF>, VEX_WIG; defm VPCMPEQD : avx512_icmp_packed_rmb_vl<0x76, "vpcmpeqd", X86pcmpeqm_c, SchedWriteVecALU, avx512vl_i32_info, HasAVX512, 1>, EVEX_CD8<32, CD8VF>; defm VPCMPEQQ : avx512_icmp_packed_rmb_vl<0x29, "vpcmpeqq", X86pcmpeqm_c, SchedWriteVecALU, avx512vl_i64_info, HasAVX512, 1>, T8PD, VEX_W, EVEX_CD8<64, CD8VF>; defm VPCMPGTB : avx512_icmp_packed_vl<0x64, "vpcmpgtb", X86pcmpgtm, SchedWriteVecALU, avx512vl_i8_info, HasBWI>, EVEX_CD8<8, CD8VF>, VEX_WIG; defm VPCMPGTW : avx512_icmp_packed_vl<0x65, "vpcmpgtw", X86pcmpgtm, SchedWriteVecALU, avx512vl_i16_info, HasBWI>, EVEX_CD8<16, CD8VF>, VEX_WIG; defm VPCMPGTD : avx512_icmp_packed_rmb_vl<0x66, "vpcmpgtd", X86pcmpgtm, SchedWriteVecALU, avx512vl_i32_info, HasAVX512>, EVEX_CD8<32, CD8VF>; defm VPCMPGTQ : avx512_icmp_packed_rmb_vl<0x37, "vpcmpgtq", X86pcmpgtm, SchedWriteVecALU, avx512vl_i64_info, HasAVX512>, T8PD, VEX_W, EVEX_CD8<64, CD8VF>; } multiclass avx512_icmp_cc<bits<8> opc, string Suffix, PatFrag Frag, PatFrag CommFrag, X86FoldableSchedWrite sched, X86VectorVTInfo _, string Name> { let isCommutable = 1 in def rri : AVX512AIi8<opc, MRMSrcReg, (outs _.KRC:$dst), (ins _.RC:$src1, _.RC:$src2, AVX512ICC:$cc), !strconcat("vpcmp${cc}", Suffix, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set _.KRC:$dst, (_.KVT (Frag:$cc (_.VT _.RC:$src1), (_.VT _.RC:$src2), cond)))]>, EVEX_4V, Sched<[sched]>; def rmi : AVX512AIi8<opc, MRMSrcMem, (outs _.KRC:$dst), (ins _.RC:$src1, _.MemOp:$src2, AVX512ICC:$cc), !strconcat("vpcmp${cc}", Suffix, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set _.KRC:$dst, (_.KVT (Frag:$cc (_.VT _.RC:$src1), (_.VT (bitconvert (_.LdFrag addr:$src2))), cond)))]>, EVEX_4V, Sched<[sched.Folded, ReadAfterLd]>; let isCommutable = 1 in def rrik : AVX512AIi8<opc, MRMSrcReg, (outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.RC:$src2, AVX512ICC:$cc), !strconcat("vpcmp${cc}", Suffix, "\t{$src2, $src1, $dst {${mask}}|", "$dst {${mask}}, $src1, $src2}"), [(set _.KRC:$dst, (and _.KRCWM:$mask, (_.KVT (Frag:$cc (_.VT _.RC:$src1), (_.VT _.RC:$src2), cond))))]>, EVEX_4V, EVEX_K, Sched<[sched]>; def rmik : AVX512AIi8<opc, MRMSrcMem, (outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.MemOp:$src2, AVX512ICC:$cc), !strconcat("vpcmp${cc}", Suffix, "\t{$src2, $src1, $dst {${mask}}|", "$dst {${mask}}, $src1, $src2}"), [(set _.KRC:$dst, (and _.KRCWM:$mask, (_.KVT (Frag:$cc (_.VT _.RC:$src1), (_.VT (bitconvert (_.LdFrag addr:$src2))), cond))))]>, EVEX_4V, EVEX_K, Sched<[sched.Folded, ReadAfterLd]>; // Accept explicit immediate argument form instead of comparison code. let isAsmParserOnly = 1, hasSideEffects = 0 in { def rri_alt : AVX512AIi8<opc, MRMSrcReg, (outs _.KRC:$dst), (ins _.RC:$src1, _.RC:$src2, u8imm:$cc), !strconcat("vpcmp", Suffix, "\t{$cc, $src2, $src1, $dst|", "$dst, $src1, $src2, $cc}"), []>, EVEX_4V, Sched<[sched]>, NotMemoryFoldable; let mayLoad = 1 in def rmi_alt : AVX512AIi8<opc, MRMSrcMem, (outs _.KRC:$dst), (ins _.RC:$src1, _.MemOp:$src2, u8imm:$cc), !strconcat("vpcmp", Suffix, "\t{$cc, $src2, $src1, $dst|", "$dst, $src1, $src2, $cc}"), []>, EVEX_4V, Sched<[sched.Folded, ReadAfterLd]>, NotMemoryFoldable; def rrik_alt : AVX512AIi8<opc, MRMSrcReg, (outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.RC:$src2, u8imm:$cc), !strconcat("vpcmp", Suffix, "\t{$cc, $src2, $src1, $dst {${mask}}|", "$dst {${mask}}, $src1, $src2, $cc}"), []>, EVEX_4V, EVEX_K, Sched<[sched]>, NotMemoryFoldable; let mayLoad = 1 in def rmik_alt : AVX512AIi8<opc, MRMSrcMem, (outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.MemOp:$src2, u8imm:$cc), !strconcat("vpcmp", Suffix, "\t{$cc, $src2, $src1, $dst {${mask}}|", "$dst {${mask}}, $src1, $src2, $cc}"), []>, EVEX_4V, EVEX_K, Sched<[sched.Folded, ReadAfterLd]>, NotMemoryFoldable; } def : Pat<(_.KVT (CommFrag:$cc (bitconvert (_.LdFrag addr:$src2)), (_.VT _.RC:$src1), cond)), (!cast<Instruction>(Name#_.ZSuffix#"rmi") _.RC:$src1, addr:$src2, (CommFrag.OperandTransform $cc))>; def : Pat<(and _.KRCWM:$mask, (_.KVT (CommFrag:$cc (bitconvert (_.LdFrag addr:$src2)), (_.VT _.RC:$src1), cond))), (!cast<Instruction>(Name#_.ZSuffix#"rmik") _.KRCWM:$mask, _.RC:$src1, addr:$src2, (CommFrag.OperandTransform $cc))>; } multiclass avx512_icmp_cc_rmb<bits<8> opc, string Suffix, PatFrag Frag, PatFrag CommFrag, X86FoldableSchedWrite sched, X86VectorVTInfo _, string Name> : avx512_icmp_cc<opc, Suffix, Frag, CommFrag, sched, _, Name> { def rmib : AVX512AIi8<opc, MRMSrcMem, (outs _.KRC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2, AVX512ICC:$cc), !strconcat("vpcmp${cc}", Suffix, "\t{${src2}", _.BroadcastStr, ", $src1, $dst|", "$dst, $src1, ${src2}", _.BroadcastStr, "}"), [(set _.KRC:$dst, (_.KVT (Frag:$cc (_.VT _.RC:$src1), (X86VBroadcast (_.ScalarLdFrag addr:$src2)), cond)))]>, EVEX_4V, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; def rmibk : AVX512AIi8<opc, MRMSrcMem, (outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.ScalarMemOp:$src2, AVX512ICC:$cc), !strconcat("vpcmp${cc}", Suffix, "\t{${src2}", _.BroadcastStr, ", $src1, $dst {${mask}}|", "$dst {${mask}}, $src1, ${src2}", _.BroadcastStr, "}"), [(set _.KRC:$dst, (and _.KRCWM:$mask, (_.KVT (Frag:$cc (_.VT _.RC:$src1), (X86VBroadcast (_.ScalarLdFrag addr:$src2)), cond))))]>, EVEX_4V, EVEX_K, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; // Accept explicit immediate argument form instead of comparison code. let isAsmParserOnly = 1, hasSideEffects = 0, mayLoad = 1 in { def rmib_alt : AVX512AIi8<opc, MRMSrcMem, (outs _.KRC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2, u8imm:$cc), !strconcat("vpcmp", Suffix, "\t{$cc, ${src2}", _.BroadcastStr, ", $src1, $dst|", "$dst, $src1, ${src2}", _.BroadcastStr, ", $cc}"), []>, EVEX_4V, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>, NotMemoryFoldable; def rmibk_alt : AVX512AIi8<opc, MRMSrcMem, (outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.ScalarMemOp:$src2, u8imm:$cc), !strconcat("vpcmp", Suffix, "\t{$cc, ${src2}", _.BroadcastStr, ", $src1, $dst {${mask}}|", "$dst {${mask}}, $src1, ${src2}", _.BroadcastStr, ", $cc}"), []>, EVEX_4V, EVEX_K, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>, NotMemoryFoldable; } def : Pat<(_.KVT (CommFrag:$cc (X86VBroadcast (_.ScalarLdFrag addr:$src2)), (_.VT _.RC:$src1), cond)), (!cast<Instruction>(Name#_.ZSuffix#"rmib") _.RC:$src1, addr:$src2, (CommFrag.OperandTransform $cc))>; def : Pat<(and _.KRCWM:$mask, (_.KVT (CommFrag:$cc (X86VBroadcast (_.ScalarLdFrag addr:$src2)), (_.VT _.RC:$src1), cond))), (!cast<Instruction>(Name#_.ZSuffix#"rmibk") _.KRCWM:$mask, _.RC:$src1, addr:$src2, (CommFrag.OperandTransform $cc))>; } multiclass avx512_icmp_cc_vl<bits<8> opc, string Suffix, PatFrag Frag, PatFrag CommFrag, X86SchedWriteWidths sched, AVX512VLVectorVTInfo VTInfo, Predicate prd> { let Predicates = [prd] in defm Z : avx512_icmp_cc<opc, Suffix, Frag, CommFrag, sched.ZMM, VTInfo.info512, NAME>, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_icmp_cc<opc, Suffix, Frag, CommFrag, sched.YMM, VTInfo.info256, NAME>, EVEX_V256; defm Z128 : avx512_icmp_cc<opc, Suffix, Frag, CommFrag, sched.XMM, VTInfo.info128, NAME>, EVEX_V128; } } multiclass avx512_icmp_cc_rmb_vl<bits<8> opc, string Suffix, PatFrag Frag, PatFrag CommFrag, X86SchedWriteWidths sched, AVX512VLVectorVTInfo VTInfo, Predicate prd> { let Predicates = [prd] in defm Z : avx512_icmp_cc_rmb<opc, Suffix, Frag, CommFrag, sched.ZMM, VTInfo.info512, NAME>, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_icmp_cc_rmb<opc, Suffix, Frag, CommFrag, sched.YMM, VTInfo.info256, NAME>, EVEX_V256; defm Z128 : avx512_icmp_cc_rmb<opc, Suffix, Frag, CommFrag, sched.XMM, VTInfo.info128, NAME>, EVEX_V128; } } def X86pcmpm_imm : SDNodeXForm<setcc, [{ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); uint8_t SSECC = X86::getVPCMPImmForCond(CC); return getI8Imm(SSECC, SDLoc(N)); }]>; // Swapped operand version of the above. def X86pcmpm_imm_commute : SDNodeXForm<setcc, [{ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); uint8_t SSECC = X86::getVPCMPImmForCond(CC); SSECC = X86::getSwappedVPCMPImm(SSECC); return getI8Imm(SSECC, SDLoc(N)); }]>; def X86pcmpm : PatFrag<(ops node:$src1, node:$src2, node:$cc), (setcc node:$src1, node:$src2, node:$cc), [{ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); return !ISD::isUnsignedIntSetCC(CC); }], X86pcmpm_imm>; // Same as above, but commutes immediate. Use for load folding. def X86pcmpm_commute : PatFrag<(ops node:$src1, node:$src2, node:$cc), (setcc node:$src1, node:$src2, node:$cc), [{ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); return !ISD::isUnsignedIntSetCC(CC); }], X86pcmpm_imm_commute>; def X86pcmpum : PatFrag<(ops node:$src1, node:$src2, node:$cc), (setcc node:$src1, node:$src2, node:$cc), [{ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); return ISD::isUnsignedIntSetCC(CC); }], X86pcmpm_imm>; // Same as above, but commutes immediate. Use for load folding. def X86pcmpum_commute : PatFrag<(ops node:$src1, node:$src2, node:$cc), (setcc node:$src1, node:$src2, node:$cc), [{ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); return ISD::isUnsignedIntSetCC(CC); }], X86pcmpm_imm_commute>; // FIXME: Is there a better scheduler class for VPCMP/VPCMPU? defm VPCMPB : avx512_icmp_cc_vl<0x3F, "b", X86pcmpm, X86pcmpm_commute, SchedWriteVecALU, avx512vl_i8_info, HasBWI>, EVEX_CD8<8, CD8VF>; defm VPCMPUB : avx512_icmp_cc_vl<0x3E, "ub", X86pcmpum, X86pcmpum_commute, SchedWriteVecALU, avx512vl_i8_info, HasBWI>, EVEX_CD8<8, CD8VF>; defm VPCMPW : avx512_icmp_cc_vl<0x3F, "w", X86pcmpm, X86pcmpm_commute, SchedWriteVecALU, avx512vl_i16_info, HasBWI>, VEX_W, EVEX_CD8<16, CD8VF>; defm VPCMPUW : avx512_icmp_cc_vl<0x3E, "uw", X86pcmpum, X86pcmpum_commute, SchedWriteVecALU, avx512vl_i16_info, HasBWI>, VEX_W, EVEX_CD8<16, CD8VF>; defm VPCMPD : avx512_icmp_cc_rmb_vl<0x1F, "d", X86pcmpm, X86pcmpm_commute, SchedWriteVecALU, avx512vl_i32_info, HasAVX512>, EVEX_CD8<32, CD8VF>; defm VPCMPUD : avx512_icmp_cc_rmb_vl<0x1E, "ud", X86pcmpum, X86pcmpum_commute, SchedWriteVecALU, avx512vl_i32_info, HasAVX512>, EVEX_CD8<32, CD8VF>; defm VPCMPQ : avx512_icmp_cc_rmb_vl<0x1F, "q", X86pcmpm, X86pcmpm_commute, SchedWriteVecALU, avx512vl_i64_info, HasAVX512>, VEX_W, EVEX_CD8<64, CD8VF>; defm VPCMPUQ : avx512_icmp_cc_rmb_vl<0x1E, "uq", X86pcmpum, X86pcmpum_commute, SchedWriteVecALU, avx512vl_i64_info, HasAVX512>, VEX_W, EVEX_CD8<64, CD8VF>; multiclass avx512_vcmp_common<X86FoldableSchedWrite sched, X86VectorVTInfo _, string Name> { defm rri : AVX512_maskable_cmp<0xC2, MRMSrcReg, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.RC:$src2,AVXCC:$cc), "vcmp${cc}"#_.Suffix, "$src2, $src1", "$src1, $src2", (X86cmpm (_.VT _.RC:$src1), (_.VT _.RC:$src2), imm:$cc), 1>, Sched<[sched]>; defm rmi : AVX512_maskable_cmp<0xC2, MRMSrcMem, _, (outs _.KRC:$dst),(ins _.RC:$src1, _.MemOp:$src2, AVXCC:$cc), "vcmp${cc}"#_.Suffix, "$src2, $src1", "$src1, $src2", (X86cmpm (_.VT _.RC:$src1), (_.VT (bitconvert (_.LdFrag addr:$src2))), imm:$cc)>, Sched<[sched.Folded, ReadAfterLd]>; defm rmbi : AVX512_maskable_cmp<0xC2, MRMSrcMem, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2, AVXCC:$cc), "vcmp${cc}"#_.Suffix, "${src2}"##_.BroadcastStr##", $src1", "$src1, ${src2}"##_.BroadcastStr, (X86cmpm (_.VT _.RC:$src1), (_.VT (X86VBroadcast(_.ScalarLdFrag addr:$src2))), imm:$cc)>, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; // Accept explicit immediate argument form instead of comparison code. let isAsmParserOnly = 1, hasSideEffects = 0 in { defm rri_alt : AVX512_maskable_cmp_alt<0xC2, MRMSrcReg, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.RC:$src2, u8imm:$cc), "vcmp"#_.Suffix, "$cc, $src2, $src1", "$src1, $src2, $cc">, Sched<[sched]>, NotMemoryFoldable; let mayLoad = 1 in { defm rmi_alt : AVX512_maskable_cmp_alt<0xC2, MRMSrcMem, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.MemOp:$src2, u8imm:$cc), "vcmp"#_.Suffix, "$cc, $src2, $src1", "$src1, $src2, $cc">, Sched<[sched.Folded, ReadAfterLd]>, NotMemoryFoldable; defm rmbi_alt : AVX512_maskable_cmp_alt<0xC2, MRMSrcMem, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2, u8imm:$cc), "vcmp"#_.Suffix, "$cc, ${src2}"##_.BroadcastStr##", $src1", "$src1, ${src2}"##_.BroadcastStr##", $cc">, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>, NotMemoryFoldable; } } // Patterns for selecting with loads in other operand. def : Pat<(X86cmpm (_.LdFrag addr:$src2), (_.VT _.RC:$src1), CommutableCMPCC:$cc), (!cast<Instruction>(Name#_.ZSuffix#"rmi") _.RC:$src1, addr:$src2, imm:$cc)>; def : Pat<(and _.KRCWM:$mask, (X86cmpm (_.LdFrag addr:$src2), (_.VT _.RC:$src1), CommutableCMPCC:$cc)), (!cast<Instruction>(Name#_.ZSuffix#"rmik") _.KRCWM:$mask, _.RC:$src1, addr:$src2, imm:$cc)>; def : Pat<(X86cmpm (X86VBroadcast (_.ScalarLdFrag addr:$src2)), (_.VT _.RC:$src1), CommutableCMPCC:$cc), (!cast<Instruction>(Name#_.ZSuffix#"rmbi") _.RC:$src1, addr:$src2, imm:$cc)>; def : Pat<(and _.KRCWM:$mask, (X86cmpm (X86VBroadcast (_.ScalarLdFrag addr:$src2)), (_.VT _.RC:$src1), CommutableCMPCC:$cc)), (!cast<Instruction>(Name#_.ZSuffix#"rmbik") _.KRCWM:$mask, _.RC:$src1, addr:$src2, imm:$cc)>; } multiclass avx512_vcmp_sae<X86FoldableSchedWrite sched, X86VectorVTInfo _> { // comparison code form (VCMP[EQ/LT/LE/...] defm rrib : AVX512_maskable_cmp<0xC2, MRMSrcReg, _, (outs _.KRC:$dst),(ins _.RC:$src1, _.RC:$src2, AVXCC:$cc), "vcmp${cc}"#_.Suffix, "{sae}, $src2, $src1", "$src1, $src2, {sae}", (X86cmpmRnd (_.VT _.RC:$src1), (_.VT _.RC:$src2), imm:$cc, (i32 FROUND_NO_EXC))>, EVEX_B, Sched<[sched]>; let isAsmParserOnly = 1, hasSideEffects = 0 in { defm rrib_alt : AVX512_maskable_cmp_alt<0xC2, MRMSrcReg, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.RC:$src2, u8imm:$cc), "vcmp"#_.Suffix, "$cc, {sae}, $src2, $src1", "$src1, $src2, {sae}, $cc">, EVEX_B, Sched<[sched]>, NotMemoryFoldable; } } multiclass avx512_vcmp<X86SchedWriteWidths sched, AVX512VLVectorVTInfo _> { let Predicates = [HasAVX512] in { defm Z : avx512_vcmp_common<sched.ZMM, _.info512, NAME>, avx512_vcmp_sae<sched.ZMM, _.info512>, EVEX_V512; } let Predicates = [HasAVX512,HasVLX] in { defm Z128 : avx512_vcmp_common<sched.XMM, _.info128, NAME>, EVEX_V128; defm Z256 : avx512_vcmp_common<sched.YMM, _.info256, NAME>, EVEX_V256; } } defm VCMPPD : avx512_vcmp<SchedWriteFCmp, avx512vl_f64_info>, AVX512PDIi8Base, EVEX_4V, EVEX_CD8<64, CD8VF>, VEX_W; defm VCMPPS : avx512_vcmp<SchedWriteFCmp, avx512vl_f32_info>, AVX512PSIi8Base, EVEX_4V, EVEX_CD8<32, CD8VF>; // Patterns to select fp compares with load as first operand. let Predicates = [HasAVX512] in { def : Pat<(v1i1 (X86cmpms (loadf64 addr:$src2), FR64X:$src1, CommutableCMPCC:$cc)), (VCMPSDZrm FR64X:$src1, addr:$src2, imm:$cc)>; def : Pat<(v1i1 (X86cmpms (loadf32 addr:$src2), FR32X:$src1, CommutableCMPCC:$cc)), (VCMPSSZrm FR32X:$src1, addr:$src2, imm:$cc)>; } // ---------------------------------------------------------------- // FPClass //handle fpclass instruction mask = op(reg_scalar,imm) // op(mem_scalar,imm) multiclass avx512_scalar_fpclass<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _, Predicate prd> { let Predicates = [prd], ExeDomain = _.ExeDomain in { def rr : AVX512<opc, MRMSrcReg, (outs _.KRC:$dst), (ins _.RC:$src1, i32u8imm:$src2), OpcodeStr##_.Suffix#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set _.KRC:$dst,(OpNode (_.VT _.RC:$src1), (i32 imm:$src2)))]>, Sched<[sched]>; def rrk : AVX512<opc, MRMSrcReg, (outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, i32u8imm:$src2), OpcodeStr##_.Suffix# "\t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}", [(set _.KRC:$dst,(and _.KRCWM:$mask, (OpNode (_.VT _.RC:$src1), (i32 imm:$src2))))]>, EVEX_K, Sched<[sched]>; def rm : AVX512<opc, MRMSrcMem, (outs _.KRC:$dst), (ins _.IntScalarMemOp:$src1, i32u8imm:$src2), OpcodeStr##_.Suffix## "\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set _.KRC:$dst, (OpNode _.ScalarIntMemCPat:$src1, (i32 imm:$src2)))]>, Sched<[sched.Folded, ReadAfterLd]>; def rmk : AVX512<opc, MRMSrcMem, (outs _.KRC:$dst), (ins _.KRCWM:$mask, _.IntScalarMemOp:$src1, i32u8imm:$src2), OpcodeStr##_.Suffix## "\t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}", [(set _.KRC:$dst,(and _.KRCWM:$mask, (OpNode _.ScalarIntMemCPat:$src1, (i32 imm:$src2))))]>, EVEX_K, Sched<[sched.Folded, ReadAfterLd]>; } } //handle fpclass instruction mask = fpclass(reg_vec, reg_vec, imm) // fpclass(reg_vec, mem_vec, imm) // fpclass(reg_vec, broadcast(eltVt), imm) multiclass avx512_vector_fpclass<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _, string mem, string broadcast>{ let ExeDomain = _.ExeDomain in { def rr : AVX512<opc, MRMSrcReg, (outs _.KRC:$dst), (ins _.RC:$src1, i32u8imm:$src2), OpcodeStr##_.Suffix#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set _.KRC:$dst,(OpNode (_.VT _.RC:$src1), (i32 imm:$src2)))]>, Sched<[sched]>; def rrk : AVX512<opc, MRMSrcReg, (outs _.KRC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, i32u8imm:$src2), OpcodeStr##_.Suffix# "\t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}", [(set _.KRC:$dst,(and _.KRCWM:$mask, (OpNode (_.VT _.RC:$src1), (i32 imm:$src2))))]>, EVEX_K, Sched<[sched]>; def rm : AVX512<opc, MRMSrcMem, (outs _.KRC:$dst), (ins _.MemOp:$src1, i32u8imm:$src2), OpcodeStr##_.Suffix##mem# "\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set _.KRC:$dst,(OpNode (_.VT (bitconvert (_.LdFrag addr:$src1))), (i32 imm:$src2)))]>, Sched<[sched.Folded, ReadAfterLd]>; def rmk : AVX512<opc, MRMSrcMem, (outs _.KRC:$dst), (ins _.KRCWM:$mask, _.MemOp:$src1, i32u8imm:$src2), OpcodeStr##_.Suffix##mem# "\t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}", [(set _.KRC:$dst, (and _.KRCWM:$mask, (OpNode (_.VT (bitconvert (_.LdFrag addr:$src1))), (i32 imm:$src2))))]>, EVEX_K, Sched<[sched.Folded, ReadAfterLd]>; def rmb : AVX512<opc, MRMSrcMem, (outs _.KRC:$dst), (ins _.ScalarMemOp:$src1, i32u8imm:$src2), OpcodeStr##_.Suffix##broadcast##"\t{$src2, ${src1}"## _.BroadcastStr##", $dst|$dst, ${src1}" ##_.BroadcastStr##", $src2}", [(set _.KRC:$dst,(OpNode (_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src1))), (i32 imm:$src2)))]>, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; def rmbk : AVX512<opc, MRMSrcMem, (outs _.KRC:$dst), (ins _.KRCWM:$mask, _.ScalarMemOp:$src1, i32u8imm:$src2), OpcodeStr##_.Suffix##broadcast##"\t{$src2, ${src1}"## _.BroadcastStr##", $dst {${mask}}|$dst {${mask}}, ${src1}"## _.BroadcastStr##", $src2}", [(set _.KRC:$dst,(and _.KRCWM:$mask, (OpNode (_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src1))), (i32 imm:$src2))))]>, EVEX_B, EVEX_K, Sched<[sched.Folded, ReadAfterLd]>; } } multiclass avx512_vector_fpclass_all<string OpcodeStr, AVX512VLVectorVTInfo _, bits<8> opc, SDNode OpNode, X86SchedWriteWidths sched, Predicate prd, string broadcast>{ let Predicates = [prd] in { defm Z : avx512_vector_fpclass<opc, OpcodeStr, OpNode, sched.ZMM, _.info512, "{z}", broadcast>, EVEX_V512; } let Predicates = [prd, HasVLX] in { defm Z128 : avx512_vector_fpclass<opc, OpcodeStr, OpNode, sched.XMM, _.info128, "{x}", broadcast>, EVEX_V128; defm Z256 : avx512_vector_fpclass<opc, OpcodeStr, OpNode, sched.YMM, _.info256, "{y}", broadcast>, EVEX_V256; } } multiclass avx512_fp_fpclass_all<string OpcodeStr, bits<8> opcVec, bits<8> opcScalar, SDNode VecOpNode, SDNode ScalarOpNode, X86SchedWriteWidths sched, Predicate prd> { defm PS : avx512_vector_fpclass_all<OpcodeStr, avx512vl_f32_info, opcVec, VecOpNode, sched, prd, "{l}">, EVEX_CD8<32, CD8VF>; defm PD : avx512_vector_fpclass_all<OpcodeStr, avx512vl_f64_info, opcVec, VecOpNode, sched, prd, "{q}">, EVEX_CD8<64, CD8VF> , VEX_W; defm SSZ : avx512_scalar_fpclass<opcScalar, OpcodeStr, ScalarOpNode, sched.Scl, f32x_info, prd>, EVEX_CD8<32, CD8VT1>; defm SDZ : avx512_scalar_fpclass<opcScalar, OpcodeStr, ScalarOpNode, sched.Scl, f64x_info, prd>, EVEX_CD8<64, CD8VT1>, VEX_W; } defm VFPCLASS : avx512_fp_fpclass_all<"vfpclass", 0x66, 0x67, X86Vfpclass, X86Vfpclasss, SchedWriteFCmp, HasDQI>, AVX512AIi8Base, EVEX; //----------------------------------------------------------------- // Mask register copy, including // - copy between mask registers // - load/store mask registers // - copy from GPR to mask register and vice versa // multiclass avx512_mask_mov<bits<8> opc_kk, bits<8> opc_km, bits<8> opc_mk, string OpcodeStr, RegisterClass KRC, ValueType vvt, X86MemOperand x86memop> { let isMoveReg = 1, hasSideEffects = 0, SchedRW = [WriteMove] in def kk : I<opc_kk, MRMSrcReg, (outs KRC:$dst), (ins KRC:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), []>, Sched<[WriteMove]>; def km : I<opc_km, MRMSrcMem, (outs KRC:$dst), (ins x86memop:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set KRC:$dst, (vvt (load addr:$src)))]>, Sched<[WriteLoad]>; def mk : I<opc_mk, MRMDestMem, (outs), (ins x86memop:$dst, KRC:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(store KRC:$src, addr:$dst)]>, Sched<[WriteStore]>; } multiclass avx512_mask_mov_gpr<bits<8> opc_kr, bits<8> opc_rk, string OpcodeStr, RegisterClass KRC, RegisterClass GRC> { let hasSideEffects = 0 in { def kr : I<opc_kr, MRMSrcReg, (outs KRC:$dst), (ins GRC:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), []>, Sched<[WriteMove]>; def rk : I<opc_rk, MRMSrcReg, (outs GRC:$dst), (ins KRC:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), []>, Sched<[WriteMove]>; } } let Predicates = [HasDQI] in defm KMOVB : avx512_mask_mov<0x90, 0x90, 0x91, "kmovb", VK8, v8i1, i8mem>, avx512_mask_mov_gpr<0x92, 0x93, "kmovb", VK8, GR32>, VEX, PD; let Predicates = [HasAVX512] in defm KMOVW : avx512_mask_mov<0x90, 0x90, 0x91, "kmovw", VK16, v16i1, i16mem>, avx512_mask_mov_gpr<0x92, 0x93, "kmovw", VK16, GR32>, VEX, PS; let Predicates = [HasBWI] in { defm KMOVD : avx512_mask_mov<0x90, 0x90, 0x91, "kmovd", VK32, v32i1,i32mem>, VEX, PD, VEX_W; defm KMOVD : avx512_mask_mov_gpr<0x92, 0x93, "kmovd", VK32, GR32>, VEX, XD; defm KMOVQ : avx512_mask_mov<0x90, 0x90, 0x91, "kmovq", VK64, v64i1, i64mem>, VEX, PS, VEX_W; defm KMOVQ : avx512_mask_mov_gpr<0x92, 0x93, "kmovq", VK64, GR64>, VEX, XD, VEX_W; } // GR from/to mask register def : Pat<(v16i1 (bitconvert (i16 GR16:$src))), (COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), GR16:$src, sub_16bit)), VK16)>; def : Pat<(i16 (bitconvert (v16i1 VK16:$src))), (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS VK16:$src, GR32)), sub_16bit)>; def : Pat<(v8i1 (bitconvert (i8 GR8:$src))), (COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), GR8:$src, sub_8bit)), VK8)>; def : Pat<(i8 (bitconvert (v8i1 VK8:$src))), (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS VK8:$src, GR32)), sub_8bit)>; def : Pat<(i32 (zext (i16 (bitconvert (v16i1 VK16:$src))))), (KMOVWrk VK16:$src)>; def : Pat<(i32 (anyext (i16 (bitconvert (v16i1 VK16:$src))))), (COPY_TO_REGCLASS VK16:$src, GR32)>; def : Pat<(i32 (zext (i8 (bitconvert (v8i1 VK8:$src))))), (KMOVBrk VK8:$src)>, Requires<[HasDQI]>; def : Pat<(i32 (anyext (i8 (bitconvert (v8i1 VK8:$src))))), (COPY_TO_REGCLASS VK8:$src, GR32)>; def : Pat<(v32i1 (bitconvert (i32 GR32:$src))), (COPY_TO_REGCLASS GR32:$src, VK32)>; def : Pat<(i32 (bitconvert (v32i1 VK32:$src))), (COPY_TO_REGCLASS VK32:$src, GR32)>; def : Pat<(v64i1 (bitconvert (i64 GR64:$src))), (COPY_TO_REGCLASS GR64:$src, VK64)>; def : Pat<(i64 (bitconvert (v64i1 VK64:$src))), (COPY_TO_REGCLASS VK64:$src, GR64)>; // Load/store kreg let Predicates = [HasDQI] in { def : Pat<(store VK1:$src, addr:$dst), (KMOVBmk addr:$dst, (COPY_TO_REGCLASS VK1:$src, VK8))>; def : Pat<(v1i1 (load addr:$src)), (COPY_TO_REGCLASS (KMOVBkm addr:$src), VK1)>; def : Pat<(v2i1 (load addr:$src)), (COPY_TO_REGCLASS (KMOVBkm addr:$src), VK2)>; def : Pat<(v4i1 (load addr:$src)), (COPY_TO_REGCLASS (KMOVBkm addr:$src), VK4)>; } let Predicates = [HasAVX512] in { def : Pat<(v8i1 (bitconvert (i8 (load addr:$src)))), (COPY_TO_REGCLASS (MOVZX32rm8 addr:$src), VK8)>; } let Predicates = [HasAVX512] in { multiclass operation_gpr_mask_copy_lowering<RegisterClass maskRC, ValueType maskVT> { def : Pat<(maskVT (scalar_to_vector GR32:$src)), (COPY_TO_REGCLASS GR32:$src, maskRC)>; def : Pat<(maskVT (scalar_to_vector GR8:$src)), (COPY_TO_REGCLASS (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src, sub_8bit), maskRC)>; } defm : operation_gpr_mask_copy_lowering<VK1, v1i1>; defm : operation_gpr_mask_copy_lowering<VK2, v2i1>; defm : operation_gpr_mask_copy_lowering<VK4, v4i1>; defm : operation_gpr_mask_copy_lowering<VK8, v8i1>; defm : operation_gpr_mask_copy_lowering<VK16, v16i1>; defm : operation_gpr_mask_copy_lowering<VK32, v32i1>; defm : operation_gpr_mask_copy_lowering<VK64, v64i1>; def : Pat<(insert_subvector (v16i1 immAllZerosV), (v1i1 (scalar_to_vector GR8:$src)), (iPTR 0)), (COPY_TO_REGCLASS (KMOVWkr (AND32ri8 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src, sub_8bit), (i32 1))), VK16)>; } // Mask unary operation // - KNOT multiclass avx512_mask_unop<bits<8> opc, string OpcodeStr, RegisterClass KRC, SDPatternOperator OpNode, X86FoldableSchedWrite sched, Predicate prd> { let Predicates = [prd] in def rr : I<opc, MRMSrcReg, (outs KRC:$dst), (ins KRC:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set KRC:$dst, (OpNode KRC:$src))]>, Sched<[sched]>; } multiclass avx512_mask_unop_all<bits<8> opc, string OpcodeStr, SDPatternOperator OpNode, X86FoldableSchedWrite sched> { defm B : avx512_mask_unop<opc, !strconcat(OpcodeStr, "b"), VK8, OpNode, sched, HasDQI>, VEX, PD; defm W : avx512_mask_unop<opc, !strconcat(OpcodeStr, "w"), VK16, OpNode, sched, HasAVX512>, VEX, PS; defm D : avx512_mask_unop<opc, !strconcat(OpcodeStr, "d"), VK32, OpNode, sched, HasBWI>, VEX, PD, VEX_W; defm Q : avx512_mask_unop<opc, !strconcat(OpcodeStr, "q"), VK64, OpNode, sched, HasBWI>, VEX, PS, VEX_W; } // TODO - do we need a X86SchedWriteWidths::KMASK type? defm KNOT : avx512_mask_unop_all<0x44, "knot", vnot, SchedWriteVecLogic.XMM>; // KNL does not support KMOVB, 8-bit mask is promoted to 16-bit let Predicates = [HasAVX512, NoDQI] in def : Pat<(vnot VK8:$src), (COPY_TO_REGCLASS (KNOTWrr (COPY_TO_REGCLASS VK8:$src, VK16)), VK8)>; def : Pat<(vnot VK4:$src), (COPY_TO_REGCLASS (KNOTWrr (COPY_TO_REGCLASS VK4:$src, VK16)), VK4)>; def : Pat<(vnot VK2:$src), (COPY_TO_REGCLASS (KNOTWrr (COPY_TO_REGCLASS VK2:$src, VK16)), VK2)>; // Mask binary operation // - KAND, KANDN, KOR, KXNOR, KXOR multiclass avx512_mask_binop<bits<8> opc, string OpcodeStr, RegisterClass KRC, SDPatternOperator OpNode, X86FoldableSchedWrite sched, Predicate prd, bit IsCommutable> { let Predicates = [prd], isCommutable = IsCommutable in def rr : I<opc, MRMSrcReg, (outs KRC:$dst), (ins KRC:$src1, KRC:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set KRC:$dst, (OpNode KRC:$src1, KRC:$src2))]>, Sched<[sched]>; } multiclass avx512_mask_binop_all<bits<8> opc, string OpcodeStr, SDPatternOperator OpNode, X86FoldableSchedWrite sched, bit IsCommutable, Predicate prdW = HasAVX512> { defm B : avx512_mask_binop<opc, !strconcat(OpcodeStr, "b"), VK8, OpNode, sched, HasDQI, IsCommutable>, VEX_4V, VEX_L, PD; defm W : avx512_mask_binop<opc, !strconcat(OpcodeStr, "w"), VK16, OpNode, sched, prdW, IsCommutable>, VEX_4V, VEX_L, PS; defm D : avx512_mask_binop<opc, !strconcat(OpcodeStr, "d"), VK32, OpNode, sched, HasBWI, IsCommutable>, VEX_4V, VEX_L, VEX_W, PD; defm Q : avx512_mask_binop<opc, !strconcat(OpcodeStr, "q"), VK64, OpNode, sched, HasBWI, IsCommutable>, VEX_4V, VEX_L, VEX_W, PS; } def andn : PatFrag<(ops node:$i0, node:$i1), (and (not node:$i0), node:$i1)>; def xnor : PatFrag<(ops node:$i0, node:$i1), (not (xor node:$i0, node:$i1))>; // These nodes use 'vnot' instead of 'not' to support vectors. def vandn : PatFrag<(ops node:$i0, node:$i1), (and (vnot node:$i0), node:$i1)>; def vxnor : PatFrag<(ops node:$i0, node:$i1), (vnot (xor node:$i0, node:$i1))>; // TODO - do we need a X86SchedWriteWidths::KMASK type? defm KAND : avx512_mask_binop_all<0x41, "kand", and, SchedWriteVecLogic.XMM, 1>; defm KOR : avx512_mask_binop_all<0x45, "kor", or, SchedWriteVecLogic.XMM, 1>; defm KXNOR : avx512_mask_binop_all<0x46, "kxnor", vxnor, SchedWriteVecLogic.XMM, 1>; defm KXOR : avx512_mask_binop_all<0x47, "kxor", xor, SchedWriteVecLogic.XMM, 1>; defm KANDN : avx512_mask_binop_all<0x42, "kandn", vandn, SchedWriteVecLogic.XMM, 0>; defm KADD : avx512_mask_binop_all<0x4A, "kadd", X86kadd, SchedWriteVecLogic.XMM, 1, HasDQI>; multiclass avx512_binop_pat<SDPatternOperator VOpNode, SDPatternOperator OpNode, Instruction Inst> { // With AVX512F, 8-bit mask is promoted to 16-bit mask, // for the DQI set, this type is legal and KxxxB instruction is used let Predicates = [NoDQI] in def : Pat<(VOpNode VK8:$src1, VK8:$src2), (COPY_TO_REGCLASS (Inst (COPY_TO_REGCLASS VK8:$src1, VK16), (COPY_TO_REGCLASS VK8:$src2, VK16)), VK8)>; // All types smaller than 8 bits require conversion anyway def : Pat<(OpNode VK1:$src1, VK1:$src2), (COPY_TO_REGCLASS (Inst (COPY_TO_REGCLASS VK1:$src1, VK16), (COPY_TO_REGCLASS VK1:$src2, VK16)), VK1)>; def : Pat<(VOpNode VK2:$src1, VK2:$src2), (COPY_TO_REGCLASS (Inst (COPY_TO_REGCLASS VK2:$src1, VK16), (COPY_TO_REGCLASS VK2:$src2, VK16)), VK1)>; def : Pat<(VOpNode VK4:$src1, VK4:$src2), (COPY_TO_REGCLASS (Inst (COPY_TO_REGCLASS VK4:$src1, VK16), (COPY_TO_REGCLASS VK4:$src2, VK16)), VK1)>; } defm : avx512_binop_pat<and, and, KANDWrr>; defm : avx512_binop_pat<vandn, andn, KANDNWrr>; defm : avx512_binop_pat<or, or, KORWrr>; defm : avx512_binop_pat<vxnor, xnor, KXNORWrr>; defm : avx512_binop_pat<xor, xor, KXORWrr>; // Mask unpacking multiclass avx512_mask_unpck<string Suffix,RegisterClass KRC, ValueType VT, RegisterClass KRCSrc, X86FoldableSchedWrite sched, Predicate prd> { let Predicates = [prd] in { let hasSideEffects = 0 in def rr : I<0x4b, MRMSrcReg, (outs KRC:$dst), (ins KRC:$src1, KRC:$src2), "kunpck"#Suffix#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, VEX_4V, VEX_L, Sched<[sched]>; def : Pat<(VT (concat_vectors KRCSrc:$src1, KRCSrc:$src2)), (!cast<Instruction>(NAME##rr) (COPY_TO_REGCLASS KRCSrc:$src2, KRC), (COPY_TO_REGCLASS KRCSrc:$src1, KRC))>; } } defm KUNPCKBW : avx512_mask_unpck<"bw", VK16, v16i1, VK8, WriteShuffle, HasAVX512>, PD; defm KUNPCKWD : avx512_mask_unpck<"wd", VK32, v32i1, VK16, WriteShuffle, HasBWI>, PS; defm KUNPCKDQ : avx512_mask_unpck<"dq", VK64, v64i1, VK32, WriteShuffle, HasBWI>, PS, VEX_W; // Mask bit testing multiclass avx512_mask_testop<bits<8> opc, string OpcodeStr, RegisterClass KRC, SDNode OpNode, X86FoldableSchedWrite sched, Predicate prd> { let Predicates = [prd], Defs = [EFLAGS] in def rr : I<opc, MRMSrcReg, (outs), (ins KRC:$src1, KRC:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"), [(set EFLAGS, (OpNode KRC:$src1, KRC:$src2))]>, Sched<[sched]>; } multiclass avx512_mask_testop_w<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, Predicate prdW = HasAVX512> { defm B : avx512_mask_testop<opc, OpcodeStr#"b", VK8, OpNode, sched, HasDQI>, VEX, PD; defm W : avx512_mask_testop<opc, OpcodeStr#"w", VK16, OpNode, sched, prdW>, VEX, PS; defm Q : avx512_mask_testop<opc, OpcodeStr#"q", VK64, OpNode, sched, HasBWI>, VEX, PS, VEX_W; defm D : avx512_mask_testop<opc, OpcodeStr#"d", VK32, OpNode, sched, HasBWI>, VEX, PD, VEX_W; } // TODO - do we need a X86SchedWriteWidths::KMASK type? defm KORTEST : avx512_mask_testop_w<0x98, "kortest", X86kortest, SchedWriteVecLogic.XMM>; defm KTEST : avx512_mask_testop_w<0x99, "ktest", X86ktest, SchedWriteVecLogic.XMM, HasDQI>; // Mask shift multiclass avx512_mask_shiftop<bits<8> opc, string OpcodeStr, RegisterClass KRC, SDNode OpNode, X86FoldableSchedWrite sched> { let Predicates = [HasAVX512] in def ri : Ii8<opc, MRMSrcReg, (outs KRC:$dst), (ins KRC:$src, u8imm:$imm), !strconcat(OpcodeStr, "\t{$imm, $src, $dst|$dst, $src, $imm}"), [(set KRC:$dst, (OpNode KRC:$src, (i8 imm:$imm)))]>, Sched<[sched]>; } multiclass avx512_mask_shiftop_w<bits<8> opc1, bits<8> opc2, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched> { defm W : avx512_mask_shiftop<opc1, !strconcat(OpcodeStr, "w"), VK16, OpNode, sched>, VEX, TAPD, VEX_W; let Predicates = [HasDQI] in defm B : avx512_mask_shiftop<opc1, !strconcat(OpcodeStr, "b"), VK8, OpNode, sched>, VEX, TAPD; let Predicates = [HasBWI] in { defm Q : avx512_mask_shiftop<opc2, !strconcat(OpcodeStr, "q"), VK64, OpNode, sched>, VEX, TAPD, VEX_W; defm D : avx512_mask_shiftop<opc2, !strconcat(OpcodeStr, "d"), VK32, OpNode, sched>, VEX, TAPD; } } defm KSHIFTL : avx512_mask_shiftop_w<0x32, 0x33, "kshiftl", X86kshiftl, WriteShuffle>; defm KSHIFTR : avx512_mask_shiftop_w<0x30, 0x31, "kshiftr", X86kshiftr, WriteShuffle>; // Patterns for comparing 128/256-bit integer vectors using 512-bit instruction. multiclass axv512_icmp_packed_no_vlx_lowering<PatFrag Frag, string InstStr, X86VectorVTInfo Narrow, X86VectorVTInfo Wide> { def : Pat<(Narrow.KVT (Frag (Narrow.VT Narrow.RC:$src1), (Narrow.VT Narrow.RC:$src2))), (COPY_TO_REGCLASS (!cast<Instruction>(InstStr#"Zrr") (Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src1, Narrow.SubRegIdx)), (Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src2, Narrow.SubRegIdx))), Narrow.KRC)>; def : Pat<(Narrow.KVT (and Narrow.KRC:$mask, (Frag (Narrow.VT Narrow.RC:$src1), (Narrow.VT Narrow.RC:$src2)))), (COPY_TO_REGCLASS (!cast<Instruction>(InstStr#"Zrrk") (COPY_TO_REGCLASS Narrow.KRC:$mask, Wide.KRC), (Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src1, Narrow.SubRegIdx)), (Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src2, Narrow.SubRegIdx))), Narrow.KRC)>; } // Patterns for comparing 128/256-bit integer vectors using 512-bit instruction. multiclass axv512_icmp_packed_cc_no_vlx_lowering<PatFrag Frag, string InstStr, X86VectorVTInfo Narrow, X86VectorVTInfo Wide> { def : Pat<(Narrow.KVT (Frag:$cc (Narrow.VT Narrow.RC:$src1), (Narrow.VT Narrow.RC:$src2), cond)), (COPY_TO_REGCLASS (!cast<Instruction>(InstStr##Zrri) (Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src1, Narrow.SubRegIdx)), (Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src2, Narrow.SubRegIdx)), (Frag.OperandTransform $cc)), Narrow.KRC)>; def : Pat<(Narrow.KVT (and Narrow.KRC:$mask, (Narrow.KVT (Frag:$cc (Narrow.VT Narrow.RC:$src1), (Narrow.VT Narrow.RC:$src2), cond)))), (COPY_TO_REGCLASS (!cast<Instruction>(InstStr##Zrrik) (COPY_TO_REGCLASS Narrow.KRC:$mask, Wide.KRC), (Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src1, Narrow.SubRegIdx)), (Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src2, Narrow.SubRegIdx)), (Frag.OperandTransform $cc)), Narrow.KRC)>; } // Same as above, but for fp types which don't use PatFrags. multiclass axv512_cmp_packed_cc_no_vlx_lowering<SDNode OpNode, string InstStr, X86VectorVTInfo Narrow, X86VectorVTInfo Wide> { def : Pat<(Narrow.KVT (OpNode (Narrow.VT Narrow.RC:$src1), (Narrow.VT Narrow.RC:$src2), imm:$cc)), (COPY_TO_REGCLASS (!cast<Instruction>(InstStr##Zrri) (Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src1, Narrow.SubRegIdx)), (Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src2, Narrow.SubRegIdx)), imm:$cc), Narrow.KRC)>; def : Pat<(Narrow.KVT (and Narrow.KRC:$mask, (OpNode (Narrow.VT Narrow.RC:$src1), (Narrow.VT Narrow.RC:$src2), imm:$cc))), (COPY_TO_REGCLASS (!cast<Instruction>(InstStr##Zrrik) (COPY_TO_REGCLASS Narrow.KRC:$mask, Wide.KRC), (Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src1, Narrow.SubRegIdx)), (Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src2, Narrow.SubRegIdx)), imm:$cc), Narrow.KRC)>; } let Predicates = [HasAVX512, NoVLX] in { // AddedComplexity is needed because the explicit SETEQ/SETGT CondCode doesn't // increase the pattern complexity the way an immediate would. let AddedComplexity = 2 in { defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpgtm, "VPCMPGTD", v8i32x_info, v16i32_info>; defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpeqm_c, "VPCMPEQD", v8i32x_info, v16i32_info>; defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpgtm, "VPCMPGTD", v4i32x_info, v16i32_info>; defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpeqm_c, "VPCMPEQD", v4i32x_info, v16i32_info>; defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpgtm, "VPCMPGTQ", v4i64x_info, v8i64_info>; defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpeqm_c, "VPCMPEQQ", v4i64x_info, v8i64_info>; defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpgtm, "VPCMPGTQ", v2i64x_info, v8i64_info>; defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpeqm_c, "VPCMPEQQ", v2i64x_info, v8i64_info>; } defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpm, "VPCMPD", v8i32x_info, v16i32_info>; defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpum, "VPCMPUD", v8i32x_info, v16i32_info>; defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpm, "VPCMPD", v4i32x_info, v16i32_info>; defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpum, "VPCMPUD", v4i32x_info, v16i32_info>; defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpm, "VPCMPQ", v4i64x_info, v8i64_info>; defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpum, "VPCMPUQ", v4i64x_info, v8i64_info>; defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpm, "VPCMPQ", v2i64x_info, v8i64_info>; defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpum, "VPCMPUQ", v2i64x_info, v8i64_info>; defm : axv512_cmp_packed_cc_no_vlx_lowering<X86cmpm, "VCMPPS", v8f32x_info, v16f32_info>; defm : axv512_cmp_packed_cc_no_vlx_lowering<X86cmpm, "VCMPPS", v4f32x_info, v16f32_info>; defm : axv512_cmp_packed_cc_no_vlx_lowering<X86cmpm, "VCMPPD", v4f64x_info, v8f64_info>; defm : axv512_cmp_packed_cc_no_vlx_lowering<X86cmpm, "VCMPPD", v2f64x_info, v8f64_info>; } let Predicates = [HasBWI, NoVLX] in { // AddedComplexity is needed because the explicit SETEQ/SETGT CondCode doesn't // increase the pattern complexity the way an immediate would. let AddedComplexity = 2 in { defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpgtm, "VPCMPGTB", v32i8x_info, v64i8_info>; defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpeqm_c, "VPCMPEQB", v32i8x_info, v64i8_info>; defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpgtm, "VPCMPGTB", v16i8x_info, v64i8_info>; defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpeqm_c, "VPCMPEQB", v16i8x_info, v64i8_info>; defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpgtm, "VPCMPGTW", v16i16x_info, v32i16_info>; defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpeqm_c, "VPCMPEQW", v16i16x_info, v32i16_info>; defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpgtm, "VPCMPGTW", v8i16x_info, v32i16_info>; defm : axv512_icmp_packed_no_vlx_lowering<X86pcmpeqm_c, "VPCMPEQW", v8i16x_info, v32i16_info>; } defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpm, "VPCMPB", v32i8x_info, v64i8_info>; defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpum, "VPCMPUB", v32i8x_info, v64i8_info>; defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpm, "VPCMPB", v16i8x_info, v64i8_info>; defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpum, "VPCMPUB", v16i8x_info, v64i8_info>; defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpm, "VPCMPW", v16i16x_info, v32i16_info>; defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpum, "VPCMPUW", v16i16x_info, v32i16_info>; defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpm, "VPCMPW", v8i16x_info, v32i16_info>; defm : axv512_icmp_packed_cc_no_vlx_lowering<X86pcmpum, "VPCMPUW", v8i16x_info, v32i16_info>; } // Mask setting all 0s or 1s multiclass avx512_mask_setop<RegisterClass KRC, ValueType VT, PatFrag Val> { let Predicates = [HasAVX512] in let isReMaterializable = 1, isAsCheapAsAMove = 1, isPseudo = 1, SchedRW = [WriteZero] in def #NAME# : I<0, Pseudo, (outs KRC:$dst), (ins), "", [(set KRC:$dst, (VT Val))]>; } multiclass avx512_mask_setop_w<PatFrag Val> { defm W : avx512_mask_setop<VK16, v16i1, Val>; defm D : avx512_mask_setop<VK32, v32i1, Val>; defm Q : avx512_mask_setop<VK64, v64i1, Val>; } defm KSET0 : avx512_mask_setop_w<immAllZerosV>; defm KSET1 : avx512_mask_setop_w<immAllOnesV>; // With AVX-512 only, 8-bit mask is promoted to 16-bit mask. let Predicates = [HasAVX512] in { def : Pat<(v8i1 immAllZerosV), (COPY_TO_REGCLASS (KSET0W), VK8)>; def : Pat<(v4i1 immAllZerosV), (COPY_TO_REGCLASS (KSET0W), VK4)>; def : Pat<(v2i1 immAllZerosV), (COPY_TO_REGCLASS (KSET0W), VK2)>; def : Pat<(v1i1 immAllZerosV), (COPY_TO_REGCLASS (KSET0W), VK1)>; def : Pat<(v8i1 immAllOnesV), (COPY_TO_REGCLASS (KSET1W), VK8)>; def : Pat<(v4i1 immAllOnesV), (COPY_TO_REGCLASS (KSET1W), VK4)>; def : Pat<(v2i1 immAllOnesV), (COPY_TO_REGCLASS (KSET1W), VK2)>; def : Pat<(v1i1 immAllOnesV), (COPY_TO_REGCLASS (KSET1W), VK1)>; } // Patterns for kmask insert_subvector/extract_subvector to/from index=0 multiclass operation_subvector_mask_lowering<RegisterClass subRC, ValueType subVT, RegisterClass RC, ValueType VT> { def : Pat<(subVT (extract_subvector (VT RC:$src), (iPTR 0))), (subVT (COPY_TO_REGCLASS RC:$src, subRC))>; def : Pat<(VT (insert_subvector undef, subRC:$src, (iPTR 0))), (VT (COPY_TO_REGCLASS subRC:$src, RC))>; } defm : operation_subvector_mask_lowering<VK1, v1i1, VK2, v2i1>; defm : operation_subvector_mask_lowering<VK1, v1i1, VK4, v4i1>; defm : operation_subvector_mask_lowering<VK1, v1i1, VK8, v8i1>; defm : operation_subvector_mask_lowering<VK1, v1i1, VK16, v16i1>; defm : operation_subvector_mask_lowering<VK1, v1i1, VK32, v32i1>; defm : operation_subvector_mask_lowering<VK1, v1i1, VK64, v64i1>; defm : operation_subvector_mask_lowering<VK2, v2i1, VK4, v4i1>; defm : operation_subvector_mask_lowering<VK2, v2i1, VK8, v8i1>; defm : operation_subvector_mask_lowering<VK2, v2i1, VK16, v16i1>; defm : operation_subvector_mask_lowering<VK2, v2i1, VK32, v32i1>; defm : operation_subvector_mask_lowering<VK2, v2i1, VK64, v64i1>; defm : operation_subvector_mask_lowering<VK4, v4i1, VK8, v8i1>; defm : operation_subvector_mask_lowering<VK4, v4i1, VK16, v16i1>; defm : operation_subvector_mask_lowering<VK4, v4i1, VK32, v32i1>; defm : operation_subvector_mask_lowering<VK4, v4i1, VK64, v64i1>; defm : operation_subvector_mask_lowering<VK8, v8i1, VK16, v16i1>; defm : operation_subvector_mask_lowering<VK8, v8i1, VK32, v32i1>; defm : operation_subvector_mask_lowering<VK8, v8i1, VK64, v64i1>; defm : operation_subvector_mask_lowering<VK16, v16i1, VK32, v32i1>; defm : operation_subvector_mask_lowering<VK16, v16i1, VK64, v64i1>; defm : operation_subvector_mask_lowering<VK32, v32i1, VK64, v64i1>; //===----------------------------------------------------------------------===// // AVX-512 - Aligned and unaligned load and store // multiclass avx512_load<bits<8> opc, string OpcodeStr, string Name, X86VectorVTInfo _, PatFrag ld_frag, PatFrag mload, X86SchedWriteMoveLS Sched, string EVEX2VEXOvrd, bit NoRMPattern = 0, SDPatternOperator SelectOprr = vselect> { let hasSideEffects = 0 in { let isMoveReg = 1 in def rr : AVX512PI<opc, MRMSrcReg, (outs _.RC:$dst), (ins _.RC:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [], _.ExeDomain>, EVEX, Sched<[Sched.RR]>, EVEX2VEXOverride<EVEX2VEXOvrd#"rr">; def rrkz : AVX512PI<opc, MRMSrcReg, (outs _.RC:$dst), (ins _.KRCWM:$mask, _.RC:$src), !strconcat(OpcodeStr, "\t{$src, ${dst} {${mask}} {z}|", "${dst} {${mask}} {z}, $src}"), [(set _.RC:$dst, (_.VT (SelectOprr _.KRCWM:$mask, (_.VT _.RC:$src), _.ImmAllZerosV)))], _.ExeDomain>, EVEX, EVEX_KZ, Sched<[Sched.RR]>; let mayLoad = 1, canFoldAsLoad = 1, isReMaterializable = 1 in def rm : AVX512PI<opc, MRMSrcMem, (outs _.RC:$dst), (ins _.MemOp:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), !if(NoRMPattern, [], [(set _.RC:$dst, (_.VT (bitconvert (ld_frag addr:$src))))]), _.ExeDomain>, EVEX, Sched<[Sched.RM]>, EVEX2VEXOverride<EVEX2VEXOvrd#"rm">; let Constraints = "$src0 = $dst", isConvertibleToThreeAddress = 1 in { def rrk : AVX512PI<opc, MRMSrcReg, (outs _.RC:$dst), (ins _.RC:$src0, _.KRCWM:$mask, _.RC:$src1), !strconcat(OpcodeStr, "\t{$src1, ${dst} {${mask}}|", "${dst} {${mask}}, $src1}"), [(set _.RC:$dst, (_.VT (SelectOprr _.KRCWM:$mask, (_.VT _.RC:$src1), (_.VT _.RC:$src0))))], _.ExeDomain>, EVEX, EVEX_K, Sched<[Sched.RR]>; def rmk : AVX512PI<opc, MRMSrcMem, (outs _.RC:$dst), (ins _.RC:$src0, _.KRCWM:$mask, _.MemOp:$src1), !strconcat(OpcodeStr, "\t{$src1, ${dst} {${mask}}|", "${dst} {${mask}}, $src1}"), [(set _.RC:$dst, (_.VT (vselect _.KRCWM:$mask, (_.VT (bitconvert (ld_frag addr:$src1))), (_.VT _.RC:$src0))))], _.ExeDomain>, EVEX, EVEX_K, Sched<[Sched.RM]>; } def rmkz : AVX512PI<opc, MRMSrcMem, (outs _.RC:$dst), (ins _.KRCWM:$mask, _.MemOp:$src), OpcodeStr #"\t{$src, ${dst} {${mask}} {z}|"# "${dst} {${mask}} {z}, $src}", [(set _.RC:$dst, (_.VT (vselect _.KRCWM:$mask, (_.VT (bitconvert (ld_frag addr:$src))), _.ImmAllZerosV)))], _.ExeDomain>, EVEX, EVEX_KZ, Sched<[Sched.RM]>; } def : Pat<(_.VT (mload addr:$ptr, _.KRCWM:$mask, undef)), (!cast<Instruction>(Name#_.ZSuffix##rmkz) _.KRCWM:$mask, addr:$ptr)>; def : Pat<(_.VT (mload addr:$ptr, _.KRCWM:$mask, _.ImmAllZerosV)), (!cast<Instruction>(Name#_.ZSuffix##rmkz) _.KRCWM:$mask, addr:$ptr)>; def : Pat<(_.VT (mload addr:$ptr, _.KRCWM:$mask, (_.VT _.RC:$src0))), (!cast<Instruction>(Name#_.ZSuffix##rmk) _.RC:$src0, _.KRCWM:$mask, addr:$ptr)>; } multiclass avx512_alignedload_vl<bits<8> opc, string OpcodeStr, AVX512VLVectorVTInfo _, Predicate prd, X86SchedWriteMoveLSWidths Sched, string EVEX2VEXOvrd, bit NoRMPattern = 0> { let Predicates = [prd] in defm Z : avx512_load<opc, OpcodeStr, NAME, _.info512, _.info512.AlignedLdFrag, masked_load_aligned512, Sched.ZMM, "", NoRMPattern>, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_load<opc, OpcodeStr, NAME, _.info256, _.info256.AlignedLdFrag, masked_load_aligned256, Sched.YMM, EVEX2VEXOvrd#"Y", NoRMPattern>, EVEX_V256; defm Z128 : avx512_load<opc, OpcodeStr, NAME, _.info128, _.info128.AlignedLdFrag, masked_load_aligned128, Sched.XMM, EVEX2VEXOvrd, NoRMPattern>, EVEX_V128; } } multiclass avx512_load_vl<bits<8> opc, string OpcodeStr, AVX512VLVectorVTInfo _, Predicate prd, X86SchedWriteMoveLSWidths Sched, string EVEX2VEXOvrd, bit NoRMPattern = 0, SDPatternOperator SelectOprr = vselect> { let Predicates = [prd] in defm Z : avx512_load<opc, OpcodeStr, NAME, _.info512, _.info512.LdFrag, masked_load_unaligned, Sched.ZMM, "", NoRMPattern, SelectOprr>, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_load<opc, OpcodeStr, NAME, _.info256, _.info256.LdFrag, masked_load_unaligned, Sched.YMM, EVEX2VEXOvrd#"Y", NoRMPattern, SelectOprr>, EVEX_V256; defm Z128 : avx512_load<opc, OpcodeStr, NAME, _.info128, _.info128.LdFrag, masked_load_unaligned, Sched.XMM, EVEX2VEXOvrd, NoRMPattern, SelectOprr>, EVEX_V128; } } multiclass avx512_store<bits<8> opc, string OpcodeStr, string BaseName, X86VectorVTInfo _, PatFrag st_frag, PatFrag mstore, X86SchedWriteMoveLS Sched, string EVEX2VEXOvrd, bit NoMRPattern = 0> { let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in { let isMoveReg = 1 in def rr_REV : AVX512PI<opc, MRMDestReg, (outs _.RC:$dst), (ins _.RC:$src), OpcodeStr # "\t{$src, $dst|$dst, $src}", [], _.ExeDomain>, EVEX, FoldGenData<BaseName#_.ZSuffix#rr>, Sched<[Sched.RR]>, EVEX2VEXOverride<EVEX2VEXOvrd#"rr_REV">; def rrk_REV : AVX512PI<opc, MRMDestReg, (outs _.RC:$dst), (ins _.KRCWM:$mask, _.RC:$src), OpcodeStr # "\t{$src, ${dst} {${mask}}|"# "${dst} {${mask}}, $src}", [], _.ExeDomain>, EVEX, EVEX_K, FoldGenData<BaseName#_.ZSuffix#rrk>, Sched<[Sched.RR]>; def rrkz_REV : AVX512PI<opc, MRMDestReg, (outs _.RC:$dst), (ins _.KRCWM:$mask, _.RC:$src), OpcodeStr # "\t{$src, ${dst} {${mask}} {z}|" # "${dst} {${mask}} {z}, $src}", [], _.ExeDomain>, EVEX, EVEX_KZ, FoldGenData<BaseName#_.ZSuffix#rrkz>, Sched<[Sched.RR]>; } let hasSideEffects = 0, mayStore = 1 in def mr : AVX512PI<opc, MRMDestMem, (outs), (ins _.MemOp:$dst, _.RC:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), !if(NoMRPattern, [], [(st_frag (_.VT _.RC:$src), addr:$dst)]), _.ExeDomain>, EVEX, Sched<[Sched.MR]>, EVEX2VEXOverride<EVEX2VEXOvrd#"mr">; def mrk : AVX512PI<opc, MRMDestMem, (outs), (ins _.MemOp:$dst, _.KRCWM:$mask, _.RC:$src), OpcodeStr # "\t{$src, ${dst} {${mask}}|${dst} {${mask}}, $src}", [], _.ExeDomain>, EVEX, EVEX_K, Sched<[Sched.MR]>, NotMemoryFoldable; def: Pat<(mstore addr:$ptr, _.KRCWM:$mask, (_.VT _.RC:$src)), (!cast<Instruction>(BaseName#_.ZSuffix#mrk) addr:$ptr, _.KRCWM:$mask, _.RC:$src)>; def : InstAlias<OpcodeStr#".s\t{$src, $dst|$dst, $src}", (!cast<Instruction>(BaseName#_.ZSuffix#"rr_REV") _.RC:$dst, _.RC:$src), 0>; def : InstAlias<OpcodeStr#".s\t{$src, ${dst} {${mask}}|${dst} {${mask}}, $src}", (!cast<Instruction>(BaseName#_.ZSuffix#"rrk_REV") _.RC:$dst, _.KRCWM:$mask, _.RC:$src), 0>; def : InstAlias<OpcodeStr#".s\t{$src, ${dst} {${mask}} {z}|${dst} {${mask}} {z}, $src}", (!cast<Instruction>(BaseName#_.ZSuffix#"rrkz_REV") _.RC:$dst, _.KRCWM:$mask, _.RC:$src), 0>; } multiclass avx512_store_vl< bits<8> opc, string OpcodeStr, AVX512VLVectorVTInfo _, Predicate prd, X86SchedWriteMoveLSWidths Sched, string EVEX2VEXOvrd, bit NoMRPattern = 0> { let Predicates = [prd] in defm Z : avx512_store<opc, OpcodeStr, NAME, _.info512, store, masked_store_unaligned, Sched.ZMM, "", NoMRPattern>, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_store<opc, OpcodeStr, NAME, _.info256, store, masked_store_unaligned, Sched.YMM, EVEX2VEXOvrd#"Y", NoMRPattern>, EVEX_V256; defm Z128 : avx512_store<opc, OpcodeStr, NAME, _.info128, store, masked_store_unaligned, Sched.XMM, EVEX2VEXOvrd, NoMRPattern>, EVEX_V128; } } multiclass avx512_alignedstore_vl<bits<8> opc, string OpcodeStr, AVX512VLVectorVTInfo _, Predicate prd, X86SchedWriteMoveLSWidths Sched, string EVEX2VEXOvrd, bit NoMRPattern = 0> { let Predicates = [prd] in defm Z : avx512_store<opc, OpcodeStr, NAME, _.info512, alignedstore, masked_store_aligned512, Sched.ZMM, "", NoMRPattern>, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_store<opc, OpcodeStr, NAME, _.info256, alignedstore, masked_store_aligned256, Sched.YMM, EVEX2VEXOvrd#"Y", NoMRPattern>, EVEX_V256; defm Z128 : avx512_store<opc, OpcodeStr, NAME, _.info128, alignedstore, masked_store_aligned128, Sched.XMM, EVEX2VEXOvrd, NoMRPattern>, EVEX_V128; } } defm VMOVAPS : avx512_alignedload_vl<0x28, "vmovaps", avx512vl_f32_info, HasAVX512, SchedWriteFMoveLS, "VMOVAPS">, avx512_alignedstore_vl<0x29, "vmovaps", avx512vl_f32_info, HasAVX512, SchedWriteFMoveLS, "VMOVAPS">, PS, EVEX_CD8<32, CD8VF>; defm VMOVAPD : avx512_alignedload_vl<0x28, "vmovapd", avx512vl_f64_info, HasAVX512, SchedWriteFMoveLS, "VMOVAPD">, avx512_alignedstore_vl<0x29, "vmovapd", avx512vl_f64_info, HasAVX512, SchedWriteFMoveLS, "VMOVAPD">, PD, VEX_W, EVEX_CD8<64, CD8VF>; defm VMOVUPS : avx512_load_vl<0x10, "vmovups", avx512vl_f32_info, HasAVX512, SchedWriteFMoveLS, "VMOVUPS", 0, null_frag>, avx512_store_vl<0x11, "vmovups", avx512vl_f32_info, HasAVX512, SchedWriteFMoveLS, "VMOVUPS">, PS, EVEX_CD8<32, CD8VF>; defm VMOVUPD : avx512_load_vl<0x10, "vmovupd", avx512vl_f64_info, HasAVX512, SchedWriteFMoveLS, "VMOVUPD", 0, null_frag>, avx512_store_vl<0x11, "vmovupd", avx512vl_f64_info, HasAVX512, SchedWriteFMoveLS, "VMOVUPD">, PD, VEX_W, EVEX_CD8<64, CD8VF>; defm VMOVDQA32 : avx512_alignedload_vl<0x6F, "vmovdqa32", avx512vl_i32_info, HasAVX512, SchedWriteVecMoveLS, "VMOVDQA", 1>, avx512_alignedstore_vl<0x7F, "vmovdqa32", avx512vl_i32_info, HasAVX512, SchedWriteVecMoveLS, "VMOVDQA", 1>, PD, EVEX_CD8<32, CD8VF>; defm VMOVDQA64 : avx512_alignedload_vl<0x6F, "vmovdqa64", avx512vl_i64_info, HasAVX512, SchedWriteVecMoveLS, "VMOVDQA">, avx512_alignedstore_vl<0x7F, "vmovdqa64", avx512vl_i64_info, HasAVX512, SchedWriteVecMoveLS, "VMOVDQA">, PD, VEX_W, EVEX_CD8<64, CD8VF>; defm VMOVDQU8 : avx512_load_vl<0x6F, "vmovdqu8", avx512vl_i8_info, HasBWI, SchedWriteVecMoveLS, "VMOVDQU", 1>, avx512_store_vl<0x7F, "vmovdqu8", avx512vl_i8_info, HasBWI, SchedWriteVecMoveLS, "VMOVDQU", 1>, XD, EVEX_CD8<8, CD8VF>; defm VMOVDQU16 : avx512_load_vl<0x6F, "vmovdqu16", avx512vl_i16_info, HasBWI, SchedWriteVecMoveLS, "VMOVDQU", 1>, avx512_store_vl<0x7F, "vmovdqu16", avx512vl_i16_info, HasBWI, SchedWriteVecMoveLS, "VMOVDQU", 1>, XD, VEX_W, EVEX_CD8<16, CD8VF>; defm VMOVDQU32 : avx512_load_vl<0x6F, "vmovdqu32", avx512vl_i32_info, HasAVX512, SchedWriteVecMoveLS, "VMOVDQU", 1, null_frag>, avx512_store_vl<0x7F, "vmovdqu32", avx512vl_i32_info, HasAVX512, SchedWriteVecMoveLS, "VMOVDQU", 1>, XS, EVEX_CD8<32, CD8VF>; defm VMOVDQU64 : avx512_load_vl<0x6F, "vmovdqu64", avx512vl_i64_info, HasAVX512, SchedWriteVecMoveLS, "VMOVDQU", 0, null_frag>, avx512_store_vl<0x7F, "vmovdqu64", avx512vl_i64_info, HasAVX512, SchedWriteVecMoveLS, "VMOVDQU">, XS, VEX_W, EVEX_CD8<64, CD8VF>; // Special instructions to help with spilling when we don't have VLX. We need // to load or store from a ZMM register instead. These are converted in // expandPostRAPseudos. let isReMaterializable = 1, canFoldAsLoad = 1, isPseudo = 1, mayLoad = 1, hasSideEffects = 0 in { def VMOVAPSZ128rm_NOVLX : I<0, Pseudo, (outs VR128X:$dst), (ins f128mem:$src), "", []>, Sched<[WriteFLoadX]>; def VMOVAPSZ256rm_NOVLX : I<0, Pseudo, (outs VR256X:$dst), (ins f256mem:$src), "", []>, Sched<[WriteFLoadY]>; def VMOVUPSZ128rm_NOVLX : I<0, Pseudo, (outs VR128X:$dst), (ins f128mem:$src), "", []>, Sched<[WriteFLoadX]>; def VMOVUPSZ256rm_NOVLX : I<0, Pseudo, (outs VR256X:$dst), (ins f256mem:$src), "", []>, Sched<[WriteFLoadY]>; } let isPseudo = 1, mayStore = 1, hasSideEffects = 0 in { def VMOVAPSZ128mr_NOVLX : I<0, Pseudo, (outs), (ins f128mem:$dst, VR128X:$src), "", []>, Sched<[WriteFStoreX]>; def VMOVAPSZ256mr_NOVLX : I<0, Pseudo, (outs), (ins f256mem:$dst, VR256X:$src), "", []>, Sched<[WriteFStoreY]>; def VMOVUPSZ128mr_NOVLX : I<0, Pseudo, (outs), (ins f128mem:$dst, VR128X:$src), "", []>, Sched<[WriteFStoreX]>; def VMOVUPSZ256mr_NOVLX : I<0, Pseudo, (outs), (ins f256mem:$dst, VR256X:$src), "", []>, Sched<[WriteFStoreY]>; } def : Pat<(v8i64 (vselect VK8WM:$mask, (bc_v8i64 (v16i32 immAllZerosV)), (v8i64 VR512:$src))), (VMOVDQA64Zrrkz (COPY_TO_REGCLASS (KNOTWrr (COPY_TO_REGCLASS VK8:$mask, VK16)), VK8), VR512:$src)>; def : Pat<(v16i32 (vselect VK16WM:$mask, (v16i32 immAllZerosV), (v16i32 VR512:$src))), (VMOVDQA32Zrrkz (KNOTWrr VK16WM:$mask), VR512:$src)>; // These patterns exist to prevent the above patterns from introducing a second // mask inversion when one already exists. def : Pat<(v8i64 (vselect (xor VK8:$mask, (v8i1 immAllOnesV)), (bc_v8i64 (v16i32 immAllZerosV)), (v8i64 VR512:$src))), (VMOVDQA64Zrrkz VK8:$mask, VR512:$src)>; def : Pat<(v16i32 (vselect (xor VK16:$mask, (v16i1 immAllOnesV)), (v16i32 immAllZerosV), (v16i32 VR512:$src))), (VMOVDQA32Zrrkz VK16WM:$mask, VR512:$src)>; multiclass mask_move_lowering<string InstrStr, X86VectorVTInfo Narrow, X86VectorVTInfo Wide> { def : Pat<(Narrow.VT (vselect (Narrow.KVT Narrow.KRCWM:$mask), Narrow.RC:$src1, Narrow.RC:$src0)), (EXTRACT_SUBREG (Wide.VT (!cast<Instruction>(InstrStr#"rrk") (Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src0, Narrow.SubRegIdx)), (COPY_TO_REGCLASS Narrow.KRCWM:$mask, Wide.KRCWM), (Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src1, Narrow.SubRegIdx)))), Narrow.SubRegIdx)>; def : Pat<(Narrow.VT (vselect (Narrow.KVT Narrow.KRCWM:$mask), Narrow.RC:$src1, Narrow.ImmAllZerosV)), (EXTRACT_SUBREG (Wide.VT (!cast<Instruction>(InstrStr#"rrkz") (COPY_TO_REGCLASS Narrow.KRCWM:$mask, Wide.KRCWM), (Wide.VT (INSERT_SUBREG (IMPLICIT_DEF), Narrow.RC:$src1, Narrow.SubRegIdx)))), Narrow.SubRegIdx)>; } // Patterns for handling v8i1 selects of 256-bit vectors when VLX isn't // available. Use a 512-bit operation and extract. let Predicates = [HasAVX512, NoVLX] in { defm : mask_move_lowering<"VMOVAPSZ", v4f32x_info, v16f32_info>; defm : mask_move_lowering<"VMOVDQA32Z", v4i32x_info, v16i32_info>; defm : mask_move_lowering<"VMOVAPSZ", v8f32x_info, v16f32_info>; defm : mask_move_lowering<"VMOVDQA32Z", v8i32x_info, v16i32_info>; defm : mask_move_lowering<"VMOVAPDZ", v2f64x_info, v8f64_info>; defm : mask_move_lowering<"VMOVDQA64Z", v2i64x_info, v8i64_info>; defm : mask_move_lowering<"VMOVAPDZ", v4f64x_info, v8f64_info>; defm : mask_move_lowering<"VMOVDQA64Z", v4i64x_info, v8i64_info>; } let Predicates = [HasBWI, NoVLX] in { defm : mask_move_lowering<"VMOVDQU8Z", v16i8x_info, v64i8_info>; defm : mask_move_lowering<"VMOVDQU8Z", v32i8x_info, v64i8_info>; defm : mask_move_lowering<"VMOVDQU16Z", v8i16x_info, v32i16_info>; defm : mask_move_lowering<"VMOVDQU16Z", v16i16x_info, v32i16_info>; } let Predicates = [HasAVX512] in { // 512-bit store. def : Pat<(alignedstore (v16i32 VR512:$src), addr:$dst), (VMOVDQA64Zmr addr:$dst, VR512:$src)>; def : Pat<(alignedstore (v32i16 VR512:$src), addr:$dst), (VMOVDQA64Zmr addr:$dst, VR512:$src)>; def : Pat<(alignedstore (v64i8 VR512:$src), addr:$dst), (VMOVDQA64Zmr addr:$dst, VR512:$src)>; def : Pat<(store (v16i32 VR512:$src), addr:$dst), (VMOVDQU64Zmr addr:$dst, VR512:$src)>; def : Pat<(store (v32i16 VR512:$src), addr:$dst), (VMOVDQU64Zmr addr:$dst, VR512:$src)>; def : Pat<(store (v64i8 VR512:$src), addr:$dst), (VMOVDQU64Zmr addr:$dst, VR512:$src)>; } let Predicates = [HasVLX] in { // 128-bit store. def : Pat<(alignedstore (v4i32 VR128X:$src), addr:$dst), (VMOVDQA64Z128mr addr:$dst, VR128X:$src)>; def : Pat<(alignedstore (v8i16 VR128X:$src), addr:$dst), (VMOVDQA64Z128mr addr:$dst, VR128X:$src)>; def : Pat<(alignedstore (v16i8 VR128X:$src), addr:$dst), (VMOVDQA64Z128mr addr:$dst, VR128X:$src)>; def : Pat<(store (v4i32 VR128X:$src), addr:$dst), (VMOVDQU64Z128mr addr:$dst, VR128X:$src)>; def : Pat<(store (v8i16 VR128X:$src), addr:$dst), (VMOVDQU64Z128mr addr:$dst, VR128X:$src)>; def : Pat<(store (v16i8 VR128X:$src), addr:$dst), (VMOVDQU64Z128mr addr:$dst, VR128X:$src)>; // 256-bit store. def : Pat<(alignedstore (v8i32 VR256X:$src), addr:$dst), (VMOVDQA64Z256mr addr:$dst, VR256X:$src)>; def : Pat<(alignedstore (v16i16 VR256X:$src), addr:$dst), (VMOVDQA64Z256mr addr:$dst, VR256X:$src)>; def : Pat<(alignedstore (v32i8 VR256X:$src), addr:$dst), (VMOVDQA64Z256mr addr:$dst, VR256X:$src)>; def : Pat<(store (v8i32 VR256X:$src), addr:$dst), (VMOVDQU64Z256mr addr:$dst, VR256X:$src)>; def : Pat<(store (v16i16 VR256X:$src), addr:$dst), (VMOVDQU64Z256mr addr:$dst, VR256X:$src)>; def : Pat<(store (v32i8 VR256X:$src), addr:$dst), (VMOVDQU64Z256mr addr:$dst, VR256X:$src)>; } multiclass masked_move_for_extract<string InstrStr, X86VectorVTInfo From, X86VectorVTInfo To, X86VectorVTInfo Cast> { def : Pat<(Cast.VT (vselect Cast.KRCWM:$mask, (bitconvert (To.VT (extract_subvector (From.VT From.RC:$src), (iPTR 0)))), To.RC:$src0)), (Cast.VT (!cast<Instruction>(InstrStr#"rrk") Cast.RC:$src0, Cast.KRCWM:$mask, (To.VT (EXTRACT_SUBREG From.RC:$src, To.SubRegIdx))))>; def : Pat<(Cast.VT (vselect Cast.KRCWM:$mask, (bitconvert (To.VT (extract_subvector (From.VT From.RC:$src), (iPTR 0)))), Cast.ImmAllZerosV)), (Cast.VT (!cast<Instruction>(InstrStr#"rrkz") Cast.KRCWM:$mask, (To.VT (EXTRACT_SUBREG From.RC:$src, To.SubRegIdx))))>; } let Predicates = [HasVLX] in { // A masked extract from the first 128-bits of a 256-bit vector can be // implemented with masked move. defm : masked_move_for_extract<"VMOVDQA64Z128", v4i64x_info, v2i64x_info, v2i64x_info>; defm : masked_move_for_extract<"VMOVDQA64Z128", v8i32x_info, v4i32x_info, v2i64x_info>; defm : masked_move_for_extract<"VMOVDQA64Z128", v16i16x_info, v8i16x_info, v2i64x_info>; defm : masked_move_for_extract<"VMOVDQA64Z128", v32i8x_info, v16i8x_info, v2i64x_info>; defm : masked_move_for_extract<"VMOVDQA32Z128", v4i64x_info, v2i64x_info, v4i32x_info>; defm : masked_move_for_extract<"VMOVDQA32Z128", v8i32x_info, v4i32x_info, v4i32x_info>; defm : masked_move_for_extract<"VMOVDQA32Z128", v16i16x_info, v8i16x_info, v4i32x_info>; defm : masked_move_for_extract<"VMOVDQA32Z128", v32i8x_info, v16i8x_info, v4i32x_info>; defm : masked_move_for_extract<"VMOVAPDZ128", v4f64x_info, v2f64x_info, v2f64x_info>; defm : masked_move_for_extract<"VMOVAPDZ128", v8f32x_info, v4f32x_info, v2f64x_info>; defm : masked_move_for_extract<"VMOVAPSZ128", v4f64x_info, v2f64x_info, v4f32x_info>; defm : masked_move_for_extract<"VMOVAPSZ128", v8f32x_info, v4f32x_info, v4f32x_info>; // A masked extract from the first 128-bits of a 512-bit vector can be // implemented with masked move. defm : masked_move_for_extract<"VMOVDQA64Z128", v8i64_info, v2i64x_info, v2i64x_info>; defm : masked_move_for_extract<"VMOVDQA64Z128", v16i32_info, v4i32x_info, v2i64x_info>; defm : masked_move_for_extract<"VMOVDQA64Z128", v32i16_info, v8i16x_info, v2i64x_info>; defm : masked_move_for_extract<"VMOVDQA64Z128", v64i8_info, v16i8x_info, v2i64x_info>; defm : masked_move_for_extract<"VMOVDQA32Z128", v8i64_info, v2i64x_info, v4i32x_info>; defm : masked_move_for_extract<"VMOVDQA32Z128", v16i32_info, v4i32x_info, v4i32x_info>; defm : masked_move_for_extract<"VMOVDQA32Z128", v32i16_info, v8i16x_info, v4i32x_info>; defm : masked_move_for_extract<"VMOVDQA32Z128", v64i8_info, v16i8x_info, v4i32x_info>; defm : masked_move_for_extract<"VMOVAPDZ128", v8f64_info, v2f64x_info, v2f64x_info>; defm : masked_move_for_extract<"VMOVAPDZ128", v16f32_info, v4f32x_info, v2f64x_info>; defm : masked_move_for_extract<"VMOVAPSZ128", v8f64_info, v2f64x_info, v4f32x_info>; defm : masked_move_for_extract<"VMOVAPSZ128", v16f32_info, v4f32x_info, v4f32x_info>; // A masked extract from the first 256-bits of a 512-bit vector can be // implemented with masked move. defm : masked_move_for_extract<"VMOVDQA64Z256", v8i64_info, v4i64x_info, v4i64x_info>; defm : masked_move_for_extract<"VMOVDQA64Z256", v16i32_info, v8i32x_info, v4i64x_info>; defm : masked_move_for_extract<"VMOVDQA64Z256", v32i16_info, v16i16x_info, v4i64x_info>; defm : masked_move_for_extract<"VMOVDQA64Z256", v64i8_info, v32i8x_info, v4i64x_info>; defm : masked_move_for_extract<"VMOVDQA32Z256", v8i64_info, v4i64x_info, v8i32x_info>; defm : masked_move_for_extract<"VMOVDQA32Z256", v16i32_info, v8i32x_info, v8i32x_info>; defm : masked_move_for_extract<"VMOVDQA32Z256", v32i16_info, v16i16x_info, v8i32x_info>; defm : masked_move_for_extract<"VMOVDQA32Z256", v64i8_info, v32i8x_info, v8i32x_info>; defm : masked_move_for_extract<"VMOVAPDZ256", v8f64_info, v4f64x_info, v4f64x_info>; defm : masked_move_for_extract<"VMOVAPDZ256", v16f32_info, v8f32x_info, v4f64x_info>; defm : masked_move_for_extract<"VMOVAPSZ256", v8f64_info, v4f64x_info, v8f32x_info>; defm : masked_move_for_extract<"VMOVAPSZ256", v16f32_info, v8f32x_info, v8f32x_info>; } // Move Int Doubleword to Packed Double Int // let ExeDomain = SSEPackedInt in { def VMOVDI2PDIZrr : AVX512BI<0x6E, MRMSrcReg, (outs VR128X:$dst), (ins GR32:$src), "vmovd\t{$src, $dst|$dst, $src}", [(set VR128X:$dst, (v4i32 (scalar_to_vector GR32:$src)))]>, EVEX, Sched<[WriteVecMoveFromGpr]>; def VMOVDI2PDIZrm : AVX512BI<0x6E, MRMSrcMem, (outs VR128X:$dst), (ins i32mem:$src), "vmovd\t{$src, $dst|$dst, $src}", [(set VR128X:$dst, (v4i32 (scalar_to_vector (loadi32 addr:$src))))]>, EVEX, EVEX_CD8<32, CD8VT1>, Sched<[WriteVecLoad]>; def VMOV64toPQIZrr : AVX512BI<0x6E, MRMSrcReg, (outs VR128X:$dst), (ins GR64:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set VR128X:$dst, (v2i64 (scalar_to_vector GR64:$src)))]>, EVEX, VEX_W, Sched<[WriteVecMoveFromGpr]>; let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, mayLoad = 1 in def VMOV64toPQIZrm : AVX512BI<0x6E, MRMSrcMem, (outs VR128X:$dst), (ins i64mem:$src), "vmovq\t{$src, $dst|$dst, $src}", []>, EVEX, VEX_W, EVEX_CD8<64, CD8VT1>, Sched<[WriteVecLoad]>; let isCodeGenOnly = 1 in { def VMOV64toSDZrr : AVX512BI<0x6E, MRMSrcReg, (outs FR64X:$dst), (ins GR64:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set FR64X:$dst, (bitconvert GR64:$src))]>, EVEX, VEX_W, Sched<[WriteVecMoveFromGpr]>; def VMOV64toSDZrm : AVX512XSI<0x7E, MRMSrcMem, (outs FR64X:$dst), (ins i64mem:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set FR64X:$dst, (bitconvert (loadi64 addr:$src)))]>, EVEX, VEX_W, EVEX_CD8<8, CD8VT8>, Sched<[WriteVecLoad]>; def VMOVSDto64Zrr : AVX512BI<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64X:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (bitconvert FR64X:$src))]>, EVEX, VEX_W, Sched<[WriteVecMoveFromGpr]>; def VMOVSDto64Zmr : AVX512BI<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64X:$src), "vmovq\t{$src, $dst|$dst, $src}", [(store (i64 (bitconvert FR64X:$src)), addr:$dst)]>, EVEX, VEX_W, Sched<[WriteVecStore]>, EVEX_CD8<64, CD8VT1>; } } // ExeDomain = SSEPackedInt // Move Int Doubleword to Single Scalar // let ExeDomain = SSEPackedInt, isCodeGenOnly = 1 in { def VMOVDI2SSZrr : AVX512BI<0x6E, MRMSrcReg, (outs FR32X:$dst), (ins GR32:$src), "vmovd\t{$src, $dst|$dst, $src}", [(set FR32X:$dst, (bitconvert GR32:$src))]>, EVEX, Sched<[WriteVecMoveFromGpr]>; def VMOVDI2SSZrm : AVX512BI<0x6E, MRMSrcMem, (outs FR32X:$dst), (ins i32mem:$src), "vmovd\t{$src, $dst|$dst, $src}", [(set FR32X:$dst, (bitconvert (loadi32 addr:$src)))]>, EVEX, EVEX_CD8<32, CD8VT1>, Sched<[WriteVecLoad]>; } // ExeDomain = SSEPackedInt, isCodeGenOnly = 1 // Move doubleword from xmm register to r/m32 // let ExeDomain = SSEPackedInt in { def VMOVPDI2DIZrr : AVX512BI<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128X:$src), "vmovd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (extractelt (v4i32 VR128X:$src), (iPTR 0)))]>, EVEX, Sched<[WriteVecMoveToGpr]>; def VMOVPDI2DIZmr : AVX512BI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, VR128X:$src), "vmovd\t{$src, $dst|$dst, $src}", [(store (i32 (extractelt (v4i32 VR128X:$src), (iPTR 0))), addr:$dst)]>, EVEX, EVEX_CD8<32, CD8VT1>, Sched<[WriteVecStore]>; } // ExeDomain = SSEPackedInt // Move quadword from xmm1 register to r/m64 // let ExeDomain = SSEPackedInt in { def VMOVPQIto64Zrr : I<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128X:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (extractelt (v2i64 VR128X:$src), (iPTR 0)))]>, PD, EVEX, VEX_W, Sched<[WriteVecMoveToGpr]>, Requires<[HasAVX512]>; let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, mayStore = 1 in def VMOVPQIto64Zmr : I<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, VR128X:$src), "vmovq\t{$src, $dst|$dst, $src}", []>, PD, EVEX, VEX_W, Sched<[WriteVecStore]>, Requires<[HasAVX512, In64BitMode]>; def VMOVPQI2QIZmr : I<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128X:$src), "vmovq\t{$src, $dst|$dst, $src}", [(store (extractelt (v2i64 VR128X:$src), (iPTR 0)), addr:$dst)]>, EVEX, PD, VEX_W, EVEX_CD8<64, CD8VT1>, Sched<[WriteVecStore]>, Requires<[HasAVX512]>; let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in def VMOVPQI2QIZrr : AVX512BI<0xD6, MRMDestReg, (outs VR128X:$dst), (ins VR128X:$src), "vmovq\t{$src, $dst|$dst, $src}", []>, EVEX, VEX_W, Sched<[SchedWriteVecLogic.XMM]>; } // ExeDomain = SSEPackedInt def : InstAlias<"vmovq.s\t{$src, $dst|$dst, $src}", (VMOVPQI2QIZrr VR128X:$dst, VR128X:$src), 0>; // Move Scalar Single to Double Int // let ExeDomain = SSEPackedInt, isCodeGenOnly = 1 in { def VMOVSS2DIZrr : AVX512BI<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32X:$src), "vmovd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (bitconvert FR32X:$src))]>, EVEX, Sched<[WriteVecMoveToGpr]>; def VMOVSS2DIZmr : AVX512BI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32X:$src), "vmovd\t{$src, $dst|$dst, $src}", [(store (i32 (bitconvert FR32X:$src)), addr:$dst)]>, EVEX, EVEX_CD8<32, CD8VT1>, Sched<[WriteVecStore]>; } // ExeDomain = SSEPackedInt, isCodeGenOnly = 1 // Move Quadword Int to Packed Quadword Int // let ExeDomain = SSEPackedInt in { def VMOVQI2PQIZrm : AVX512XSI<0x7E, MRMSrcMem, (outs VR128X:$dst), (ins i64mem:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set VR128X:$dst, (v2i64 (scalar_to_vector (loadi64 addr:$src))))]>, EVEX, VEX_W, EVEX_CD8<8, CD8VT8>, Sched<[WriteVecLoad]>; } // ExeDomain = SSEPackedInt // Allow "vmovd" but print "vmovq". def : InstAlias<"vmovd\t{$src, $dst|$dst, $src}", (VMOV64toPQIZrr VR128X:$dst, GR64:$src), 0>; def : InstAlias<"vmovd\t{$src, $dst|$dst, $src}", (VMOVPQIto64Zrr GR64:$dst, VR128X:$src), 0>; //===----------------------------------------------------------------------===// // AVX-512 MOVSS, MOVSD //===----------------------------------------------------------------------===// multiclass avx512_move_scalar<string asm, SDNode OpNode, X86VectorVTInfo _> { let Predicates = [HasAVX512, OptForSize] in def rr : AVX512PI<0x10, MRMSrcReg, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2), !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set _.RC:$dst, (_.VT (OpNode _.RC:$src1, _.RC:$src2)))], _.ExeDomain>, EVEX_4V, Sched<[SchedWriteFShuffle.XMM]>; def rrkz : AVX512PI<0x10, MRMSrcReg, (outs _.RC:$dst), (ins _.KRCWM:$mask, _.RC:$src1, _.RC:$src2), !strconcat(asm, "\t{$src2, $src1, $dst {${mask}} {z}|", "$dst {${mask}} {z}, $src1, $src2}"), [(set _.RC:$dst, (_.VT (X86selects _.KRCWM:$mask, (_.VT (OpNode _.RC:$src1, _.RC:$src2)), _.ImmAllZerosV)))], _.ExeDomain>, EVEX_4V, EVEX_KZ, Sched<[SchedWriteFShuffle.XMM]>; let Constraints = "$src0 = $dst" in def rrk : AVX512PI<0x10, MRMSrcReg, (outs _.RC:$dst), (ins _.RC:$src0, _.KRCWM:$mask, _.RC:$src1, _.RC:$src2), !strconcat(asm, "\t{$src2, $src1, $dst {${mask}}|", "$dst {${mask}}, $src1, $src2}"), [(set _.RC:$dst, (_.VT (X86selects _.KRCWM:$mask, (_.VT (OpNode _.RC:$src1, _.RC:$src2)), (_.VT _.RC:$src0))))], _.ExeDomain>, EVEX_4V, EVEX_K, Sched<[SchedWriteFShuffle.XMM]>; let canFoldAsLoad = 1, isReMaterializable = 1 in def rm : AVX512PI<0x10, MRMSrcMem, (outs _.FRC:$dst), (ins _.ScalarMemOp:$src), !strconcat(asm, "\t{$src, $dst|$dst, $src}"), [(set _.FRC:$dst, (_.ScalarLdFrag addr:$src))], _.ExeDomain>, EVEX, Sched<[WriteFLoad]>; let mayLoad = 1, hasSideEffects = 0 in { let Constraints = "$src0 = $dst" in def rmk : AVX512PI<0x10, MRMSrcMem, (outs _.RC:$dst), (ins _.RC:$src0, _.KRCWM:$mask, _.ScalarMemOp:$src), !strconcat(asm, "\t{$src, $dst {${mask}}|", "$dst {${mask}}, $src}"), [], _.ExeDomain>, EVEX, EVEX_K, Sched<[WriteFLoad]>; def rmkz : AVX512PI<0x10, MRMSrcMem, (outs _.RC:$dst), (ins _.KRCWM:$mask, _.ScalarMemOp:$src), !strconcat(asm, "\t{$src, $dst {${mask}} {z}|", "$dst {${mask}} {z}, $src}"), [], _.ExeDomain>, EVEX, EVEX_KZ, Sched<[WriteFLoad]>; } def mr: AVX512PI<0x11, MRMDestMem, (outs), (ins _.ScalarMemOp:$dst, _.FRC:$src), !strconcat(asm, "\t{$src, $dst|$dst, $src}"), [(store _.FRC:$src, addr:$dst)], _.ExeDomain>, EVEX, Sched<[WriteFStore]>; let mayStore = 1, hasSideEffects = 0 in def mrk: AVX512PI<0x11, MRMDestMem, (outs), (ins _.ScalarMemOp:$dst, VK1WM:$mask, _.FRC:$src), !strconcat(asm, "\t{$src, $dst {${mask}}|$dst {${mask}}, $src}"), [], _.ExeDomain>, EVEX, EVEX_K, Sched<[WriteFStore]>, NotMemoryFoldable; } defm VMOVSSZ : avx512_move_scalar<"vmovss", X86Movss, f32x_info>, VEX_LIG, XS, EVEX_CD8<32, CD8VT1>; defm VMOVSDZ : avx512_move_scalar<"vmovsd", X86Movsd, f64x_info>, VEX_LIG, XD, VEX_W, EVEX_CD8<64, CD8VT1>; multiclass avx512_move_scalar_lowering<string InstrStr, SDNode OpNode, PatLeaf ZeroFP, X86VectorVTInfo _> { def : Pat<(_.VT (OpNode _.RC:$src0, (_.VT (scalar_to_vector (_.EltVT (X86selects VK1WM:$mask, (_.EltVT _.FRC:$src1), (_.EltVT _.FRC:$src2))))))), (!cast<Instruction>(InstrStr#rrk) (_.VT (COPY_TO_REGCLASS _.FRC:$src2, _.RC)), VK1WM:$mask, (_.VT _.RC:$src0), (_.VT (COPY_TO_REGCLASS _.FRC:$src1, _.RC)))>; def : Pat<(_.VT (OpNode _.RC:$src0, (_.VT (scalar_to_vector (_.EltVT (X86selects VK1WM:$mask, (_.EltVT _.FRC:$src1), (_.EltVT ZeroFP))))))), (!cast<Instruction>(InstrStr#rrkz) VK1WM:$mask, (_.VT _.RC:$src0), (_.VT (COPY_TO_REGCLASS _.FRC:$src1, _.RC)))>; } multiclass avx512_store_scalar_lowering<string InstrStr, AVX512VLVectorVTInfo _, dag Mask, RegisterClass MaskRC> { def : Pat<(masked_store addr:$dst, Mask, (_.info512.VT (insert_subvector undef, (_.info128.VT _.info128.RC:$src), (iPTR 0)))), (!cast<Instruction>(InstrStr#mrk) addr:$dst, (COPY_TO_REGCLASS MaskRC:$mask, VK1WM), (COPY_TO_REGCLASS _.info128.RC:$src, _.info128.FRC))>; } multiclass avx512_store_scalar_lowering_subreg<string InstrStr, AVX512VLVectorVTInfo _, dag Mask, RegisterClass MaskRC, SubRegIndex subreg> { def : Pat<(masked_store addr:$dst, Mask, (_.info512.VT (insert_subvector undef, (_.info128.VT _.info128.RC:$src), (iPTR 0)))), (!cast<Instruction>(InstrStr#mrk) addr:$dst, (COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), MaskRC:$mask, subreg)), VK1WM), (COPY_TO_REGCLASS _.info128.RC:$src, _.info128.FRC))>; } // This matches the more recent codegen from clang that avoids emitting a 512 // bit masked store directly. Codegen will widen 128-bit masked store to 512 // bits on AVX512F only targets. multiclass avx512_store_scalar_lowering_subreg2<string InstrStr, AVX512VLVectorVTInfo _, dag Mask512, dag Mask128, RegisterClass MaskRC, SubRegIndex subreg> { // AVX512F pattern. def : Pat<(masked_store addr:$dst, Mask512, (_.info512.VT (insert_subvector undef, (_.info128.VT _.info128.RC:$src), (iPTR 0)))), (!cast<Instruction>(InstrStr#mrk) addr:$dst, (COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), MaskRC:$mask, subreg)), VK1WM), (COPY_TO_REGCLASS _.info128.RC:$src, _.info128.FRC))>; // AVX512VL pattern. def : Pat<(masked_store addr:$dst, Mask128, (_.info128.VT _.info128.RC:$src)), (!cast<Instruction>(InstrStr#mrk) addr:$dst, (COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), MaskRC:$mask, subreg)), VK1WM), (COPY_TO_REGCLASS _.info128.RC:$src, _.info128.FRC))>; } multiclass avx512_load_scalar_lowering<string InstrStr, AVX512VLVectorVTInfo _, dag Mask, RegisterClass MaskRC> { def : Pat<(_.info128.VT (extract_subvector (_.info512.VT (masked_load addr:$srcAddr, Mask, (_.info512.VT (bitconvert (v16i32 immAllZerosV))))), (iPTR 0))), (!cast<Instruction>(InstrStr#rmkz) (COPY_TO_REGCLASS MaskRC:$mask, VK1WM), addr:$srcAddr)>; def : Pat<(_.info128.VT (extract_subvector (_.info512.VT (masked_load addr:$srcAddr, Mask, (_.info512.VT (insert_subvector undef, (_.info128.VT (X86vzmovl _.info128.RC:$src)), (iPTR 0))))), (iPTR 0))), (!cast<Instruction>(InstrStr#rmk) _.info128.RC:$src, (COPY_TO_REGCLASS MaskRC:$mask, VK1WM), addr:$srcAddr)>; } multiclass avx512_load_scalar_lowering_subreg<string InstrStr, AVX512VLVectorVTInfo _, dag Mask, RegisterClass MaskRC, SubRegIndex subreg> { def : Pat<(_.info128.VT (extract_subvector (_.info512.VT (masked_load addr:$srcAddr, Mask, (_.info512.VT (bitconvert (v16i32 immAllZerosV))))), (iPTR 0))), (!cast<Instruction>(InstrStr#rmkz) (COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), MaskRC:$mask, subreg)), VK1WM), addr:$srcAddr)>; def : Pat<(_.info128.VT (extract_subvector (_.info512.VT (masked_load addr:$srcAddr, Mask, (_.info512.VT (insert_subvector undef, (_.info128.VT (X86vzmovl _.info128.RC:$src)), (iPTR 0))))), (iPTR 0))), (!cast<Instruction>(InstrStr#rmk) _.info128.RC:$src, (COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), MaskRC:$mask, subreg)), VK1WM), addr:$srcAddr)>; } // This matches the more recent codegen from clang that avoids emitting a 512 // bit masked load directly. Codegen will widen 128-bit masked load to 512 // bits on AVX512F only targets. multiclass avx512_load_scalar_lowering_subreg2<string InstrStr, AVX512VLVectorVTInfo _, dag Mask512, dag Mask128, RegisterClass MaskRC, SubRegIndex subreg> { // AVX512F patterns. def : Pat<(_.info128.VT (extract_subvector (_.info512.VT (masked_load addr:$srcAddr, Mask512, (_.info512.VT (bitconvert (v16i32 immAllZerosV))))), (iPTR 0))), (!cast<Instruction>(InstrStr#rmkz) (COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), MaskRC:$mask, subreg)), VK1WM), addr:$srcAddr)>; def : Pat<(_.info128.VT (extract_subvector (_.info512.VT (masked_load addr:$srcAddr, Mask512, (_.info512.VT (insert_subvector undef, (_.info128.VT (X86vzmovl _.info128.RC:$src)), (iPTR 0))))), (iPTR 0))), (!cast<Instruction>(InstrStr#rmk) _.info128.RC:$src, (COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), MaskRC:$mask, subreg)), VK1WM), addr:$srcAddr)>; // AVX512Vl patterns. def : Pat<(_.info128.VT (masked_load addr:$srcAddr, Mask128, (_.info128.VT (bitconvert (v4i32 immAllZerosV))))), (!cast<Instruction>(InstrStr#rmkz) (COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), MaskRC:$mask, subreg)), VK1WM), addr:$srcAddr)>; def : Pat<(_.info128.VT (masked_load addr:$srcAddr, Mask128, (_.info128.VT (X86vzmovl _.info128.RC:$src)))), (!cast<Instruction>(InstrStr#rmk) _.info128.RC:$src, (COPY_TO_REGCLASS (i32 (INSERT_SUBREG (IMPLICIT_DEF), MaskRC:$mask, subreg)), VK1WM), addr:$srcAddr)>; } defm : avx512_move_scalar_lowering<"VMOVSSZ", X86Movss, fp32imm0, v4f32x_info>; defm : avx512_move_scalar_lowering<"VMOVSDZ", X86Movsd, fp64imm0, v2f64x_info>; defm : avx512_store_scalar_lowering<"VMOVSSZ", avx512vl_f32_info, (v16i1 (bitconvert (i16 (trunc (and GR32:$mask, (i32 1)))))), GR32>; defm : avx512_store_scalar_lowering_subreg<"VMOVSSZ", avx512vl_f32_info, (v16i1 (bitconvert (i16 (and GR16:$mask, (i16 1))))), GR16, sub_16bit>; defm : avx512_store_scalar_lowering_subreg<"VMOVSDZ", avx512vl_f64_info, (v8i1 (bitconvert (i8 (and GR8:$mask, (i8 1))))), GR8, sub_8bit>; defm : avx512_store_scalar_lowering_subreg2<"VMOVSSZ", avx512vl_f32_info, (v16i1 (insert_subvector (v16i1 immAllZerosV), (v4i1 (extract_subvector (v8i1 (bitconvert (and GR8:$mask, (i8 1)))), (iPTR 0))), (iPTR 0))), (v4i1 (extract_subvector (v8i1 (bitconvert (and GR8:$mask, (i8 1)))), (iPTR 0))), GR8, sub_8bit>; defm : avx512_store_scalar_lowering_subreg2<"VMOVSDZ", avx512vl_f64_info, (v8i1 (extract_subvector (v16i1 (insert_subvector (v16i1 immAllZerosV), (v2i1 (extract_subvector (v8i1 (bitconvert (i8 (and GR8:$mask, (i8 1))))), (iPTR 0))), (iPTR 0))), (iPTR 0))), (v2i1 (extract_subvector (v8i1 (bitconvert (i8 (and GR8:$mask, (i8 1))))), (iPTR 0))), GR8, sub_8bit>; defm : avx512_load_scalar_lowering<"VMOVSSZ", avx512vl_f32_info, (v16i1 (bitconvert (i16 (trunc (and GR32:$mask, (i32 1)))))), GR32>; defm : avx512_load_scalar_lowering_subreg<"VMOVSSZ", avx512vl_f32_info, (v16i1 (bitconvert (i16 (and GR16:$mask, (i16 1))))), GR16, sub_16bit>; defm : avx512_load_scalar_lowering_subreg<"VMOVSDZ", avx512vl_f64_info, (v8i1 (bitconvert (i8 (and GR8:$mask, (i8 1))))), GR8, sub_8bit>; defm : avx512_load_scalar_lowering_subreg2<"VMOVSSZ", avx512vl_f32_info, (v16i1 (insert_subvector (v16i1 immAllZerosV), (v4i1 (extract_subvector (v8i1 (bitconvert (and GR8:$mask, (i8 1)))), (iPTR 0))), (iPTR 0))), (v4i1 (extract_subvector (v8i1 (bitconvert (and GR8:$mask, (i8 1)))), (iPTR 0))), GR8, sub_8bit>; defm : avx512_load_scalar_lowering_subreg2<"VMOVSDZ", avx512vl_f64_info, (v8i1 (extract_subvector (v16i1 (insert_subvector (v16i1 immAllZerosV), (v2i1 (extract_subvector (v8i1 (bitconvert (i8 (and GR8:$mask, (i8 1))))), (iPTR 0))), (iPTR 0))), (iPTR 0))), (v2i1 (extract_subvector (v8i1 (bitconvert (i8 (and GR8:$mask, (i8 1))))), (iPTR 0))), GR8, sub_8bit>; def : Pat<(f32 (X86selects VK1WM:$mask, (f32 FR32X:$src1), (f32 FR32X:$src2))), (COPY_TO_REGCLASS (v4f32 (VMOVSSZrrk (v4f32 (COPY_TO_REGCLASS FR32X:$src2, VR128X)), VK1WM:$mask, (v4f32 (IMPLICIT_DEF)), (v4f32 (COPY_TO_REGCLASS FR32X:$src1, VR128X)))), FR32X)>; def : Pat<(f32 (X86selects VK1WM:$mask, (f32 FR32X:$src1), fp32imm0)), (COPY_TO_REGCLASS (v4f32 (VMOVSSZrrkz VK1WM:$mask, (v4f32 (IMPLICIT_DEF)), (v4f32 (COPY_TO_REGCLASS FR32X:$src1, VR128X)))), FR32X)>; def : Pat<(f64 (X86selects VK1WM:$mask, (f64 FR64X:$src1), (f64 FR64X:$src2))), (COPY_TO_REGCLASS (v2f64 (VMOVSDZrrk (v2f64 (COPY_TO_REGCLASS FR64X:$src2, VR128X)), VK1WM:$mask, (v2f64 (IMPLICIT_DEF)), (v2f64 (COPY_TO_REGCLASS FR64X:$src1, VR128X)))), FR64X)>; def : Pat<(f64 (X86selects VK1WM:$mask, (f64 FR64X:$src1), fpimm0)), (COPY_TO_REGCLASS (v2f64 (VMOVSDZrrkz VK1WM:$mask, (v2f64 (IMPLICIT_DEF)), (v2f64 (COPY_TO_REGCLASS FR64X:$src1, VR128X)))), FR64X)>; let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in { def VMOVSSZrr_REV: AVX512<0x11, MRMDestReg, (outs VR128X:$dst), (ins VR128X:$src1, VR128X:$src2), "vmovss\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, XS, EVEX_4V, VEX_LIG, FoldGenData<"VMOVSSZrr">, Sched<[SchedWriteFShuffle.XMM]>; let Constraints = "$src0 = $dst" in def VMOVSSZrrk_REV: AVX512<0x11, MRMDestReg, (outs VR128X:$dst), (ins f32x_info.RC:$src0, f32x_info.KRCWM:$mask, VR128X:$src1, VR128X:$src2), "vmovss\t{$src2, $src1, $dst {${mask}}|"# "$dst {${mask}}, $src1, $src2}", []>, EVEX_K, XS, EVEX_4V, VEX_LIG, FoldGenData<"VMOVSSZrrk">, Sched<[SchedWriteFShuffle.XMM]>; def VMOVSSZrrkz_REV: AVX512<0x11, MRMDestReg, (outs VR128X:$dst), (ins f32x_info.KRCWM:$mask, VR128X:$src1, VR128X:$src2), "vmovss\t{$src2, $src1, $dst {${mask}} {z}|"# "$dst {${mask}} {z}, $src1, $src2}", []>, EVEX_KZ, XS, EVEX_4V, VEX_LIG, FoldGenData<"VMOVSSZrrkz">, Sched<[SchedWriteFShuffle.XMM]>; def VMOVSDZrr_REV: AVX512<0x11, MRMDestReg, (outs VR128X:$dst), (ins VR128X:$src1, VR128X:$src2), "vmovsd\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, XD, EVEX_4V, VEX_LIG, VEX_W, FoldGenData<"VMOVSDZrr">, Sched<[SchedWriteFShuffle.XMM]>; let Constraints = "$src0 = $dst" in def VMOVSDZrrk_REV: AVX512<0x11, MRMDestReg, (outs VR128X:$dst), (ins f64x_info.RC:$src0, f64x_info.KRCWM:$mask, VR128X:$src1, VR128X:$src2), "vmovsd\t{$src2, $src1, $dst {${mask}}|"# "$dst {${mask}}, $src1, $src2}", []>, EVEX_K, XD, EVEX_4V, VEX_LIG, VEX_W, FoldGenData<"VMOVSDZrrk">, Sched<[SchedWriteFShuffle.XMM]>; def VMOVSDZrrkz_REV: AVX512<0x11, MRMDestReg, (outs VR128X:$dst), (ins f64x_info.KRCWM:$mask, VR128X:$src1, VR128X:$src2), "vmovsd\t{$src2, $src1, $dst {${mask}} {z}|"# "$dst {${mask}} {z}, $src1, $src2}", []>, EVEX_KZ, XD, EVEX_4V, VEX_LIG, VEX_W, FoldGenData<"VMOVSDZrrkz">, Sched<[SchedWriteFShuffle.XMM]>; } def : InstAlias<"vmovss.s\t{$src2, $src1, $dst|$dst, $src1, $src2}", (VMOVSSZrr_REV VR128X:$dst, VR128X:$src1, VR128X:$src2), 0>; def : InstAlias<"vmovss.s\t{$src2, $src1, $dst {${mask}}|"# "$dst {${mask}}, $src1, $src2}", (VMOVSSZrrk_REV VR128X:$dst, VK1WM:$mask, VR128X:$src1, VR128X:$src2), 0>; def : InstAlias<"vmovss.s\t{$src2, $src1, $dst {${mask}} {z}|"# "$dst {${mask}} {z}, $src1, $src2}", (VMOVSSZrrkz_REV VR128X:$dst, VK1WM:$mask, VR128X:$src1, VR128X:$src2), 0>; def : InstAlias<"vmovsd.s\t{$src2, $src1, $dst|$dst, $src1, $src2}", (VMOVSDZrr_REV VR128X:$dst, VR128X:$src1, VR128X:$src2), 0>; def : InstAlias<"vmovsd.s\t{$src2, $src1, $dst {${mask}}|"# "$dst {${mask}}, $src1, $src2}", (VMOVSDZrrk_REV VR128X:$dst, VK1WM:$mask, VR128X:$src1, VR128X:$src2), 0>; def : InstAlias<"vmovsd.s\t{$src2, $src1, $dst {${mask}} {z}|"# "$dst {${mask}} {z}, $src1, $src2}", (VMOVSDZrrkz_REV VR128X:$dst, VK1WM:$mask, VR128X:$src1, VR128X:$src2), 0>; let Predicates = [HasAVX512, OptForSize] in { def : Pat<(v4f32 (X86vzmovl (v4f32 VR128X:$src))), (VMOVSSZrr (v4f32 (AVX512_128_SET0)), VR128X:$src)>; def : Pat<(v4i32 (X86vzmovl (v4i32 VR128X:$src))), (VMOVSSZrr (v4i32 (AVX512_128_SET0)), VR128X:$src)>; // Move low f32 and clear high bits. def : Pat<(v8f32 (X86vzmovl (v8f32 VR256X:$src))), (SUBREG_TO_REG (i32 0), (v4f32 (VMOVSSZrr (v4f32 (AVX512_128_SET0)), (v4f32 (EXTRACT_SUBREG (v8f32 VR256X:$src), sub_xmm)))), sub_xmm)>; def : Pat<(v8i32 (X86vzmovl (v8i32 VR256X:$src))), (SUBREG_TO_REG (i32 0), (v4i32 (VMOVSSZrr (v4i32 (AVX512_128_SET0)), (v4i32 (EXTRACT_SUBREG (v8i32 VR256X:$src), sub_xmm)))), sub_xmm)>; def : Pat<(v4f64 (X86vzmovl (v4f64 VR256X:$src))), (SUBREG_TO_REG (i32 0), (v2f64 (VMOVSDZrr (v2f64 (AVX512_128_SET0)), (v2f64 (EXTRACT_SUBREG (v4f64 VR256X:$src), sub_xmm)))), sub_xmm)>; def : Pat<(v4i64 (X86vzmovl (v4i64 VR256X:$src))), (SUBREG_TO_REG (i32 0), (v2i64 (VMOVSDZrr (v2i64 (AVX512_128_SET0)), (v2i64 (EXTRACT_SUBREG (v4i64 VR256X:$src), sub_xmm)))), sub_xmm)>; def : Pat<(v16f32 (X86vzmovl (v16f32 VR512:$src))), (SUBREG_TO_REG (i32 0), (v4f32 (VMOVSSZrr (v4f32 (AVX512_128_SET0)), (v4f32 (EXTRACT_SUBREG (v16f32 VR512:$src), sub_xmm)))), sub_xmm)>; def : Pat<(v16i32 (X86vzmovl (v16i32 VR512:$src))), (SUBREG_TO_REG (i32 0), (v4i32 (VMOVSSZrr (v4i32 (AVX512_128_SET0)), (v4i32 (EXTRACT_SUBREG (v16i32 VR512:$src), sub_xmm)))), sub_xmm)>; def : Pat<(v8f64 (X86vzmovl (v8f64 VR512:$src))), (SUBREG_TO_REG (i32 0), (v2f64 (VMOVSDZrr (v2f64 (AVX512_128_SET0)), (v2f64 (EXTRACT_SUBREG (v8f64 VR512:$src), sub_xmm)))), sub_xmm)>; def : Pat<(v8i64 (X86vzmovl (v8i64 VR512:$src))), (SUBREG_TO_REG (i32 0), (v2i64 (VMOVSDZrr (v2i64 (AVX512_128_SET0)), (v2i64 (EXTRACT_SUBREG (v8i64 VR512:$src), sub_xmm)))), sub_xmm)>; } // Use 128-bit blends for OptForSpeed since BLENDs have better throughput than // VMOVSS/SD. Unfortunately, loses the ability to use XMM16-31. let Predicates = [HasAVX512, OptForSpeed] in { def : Pat<(v16f32 (X86vzmovl (v16f32 VR512:$src))), (SUBREG_TO_REG (i32 0), (v4f32 (VBLENDPSrri (v4f32 (V_SET0)), (v4f32 (EXTRACT_SUBREG (v16f32 VR512:$src), sub_xmm)), (i8 1))), sub_xmm)>; def : Pat<(v16i32 (X86vzmovl (v16i32 VR512:$src))), (SUBREG_TO_REG (i32 0), (v4i32 (VPBLENDWrri (v4i32 (V_SET0)), (v4i32 (EXTRACT_SUBREG (v16i32 VR512:$src), sub_xmm)), (i8 3))), sub_xmm)>; def : Pat<(v8f64 (X86vzmovl (v8f64 VR512:$src))), (SUBREG_TO_REG (i32 0), (v2f64 (VBLENDPDrri (v2f64 (V_SET0)), (v2f64 (EXTRACT_SUBREG (v8f64 VR512:$src), sub_xmm)), (i8 1))), sub_xmm)>; def : Pat<(v8i64 (X86vzmovl (v8i64 VR512:$src))), (SUBREG_TO_REG (i32 0), (v2i64 (VPBLENDWrri (v2i64 (V_SET0)), (v2i64 (EXTRACT_SUBREG (v8i64 VR512:$src), sub_xmm)), (i8 0xf))), sub_xmm)>; } let Predicates = [HasAVX512] in { // MOVSSrm zeros the high parts of the register; represent this // with SUBREG_TO_REG. The AVX versions also write: DST[255:128] <- 0 def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector (loadf32 addr:$src))))), (COPY_TO_REGCLASS (VMOVSSZrm addr:$src), VR128X)>; def : Pat<(v4f32 (X86vzmovl (loadv4f32 addr:$src))), (COPY_TO_REGCLASS (VMOVSSZrm addr:$src), VR128X)>; def : Pat<(v4f32 (X86vzload addr:$src)), (COPY_TO_REGCLASS (VMOVSSZrm addr:$src), VR128X)>; // MOVSDrm zeros the high parts of the register; represent this // with SUBREG_TO_REG. The AVX versions also write: DST[255:128] <- 0 def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector (loadf64 addr:$src))))), (COPY_TO_REGCLASS (VMOVSDZrm addr:$src), VR128X)>; def : Pat<(v2f64 (X86vzmovl (loadv2f64 addr:$src))), (COPY_TO_REGCLASS (VMOVSDZrm addr:$src), VR128X)>; def : Pat<(v2f64 (X86vzmovl (bc_v2f64 (loadv4f32 addr:$src)))), (COPY_TO_REGCLASS (VMOVSDZrm addr:$src), VR128X)>; def : Pat<(v2f64 (X86vzload addr:$src)), (COPY_TO_REGCLASS (VMOVSDZrm addr:$src), VR128X)>; // Represent the same patterns above but in the form they appear for // 256-bit types def : Pat<(v8i32 (X86vzmovl (insert_subvector undef, (v4i32 (scalar_to_vector (loadi32 addr:$src))), (iPTR 0)))), (SUBREG_TO_REG (i32 0), (v4i32 (VMOVDI2PDIZrm addr:$src)), sub_xmm)>; def : Pat<(v8f32 (X86vzmovl (insert_subvector undef, (v4f32 (scalar_to_vector (loadf32 addr:$src))), (iPTR 0)))), (SUBREG_TO_REG (i32 0), (VMOVSSZrm addr:$src), sub_xmm)>; def : Pat<(v8f32 (X86vzload addr:$src)), (SUBREG_TO_REG (i32 0), (VMOVSSZrm addr:$src), sub_xmm)>; def : Pat<(v4f64 (X86vzmovl (insert_subvector undef, (v2f64 (scalar_to_vector (loadf64 addr:$src))), (iPTR 0)))), (SUBREG_TO_REG (i32 0), (VMOVSDZrm addr:$src), sub_xmm)>; def : Pat<(v4f64 (X86vzload addr:$src)), (SUBREG_TO_REG (i32 0), (VMOVSDZrm addr:$src), sub_xmm)>; // Represent the same patterns above but in the form they appear for // 512-bit types def : Pat<(v16i32 (X86vzmovl (insert_subvector undef, (v4i32 (scalar_to_vector (loadi32 addr:$src))), (iPTR 0)))), (SUBREG_TO_REG (i32 0), (v4i32 (VMOVDI2PDIZrm addr:$src)), sub_xmm)>; def : Pat<(v16f32 (X86vzmovl (insert_subvector undef, (v4f32 (scalar_to_vector (loadf32 addr:$src))), (iPTR 0)))), (SUBREG_TO_REG (i32 0), (VMOVSSZrm addr:$src), sub_xmm)>; def : Pat<(v16f32 (X86vzload addr:$src)), (SUBREG_TO_REG (i32 0), (VMOVSSZrm addr:$src), sub_xmm)>; def : Pat<(v8f64 (X86vzmovl (insert_subvector undef, (v2f64 (scalar_to_vector (loadf64 addr:$src))), (iPTR 0)))), (SUBREG_TO_REG (i32 0), (VMOVSDZrm addr:$src), sub_xmm)>; def : Pat<(v8f64 (X86vzload addr:$src)), (SUBREG_TO_REG (i32 0), (VMOVSDZrm addr:$src), sub_xmm)>; def : Pat<(v4i64 (X86vzmovl (insert_subvector undef, (v2i64 (scalar_to_vector (loadi64 addr:$src))), (iPTR 0)))), (SUBREG_TO_REG (i64 0), (v2i64 (VMOVQI2PQIZrm addr:$src)), sub_xmm)>; // Extract and store. def : Pat<(store (f32 (extractelt (v4f32 VR128X:$src), (iPTR 0))), addr:$dst), (VMOVSSZmr addr:$dst, (COPY_TO_REGCLASS (v4f32 VR128X:$src), FR32X))>; } let ExeDomain = SSEPackedInt, SchedRW = [SchedWriteVecLogic.XMM] in { def VMOVZPQILo2PQIZrr : AVX512XSI<0x7E, MRMSrcReg, (outs VR128X:$dst), (ins VR128X:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set VR128X:$dst, (v2i64 (X86vzmovl (v2i64 VR128X:$src))))]>, EVEX, VEX_W; } let Predicates = [HasAVX512] in { def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector GR32:$src)))), (VMOVDI2PDIZrr GR32:$src)>; def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector GR64:$src)))), (VMOV64toPQIZrr GR64:$src)>; def : Pat<(v4i64 (X86vzmovl (insert_subvector undef, (v2i64 (scalar_to_vector GR64:$src)),(iPTR 0)))), (SUBREG_TO_REG (i64 0), (v2i64 (VMOV64toPQIZrr GR64:$src)), sub_xmm)>; def : Pat<(v8i64 (X86vzmovl (insert_subvector undef, (v2i64 (scalar_to_vector GR64:$src)),(iPTR 0)))), (SUBREG_TO_REG (i64 0), (v2i64 (VMOV64toPQIZrr GR64:$src)), sub_xmm)>; // AVX 128-bit movd/movq instruction write zeros in the high 128-bit part. def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector (zextloadi64i32 addr:$src))))), (VMOVDI2PDIZrm addr:$src)>; def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 addr:$src))))), (VMOVDI2PDIZrm addr:$src)>; def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv2i64 addr:$src)))), (VMOVDI2PDIZrm addr:$src)>; def : Pat<(v4i32 (X86vzload addr:$src)), (VMOVDI2PDIZrm addr:$src)>; def : Pat<(v8i32 (X86vzload addr:$src)), (SUBREG_TO_REG (i32 0), (v4i32 (VMOVDI2PDIZrm addr:$src)), sub_xmm)>; def : Pat<(v2i64 (X86vzmovl (loadv2i64 addr:$src))), (VMOVQI2PQIZrm addr:$src)>; def : Pat<(v2f64 (X86vzmovl (v2f64 VR128X:$src))), (VMOVZPQILo2PQIZrr VR128X:$src)>; def : Pat<(v2i64 (X86vzload addr:$src)), (VMOVQI2PQIZrm addr:$src)>; def : Pat<(v4i64 (X86vzload addr:$src)), (SUBREG_TO_REG (i64 0), (v2i64 (VMOVQI2PQIZrm addr:$src)), sub_xmm)>; // Use regular 128-bit instructions to match 256-bit scalar_to_vec+zext. def : Pat<(v8i32 (X86vzmovl (insert_subvector undef, (v4i32 (scalar_to_vector GR32:$src)),(iPTR 0)))), (SUBREG_TO_REG (i32 0), (v4i32 (VMOVDI2PDIZrr GR32:$src)), sub_xmm)>; def : Pat<(v16i32 (X86vzmovl (insert_subvector undef, (v4i32 (scalar_to_vector GR32:$src)),(iPTR 0)))), (SUBREG_TO_REG (i32 0), (v4i32 (VMOVDI2PDIZrr GR32:$src)), sub_xmm)>; // Use regular 128-bit instructions to match 512-bit scalar_to_vec+zext. def : Pat<(v16i32 (X86vzload addr:$src)), (SUBREG_TO_REG (i32 0), (v4i32 (VMOVDI2PDIZrm addr:$src)), sub_xmm)>; def : Pat<(v8i64 (X86vzload addr:$src)), (SUBREG_TO_REG (i64 0), (v2i64 (VMOVQI2PQIZrm addr:$src)), sub_xmm)>; } //===----------------------------------------------------------------------===// // AVX-512 - Non-temporals //===----------------------------------------------------------------------===// def VMOVNTDQAZrm : AVX512PI<0x2A, MRMSrcMem, (outs VR512:$dst), (ins i512mem:$src), "vmovntdqa\t{$src, $dst|$dst, $src}", [], SSEPackedInt>, Sched<[SchedWriteVecMoveLS.ZMM.RM]>, EVEX, T8PD, EVEX_V512, EVEX_CD8<64, CD8VF>; let Predicates = [HasVLX] in { def VMOVNTDQAZ256rm : AVX512PI<0x2A, MRMSrcMem, (outs VR256X:$dst), (ins i256mem:$src), "vmovntdqa\t{$src, $dst|$dst, $src}", [], SSEPackedInt>, Sched<[SchedWriteVecMoveLS.YMM.RM]>, EVEX, T8PD, EVEX_V256, EVEX_CD8<64, CD8VF>; def VMOVNTDQAZ128rm : AVX512PI<0x2A, MRMSrcMem, (outs VR128X:$dst), (ins i128mem:$src), "vmovntdqa\t{$src, $dst|$dst, $src}", [], SSEPackedInt>, Sched<[SchedWriteVecMoveLS.XMM.RM]>, EVEX, T8PD, EVEX_V128, EVEX_CD8<64, CD8VF>; } multiclass avx512_movnt<bits<8> opc, string OpcodeStr, X86VectorVTInfo _, X86SchedWriteMoveLS Sched, PatFrag st_frag = alignednontemporalstore> { let SchedRW = [Sched.MR], AddedComplexity = 400 in def mr : AVX512PI<opc, MRMDestMem, (outs), (ins _.MemOp:$dst, _.RC:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(st_frag (_.VT _.RC:$src), addr:$dst)], _.ExeDomain>, EVEX, EVEX_CD8<_.EltSize, CD8VF>; } multiclass avx512_movnt_vl<bits<8> opc, string OpcodeStr, AVX512VLVectorVTInfo VTInfo, X86SchedWriteMoveLSWidths Sched> { let Predicates = [HasAVX512] in defm Z : avx512_movnt<opc, OpcodeStr, VTInfo.info512, Sched.ZMM>, EVEX_V512; let Predicates = [HasAVX512, HasVLX] in { defm Z256 : avx512_movnt<opc, OpcodeStr, VTInfo.info256, Sched.YMM>, EVEX_V256; defm Z128 : avx512_movnt<opc, OpcodeStr, VTInfo.info128, Sched.XMM>, EVEX_V128; } } defm VMOVNTDQ : avx512_movnt_vl<0xE7, "vmovntdq", avx512vl_i64_info, SchedWriteVecMoveLSNT>, PD; defm VMOVNTPD : avx512_movnt_vl<0x2B, "vmovntpd", avx512vl_f64_info, SchedWriteFMoveLSNT>, PD, VEX_W; defm VMOVNTPS : avx512_movnt_vl<0x2B, "vmovntps", avx512vl_f32_info, SchedWriteFMoveLSNT>, PS; let Predicates = [HasAVX512], AddedComplexity = 400 in { def : Pat<(alignednontemporalstore (v16i32 VR512:$src), addr:$dst), (VMOVNTDQZmr addr:$dst, VR512:$src)>; def : Pat<(alignednontemporalstore (v32i16 VR512:$src), addr:$dst), (VMOVNTDQZmr addr:$dst, VR512:$src)>; def : Pat<(alignednontemporalstore (v64i8 VR512:$src), addr:$dst), (VMOVNTDQZmr addr:$dst, VR512:$src)>; def : Pat<(v8f64 (alignednontemporalload addr:$src)), (VMOVNTDQAZrm addr:$src)>; def : Pat<(v16f32 (alignednontemporalload addr:$src)), (VMOVNTDQAZrm addr:$src)>; def : Pat<(v8i64 (alignednontemporalload addr:$src)), (VMOVNTDQAZrm addr:$src)>; } let Predicates = [HasVLX], AddedComplexity = 400 in { def : Pat<(alignednontemporalstore (v8i32 VR256X:$src), addr:$dst), (VMOVNTDQZ256mr addr:$dst, VR256X:$src)>; def : Pat<(alignednontemporalstore (v16i16 VR256X:$src), addr:$dst), (VMOVNTDQZ256mr addr:$dst, VR256X:$src)>; def : Pat<(alignednontemporalstore (v32i8 VR256X:$src), addr:$dst), (VMOVNTDQZ256mr addr:$dst, VR256X:$src)>; def : Pat<(v4f64 (alignednontemporalload addr:$src)), (VMOVNTDQAZ256rm addr:$src)>; def : Pat<(v8f32 (alignednontemporalload addr:$src)), (VMOVNTDQAZ256rm addr:$src)>; def : Pat<(v4i64 (alignednontemporalload addr:$src)), (VMOVNTDQAZ256rm addr:$src)>; def : Pat<(alignednontemporalstore (v4i32 VR128X:$src), addr:$dst), (VMOVNTDQZ128mr addr:$dst, VR128X:$src)>; def : Pat<(alignednontemporalstore (v8i16 VR128X:$src), addr:$dst), (VMOVNTDQZ128mr addr:$dst, VR128X:$src)>; def : Pat<(alignednontemporalstore (v16i8 VR128X:$src), addr:$dst), (VMOVNTDQZ128mr addr:$dst, VR128X:$src)>; def : Pat<(v2f64 (alignednontemporalload addr:$src)), (VMOVNTDQAZ128rm addr:$src)>; def : Pat<(v4f32 (alignednontemporalload addr:$src)), (VMOVNTDQAZ128rm addr:$src)>; def : Pat<(v2i64 (alignednontemporalload addr:$src)), (VMOVNTDQAZ128rm addr:$src)>; } //===----------------------------------------------------------------------===// // AVX-512 - Integer arithmetic // multiclass avx512_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode, X86VectorVTInfo _, X86FoldableSchedWrite sched, bit IsCommutable = 0> { defm rr : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (_.VT (OpNode _.RC:$src1, _.RC:$src2)), IsCommutable>, AVX512BIBase, EVEX_4V, Sched<[sched]>; defm rm : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.MemOp:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (_.VT (OpNode _.RC:$src1, (bitconvert (_.LdFrag addr:$src2))))>, AVX512BIBase, EVEX_4V, Sched<[sched.Folded, ReadAfterLd]>; } multiclass avx512_binop_rmb<bits<8> opc, string OpcodeStr, SDNode OpNode, X86VectorVTInfo _, X86FoldableSchedWrite sched, bit IsCommutable = 0> : avx512_binop_rm<opc, OpcodeStr, OpNode, _, sched, IsCommutable> { defm rmb : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2), OpcodeStr, "${src2}"##_.BroadcastStr##", $src1", "$src1, ${src2}"##_.BroadcastStr, (_.VT (OpNode _.RC:$src1, (X86VBroadcast (_.ScalarLdFrag addr:$src2))))>, AVX512BIBase, EVEX_4V, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; } multiclass avx512_binop_rm_vl<bits<8> opc, string OpcodeStr, SDNode OpNode, AVX512VLVectorVTInfo VTInfo, X86SchedWriteWidths sched, Predicate prd, bit IsCommutable = 0> { let Predicates = [prd] in defm Z : avx512_binop_rm<opc, OpcodeStr, OpNode, VTInfo.info512, sched.ZMM, IsCommutable>, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_binop_rm<opc, OpcodeStr, OpNode, VTInfo.info256, sched.YMM, IsCommutable>, EVEX_V256; defm Z128 : avx512_binop_rm<opc, OpcodeStr, OpNode, VTInfo.info128, sched.XMM, IsCommutable>, EVEX_V128; } } multiclass avx512_binop_rmb_vl<bits<8> opc, string OpcodeStr, SDNode OpNode, AVX512VLVectorVTInfo VTInfo, X86SchedWriteWidths sched, Predicate prd, bit IsCommutable = 0> { let Predicates = [prd] in defm Z : avx512_binop_rmb<opc, OpcodeStr, OpNode, VTInfo.info512, sched.ZMM, IsCommutable>, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_binop_rmb<opc, OpcodeStr, OpNode, VTInfo.info256, sched.YMM, IsCommutable>, EVEX_V256; defm Z128 : avx512_binop_rmb<opc, OpcodeStr, OpNode, VTInfo.info128, sched.XMM, IsCommutable>, EVEX_V128; } } multiclass avx512_binop_rm_vl_q<bits<8> opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched, Predicate prd, bit IsCommutable = 0> { defm NAME : avx512_binop_rmb_vl<opc, OpcodeStr, OpNode, avx512vl_i64_info, sched, prd, IsCommutable>, VEX_W, EVEX_CD8<64, CD8VF>; } multiclass avx512_binop_rm_vl_d<bits<8> opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched, Predicate prd, bit IsCommutable = 0> { defm NAME : avx512_binop_rmb_vl<opc, OpcodeStr, OpNode, avx512vl_i32_info, sched, prd, IsCommutable>, EVEX_CD8<32, CD8VF>; } multiclass avx512_binop_rm_vl_w<bits<8> opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched, Predicate prd, bit IsCommutable = 0> { defm NAME : avx512_binop_rm_vl<opc, OpcodeStr, OpNode, avx512vl_i16_info, sched, prd, IsCommutable>, EVEX_CD8<16, CD8VF>, VEX_WIG; } multiclass avx512_binop_rm_vl_b<bits<8> opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched, Predicate prd, bit IsCommutable = 0> { defm NAME : avx512_binop_rm_vl<opc, OpcodeStr, OpNode, avx512vl_i8_info, sched, prd, IsCommutable>, EVEX_CD8<8, CD8VF>, VEX_WIG; } multiclass avx512_binop_rm_vl_dq<bits<8> opc_d, bits<8> opc_q, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched, Predicate prd, bit IsCommutable = 0> { defm Q : avx512_binop_rm_vl_q<opc_q, OpcodeStr#"q", OpNode, sched, prd, IsCommutable>; defm D : avx512_binop_rm_vl_d<opc_d, OpcodeStr#"d", OpNode, sched, prd, IsCommutable>; } multiclass avx512_binop_rm_vl_bw<bits<8> opc_b, bits<8> opc_w, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched, Predicate prd, bit IsCommutable = 0> { defm W : avx512_binop_rm_vl_w<opc_w, OpcodeStr#"w", OpNode, sched, prd, IsCommutable>; defm B : avx512_binop_rm_vl_b<opc_b, OpcodeStr#"b", OpNode, sched, prd, IsCommutable>; } multiclass avx512_binop_rm_vl_all<bits<8> opc_b, bits<8> opc_w, bits<8> opc_d, bits<8> opc_q, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched, bit IsCommutable = 0> { defm NAME : avx512_binop_rm_vl_dq<opc_d, opc_q, OpcodeStr, OpNode, sched, HasAVX512, IsCommutable>, avx512_binop_rm_vl_bw<opc_b, opc_w, OpcodeStr, OpNode, sched, HasBWI, IsCommutable>; } multiclass avx512_binop_rm2<bits<8> opc, string OpcodeStr, X86FoldableSchedWrite sched, SDNode OpNode,X86VectorVTInfo _Src, X86VectorVTInfo _Dst, X86VectorVTInfo _Brdct, bit IsCommutable = 0> { defm rr : AVX512_maskable<opc, MRMSrcReg, _Dst, (outs _Dst.RC:$dst), (ins _Src.RC:$src1, _Src.RC:$src2), OpcodeStr, "$src2, $src1","$src1, $src2", (_Dst.VT (OpNode (_Src.VT _Src.RC:$src1), (_Src.VT _Src.RC:$src2))), IsCommutable>, AVX512BIBase, EVEX_4V, Sched<[sched]>; defm rm : AVX512_maskable<opc, MRMSrcMem, _Dst, (outs _Dst.RC:$dst), (ins _Src.RC:$src1, _Src.MemOp:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (_Dst.VT (OpNode (_Src.VT _Src.RC:$src1), (bitconvert (_Src.LdFrag addr:$src2))))>, AVX512BIBase, EVEX_4V, Sched<[sched.Folded, ReadAfterLd]>; defm rmb : AVX512_maskable<opc, MRMSrcMem, _Dst, (outs _Dst.RC:$dst), (ins _Src.RC:$src1, _Brdct.ScalarMemOp:$src2), OpcodeStr, "${src2}"##_Brdct.BroadcastStr##", $src1", "$src1, ${src2}"##_Brdct.BroadcastStr, (_Dst.VT (OpNode (_Src.VT _Src.RC:$src1), (bitconvert (_Brdct.VT (X86VBroadcast (_Brdct.ScalarLdFrag addr:$src2))))))>, AVX512BIBase, EVEX_4V, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; } defm VPADD : avx512_binop_rm_vl_all<0xFC, 0xFD, 0xFE, 0xD4, "vpadd", add, SchedWriteVecALU, 1>; defm VPSUB : avx512_binop_rm_vl_all<0xF8, 0xF9, 0xFA, 0xFB, "vpsub", sub, SchedWriteVecALU, 0>; defm VPADDS : avx512_binop_rm_vl_bw<0xEC, 0xED, "vpadds", X86adds, SchedWriteVecALU, HasBWI, 1>; defm VPSUBS : avx512_binop_rm_vl_bw<0xE8, 0xE9, "vpsubs", X86subs, SchedWriteVecALU, HasBWI, 0>; defm VPADDUS : avx512_binop_rm_vl_bw<0xDC, 0xDD, "vpaddus", X86addus, SchedWriteVecALU, HasBWI, 1>; defm VPSUBUS : avx512_binop_rm_vl_bw<0xD8, 0xD9, "vpsubus", X86subus, SchedWriteVecALU, HasBWI, 0>; defm VPMULLD : avx512_binop_rm_vl_d<0x40, "vpmulld", mul, SchedWritePMULLD, HasAVX512, 1>, T8PD; defm VPMULLW : avx512_binop_rm_vl_w<0xD5, "vpmullw", mul, SchedWriteVecIMul, HasBWI, 1>; defm VPMULLQ : avx512_binop_rm_vl_q<0x40, "vpmullq", mul, SchedWriteVecIMul, HasDQI, 1>, T8PD, NotEVEX2VEXConvertible; defm VPMULHW : avx512_binop_rm_vl_w<0xE5, "vpmulhw", mulhs, SchedWriteVecIMul, HasBWI, 1>; defm VPMULHUW : avx512_binop_rm_vl_w<0xE4, "vpmulhuw", mulhu, SchedWriteVecIMul, HasBWI, 1>; defm VPMULHRSW : avx512_binop_rm_vl_w<0x0B, "vpmulhrsw", X86mulhrs, SchedWriteVecIMul, HasBWI, 1>, T8PD; defm VPAVG : avx512_binop_rm_vl_bw<0xE0, 0xE3, "vpavg", X86avg, SchedWriteVecALU, HasBWI, 1>; defm VPMULDQ : avx512_binop_rm_vl_q<0x28, "vpmuldq", X86pmuldq, SchedWriteVecIMul, HasAVX512, 1>, T8PD; defm VPMULUDQ : avx512_binop_rm_vl_q<0xF4, "vpmuludq", X86pmuludq, SchedWriteVecIMul, HasAVX512, 1>; multiclass avx512_binop_all<bits<8> opc, string OpcodeStr, X86SchedWriteWidths sched, AVX512VLVectorVTInfo _SrcVTInfo, AVX512VLVectorVTInfo _DstVTInfo, SDNode OpNode, Predicate prd, bit IsCommutable = 0> { let Predicates = [prd] in defm NAME#Z : avx512_binop_rm2<opc, OpcodeStr, sched.ZMM, OpNode, _SrcVTInfo.info512, _DstVTInfo.info512, v8i64_info, IsCommutable>, EVEX_V512, EVEX_CD8<64, CD8VF>, VEX_W; let Predicates = [HasVLX, prd] in { defm NAME#Z256 : avx512_binop_rm2<opc, OpcodeStr, sched.YMM, OpNode, _SrcVTInfo.info256, _DstVTInfo.info256, v4i64x_info, IsCommutable>, EVEX_V256, EVEX_CD8<64, CD8VF>, VEX_W; defm NAME#Z128 : avx512_binop_rm2<opc, OpcodeStr, sched.XMM, OpNode, _SrcVTInfo.info128, _DstVTInfo.info128, v2i64x_info, IsCommutable>, EVEX_V128, EVEX_CD8<64, CD8VF>, VEX_W; } } defm VPMULTISHIFTQB : avx512_binop_all<0x83, "vpmultishiftqb", SchedWriteVecALU, avx512vl_i8_info, avx512vl_i8_info, X86multishift, HasVBMI, 0>, T8PD; multiclass avx512_packs_rmb<bits<8> opc, string OpcodeStr, SDNode OpNode, X86VectorVTInfo _Src, X86VectorVTInfo _Dst, X86FoldableSchedWrite sched> { defm rmb : AVX512_maskable<opc, MRMSrcMem, _Dst, (outs _Dst.RC:$dst), (ins _Src.RC:$src1, _Src.ScalarMemOp:$src2), OpcodeStr, "${src2}"##_Src.BroadcastStr##", $src1", "$src1, ${src2}"##_Src.BroadcastStr, (_Dst.VT (OpNode (_Src.VT _Src.RC:$src1), (bitconvert (_Src.VT (X86VBroadcast (_Src.ScalarLdFrag addr:$src2))))))>, EVEX_4V, EVEX_B, EVEX_CD8<_Src.EltSize, CD8VF>, Sched<[sched.Folded, ReadAfterLd]>; } multiclass avx512_packs_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,X86VectorVTInfo _Src, X86VectorVTInfo _Dst, X86FoldableSchedWrite sched, bit IsCommutable = 0> { defm rr : AVX512_maskable<opc, MRMSrcReg, _Dst, (outs _Dst.RC:$dst), (ins _Src.RC:$src1, _Src.RC:$src2), OpcodeStr, "$src2, $src1","$src1, $src2", (_Dst.VT (OpNode (_Src.VT _Src.RC:$src1), (_Src.VT _Src.RC:$src2))), IsCommutable>, EVEX_CD8<_Src.EltSize, CD8VF>, EVEX_4V, Sched<[sched]>; defm rm : AVX512_maskable<opc, MRMSrcMem, _Dst, (outs _Dst.RC:$dst), (ins _Src.RC:$src1, _Src.MemOp:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (_Dst.VT (OpNode (_Src.VT _Src.RC:$src1), (bitconvert (_Src.LdFrag addr:$src2))))>, EVEX_4V, EVEX_CD8<_Src.EltSize, CD8VF>, Sched<[sched.Folded, ReadAfterLd]>; } multiclass avx512_packs_all_i32_i16<bits<8> opc, string OpcodeStr, SDNode OpNode> { let Predicates = [HasBWI] in defm NAME#Z : avx512_packs_rm<opc, OpcodeStr, OpNode, v16i32_info, v32i16_info, SchedWriteShuffle.ZMM>, avx512_packs_rmb<opc, OpcodeStr, OpNode, v16i32_info, v32i16_info, SchedWriteShuffle.ZMM>, EVEX_V512; let Predicates = [HasBWI, HasVLX] in { defm NAME#Z256 : avx512_packs_rm<opc, OpcodeStr, OpNode, v8i32x_info, v16i16x_info, SchedWriteShuffle.YMM>, avx512_packs_rmb<opc, OpcodeStr, OpNode, v8i32x_info, v16i16x_info, SchedWriteShuffle.YMM>, EVEX_V256; defm NAME#Z128 : avx512_packs_rm<opc, OpcodeStr, OpNode, v4i32x_info, v8i16x_info, SchedWriteShuffle.XMM>, avx512_packs_rmb<opc, OpcodeStr, OpNode, v4i32x_info, v8i16x_info, SchedWriteShuffle.XMM>, EVEX_V128; } } multiclass avx512_packs_all_i16_i8<bits<8> opc, string OpcodeStr, SDNode OpNode> { let Predicates = [HasBWI] in defm NAME#Z : avx512_packs_rm<opc, OpcodeStr, OpNode, v32i16_info, v64i8_info, SchedWriteShuffle.ZMM>, EVEX_V512, VEX_WIG; let Predicates = [HasBWI, HasVLX] in { defm NAME#Z256 : avx512_packs_rm<opc, OpcodeStr, OpNode, v16i16x_info, v32i8x_info, SchedWriteShuffle.YMM>, EVEX_V256, VEX_WIG; defm NAME#Z128 : avx512_packs_rm<opc, OpcodeStr, OpNode, v8i16x_info, v16i8x_info, SchedWriteShuffle.XMM>, EVEX_V128, VEX_WIG; } } multiclass avx512_vpmadd<bits<8> opc, string OpcodeStr, SDNode OpNode, AVX512VLVectorVTInfo _Src, AVX512VLVectorVTInfo _Dst, bit IsCommutable = 0> { let Predicates = [HasBWI] in defm NAME#Z : avx512_packs_rm<opc, OpcodeStr, OpNode, _Src.info512, _Dst.info512, SchedWriteVecIMul.ZMM, IsCommutable>, EVEX_V512; let Predicates = [HasBWI, HasVLX] in { defm NAME#Z256 : avx512_packs_rm<opc, OpcodeStr, OpNode, _Src.info256, _Dst.info256, SchedWriteVecIMul.YMM, IsCommutable>, EVEX_V256; defm NAME#Z128 : avx512_packs_rm<opc, OpcodeStr, OpNode, _Src.info128, _Dst.info128, SchedWriteVecIMul.XMM, IsCommutable>, EVEX_V128; } } defm VPACKSSDW : avx512_packs_all_i32_i16<0x6B, "vpackssdw", X86Packss>, AVX512BIBase; defm VPACKUSDW : avx512_packs_all_i32_i16<0x2b, "vpackusdw", X86Packus>, AVX5128IBase; defm VPACKSSWB : avx512_packs_all_i16_i8 <0x63, "vpacksswb", X86Packss>, AVX512BIBase; defm VPACKUSWB : avx512_packs_all_i16_i8 <0x67, "vpackuswb", X86Packus>, AVX512BIBase; defm VPMADDUBSW : avx512_vpmadd<0x04, "vpmaddubsw", X86vpmaddubsw, avx512vl_i8_info, avx512vl_i16_info>, AVX512BIBase, T8PD, VEX_WIG; defm VPMADDWD : avx512_vpmadd<0xF5, "vpmaddwd", X86vpmaddwd, avx512vl_i16_info, avx512vl_i32_info, 1>, AVX512BIBase, VEX_WIG; defm VPMAXSB : avx512_binop_rm_vl_b<0x3C, "vpmaxsb", smax, SchedWriteVecALU, HasBWI, 1>, T8PD; defm VPMAXSW : avx512_binop_rm_vl_w<0xEE, "vpmaxsw", smax, SchedWriteVecALU, HasBWI, 1>; defm VPMAXSD : avx512_binop_rm_vl_d<0x3D, "vpmaxsd", smax, SchedWriteVecALU, HasAVX512, 1>, T8PD; defm VPMAXSQ : avx512_binop_rm_vl_q<0x3D, "vpmaxsq", smax, SchedWriteVecALU, HasAVX512, 1>, T8PD, NotEVEX2VEXConvertible; defm VPMAXUB : avx512_binop_rm_vl_b<0xDE, "vpmaxub", umax, SchedWriteVecALU, HasBWI, 1>; defm VPMAXUW : avx512_binop_rm_vl_w<0x3E, "vpmaxuw", umax, SchedWriteVecALU, HasBWI, 1>, T8PD; defm VPMAXUD : avx512_binop_rm_vl_d<0x3F, "vpmaxud", umax, SchedWriteVecALU, HasAVX512, 1>, T8PD; defm VPMAXUQ : avx512_binop_rm_vl_q<0x3F, "vpmaxuq", umax, SchedWriteVecALU, HasAVX512, 1>, T8PD, NotEVEX2VEXConvertible; defm VPMINSB : avx512_binop_rm_vl_b<0x38, "vpminsb", smin, SchedWriteVecALU, HasBWI, 1>, T8PD; defm VPMINSW : avx512_binop_rm_vl_w<0xEA, "vpminsw", smin, SchedWriteVecALU, HasBWI, 1>; defm VPMINSD : avx512_binop_rm_vl_d<0x39, "vpminsd", smin, SchedWriteVecALU, HasAVX512, 1>, T8PD; defm VPMINSQ : avx512_binop_rm_vl_q<0x39, "vpminsq", smin, SchedWriteVecALU, HasAVX512, 1>, T8PD, NotEVEX2VEXConvertible; defm VPMINUB : avx512_binop_rm_vl_b<0xDA, "vpminub", umin, SchedWriteVecALU, HasBWI, 1>; defm VPMINUW : avx512_binop_rm_vl_w<0x3A, "vpminuw", umin, SchedWriteVecALU, HasBWI, 1>, T8PD; defm VPMINUD : avx512_binop_rm_vl_d<0x3B, "vpminud", umin, SchedWriteVecALU, HasAVX512, 1>, T8PD; defm VPMINUQ : avx512_binop_rm_vl_q<0x3B, "vpminuq", umin, SchedWriteVecALU, HasAVX512, 1>, T8PD, NotEVEX2VEXConvertible; // PMULLQ: Use 512bit version to implement 128/256 bit in case NoVLX. let Predicates = [HasDQI, NoVLX] in { def : Pat<(v4i64 (mul (v4i64 VR256X:$src1), (v4i64 VR256X:$src2))), (EXTRACT_SUBREG (VPMULLQZrr (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src1, sub_ymm), (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src2, sub_ymm)), sub_ymm)>; def : Pat<(v2i64 (mul (v2i64 VR128X:$src1), (v2i64 VR128X:$src2))), (EXTRACT_SUBREG (VPMULLQZrr (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src1, sub_xmm), (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src2, sub_xmm)), sub_xmm)>; } // PMULLQ: Use 512bit version to implement 128/256 bit in case NoVLX. let Predicates = [HasDQI, NoVLX] in { def : Pat<(v4i64 (mul (v4i64 VR256X:$src1), (v4i64 VR256X:$src2))), (EXTRACT_SUBREG (VPMULLQZrr (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src1, sub_ymm), (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src2, sub_ymm)), sub_ymm)>; def : Pat<(v2i64 (mul (v2i64 VR128X:$src1), (v2i64 VR128X:$src2))), (EXTRACT_SUBREG (VPMULLQZrr (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src1, sub_xmm), (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src2, sub_xmm)), sub_xmm)>; } multiclass avx512_min_max_lowering<Instruction Instr, SDNode OpNode> { def : Pat<(v4i64 (OpNode VR256X:$src1, VR256X:$src2)), (EXTRACT_SUBREG (Instr (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src1, sub_ymm), (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src2, sub_ymm)), sub_ymm)>; def : Pat<(v2i64 (OpNode VR128X:$src1, VR128X:$src2)), (EXTRACT_SUBREG (Instr (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src1, sub_xmm), (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src2, sub_xmm)), sub_xmm)>; } let Predicates = [HasAVX512, NoVLX] in { defm : avx512_min_max_lowering<VPMAXUQZrr, umax>; defm : avx512_min_max_lowering<VPMINUQZrr, umin>; defm : avx512_min_max_lowering<VPMAXSQZrr, smax>; defm : avx512_min_max_lowering<VPMINSQZrr, smin>; } //===----------------------------------------------------------------------===// // AVX-512 Logical Instructions //===----------------------------------------------------------------------===// // OpNodeMsk is the OpNode to use when element size is important. OpNode will // be set to null_frag for 32-bit elements. multiclass avx512_logic_rm<bits<8> opc, string OpcodeStr, SDPatternOperator OpNode, SDNode OpNodeMsk, X86FoldableSchedWrite sched, X86VectorVTInfo _, bit IsCommutable = 0> { let hasSideEffects = 0 in defm rr : AVX512_maskable_logic<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (_.i64VT (OpNode (bitconvert (_.VT _.RC:$src1)), (bitconvert (_.VT _.RC:$src2)))), (_.VT (bitconvert (_.i64VT (OpNodeMsk _.RC:$src1, _.RC:$src2)))), IsCommutable>, AVX512BIBase, EVEX_4V, Sched<[sched]>; let hasSideEffects = 0, mayLoad = 1 in defm rm : AVX512_maskable_logic<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.MemOp:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (_.i64VT (OpNode (bitconvert (_.VT _.RC:$src1)), (bitconvert (_.LdFrag addr:$src2)))), (_.VT (bitconvert (_.i64VT (OpNodeMsk _.RC:$src1, (bitconvert (_.LdFrag addr:$src2))))))>, AVX512BIBase, EVEX_4V, Sched<[sched.Folded, ReadAfterLd]>; } // OpNodeMsk is the OpNode to use where element size is important. So use // for all of the broadcast patterns. multiclass avx512_logic_rmb<bits<8> opc, string OpcodeStr, SDPatternOperator OpNode, SDNode OpNodeMsk, X86FoldableSchedWrite sched, X86VectorVTInfo _, bit IsCommutable = 0> : avx512_logic_rm<opc, OpcodeStr, OpNode, OpNodeMsk, sched, _, IsCommutable> { defm rmb : AVX512_maskable_logic<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2), OpcodeStr, "${src2}"##_.BroadcastStr##", $src1", "$src1, ${src2}"##_.BroadcastStr, (_.i64VT (OpNodeMsk _.RC:$src1, (bitconvert (_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src2)))))), (_.VT (bitconvert (_.i64VT (OpNodeMsk _.RC:$src1, (bitconvert (_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src2))))))))>, AVX512BIBase, EVEX_4V, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; } multiclass avx512_logic_rmb_vl<bits<8> opc, string OpcodeStr, SDPatternOperator OpNode, SDNode OpNodeMsk, X86SchedWriteWidths sched, AVX512VLVectorVTInfo VTInfo, bit IsCommutable = 0> { let Predicates = [HasAVX512] in defm Z : avx512_logic_rmb<opc, OpcodeStr, OpNode, OpNodeMsk, sched.ZMM, VTInfo.info512, IsCommutable>, EVEX_V512; let Predicates = [HasAVX512, HasVLX] in { defm Z256 : avx512_logic_rmb<opc, OpcodeStr, OpNode, OpNodeMsk, sched.YMM, VTInfo.info256, IsCommutable>, EVEX_V256; defm Z128 : avx512_logic_rmb<opc, OpcodeStr, OpNode, OpNodeMsk, sched.XMM, VTInfo.info128, IsCommutable>, EVEX_V128; } } multiclass avx512_logic_rm_vl_dq<bits<8> opc_d, bits<8> opc_q, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched, bit IsCommutable = 0> { defm Q : avx512_logic_rmb_vl<opc_q, OpcodeStr#"q", OpNode, OpNode, sched, avx512vl_i64_info, IsCommutable>, VEX_W, EVEX_CD8<64, CD8VF>; defm D : avx512_logic_rmb_vl<opc_d, OpcodeStr#"d", null_frag, OpNode, sched, avx512vl_i32_info, IsCommutable>, EVEX_CD8<32, CD8VF>; } defm VPAND : avx512_logic_rm_vl_dq<0xDB, 0xDB, "vpand", and, SchedWriteVecLogic, 1>; defm VPOR : avx512_logic_rm_vl_dq<0xEB, 0xEB, "vpor", or, SchedWriteVecLogic, 1>; defm VPXOR : avx512_logic_rm_vl_dq<0xEF, 0xEF, "vpxor", xor, SchedWriteVecLogic, 1>; defm VPANDN : avx512_logic_rm_vl_dq<0xDF, 0xDF, "vpandn", X86andnp, SchedWriteVecLogic>; //===----------------------------------------------------------------------===// // AVX-512 FP arithmetic //===----------------------------------------------------------------------===// multiclass avx512_fp_scalar<bits<8> opc, string OpcodeStr,X86VectorVTInfo _, SDNode OpNode, SDNode VecNode, X86FoldableSchedWrite sched, bit IsCommutable> { let ExeDomain = _.ExeDomain in { defm rr_Int : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (_.VT (VecNode _.RC:$src1, _.RC:$src2, (i32 FROUND_CURRENT)))>, Sched<[sched]>; defm rm_Int : AVX512_maskable_scalar<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.IntScalarMemOp:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (_.VT (VecNode _.RC:$src1, _.ScalarIntMemCPat:$src2, (i32 FROUND_CURRENT)))>, Sched<[sched.Folded, ReadAfterLd]>; let isCodeGenOnly = 1, Predicates = [HasAVX512] in { def rr : I< opc, MRMSrcReg, (outs _.FRC:$dst), (ins _.FRC:$src1, _.FRC:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set _.FRC:$dst, (OpNode _.FRC:$src1, _.FRC:$src2))]>, Sched<[sched]> { let isCommutable = IsCommutable; } def rm : I< opc, MRMSrcMem, (outs _.FRC:$dst), (ins _.FRC:$src1, _.ScalarMemOp:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set _.FRC:$dst, (OpNode _.FRC:$src1, (_.ScalarLdFrag addr:$src2)))]>, Sched<[sched.Folded, ReadAfterLd]>; } } } multiclass avx512_fp_scalar_round<bits<8> opc, string OpcodeStr,X86VectorVTInfo _, SDNode VecNode, X86FoldableSchedWrite sched, bit IsCommutable = 0> { let ExeDomain = _.ExeDomain in defm rrb_Int : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2, AVX512RC:$rc), OpcodeStr, "$rc, $src2, $src1", "$src1, $src2, $rc", (VecNode (_.VT _.RC:$src1), (_.VT _.RC:$src2), (i32 imm:$rc)), IsCommutable>, EVEX_B, EVEX_RC, Sched<[sched]>; } multiclass avx512_fp_scalar_sae<bits<8> opc, string OpcodeStr,X86VectorVTInfo _, SDNode OpNode, SDNode VecNode, SDNode SaeNode, X86FoldableSchedWrite sched, bit IsCommutable> { let ExeDomain = _.ExeDomain in { defm rr_Int : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (_.VT (VecNode _.RC:$src1, _.RC:$src2))>, Sched<[sched]>; defm rm_Int : AVX512_maskable_scalar<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.IntScalarMemOp:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (_.VT (VecNode _.RC:$src1, _.ScalarIntMemCPat:$src2))>, Sched<[sched.Folded, ReadAfterLd]>; let isCodeGenOnly = 1, Predicates = [HasAVX512] in { def rr : I< opc, MRMSrcReg, (outs _.FRC:$dst), (ins _.FRC:$src1, _.FRC:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set _.FRC:$dst, (OpNode _.FRC:$src1, _.FRC:$src2))]>, Sched<[sched]> { let isCommutable = IsCommutable; } def rm : I< opc, MRMSrcMem, (outs _.FRC:$dst), (ins _.FRC:$src1, _.ScalarMemOp:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set _.FRC:$dst, (OpNode _.FRC:$src1, (_.ScalarLdFrag addr:$src2)))]>, Sched<[sched.Folded, ReadAfterLd]>; } defm rrb_Int : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2), OpcodeStr, "{sae}, $src2, $src1", "$src1, $src2, {sae}", (SaeNode (_.VT _.RC:$src1), (_.VT _.RC:$src2), (i32 FROUND_NO_EXC))>, EVEX_B, Sched<[sched]>; } } multiclass avx512_binop_s_round<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode VecNode, X86SchedWriteSizes sched, bit IsCommutable> { defm SSZ : avx512_fp_scalar<opc, OpcodeStr#"ss", f32x_info, OpNode, VecNode, sched.PS.Scl, IsCommutable>, avx512_fp_scalar_round<opc, OpcodeStr#"ss", f32x_info, VecNode, sched.PS.Scl, IsCommutable>, XS, EVEX_4V, VEX_LIG, EVEX_CD8<32, CD8VT1>; defm SDZ : avx512_fp_scalar<opc, OpcodeStr#"sd", f64x_info, OpNode, VecNode, sched.PD.Scl, IsCommutable>, avx512_fp_scalar_round<opc, OpcodeStr#"sd", f64x_info, VecNode, sched.PD.Scl, IsCommutable>, XD, VEX_W, EVEX_4V, VEX_LIG, EVEX_CD8<64, CD8VT1>; } multiclass avx512_binop_s_sae<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode VecNode, SDNode SaeNode, X86SchedWriteSizes sched, bit IsCommutable> { defm SSZ : avx512_fp_scalar_sae<opc, OpcodeStr#"ss", f32x_info, OpNode, VecNode, SaeNode, sched.PS.Scl, IsCommutable>, XS, EVEX_4V, VEX_LIG, EVEX_CD8<32, CD8VT1>; defm SDZ : avx512_fp_scalar_sae<opc, OpcodeStr#"sd", f64x_info, OpNode, VecNode, SaeNode, sched.PD.Scl, IsCommutable>, XD, VEX_W, EVEX_4V, VEX_LIG, EVEX_CD8<64, CD8VT1>; } defm VADD : avx512_binop_s_round<0x58, "vadd", fadd, X86faddRnds, SchedWriteFAddSizes, 1>; defm VMUL : avx512_binop_s_round<0x59, "vmul", fmul, X86fmulRnds, SchedWriteFMulSizes, 1>; defm VSUB : avx512_binop_s_round<0x5C, "vsub", fsub, X86fsubRnds, SchedWriteFAddSizes, 0>; defm VDIV : avx512_binop_s_round<0x5E, "vdiv", fdiv, X86fdivRnds, SchedWriteFDivSizes, 0>; defm VMIN : avx512_binop_s_sae<0x5D, "vmin", X86fmin, X86fmins, X86fminRnds, SchedWriteFCmpSizes, 0>; defm VMAX : avx512_binop_s_sae<0x5F, "vmax", X86fmax, X86fmaxs, X86fmaxRnds, SchedWriteFCmpSizes, 0>; // MIN/MAX nodes are commutable under "unsafe-fp-math". In this case we use // X86fminc and X86fmaxc instead of X86fmin and X86fmax multiclass avx512_comutable_binop_s<bits<8> opc, string OpcodeStr, X86VectorVTInfo _, SDNode OpNode, X86FoldableSchedWrite sched> { let isCodeGenOnly = 1, Predicates = [HasAVX512], ExeDomain = _.ExeDomain in { def rr : I< opc, MRMSrcReg, (outs _.FRC:$dst), (ins _.FRC:$src1, _.FRC:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set _.FRC:$dst, (OpNode _.FRC:$src1, _.FRC:$src2))]>, Sched<[sched]> { let isCommutable = 1; } def rm : I< opc, MRMSrcMem, (outs _.FRC:$dst), (ins _.FRC:$src1, _.ScalarMemOp:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set _.FRC:$dst, (OpNode _.FRC:$src1, (_.ScalarLdFrag addr:$src2)))]>, Sched<[sched.Folded, ReadAfterLd]>; } } defm VMINCSSZ : avx512_comutable_binop_s<0x5D, "vminss", f32x_info, X86fminc, SchedWriteFCmp.Scl>, XS, EVEX_4V, VEX_LIG, EVEX_CD8<32, CD8VT1>; defm VMINCSDZ : avx512_comutable_binop_s<0x5D, "vminsd", f64x_info, X86fminc, SchedWriteFCmp.Scl>, XD, VEX_W, EVEX_4V, VEX_LIG, EVEX_CD8<64, CD8VT1>; defm VMAXCSSZ : avx512_comutable_binop_s<0x5F, "vmaxss", f32x_info, X86fmaxc, SchedWriteFCmp.Scl>, XS, EVEX_4V, VEX_LIG, EVEX_CD8<32, CD8VT1>; defm VMAXCSDZ : avx512_comutable_binop_s<0x5F, "vmaxsd", f64x_info, X86fmaxc, SchedWriteFCmp.Scl>, XD, VEX_W, EVEX_4V, VEX_LIG, EVEX_CD8<64, CD8VT1>; multiclass avx512_fp_packed<bits<8> opc, string OpcodeStr, SDPatternOperator OpNode, X86VectorVTInfo _, X86FoldableSchedWrite sched, bit IsCommutable, bit IsKZCommutable = IsCommutable> { let ExeDomain = _.ExeDomain, hasSideEffects = 0 in { defm rr: AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2), OpcodeStr##_.Suffix, "$src2, $src1", "$src1, $src2", (_.VT (OpNode _.RC:$src1, _.RC:$src2)), IsCommutable, 0, IsKZCommutable>, EVEX_4V, Sched<[sched]>; let mayLoad = 1 in { defm rm: AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.MemOp:$src2), OpcodeStr##_.Suffix, "$src2, $src1", "$src1, $src2", (OpNode _.RC:$src1, (_.LdFrag addr:$src2))>, EVEX_4V, Sched<[sched.Folded, ReadAfterLd]>; defm rmb: AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2), OpcodeStr##_.Suffix, "${src2}"##_.BroadcastStr##", $src1", "$src1, ${src2}"##_.BroadcastStr, (OpNode _.RC:$src1, (_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src2))))>, EVEX_4V, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; } } } multiclass avx512_fp_round_packed<bits<8> opc, string OpcodeStr, SDPatternOperator OpNodeRnd, X86FoldableSchedWrite sched, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in defm rrb: AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2, AVX512RC:$rc), OpcodeStr##_.Suffix, "$rc, $src2, $src1", "$src1, $src2, $rc", (_.VT (OpNodeRnd _.RC:$src1, _.RC:$src2, (i32 imm:$rc)))>, EVEX_4V, EVEX_B, EVEX_RC, Sched<[sched]>; } multiclass avx512_fp_sae_packed<bits<8> opc, string OpcodeStr, SDPatternOperator OpNodeRnd, X86FoldableSchedWrite sched, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in defm rrb: AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2), OpcodeStr##_.Suffix, "{sae}, $src2, $src1", "$src1, $src2, {sae}", (_.VT (OpNodeRnd _.RC:$src1, _.RC:$src2, (i32 FROUND_NO_EXC)))>, EVEX_4V, EVEX_B, Sched<[sched]>; } multiclass avx512_fp_binop_p<bits<8> opc, string OpcodeStr, SDPatternOperator OpNode, Predicate prd, X86SchedWriteSizes sched, bit IsCommutable = 0, bit IsPD128Commutable = IsCommutable> { let Predicates = [prd] in { defm PSZ : avx512_fp_packed<opc, OpcodeStr, OpNode, v16f32_info, sched.PS.ZMM, IsCommutable>, EVEX_V512, PS, EVEX_CD8<32, CD8VF>; defm PDZ : avx512_fp_packed<opc, OpcodeStr, OpNode, v8f64_info, sched.PD.ZMM, IsCommutable>, EVEX_V512, PD, VEX_W, EVEX_CD8<64, CD8VF>; } // Define only if AVX512VL feature is present. let Predicates = [prd, HasVLX] in { defm PSZ128 : avx512_fp_packed<opc, OpcodeStr, OpNode, v4f32x_info, sched.PS.XMM, IsCommutable>, EVEX_V128, PS, EVEX_CD8<32, CD8VF>; defm PSZ256 : avx512_fp_packed<opc, OpcodeStr, OpNode, v8f32x_info, sched.PS.YMM, IsCommutable>, EVEX_V256, PS, EVEX_CD8<32, CD8VF>; defm PDZ128 : avx512_fp_packed<opc, OpcodeStr, OpNode, v2f64x_info, sched.PD.XMM, IsPD128Commutable, IsCommutable>, EVEX_V128, PD, VEX_W, EVEX_CD8<64, CD8VF>; defm PDZ256 : avx512_fp_packed<opc, OpcodeStr, OpNode, v4f64x_info, sched.PD.YMM, IsCommutable>, EVEX_V256, PD, VEX_W, EVEX_CD8<64, CD8VF>; } } multiclass avx512_fp_binop_p_round<bits<8> opc, string OpcodeStr, SDNode OpNodeRnd, X86SchedWriteSizes sched> { defm PSZ : avx512_fp_round_packed<opc, OpcodeStr, OpNodeRnd, sched.PS.ZMM, v16f32_info>, EVEX_V512, PS, EVEX_CD8<32, CD8VF>; defm PDZ : avx512_fp_round_packed<opc, OpcodeStr, OpNodeRnd, sched.PD.ZMM, v8f64_info>, EVEX_V512, PD, VEX_W,EVEX_CD8<64, CD8VF>; } multiclass avx512_fp_binop_p_sae<bits<8> opc, string OpcodeStr, SDNode OpNodeRnd, X86SchedWriteSizes sched> { defm PSZ : avx512_fp_sae_packed<opc, OpcodeStr, OpNodeRnd, sched.PS.ZMM, v16f32_info>, EVEX_V512, PS, EVEX_CD8<32, CD8VF>; defm PDZ : avx512_fp_sae_packed<opc, OpcodeStr, OpNodeRnd, sched.PD.ZMM, v8f64_info>, EVEX_V512, PD, VEX_W,EVEX_CD8<64, CD8VF>; } defm VADD : avx512_fp_binop_p<0x58, "vadd", fadd, HasAVX512, SchedWriteFAddSizes, 1>, avx512_fp_binop_p_round<0x58, "vadd", X86faddRnd, SchedWriteFAddSizes>; defm VMUL : avx512_fp_binop_p<0x59, "vmul", fmul, HasAVX512, SchedWriteFMulSizes, 1>, avx512_fp_binop_p_round<0x59, "vmul", X86fmulRnd, SchedWriteFMulSizes>; defm VSUB : avx512_fp_binop_p<0x5C, "vsub", fsub, HasAVX512, SchedWriteFAddSizes>, avx512_fp_binop_p_round<0x5C, "vsub", X86fsubRnd, SchedWriteFAddSizes>; defm VDIV : avx512_fp_binop_p<0x5E, "vdiv", fdiv, HasAVX512, SchedWriteFDivSizes>, avx512_fp_binop_p_round<0x5E, "vdiv", X86fdivRnd, SchedWriteFDivSizes>; defm VMIN : avx512_fp_binop_p<0x5D, "vmin", X86fmin, HasAVX512, SchedWriteFCmpSizes, 0>, avx512_fp_binop_p_sae<0x5D, "vmin", X86fminRnd, SchedWriteFCmpSizes>; defm VMAX : avx512_fp_binop_p<0x5F, "vmax", X86fmax, HasAVX512, SchedWriteFCmpSizes, 0>, avx512_fp_binop_p_sae<0x5F, "vmax", X86fmaxRnd, SchedWriteFCmpSizes>; let isCodeGenOnly = 1 in { defm VMINC : avx512_fp_binop_p<0x5D, "vmin", X86fminc, HasAVX512, SchedWriteFCmpSizes, 1>; defm VMAXC : avx512_fp_binop_p<0x5F, "vmax", X86fmaxc, HasAVX512, SchedWriteFCmpSizes, 1>; } defm VAND : avx512_fp_binop_p<0x54, "vand", null_frag, HasDQI, SchedWriteFLogicSizes, 1>; defm VANDN : avx512_fp_binop_p<0x55, "vandn", null_frag, HasDQI, SchedWriteFLogicSizes, 0>; defm VOR : avx512_fp_binop_p<0x56, "vor", null_frag, HasDQI, SchedWriteFLogicSizes, 1>; defm VXOR : avx512_fp_binop_p<0x57, "vxor", null_frag, HasDQI, SchedWriteFLogicSizes, 1>; // Patterns catch floating point selects with bitcasted integer logic ops. multiclass avx512_fp_logical_lowering<string InstrStr, SDNode OpNode, X86VectorVTInfo _, Predicate prd> { let Predicates = [prd] in { // Masked register-register logical operations. def : Pat<(_.VT (vselect _.KRCWM:$mask, (bitconvert (_.i64VT (OpNode _.RC:$src1, _.RC:$src2))), _.RC:$src0)), (!cast<Instruction>(InstrStr#rrk) _.RC:$src0, _.KRCWM:$mask, _.RC:$src1, _.RC:$src2)>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (bitconvert (_.i64VT (OpNode _.RC:$src1, _.RC:$src2))), _.ImmAllZerosV)), (!cast<Instruction>(InstrStr#rrkz) _.KRCWM:$mask, _.RC:$src1, _.RC:$src2)>; // Masked register-memory logical operations. def : Pat<(_.VT (vselect _.KRCWM:$mask, (bitconvert (_.i64VT (OpNode _.RC:$src1, (load addr:$src2)))), _.RC:$src0)), (!cast<Instruction>(InstrStr#rmk) _.RC:$src0, _.KRCWM:$mask, _.RC:$src1, addr:$src2)>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (bitconvert (_.i64VT (OpNode _.RC:$src1, (load addr:$src2)))), _.ImmAllZerosV)), (!cast<Instruction>(InstrStr#rmkz) _.KRCWM:$mask, _.RC:$src1, addr:$src2)>; // Register-broadcast logical operations. def : Pat<(_.i64VT (OpNode _.RC:$src1, (bitconvert (_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src2)))))), (!cast<Instruction>(InstrStr#rmb) _.RC:$src1, addr:$src2)>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (bitconvert (_.i64VT (OpNode _.RC:$src1, (bitconvert (_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src2))))))), _.RC:$src0)), (!cast<Instruction>(InstrStr#rmbk) _.RC:$src0, _.KRCWM:$mask, _.RC:$src1, addr:$src2)>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (bitconvert (_.i64VT (OpNode _.RC:$src1, (bitconvert (_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src2))))))), _.ImmAllZerosV)), (!cast<Instruction>(InstrStr#rmbkz) _.KRCWM:$mask, _.RC:$src1, addr:$src2)>; } } multiclass avx512_fp_logical_lowering_sizes<string InstrStr, SDNode OpNode> { defm : avx512_fp_logical_lowering<InstrStr#DZ128, OpNode, v4f32x_info, HasVLX>; defm : avx512_fp_logical_lowering<InstrStr#QZ128, OpNode, v2f64x_info, HasVLX>; defm : avx512_fp_logical_lowering<InstrStr#DZ256, OpNode, v8f32x_info, HasVLX>; defm : avx512_fp_logical_lowering<InstrStr#QZ256, OpNode, v4f64x_info, HasVLX>; defm : avx512_fp_logical_lowering<InstrStr#DZ, OpNode, v16f32_info, HasAVX512>; defm : avx512_fp_logical_lowering<InstrStr#QZ, OpNode, v8f64_info, HasAVX512>; } defm : avx512_fp_logical_lowering_sizes<"VPAND", and>; defm : avx512_fp_logical_lowering_sizes<"VPOR", or>; defm : avx512_fp_logical_lowering_sizes<"VPXOR", xor>; defm : avx512_fp_logical_lowering_sizes<"VPANDN", X86andnp>; let Predicates = [HasVLX,HasDQI] in { // Use packed logical operations for scalar ops. def : Pat<(f64 (X86fand FR64X:$src1, FR64X:$src2)), (COPY_TO_REGCLASS (v2f64 (VANDPDZ128rr (v2f64 (COPY_TO_REGCLASS FR64X:$src1, VR128X)), (v2f64 (COPY_TO_REGCLASS FR64X:$src2, VR128X)))), FR64X)>; def : Pat<(f64 (X86for FR64X:$src1, FR64X:$src2)), (COPY_TO_REGCLASS (v2f64 (VORPDZ128rr (v2f64 (COPY_TO_REGCLASS FR64X:$src1, VR128X)), (v2f64 (COPY_TO_REGCLASS FR64X:$src2, VR128X)))), FR64X)>; def : Pat<(f64 (X86fxor FR64X:$src1, FR64X:$src2)), (COPY_TO_REGCLASS (v2f64 (VXORPDZ128rr (v2f64 (COPY_TO_REGCLASS FR64X:$src1, VR128X)), (v2f64 (COPY_TO_REGCLASS FR64X:$src2, VR128X)))), FR64X)>; def : Pat<(f64 (X86fandn FR64X:$src1, FR64X:$src2)), (COPY_TO_REGCLASS (v2f64 (VANDNPDZ128rr (v2f64 (COPY_TO_REGCLASS FR64X:$src1, VR128X)), (v2f64 (COPY_TO_REGCLASS FR64X:$src2, VR128X)))), FR64X)>; def : Pat<(f32 (X86fand FR32X:$src1, FR32X:$src2)), (COPY_TO_REGCLASS (v4f32 (VANDPSZ128rr (v4f32 (COPY_TO_REGCLASS FR32X:$src1, VR128X)), (v4f32 (COPY_TO_REGCLASS FR32X:$src2, VR128X)))), FR32X)>; def : Pat<(f32 (X86for FR32X:$src1, FR32X:$src2)), (COPY_TO_REGCLASS (v4f32 (VORPSZ128rr (v4f32 (COPY_TO_REGCLASS FR32X:$src1, VR128X)), (v4f32 (COPY_TO_REGCLASS FR32X:$src2, VR128X)))), FR32X)>; def : Pat<(f32 (X86fxor FR32X:$src1, FR32X:$src2)), (COPY_TO_REGCLASS (v4f32 (VXORPSZ128rr (v4f32 (COPY_TO_REGCLASS FR32X:$src1, VR128X)), (v4f32 (COPY_TO_REGCLASS FR32X:$src2, VR128X)))), FR32X)>; def : Pat<(f32 (X86fandn FR32X:$src1, FR32X:$src2)), (COPY_TO_REGCLASS (v4f32 (VANDNPSZ128rr (v4f32 (COPY_TO_REGCLASS FR32X:$src1, VR128X)), (v4f32 (COPY_TO_REGCLASS FR32X:$src2, VR128X)))), FR32X)>; } multiclass avx512_fp_scalef_p<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in { defm rr: AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2), OpcodeStr##_.Suffix, "$src2, $src1", "$src1, $src2", (_.VT (OpNode _.RC:$src1, _.RC:$src2, (i32 FROUND_CURRENT)))>, EVEX_4V, Sched<[sched]>; defm rm: AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.MemOp:$src2), OpcodeStr##_.Suffix, "$src2, $src1", "$src1, $src2", (OpNode _.RC:$src1, (_.LdFrag addr:$src2), (i32 FROUND_CURRENT))>, EVEX_4V, Sched<[sched.Folded, ReadAfterLd]>; defm rmb: AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2), OpcodeStr##_.Suffix, "${src2}"##_.BroadcastStr##", $src1", "$src1, ${src2}"##_.BroadcastStr, (OpNode _.RC:$src1, (_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src2))), (i32 FROUND_CURRENT))>, EVEX_4V, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; } } multiclass avx512_fp_scalef_scalar<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in { defm rr: AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2), OpcodeStr##_.Suffix, "$src2, $src1", "$src1, $src2", (_.VT (OpNode _.RC:$src1, _.RC:$src2, (i32 FROUND_CURRENT)))>, Sched<[sched]>; defm rm: AVX512_maskable_scalar<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.IntScalarMemOp:$src2), OpcodeStr##_.Suffix, "$src2, $src1", "$src1, $src2", (OpNode _.RC:$src1, _.ScalarIntMemCPat:$src2, (i32 FROUND_CURRENT))>, Sched<[sched.Folded, ReadAfterLd]>; } } multiclass avx512_fp_scalef_all<bits<8> opc, bits<8> opcScaler, string OpcodeStr, SDNode OpNode, SDNode OpNodeScal, X86SchedWriteWidths sched> { defm PSZ : avx512_fp_scalef_p<opc, OpcodeStr, OpNode, sched.ZMM, v16f32_info>, avx512_fp_round_packed<opc, OpcodeStr, OpNode, sched.ZMM, v16f32_info>, EVEX_V512, EVEX_CD8<32, CD8VF>; defm PDZ : avx512_fp_scalef_p<opc, OpcodeStr, OpNode, sched.ZMM, v8f64_info>, avx512_fp_round_packed<opc, OpcodeStr, OpNode, sched.ZMM, v8f64_info>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>; defm SSZ : avx512_fp_scalef_scalar<opcScaler, OpcodeStr, OpNodeScal, sched.Scl, f32x_info>, avx512_fp_scalar_round<opcScaler, OpcodeStr##"ss", f32x_info, OpNodeScal, sched.Scl>, EVEX_4V,EVEX_CD8<32, CD8VT1>; defm SDZ : avx512_fp_scalef_scalar<opcScaler, OpcodeStr, OpNodeScal, sched.Scl, f64x_info>, avx512_fp_scalar_round<opcScaler, OpcodeStr##"sd", f64x_info, OpNodeScal, sched.Scl>, EVEX_4V, EVEX_CD8<64, CD8VT1>, VEX_W; // Define only if AVX512VL feature is present. let Predicates = [HasVLX] in { defm PSZ128 : avx512_fp_scalef_p<opc, OpcodeStr, OpNode, sched.XMM, v4f32x_info>, EVEX_V128, EVEX_CD8<32, CD8VF>; defm PSZ256 : avx512_fp_scalef_p<opc, OpcodeStr, OpNode, sched.YMM, v8f32x_info>, EVEX_V256, EVEX_CD8<32, CD8VF>; defm PDZ128 : avx512_fp_scalef_p<opc, OpcodeStr, OpNode, sched.XMM, v2f64x_info>, EVEX_V128, VEX_W, EVEX_CD8<64, CD8VF>; defm PDZ256 : avx512_fp_scalef_p<opc, OpcodeStr, OpNode, sched.YMM, v4f64x_info>, EVEX_V256, VEX_W, EVEX_CD8<64, CD8VF>; } } defm VSCALEF : avx512_fp_scalef_all<0x2C, 0x2D, "vscalef", X86scalef, X86scalefs, SchedWriteFAdd>, T8PD, NotEVEX2VEXConvertible; //===----------------------------------------------------------------------===// // AVX-512 VPTESTM instructions //===----------------------------------------------------------------------===// multiclass avx512_vptest<bits<8> opc, string OpcodeStr, PatFrag OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _, string Name> { let ExeDomain = _.ExeDomain in { let isCommutable = 1 in defm rr : AVX512_maskable_cmp<opc, MRMSrcReg, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.RC:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (OpNode (bitconvert (_.i64VT (and _.RC:$src1, _.RC:$src2))), _.ImmAllZerosV)>, EVEX_4V, Sched<[sched]>; defm rm : AVX512_maskable_cmp<opc, MRMSrcMem, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.MemOp:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (OpNode (bitconvert (_.i64VT (and _.RC:$src1, (bitconvert (_.LdFrag addr:$src2))))), _.ImmAllZerosV)>, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>, Sched<[sched.Folded, ReadAfterLd]>; } // Patterns for compare with 0 that just use the same source twice. def : Pat<(_.KVT (OpNode _.RC:$src, _.ImmAllZerosV)), (_.KVT (!cast<Instruction>(Name # _.ZSuffix # "rr") _.RC:$src, _.RC:$src))>; def : Pat<(_.KVT (and _.KRC:$mask, (OpNode _.RC:$src, _.ImmAllZerosV))), (_.KVT (!cast<Instruction>(Name # _.ZSuffix # "rrk") _.KRC:$mask, _.RC:$src, _.RC:$src))>; } multiclass avx512_vptest_mb<bits<8> opc, string OpcodeStr, PatFrag OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in defm rmb : AVX512_maskable_cmp<opc, MRMSrcMem, _, (outs _.KRC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2), OpcodeStr, "${src2}"##_.BroadcastStr##", $src1", "$src1, ${src2}"##_.BroadcastStr, (OpNode (and _.RC:$src1, (X86VBroadcast (_.ScalarLdFrag addr:$src2))), _.ImmAllZerosV)>, EVEX_B, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>, Sched<[sched.Folded, ReadAfterLd]>; } // Use 512bit version to implement 128/256 bit in case NoVLX. multiclass avx512_vptest_lowering<PatFrag OpNode, X86VectorVTInfo ExtendInfo, X86VectorVTInfo _, string Name> { def : Pat<(_.KVT (OpNode (bitconvert (_.i64VT (and _.RC:$src1, _.RC:$src2))), _.ImmAllZerosV)), (_.KVT (COPY_TO_REGCLASS (!cast<Instruction>(Name # "Zrr") (INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)), _.RC:$src1, _.SubRegIdx), (INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)), _.RC:$src2, _.SubRegIdx)), _.KRC))>; def : Pat<(_.KVT (and _.KRC:$mask, (OpNode (bitconvert (_.i64VT (and _.RC:$src1, _.RC:$src2))), _.ImmAllZerosV))), (COPY_TO_REGCLASS (!cast<Instruction>(Name # "Zrrk") (COPY_TO_REGCLASS _.KRC:$mask, ExtendInfo.KRC), (INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)), _.RC:$src1, _.SubRegIdx), (INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)), _.RC:$src2, _.SubRegIdx)), _.KRC)>; def : Pat<(_.KVT (OpNode _.RC:$src, _.ImmAllZerosV)), (_.KVT (COPY_TO_REGCLASS (!cast<Instruction>(Name # "Zrr") (INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)), _.RC:$src, _.SubRegIdx), (INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)), _.RC:$src, _.SubRegIdx)), _.KRC))>; def : Pat<(_.KVT (and _.KRC:$mask, (OpNode _.RC:$src, _.ImmAllZerosV))), (COPY_TO_REGCLASS (!cast<Instruction>(Name # "Zrrk") (COPY_TO_REGCLASS _.KRC:$mask, ExtendInfo.KRC), (INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)), _.RC:$src, _.SubRegIdx), (INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)), _.RC:$src, _.SubRegIdx)), _.KRC)>; } multiclass avx512_vptest_dq_sizes<bits<8> opc, string OpcodeStr, PatFrag OpNode, X86SchedWriteWidths sched, AVX512VLVectorVTInfo _> { let Predicates = [HasAVX512] in defm Z : avx512_vptest<opc, OpcodeStr, OpNode, sched.ZMM, _.info512, NAME>, avx512_vptest_mb<opc, OpcodeStr, OpNode, sched.ZMM, _.info512>, EVEX_V512; let Predicates = [HasAVX512, HasVLX] in { defm Z256 : avx512_vptest<opc, OpcodeStr, OpNode, sched.YMM, _.info256, NAME>, avx512_vptest_mb<opc, OpcodeStr, OpNode, sched.YMM, _.info256>, EVEX_V256; defm Z128 : avx512_vptest<opc, OpcodeStr, OpNode, sched.XMM, _.info128, NAME>, avx512_vptest_mb<opc, OpcodeStr, OpNode, sched.XMM, _.info128>, EVEX_V128; } let Predicates = [HasAVX512, NoVLX] in { defm Z256_Alt : avx512_vptest_lowering< OpNode, _.info512, _.info256, NAME>; defm Z128_Alt : avx512_vptest_lowering< OpNode, _.info512, _.info128, NAME>; } } multiclass avx512_vptest_dq<bits<8> opc, string OpcodeStr, PatFrag OpNode, X86SchedWriteWidths sched> { defm D : avx512_vptest_dq_sizes<opc, OpcodeStr#"d", OpNode, sched, avx512vl_i32_info>; defm Q : avx512_vptest_dq_sizes<opc, OpcodeStr#"q", OpNode, sched, avx512vl_i64_info>, VEX_W; } multiclass avx512_vptest_wb<bits<8> opc, string OpcodeStr, PatFrag OpNode, X86SchedWriteWidths sched> { let Predicates = [HasBWI] in { defm WZ: avx512_vptest<opc, OpcodeStr#"w", OpNode, sched.ZMM, v32i16_info, NAME#"W">, EVEX_V512, VEX_W; defm BZ: avx512_vptest<opc, OpcodeStr#"b", OpNode, sched.ZMM, v64i8_info, NAME#"B">, EVEX_V512; } let Predicates = [HasVLX, HasBWI] in { defm WZ256: avx512_vptest<opc, OpcodeStr#"w", OpNode, sched.YMM, v16i16x_info, NAME#"W">, EVEX_V256, VEX_W; defm WZ128: avx512_vptest<opc, OpcodeStr#"w", OpNode, sched.XMM, v8i16x_info, NAME#"W">, EVEX_V128, VEX_W; defm BZ256: avx512_vptest<opc, OpcodeStr#"b", OpNode, sched.YMM, v32i8x_info, NAME#"B">, EVEX_V256; defm BZ128: avx512_vptest<opc, OpcodeStr#"b", OpNode, sched.XMM, v16i8x_info, NAME#"B">, EVEX_V128; } let Predicates = [HasAVX512, NoVLX] in { defm BZ256_Alt : avx512_vptest_lowering<OpNode, v64i8_info, v32i8x_info, NAME#"B">; defm BZ128_Alt : avx512_vptest_lowering<OpNode, v64i8_info, v16i8x_info, NAME#"B">; defm WZ256_Alt : avx512_vptest_lowering<OpNode, v32i16_info, v16i16x_info, NAME#"W">; defm WZ128_Alt : avx512_vptest_lowering<OpNode, v32i16_info, v8i16x_info, NAME#"W">; } } // These patterns are used to match vptestm/vptestnm. We don't treat pcmpeqm // as commutable here because we already canonicalized all zeros vectors to the // RHS during lowering. def X86pcmpeqm : PatFrag<(ops node:$src1, node:$src2), (setcc node:$src1, node:$src2, SETEQ)>; def X86pcmpnem : PatFrag<(ops node:$src1, node:$src2), (setcc node:$src1, node:$src2, SETNE)>; multiclass avx512_vptest_all_forms<bits<8> opc_wb, bits<8> opc_dq, string OpcodeStr, PatFrag OpNode, X86SchedWriteWidths sched> : avx512_vptest_wb<opc_wb, OpcodeStr, OpNode, sched>, avx512_vptest_dq<opc_dq, OpcodeStr, OpNode, sched>; defm VPTESTM : avx512_vptest_all_forms<0x26, 0x27, "vptestm", X86pcmpnem, SchedWriteVecLogic>, T8PD; defm VPTESTNM : avx512_vptest_all_forms<0x26, 0x27, "vptestnm", X86pcmpeqm, SchedWriteVecLogic>, T8XS; //===----------------------------------------------------------------------===// // AVX-512 Shift instructions //===----------------------------------------------------------------------===// multiclass avx512_shift_rmi<bits<8> opc, Format ImmFormR, Format ImmFormM, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in { defm ri : AVX512_maskable<opc, ImmFormR, _, (outs _.RC:$dst), (ins _.RC:$src1, u8imm:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (_.VT (OpNode _.RC:$src1, (i8 imm:$src2)))>, Sched<[sched]>; defm mi : AVX512_maskable<opc, ImmFormM, _, (outs _.RC:$dst), (ins _.MemOp:$src1, u8imm:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (_.VT (OpNode (_.VT (bitconvert (_.LdFrag addr:$src1))), (i8 imm:$src2)))>, Sched<[sched.Folded]>; } } multiclass avx512_shift_rmbi<bits<8> opc, Format ImmFormM, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in defm mbi : AVX512_maskable<opc, ImmFormM, _, (outs _.RC:$dst), (ins _.ScalarMemOp:$src1, u8imm:$src2), OpcodeStr, "$src2, ${src1}"##_.BroadcastStr, "${src1}"##_.BroadcastStr##", $src2", (_.VT (OpNode (X86VBroadcast (_.ScalarLdFrag addr:$src1)), (i8 imm:$src2)))>, EVEX_B, Sched<[sched.Folded]>; } multiclass avx512_shift_rrm<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, ValueType SrcVT, PatFrag bc_frag, X86VectorVTInfo _> { // src2 is always 128-bit let ExeDomain = _.ExeDomain in { defm rr : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, VR128X:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (_.VT (OpNode _.RC:$src1, (SrcVT VR128X:$src2)))>, AVX512BIBase, EVEX_4V, Sched<[sched]>; defm rm : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, i128mem:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (_.VT (OpNode _.RC:$src1, (bc_frag (loadv2i64 addr:$src2))))>, AVX512BIBase, EVEX_4V, Sched<[sched.Folded, ReadAfterLd]>; } } multiclass avx512_shift_sizes<bits<8> opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched, ValueType SrcVT, PatFrag bc_frag, AVX512VLVectorVTInfo VTInfo, Predicate prd> { let Predicates = [prd] in defm Z : avx512_shift_rrm<opc, OpcodeStr, OpNode, sched.ZMM, SrcVT, bc_frag, VTInfo.info512>, EVEX_V512, EVEX_CD8<VTInfo.info512.EltSize, CD8VQ> ; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_shift_rrm<opc, OpcodeStr, OpNode, sched.YMM, SrcVT, bc_frag, VTInfo.info256>, EVEX_V256, EVEX_CD8<VTInfo.info256.EltSize, CD8VH>; defm Z128 : avx512_shift_rrm<opc, OpcodeStr, OpNode, sched.XMM, SrcVT, bc_frag, VTInfo.info128>, EVEX_V128, EVEX_CD8<VTInfo.info128.EltSize, CD8VF>; } } multiclass avx512_shift_types<bits<8> opcd, bits<8> opcq, bits<8> opcw, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched, bit NotEVEX2VEXConvertibleQ = 0> { defm D : avx512_shift_sizes<opcd, OpcodeStr#"d", OpNode, sched, v4i32, bc_v4i32, avx512vl_i32_info, HasAVX512>; let notEVEX2VEXConvertible = NotEVEX2VEXConvertibleQ in defm Q : avx512_shift_sizes<opcq, OpcodeStr#"q", OpNode, sched, v2i64, bc_v2i64, avx512vl_i64_info, HasAVX512>, VEX_W; defm W : avx512_shift_sizes<opcw, OpcodeStr#"w", OpNode, sched, v8i16, bc_v2i64, avx512vl_i16_info, HasBWI>; } multiclass avx512_shift_rmi_sizes<bits<8> opc, Format ImmFormR, Format ImmFormM, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched, AVX512VLVectorVTInfo VTInfo> { let Predicates = [HasAVX512] in defm Z: avx512_shift_rmi<opc, ImmFormR, ImmFormM, OpcodeStr, OpNode, sched.ZMM, VTInfo.info512>, avx512_shift_rmbi<opc, ImmFormM, OpcodeStr, OpNode, sched.ZMM, VTInfo.info512>, EVEX_V512; let Predicates = [HasAVX512, HasVLX] in { defm Z256: avx512_shift_rmi<opc, ImmFormR, ImmFormM, OpcodeStr, OpNode, sched.YMM, VTInfo.info256>, avx512_shift_rmbi<opc, ImmFormM, OpcodeStr, OpNode, sched.YMM, VTInfo.info256>, EVEX_V256; defm Z128: avx512_shift_rmi<opc, ImmFormR, ImmFormM, OpcodeStr, OpNode, sched.XMM, VTInfo.info128>, avx512_shift_rmbi<opc, ImmFormM, OpcodeStr, OpNode, sched.XMM, VTInfo.info128>, EVEX_V128; } } multiclass avx512_shift_rmi_w<bits<8> opcw, Format ImmFormR, Format ImmFormM, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched> { let Predicates = [HasBWI] in defm WZ: avx512_shift_rmi<opcw, ImmFormR, ImmFormM, OpcodeStr, OpNode, sched.ZMM, v32i16_info>, EVEX_V512, VEX_WIG; let Predicates = [HasVLX, HasBWI] in { defm WZ256: avx512_shift_rmi<opcw, ImmFormR, ImmFormM, OpcodeStr, OpNode, sched.YMM, v16i16x_info>, EVEX_V256, VEX_WIG; defm WZ128: avx512_shift_rmi<opcw, ImmFormR, ImmFormM, OpcodeStr, OpNode, sched.XMM, v8i16x_info>, EVEX_V128, VEX_WIG; } } multiclass avx512_shift_rmi_dq<bits<8> opcd, bits<8> opcq, Format ImmFormR, Format ImmFormM, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched, bit NotEVEX2VEXConvertibleQ = 0> { defm D: avx512_shift_rmi_sizes<opcd, ImmFormR, ImmFormM, OpcodeStr#"d", OpNode, sched, avx512vl_i32_info>, EVEX_CD8<32, CD8VF>; let notEVEX2VEXConvertible = NotEVEX2VEXConvertibleQ in defm Q: avx512_shift_rmi_sizes<opcq, ImmFormR, ImmFormM, OpcodeStr#"q", OpNode, sched, avx512vl_i64_info>, EVEX_CD8<64, CD8VF>, VEX_W; } defm VPSRL : avx512_shift_rmi_dq<0x72, 0x73, MRM2r, MRM2m, "vpsrl", X86vsrli, SchedWriteVecShiftImm>, avx512_shift_rmi_w<0x71, MRM2r, MRM2m, "vpsrlw", X86vsrli, SchedWriteVecShiftImm>, AVX512BIi8Base, EVEX_4V; defm VPSLL : avx512_shift_rmi_dq<0x72, 0x73, MRM6r, MRM6m, "vpsll", X86vshli, SchedWriteVecShiftImm>, avx512_shift_rmi_w<0x71, MRM6r, MRM6m, "vpsllw", X86vshli, SchedWriteVecShiftImm>, AVX512BIi8Base, EVEX_4V; defm VPSRA : avx512_shift_rmi_dq<0x72, 0x72, MRM4r, MRM4m, "vpsra", X86vsrai, SchedWriteVecShiftImm, 1>, avx512_shift_rmi_w<0x71, MRM4r, MRM4m, "vpsraw", X86vsrai, SchedWriteVecShiftImm>, AVX512BIi8Base, EVEX_4V; defm VPROR : avx512_shift_rmi_dq<0x72, 0x72, MRM0r, MRM0m, "vpror", X86vrotri, SchedWriteVecShiftImm>, AVX512BIi8Base, EVEX_4V; defm VPROL : avx512_shift_rmi_dq<0x72, 0x72, MRM1r, MRM1m, "vprol", X86vrotli, SchedWriteVecShiftImm>, AVX512BIi8Base, EVEX_4V; defm VPSLL : avx512_shift_types<0xF2, 0xF3, 0xF1, "vpsll", X86vshl, SchedWriteVecShift>; defm VPSRA : avx512_shift_types<0xE2, 0xE2, 0xE1, "vpsra", X86vsra, SchedWriteVecShift, 1>; defm VPSRL : avx512_shift_types<0xD2, 0xD3, 0xD1, "vpsrl", X86vsrl, SchedWriteVecShift>; // Use 512bit VPSRA/VPSRAI version to implement v2i64/v4i64 in case NoVLX. let Predicates = [HasAVX512, NoVLX] in { def : Pat<(v4i64 (X86vsra (v4i64 VR256X:$src1), (v2i64 VR128X:$src2))), (EXTRACT_SUBREG (v8i64 (VPSRAQZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), VR128X:$src2)), sub_ymm)>; def : Pat<(v2i64 (X86vsra (v2i64 VR128X:$src1), (v2i64 VR128X:$src2))), (EXTRACT_SUBREG (v8i64 (VPSRAQZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)), VR128X:$src2)), sub_xmm)>; def : Pat<(v4i64 (X86vsrai (v4i64 VR256X:$src1), (i8 imm:$src2))), (EXTRACT_SUBREG (v8i64 (VPSRAQZri (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), imm:$src2)), sub_ymm)>; def : Pat<(v2i64 (X86vsrai (v2i64 VR128X:$src1), (i8 imm:$src2))), (EXTRACT_SUBREG (v8i64 (VPSRAQZri (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)), imm:$src2)), sub_xmm)>; } //===-------------------------------------------------------------------===// // Variable Bit Shifts //===-------------------------------------------------------------------===// multiclass avx512_var_shift<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in { defm rr : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (_.VT (OpNode _.RC:$src1, (_.VT _.RC:$src2)))>, AVX5128IBase, EVEX_4V, Sched<[sched]>; defm rm : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.MemOp:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (_.VT (OpNode _.RC:$src1, (_.VT (bitconvert (_.LdFrag addr:$src2)))))>, AVX5128IBase, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>, Sched<[sched.Folded, ReadAfterLd]>; } } multiclass avx512_var_shift_mb<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in defm rmb : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2), OpcodeStr, "${src2}"##_.BroadcastStr##", $src1", "$src1, ${src2}"##_.BroadcastStr, (_.VT (OpNode _.RC:$src1, (_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src2)))))>, AVX5128IBase, EVEX_B, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>, Sched<[sched.Folded, ReadAfterLd]>; } multiclass avx512_var_shift_sizes<bits<8> opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched, AVX512VLVectorVTInfo _> { let Predicates = [HasAVX512] in defm Z : avx512_var_shift<opc, OpcodeStr, OpNode, sched.ZMM, _.info512>, avx512_var_shift_mb<opc, OpcodeStr, OpNode, sched.ZMM, _.info512>, EVEX_V512; let Predicates = [HasAVX512, HasVLX] in { defm Z256 : avx512_var_shift<opc, OpcodeStr, OpNode, sched.YMM, _.info256>, avx512_var_shift_mb<opc, OpcodeStr, OpNode, sched.YMM, _.info256>, EVEX_V256; defm Z128 : avx512_var_shift<opc, OpcodeStr, OpNode, sched.XMM, _.info128>, avx512_var_shift_mb<opc, OpcodeStr, OpNode, sched.XMM, _.info128>, EVEX_V128; } } multiclass avx512_var_shift_types<bits<8> opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched> { defm D : avx512_var_shift_sizes<opc, OpcodeStr#"d", OpNode, sched, avx512vl_i32_info>; defm Q : avx512_var_shift_sizes<opc, OpcodeStr#"q", OpNode, sched, avx512vl_i64_info>, VEX_W; } // Use 512bit version to implement 128/256 bit in case NoVLX. multiclass avx512_var_shift_lowering<AVX512VLVectorVTInfo _, string OpcodeStr, SDNode OpNode, list<Predicate> p> { let Predicates = p in { def : Pat<(_.info256.VT (OpNode (_.info256.VT _.info256.RC:$src1), (_.info256.VT _.info256.RC:$src2))), (EXTRACT_SUBREG (!cast<Instruction>(OpcodeStr#"Zrr") (INSERT_SUBREG (_.info512.VT (IMPLICIT_DEF)), VR256X:$src1, sub_ymm), (INSERT_SUBREG (_.info512.VT (IMPLICIT_DEF)), VR256X:$src2, sub_ymm)), sub_ymm)>; def : Pat<(_.info128.VT (OpNode (_.info128.VT _.info128.RC:$src1), (_.info128.VT _.info128.RC:$src2))), (EXTRACT_SUBREG (!cast<Instruction>(OpcodeStr#"Zrr") (INSERT_SUBREG (_.info512.VT (IMPLICIT_DEF)), VR128X:$src1, sub_xmm), (INSERT_SUBREG (_.info512.VT (IMPLICIT_DEF)), VR128X:$src2, sub_xmm)), sub_xmm)>; } } multiclass avx512_var_shift_w<bits<8> opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched> { let Predicates = [HasBWI] in defm WZ: avx512_var_shift<opc, OpcodeStr, OpNode, sched.ZMM, v32i16_info>, EVEX_V512, VEX_W; let Predicates = [HasVLX, HasBWI] in { defm WZ256: avx512_var_shift<opc, OpcodeStr, OpNode, sched.YMM, v16i16x_info>, EVEX_V256, VEX_W; defm WZ128: avx512_var_shift<opc, OpcodeStr, OpNode, sched.XMM, v8i16x_info>, EVEX_V128, VEX_W; } } defm VPSLLV : avx512_var_shift_types<0x47, "vpsllv", shl, SchedWriteVarVecShift>, avx512_var_shift_w<0x12, "vpsllvw", shl, SchedWriteVarVecShift>; defm VPSRAV : avx512_var_shift_types<0x46, "vpsrav", sra, SchedWriteVarVecShift>, avx512_var_shift_w<0x11, "vpsravw", sra, SchedWriteVarVecShift>; defm VPSRLV : avx512_var_shift_types<0x45, "vpsrlv", srl, SchedWriteVarVecShift>, avx512_var_shift_w<0x10, "vpsrlvw", srl, SchedWriteVarVecShift>; defm VPRORV : avx512_var_shift_types<0x14, "vprorv", rotr, SchedWriteVarVecShift>; defm VPROLV : avx512_var_shift_types<0x15, "vprolv", rotl, SchedWriteVarVecShift>; defm : avx512_var_shift_lowering<avx512vl_i64_info, "VPSRAVQ", sra, [HasAVX512, NoVLX]>; defm : avx512_var_shift_lowering<avx512vl_i16_info, "VPSLLVW", shl, [HasBWI, NoVLX]>; defm : avx512_var_shift_lowering<avx512vl_i16_info, "VPSRAVW", sra, [HasBWI, NoVLX]>; defm : avx512_var_shift_lowering<avx512vl_i16_info, "VPSRLVW", srl, [HasBWI, NoVLX]>; // Special handing for handling VPSRAV intrinsics. multiclass avx512_var_shift_int_lowering<string InstrStr, X86VectorVTInfo _, list<Predicate> p> { let Predicates = p in { def : Pat<(_.VT (X86vsrav _.RC:$src1, _.RC:$src2)), (!cast<Instruction>(InstrStr#_.ZSuffix#rr) _.RC:$src1, _.RC:$src2)>; def : Pat<(_.VT (X86vsrav _.RC:$src1, (bitconvert (_.LdFrag addr:$src2)))), (!cast<Instruction>(InstrStr#_.ZSuffix##rm) _.RC:$src1, addr:$src2)>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (X86vsrav _.RC:$src1, _.RC:$src2), _.RC:$src0)), (!cast<Instruction>(InstrStr#_.ZSuffix#rrk) _.RC:$src0, _.KRC:$mask, _.RC:$src1, _.RC:$src2)>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (X86vsrav _.RC:$src1, (bitconvert (_.LdFrag addr:$src2))), _.RC:$src0)), (!cast<Instruction>(InstrStr#_.ZSuffix##rmk) _.RC:$src0, _.KRC:$mask, _.RC:$src1, addr:$src2)>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (X86vsrav _.RC:$src1, _.RC:$src2), _.ImmAllZerosV)), (!cast<Instruction>(InstrStr#_.ZSuffix#rrkz) _.KRC:$mask, _.RC:$src1, _.RC:$src2)>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (X86vsrav _.RC:$src1, (bitconvert (_.LdFrag addr:$src2))), _.ImmAllZerosV)), (!cast<Instruction>(InstrStr#_.ZSuffix##rmkz) _.KRC:$mask, _.RC:$src1, addr:$src2)>; } } multiclass avx512_var_shift_int_lowering_mb<string InstrStr, X86VectorVTInfo _, list<Predicate> p> : avx512_var_shift_int_lowering<InstrStr, _, p> { let Predicates = p in { def : Pat<(_.VT (X86vsrav _.RC:$src1, (X86VBroadcast (_.ScalarLdFrag addr:$src2)))), (!cast<Instruction>(InstrStr#_.ZSuffix##rmb) _.RC:$src1, addr:$src2)>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (X86vsrav _.RC:$src1, (X86VBroadcast (_.ScalarLdFrag addr:$src2))), _.RC:$src0)), (!cast<Instruction>(InstrStr#_.ZSuffix##rmbk) _.RC:$src0, _.KRC:$mask, _.RC:$src1, addr:$src2)>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (X86vsrav _.RC:$src1, (X86VBroadcast (_.ScalarLdFrag addr:$src2))), _.ImmAllZerosV)), (!cast<Instruction>(InstrStr#_.ZSuffix##rmbkz) _.KRC:$mask, _.RC:$src1, addr:$src2)>; } } defm : avx512_var_shift_int_lowering<"VPSRAVW", v8i16x_info, [HasVLX, HasBWI]>; defm : avx512_var_shift_int_lowering<"VPSRAVW", v16i16x_info, [HasVLX, HasBWI]>; defm : avx512_var_shift_int_lowering<"VPSRAVW", v32i16_info, [HasBWI]>; defm : avx512_var_shift_int_lowering_mb<"VPSRAVD", v4i32x_info, [HasVLX]>; defm : avx512_var_shift_int_lowering_mb<"VPSRAVD", v8i32x_info, [HasVLX]>; defm : avx512_var_shift_int_lowering_mb<"VPSRAVD", v16i32_info, [HasAVX512]>; defm : avx512_var_shift_int_lowering_mb<"VPSRAVQ", v2i64x_info, [HasVLX]>; defm : avx512_var_shift_int_lowering_mb<"VPSRAVQ", v4i64x_info, [HasVLX]>; defm : avx512_var_shift_int_lowering_mb<"VPSRAVQ", v8i64_info, [HasAVX512]>; // Use 512bit VPROL/VPROLI version to implement v2i64/v4i64 + v4i32/v8i32 in case NoVLX. let Predicates = [HasAVX512, NoVLX] in { def : Pat<(v2i64 (rotl (v2i64 VR128X:$src1), (v2i64 VR128X:$src2))), (EXTRACT_SUBREG (v8i64 (VPROLVQZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)), (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src2, sub_xmm)))), sub_xmm)>; def : Pat<(v4i64 (rotl (v4i64 VR256X:$src1), (v4i64 VR256X:$src2))), (EXTRACT_SUBREG (v8i64 (VPROLVQZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src2, sub_ymm)))), sub_ymm)>; def : Pat<(v4i32 (rotl (v4i32 VR128X:$src1), (v4i32 VR128X:$src2))), (EXTRACT_SUBREG (v16i32 (VPROLVDZrr (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)), (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src2, sub_xmm)))), sub_xmm)>; def : Pat<(v8i32 (rotl (v8i32 VR256X:$src1), (v8i32 VR256X:$src2))), (EXTRACT_SUBREG (v16i32 (VPROLVDZrr (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src2, sub_ymm)))), sub_ymm)>; def : Pat<(v2i64 (X86vrotli (v2i64 VR128X:$src1), (i8 imm:$src2))), (EXTRACT_SUBREG (v8i64 (VPROLQZri (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)), imm:$src2)), sub_xmm)>; def : Pat<(v4i64 (X86vrotli (v4i64 VR256X:$src1), (i8 imm:$src2))), (EXTRACT_SUBREG (v8i64 (VPROLQZri (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), imm:$src2)), sub_ymm)>; def : Pat<(v4i32 (X86vrotli (v4i32 VR128X:$src1), (i8 imm:$src2))), (EXTRACT_SUBREG (v16i32 (VPROLDZri (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)), imm:$src2)), sub_xmm)>; def : Pat<(v8i32 (X86vrotli (v8i32 VR256X:$src1), (i8 imm:$src2))), (EXTRACT_SUBREG (v16i32 (VPROLDZri (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), imm:$src2)), sub_ymm)>; } // Use 512bit VPROR/VPRORI version to implement v2i64/v4i64 + v4i32/v8i32 in case NoVLX. let Predicates = [HasAVX512, NoVLX] in { def : Pat<(v2i64 (rotr (v2i64 VR128X:$src1), (v2i64 VR128X:$src2))), (EXTRACT_SUBREG (v8i64 (VPRORVQZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)), (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src2, sub_xmm)))), sub_xmm)>; def : Pat<(v4i64 (rotr (v4i64 VR256X:$src1), (v4i64 VR256X:$src2))), (EXTRACT_SUBREG (v8i64 (VPRORVQZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src2, sub_ymm)))), sub_ymm)>; def : Pat<(v4i32 (rotr (v4i32 VR128X:$src1), (v4i32 VR128X:$src2))), (EXTRACT_SUBREG (v16i32 (VPRORVDZrr (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)), (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src2, sub_xmm)))), sub_xmm)>; def : Pat<(v8i32 (rotr (v8i32 VR256X:$src1), (v8i32 VR256X:$src2))), (EXTRACT_SUBREG (v16i32 (VPRORVDZrr (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src2, sub_ymm)))), sub_ymm)>; def : Pat<(v2i64 (X86vrotri (v2i64 VR128X:$src1), (i8 imm:$src2))), (EXTRACT_SUBREG (v8i64 (VPRORQZri (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)), imm:$src2)), sub_xmm)>; def : Pat<(v4i64 (X86vrotri (v4i64 VR256X:$src1), (i8 imm:$src2))), (EXTRACT_SUBREG (v8i64 (VPRORQZri (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), imm:$src2)), sub_ymm)>; def : Pat<(v4i32 (X86vrotri (v4i32 VR128X:$src1), (i8 imm:$src2))), (EXTRACT_SUBREG (v16i32 (VPRORDZri (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)), imm:$src2)), sub_xmm)>; def : Pat<(v8i32 (X86vrotri (v8i32 VR256X:$src1), (i8 imm:$src2))), (EXTRACT_SUBREG (v16i32 (VPRORDZri (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)), imm:$src2)), sub_ymm)>; } //===-------------------------------------------------------------------===// // 1-src variable permutation VPERMW/D/Q //===-------------------------------------------------------------------===// multiclass avx512_vperm_dq_sizes<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, AVX512VLVectorVTInfo _> { let Predicates = [HasAVX512] in defm Z : avx512_var_shift<opc, OpcodeStr, OpNode, sched, _.info512>, avx512_var_shift_mb<opc, OpcodeStr, OpNode, sched, _.info512>, EVEX_V512; let Predicates = [HasAVX512, HasVLX] in defm Z256 : avx512_var_shift<opc, OpcodeStr, OpNode, sched, _.info256>, avx512_var_shift_mb<opc, OpcodeStr, OpNode, sched, _.info256>, EVEX_V256; } multiclass avx512_vpermi_dq_sizes<bits<8> opc, Format ImmFormR, Format ImmFormM, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, AVX512VLVectorVTInfo VTInfo> { let Predicates = [HasAVX512] in defm Z: avx512_shift_rmi<opc, ImmFormR, ImmFormM, OpcodeStr, OpNode, sched, VTInfo.info512>, avx512_shift_rmbi<opc, ImmFormM, OpcodeStr, OpNode, sched, VTInfo.info512>, EVEX_V512; let Predicates = [HasAVX512, HasVLX] in defm Z256: avx512_shift_rmi<opc, ImmFormR, ImmFormM, OpcodeStr, OpNode, sched, VTInfo.info256>, avx512_shift_rmbi<opc, ImmFormM, OpcodeStr, OpNode, sched, VTInfo.info256>, EVEX_V256; } multiclass avx512_vperm_bw<bits<8> opc, string OpcodeStr, Predicate prd, SDNode OpNode, X86FoldableSchedWrite sched, AVX512VLVectorVTInfo _> { let Predicates = [prd] in defm Z: avx512_var_shift<opc, OpcodeStr, OpNode, sched, _.info512>, EVEX_V512 ; let Predicates = [HasVLX, prd] in { defm Z256: avx512_var_shift<opc, OpcodeStr, OpNode, sched, _.info256>, EVEX_V256 ; defm Z128: avx512_var_shift<opc, OpcodeStr, OpNode, sched, _.info128>, EVEX_V128 ; } } defm VPERMW : avx512_vperm_bw<0x8D, "vpermw", HasBWI, X86VPermv, WriteVarShuffle256, avx512vl_i16_info>, VEX_W; defm VPERMB : avx512_vperm_bw<0x8D, "vpermb", HasVBMI, X86VPermv, WriteVarShuffle256, avx512vl_i8_info>; defm VPERMD : avx512_vperm_dq_sizes<0x36, "vpermd", X86VPermv, WriteVarShuffle256, avx512vl_i32_info>; defm VPERMQ : avx512_vperm_dq_sizes<0x36, "vpermq", X86VPermv, WriteVarShuffle256, avx512vl_i64_info>, VEX_W; defm VPERMPS : avx512_vperm_dq_sizes<0x16, "vpermps", X86VPermv, WriteFVarShuffle256, avx512vl_f32_info>; defm VPERMPD : avx512_vperm_dq_sizes<0x16, "vpermpd", X86VPermv, WriteFVarShuffle256, avx512vl_f64_info>, VEX_W; defm VPERMQ : avx512_vpermi_dq_sizes<0x00, MRMSrcReg, MRMSrcMem, "vpermq", X86VPermi, WriteShuffle256, avx512vl_i64_info>, EVEX, AVX512AIi8Base, EVEX_CD8<64, CD8VF>, VEX_W; defm VPERMPD : avx512_vpermi_dq_sizes<0x01, MRMSrcReg, MRMSrcMem, "vpermpd", X86VPermi, WriteFShuffle256, avx512vl_f64_info>, EVEX, AVX512AIi8Base, EVEX_CD8<64, CD8VF>, VEX_W; //===----------------------------------------------------------------------===// // AVX-512 - VPERMIL //===----------------------------------------------------------------------===// multiclass avx512_permil_vec<bits<8> OpcVar, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _, X86VectorVTInfo Ctrl> { defm rr: AVX512_maskable<OpcVar, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, Ctrl.RC:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (_.VT (OpNode _.RC:$src1, (Ctrl.VT Ctrl.RC:$src2)))>, T8PD, EVEX_4V, Sched<[sched]>; defm rm: AVX512_maskable<OpcVar, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, Ctrl.MemOp:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (_.VT (OpNode _.RC:$src1, (Ctrl.VT (bitconvert(Ctrl.LdFrag addr:$src2)))))>, T8PD, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>, Sched<[sched.Folded, ReadAfterLd]>; defm rmb: AVX512_maskable<OpcVar, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2), OpcodeStr, "${src2}"##_.BroadcastStr##", $src1", "$src1, ${src2}"##_.BroadcastStr, (_.VT (OpNode _.RC:$src1, (Ctrl.VT (X86VBroadcast (Ctrl.ScalarLdFrag addr:$src2)))))>, T8PD, EVEX_4V, EVEX_B, EVEX_CD8<_.EltSize, CD8VF>, Sched<[sched.Folded, ReadAfterLd]>; } multiclass avx512_permil_vec_common<string OpcodeStr, bits<8> OpcVar, X86SchedWriteWidths sched, AVX512VLVectorVTInfo _, AVX512VLVectorVTInfo Ctrl> { let Predicates = [HasAVX512] in { defm Z : avx512_permil_vec<OpcVar, OpcodeStr, X86VPermilpv, sched.ZMM, _.info512, Ctrl.info512>, EVEX_V512; } let Predicates = [HasAVX512, HasVLX] in { defm Z128 : avx512_permil_vec<OpcVar, OpcodeStr, X86VPermilpv, sched.XMM, _.info128, Ctrl.info128>, EVEX_V128; defm Z256 : avx512_permil_vec<OpcVar, OpcodeStr, X86VPermilpv, sched.YMM, _.info256, Ctrl.info256>, EVEX_V256; } } multiclass avx512_permil<string OpcodeStr, bits<8> OpcImm, bits<8> OpcVar, AVX512VLVectorVTInfo _, AVX512VLVectorVTInfo Ctrl>{ defm NAME: avx512_permil_vec_common<OpcodeStr, OpcVar, SchedWriteFVarShuffle, _, Ctrl>; defm NAME: avx512_shift_rmi_sizes<OpcImm, MRMSrcReg, MRMSrcMem, OpcodeStr, X86VPermilpi, SchedWriteFShuffle, _>, EVEX, AVX512AIi8Base, EVEX_CD8<_.info128.EltSize, CD8VF>; } let ExeDomain = SSEPackedSingle in defm VPERMILPS : avx512_permil<"vpermilps", 0x04, 0x0C, avx512vl_f32_info, avx512vl_i32_info>; let ExeDomain = SSEPackedDouble in defm VPERMILPD : avx512_permil<"vpermilpd", 0x05, 0x0D, avx512vl_f64_info, avx512vl_i64_info>, VEX_W1X; //===----------------------------------------------------------------------===// // AVX-512 - VPSHUFD, VPSHUFLW, VPSHUFHW //===----------------------------------------------------------------------===// defm VPSHUFD : avx512_shift_rmi_sizes<0x70, MRMSrcReg, MRMSrcMem, "vpshufd", X86PShufd, SchedWriteShuffle, avx512vl_i32_info>, EVEX, AVX512BIi8Base, EVEX_CD8<32, CD8VF>; defm VPSHUFH : avx512_shift_rmi_w<0x70, MRMSrcReg, MRMSrcMem, "vpshufhw", X86PShufhw, SchedWriteShuffle>, EVEX, AVX512XSIi8Base; defm VPSHUFL : avx512_shift_rmi_w<0x70, MRMSrcReg, MRMSrcMem, "vpshuflw", X86PShuflw, SchedWriteShuffle>, EVEX, AVX512XDIi8Base; //===----------------------------------------------------------------------===// // AVX-512 - VPSHUFB //===----------------------------------------------------------------------===// multiclass avx512_pshufb_sizes<bits<8> opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched> { let Predicates = [HasBWI] in defm Z: avx512_var_shift<opc, OpcodeStr, OpNode, sched.ZMM, v64i8_info>, EVEX_V512; let Predicates = [HasVLX, HasBWI] in { defm Z256: avx512_var_shift<opc, OpcodeStr, OpNode, sched.YMM, v32i8x_info>, EVEX_V256; defm Z128: avx512_var_shift<opc, OpcodeStr, OpNode, sched.XMM, v16i8x_info>, EVEX_V128; } } defm VPSHUFB: avx512_pshufb_sizes<0x00, "vpshufb", X86pshufb, SchedWriteVarShuffle>, VEX_WIG; //===----------------------------------------------------------------------===// // Move Low to High and High to Low packed FP Instructions //===----------------------------------------------------------------------===// def VMOVLHPSZrr : AVX512PSI<0x16, MRMSrcReg, (outs VR128X:$dst), (ins VR128X:$src1, VR128X:$src2), "vmovlhps\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128X:$dst, (v4f32 (X86Movlhps VR128X:$src1, VR128X:$src2)))]>, Sched<[SchedWriteFShuffle.XMM]>, EVEX_4V; let isCommutable = 1 in def VMOVHLPSZrr : AVX512PSI<0x12, MRMSrcReg, (outs VR128X:$dst), (ins VR128X:$src1, VR128X:$src2), "vmovhlps\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128X:$dst, (v4f32 (X86Movhlps VR128X:$src1, VR128X:$src2)))]>, Sched<[SchedWriteFShuffle.XMM]>, EVEX_4V, NotMemoryFoldable; //===----------------------------------------------------------------------===// // VMOVHPS/PD VMOVLPS Instructions // All patterns was taken from SSS implementation. //===----------------------------------------------------------------------===// multiclass avx512_mov_hilo_packed<bits<8> opc, string OpcodeStr, SDPatternOperator OpNode, X86VectorVTInfo _> { let hasSideEffects = 0, mayLoad = 1, ExeDomain = _.ExeDomain in def rm : AVX512<opc, MRMSrcMem, (outs _.RC:$dst), (ins _.RC:$src1, f64mem:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set _.RC:$dst, (OpNode _.RC:$src1, (_.VT (bitconvert (v2f64 (scalar_to_vector (loadf64 addr:$src2)))))))]>, Sched<[SchedWriteFShuffle.XMM.Folded, ReadAfterLd]>, EVEX_4V; } // No patterns for MOVLPS/MOVHPS as the Movlhps node should only be created in // SSE1. And MOVLPS pattern is even more complex. defm VMOVHPSZ128 : avx512_mov_hilo_packed<0x16, "vmovhps", null_frag, v4f32x_info>, EVEX_CD8<32, CD8VT2>, PS; defm VMOVHPDZ128 : avx512_mov_hilo_packed<0x16, "vmovhpd", X86Unpckl, v2f64x_info>, EVEX_CD8<64, CD8VT1>, PD, VEX_W; defm VMOVLPSZ128 : avx512_mov_hilo_packed<0x12, "vmovlps", null_frag, v4f32x_info>, EVEX_CD8<32, CD8VT2>, PS; defm VMOVLPDZ128 : avx512_mov_hilo_packed<0x12, "vmovlpd", X86Movsd, v2f64x_info>, EVEX_CD8<64, CD8VT1>, PD, VEX_W; let Predicates = [HasAVX512] in { // VMOVHPD patterns def : Pat<(v2f64 (X86Unpckl VR128X:$src1, (bc_v2f64 (v2i64 (scalar_to_vector (loadi64 addr:$src2)))))), (VMOVHPDZ128rm VR128X:$src1, addr:$src2)>; } let SchedRW = [WriteFStore] in { def VMOVHPSZ128mr : AVX512PSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128X:$src), "vmovhps\t{$src, $dst|$dst, $src}", [(store (f64 (extractelt (X86Unpckh (bc_v2f64 (v4f32 VR128X:$src)), (bc_v2f64 (v4f32 VR128X:$src))), (iPTR 0))), addr:$dst)]>, EVEX, EVEX_CD8<32, CD8VT2>; def VMOVHPDZ128mr : AVX512PDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128X:$src), "vmovhpd\t{$src, $dst|$dst, $src}", [(store (f64 (extractelt (v2f64 (X86Unpckh VR128X:$src, VR128X:$src)), (iPTR 0))), addr:$dst)]>, EVEX, EVEX_CD8<64, CD8VT1>, VEX_W; def VMOVLPSZ128mr : AVX512PSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128X:$src), "vmovlps\t{$src, $dst|$dst, $src}", [(store (f64 (extractelt (bc_v2f64 (v4f32 VR128X:$src)), (iPTR 0))), addr:$dst)]>, EVEX, EVEX_CD8<32, CD8VT2>; def VMOVLPDZ128mr : AVX512PDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128X:$src), "vmovlpd\t{$src, $dst|$dst, $src}", [(store (f64 (extractelt (v2f64 VR128X:$src), (iPTR 0))), addr:$dst)]>, EVEX, EVEX_CD8<64, CD8VT1>, VEX_W; } // SchedRW let Predicates = [HasAVX512] in { // VMOVHPD patterns def : Pat<(store (f64 (extractelt (v2f64 (X86VPermilpi VR128X:$src, (i8 1))), (iPTR 0))), addr:$dst), (VMOVHPDZ128mr addr:$dst, VR128X:$src)>; } //===----------------------------------------------------------------------===// // FMA - Fused Multiply Operations // multiclass avx512_fma3p_213_rm<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _, string Suff> { let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain, hasSideEffects = 0 in { defm r: AVX512_maskable_3src<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src2, _.RC:$src3), OpcodeStr, "$src3, $src2", "$src2, $src3", (_.VT (OpNode _.RC:$src2, _.RC:$src1, _.RC:$src3)), 1, 1>, AVX512FMA3Base, Sched<[sched]>; defm m: AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src2, _.MemOp:$src3), OpcodeStr, "$src3, $src2", "$src2, $src3", (_.VT (OpNode _.RC:$src2, _.RC:$src1, (_.LdFrag addr:$src3))), 1, 0>, AVX512FMA3Base, Sched<[sched.Folded, ReadAfterLd]>; defm mb: AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src2, _.ScalarMemOp:$src3), OpcodeStr, !strconcat("${src3}", _.BroadcastStr,", $src2"), !strconcat("$src2, ${src3}", _.BroadcastStr ), (OpNode _.RC:$src2, _.RC:$src1,(_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src3)))), 1, 0>, AVX512FMA3Base, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; } } multiclass avx512_fma3_213_round<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _, string Suff> { let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain, hasSideEffects = 0 in defm rb: AVX512_maskable_3src<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src2, _.RC:$src3, AVX512RC:$rc), OpcodeStr, "$rc, $src3, $src2", "$src2, $src3, $rc", (_.VT ( OpNode _.RC:$src2, _.RC:$src1, _.RC:$src3, (i32 imm:$rc))), 1, 1>, AVX512FMA3Base, EVEX_B, EVEX_RC, Sched<[sched]>; } multiclass avx512_fma3p_213_common<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, X86SchedWriteWidths sched, AVX512VLVectorVTInfo _, string Suff> { let Predicates = [HasAVX512] in { defm Z : avx512_fma3p_213_rm<opc, OpcodeStr, OpNode, sched.ZMM, _.info512, Suff>, avx512_fma3_213_round<opc, OpcodeStr, OpNodeRnd, sched.ZMM, _.info512, Suff>, EVEX_V512, EVEX_CD8<_.info512.EltSize, CD8VF>; } let Predicates = [HasVLX, HasAVX512] in { defm Z256 : avx512_fma3p_213_rm<opc, OpcodeStr, OpNode, sched.YMM, _.info256, Suff>, EVEX_V256, EVEX_CD8<_.info256.EltSize, CD8VF>; defm Z128 : avx512_fma3p_213_rm<opc, OpcodeStr, OpNode, sched.XMM, _.info128, Suff>, EVEX_V128, EVEX_CD8<_.info128.EltSize, CD8VF>; } } multiclass avx512_fma3p_213_f<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd> { defm PS : avx512_fma3p_213_common<opc, OpcodeStr#"ps", OpNode, OpNodeRnd, SchedWriteFMA, avx512vl_f32_info, "PS">; defm PD : avx512_fma3p_213_common<opc, OpcodeStr#"pd", OpNode, OpNodeRnd, SchedWriteFMA, avx512vl_f64_info, "PD">, VEX_W; } defm VFMADD213 : avx512_fma3p_213_f<0xA8, "vfmadd213", X86Fmadd, X86FmaddRnd>; defm VFMSUB213 : avx512_fma3p_213_f<0xAA, "vfmsub213", X86Fmsub, X86FmsubRnd>; defm VFMADDSUB213 : avx512_fma3p_213_f<0xA6, "vfmaddsub213", X86Fmaddsub, X86FmaddsubRnd>; defm VFMSUBADD213 : avx512_fma3p_213_f<0xA7, "vfmsubadd213", X86Fmsubadd, X86FmsubaddRnd>; defm VFNMADD213 : avx512_fma3p_213_f<0xAC, "vfnmadd213", X86Fnmadd, X86FnmaddRnd>; defm VFNMSUB213 : avx512_fma3p_213_f<0xAE, "vfnmsub213", X86Fnmsub, X86FnmsubRnd>; multiclass avx512_fma3p_231_rm<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _, string Suff> { let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain, hasSideEffects = 0 in { defm r: AVX512_maskable_3src<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src2, _.RC:$src3), OpcodeStr, "$src3, $src2", "$src2, $src3", (_.VT (OpNode _.RC:$src2, _.RC:$src3, _.RC:$src1)), 1, 1, vselect, 1>, AVX512FMA3Base, Sched<[sched]>; defm m: AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src2, _.MemOp:$src3), OpcodeStr, "$src3, $src2", "$src2, $src3", (_.VT (OpNode _.RC:$src2, (_.LdFrag addr:$src3), _.RC:$src1)), 1, 0>, AVX512FMA3Base, Sched<[sched.Folded, ReadAfterLd]>; defm mb: AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src2, _.ScalarMemOp:$src3), OpcodeStr, "${src3}"##_.BroadcastStr##", $src2", "$src2, ${src3}"##_.BroadcastStr, (_.VT (OpNode _.RC:$src2, (_.VT (X86VBroadcast(_.ScalarLdFrag addr:$src3))), _.RC:$src1)), 1, 0>, AVX512FMA3Base, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; } } multiclass avx512_fma3_231_round<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _, string Suff> { let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain, hasSideEffects = 0 in defm rb: AVX512_maskable_3src<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src2, _.RC:$src3, AVX512RC:$rc), OpcodeStr, "$rc, $src3, $src2", "$src2, $src3, $rc", (_.VT ( OpNode _.RC:$src2, _.RC:$src3, _.RC:$src1, (i32 imm:$rc))), 1, 1, vselect, 1>, AVX512FMA3Base, EVEX_B, EVEX_RC, Sched<[sched]>; } multiclass avx512_fma3p_231_common<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, X86SchedWriteWidths sched, AVX512VLVectorVTInfo _, string Suff> { let Predicates = [HasAVX512] in { defm Z : avx512_fma3p_231_rm<opc, OpcodeStr, OpNode, sched.ZMM, _.info512, Suff>, avx512_fma3_231_round<opc, OpcodeStr, OpNodeRnd, sched.ZMM, _.info512, Suff>, EVEX_V512, EVEX_CD8<_.info512.EltSize, CD8VF>; } let Predicates = [HasVLX, HasAVX512] in { defm Z256 : avx512_fma3p_231_rm<opc, OpcodeStr, OpNode, sched.YMM, _.info256, Suff>, EVEX_V256, EVEX_CD8<_.info256.EltSize, CD8VF>; defm Z128 : avx512_fma3p_231_rm<opc, OpcodeStr, OpNode, sched.XMM, _.info128, Suff>, EVEX_V128, EVEX_CD8<_.info128.EltSize, CD8VF>; } } multiclass avx512_fma3p_231_f<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd > { defm PS : avx512_fma3p_231_common<opc, OpcodeStr#"ps", OpNode, OpNodeRnd, SchedWriteFMA, avx512vl_f32_info, "PS">; defm PD : avx512_fma3p_231_common<opc, OpcodeStr#"pd", OpNode, OpNodeRnd, SchedWriteFMA, avx512vl_f64_info, "PD">, VEX_W; } defm VFMADD231 : avx512_fma3p_231_f<0xB8, "vfmadd231", X86Fmadd, X86FmaddRnd>; defm VFMSUB231 : avx512_fma3p_231_f<0xBA, "vfmsub231", X86Fmsub, X86FmsubRnd>; defm VFMADDSUB231 : avx512_fma3p_231_f<0xB6, "vfmaddsub231", X86Fmaddsub, X86FmaddsubRnd>; defm VFMSUBADD231 : avx512_fma3p_231_f<0xB7, "vfmsubadd231", X86Fmsubadd, X86FmsubaddRnd>; defm VFNMADD231 : avx512_fma3p_231_f<0xBC, "vfnmadd231", X86Fnmadd, X86FnmaddRnd>; defm VFNMSUB231 : avx512_fma3p_231_f<0xBE, "vfnmsub231", X86Fnmsub, X86FnmsubRnd>; multiclass avx512_fma3p_132_rm<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _, string Suff> { let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain, hasSideEffects = 0 in { defm r: AVX512_maskable_3src<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src2, _.RC:$src3), OpcodeStr, "$src3, $src2", "$src2, $src3", (_.VT (OpNode _.RC:$src1, _.RC:$src3, _.RC:$src2)), 1, 1, vselect, 1>, AVX512FMA3Base, Sched<[sched]>; // Pattern is 312 order so that the load is in a different place from the // 213 and 231 patterns this helps tablegen's duplicate pattern detection. defm m: AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src2, _.MemOp:$src3), OpcodeStr, "$src3, $src2", "$src2, $src3", (_.VT (OpNode (_.LdFrag addr:$src3), _.RC:$src1, _.RC:$src2)), 1, 0>, AVX512FMA3Base, Sched<[sched.Folded, ReadAfterLd]>; // Pattern is 312 order so that the load is in a different place from the // 213 and 231 patterns this helps tablegen's duplicate pattern detection. defm mb: AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src2, _.ScalarMemOp:$src3), OpcodeStr, "${src3}"##_.BroadcastStr##", $src2", "$src2, ${src3}"##_.BroadcastStr, (_.VT (OpNode (_.VT (X86VBroadcast(_.ScalarLdFrag addr:$src3))), _.RC:$src1, _.RC:$src2)), 1, 0>, AVX512FMA3Base, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; } } multiclass avx512_fma3_132_round<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _, string Suff> { let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain, hasSideEffects = 0 in defm rb: AVX512_maskable_3src<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src2, _.RC:$src3, AVX512RC:$rc), OpcodeStr, "$rc, $src3, $src2", "$src2, $src3, $rc", (_.VT ( OpNode _.RC:$src1, _.RC:$src3, _.RC:$src2, (i32 imm:$rc))), 1, 1, vselect, 1>, AVX512FMA3Base, EVEX_B, EVEX_RC, Sched<[sched]>; } multiclass avx512_fma3p_132_common<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, X86SchedWriteWidths sched, AVX512VLVectorVTInfo _, string Suff> { let Predicates = [HasAVX512] in { defm Z : avx512_fma3p_132_rm<opc, OpcodeStr, OpNode, sched.ZMM, _.info512, Suff>, avx512_fma3_132_round<opc, OpcodeStr, OpNodeRnd, sched.ZMM, _.info512, Suff>, EVEX_V512, EVEX_CD8<_.info512.EltSize, CD8VF>; } let Predicates = [HasVLX, HasAVX512] in { defm Z256 : avx512_fma3p_132_rm<opc, OpcodeStr, OpNode, sched.YMM, _.info256, Suff>, EVEX_V256, EVEX_CD8<_.info256.EltSize, CD8VF>; defm Z128 : avx512_fma3p_132_rm<opc, OpcodeStr, OpNode, sched.XMM, _.info128, Suff>, EVEX_V128, EVEX_CD8<_.info128.EltSize, CD8VF>; } } multiclass avx512_fma3p_132_f<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd > { defm PS : avx512_fma3p_132_common<opc, OpcodeStr#"ps", OpNode, OpNodeRnd, SchedWriteFMA, avx512vl_f32_info, "PS">; defm PD : avx512_fma3p_132_common<opc, OpcodeStr#"pd", OpNode, OpNodeRnd, SchedWriteFMA, avx512vl_f64_info, "PD">, VEX_W; } defm VFMADD132 : avx512_fma3p_132_f<0x98, "vfmadd132", X86Fmadd, X86FmaddRnd>; defm VFMSUB132 : avx512_fma3p_132_f<0x9A, "vfmsub132", X86Fmsub, X86FmsubRnd>; defm VFMADDSUB132 : avx512_fma3p_132_f<0x96, "vfmaddsub132", X86Fmaddsub, X86FmaddsubRnd>; defm VFMSUBADD132 : avx512_fma3p_132_f<0x97, "vfmsubadd132", X86Fmsubadd, X86FmsubaddRnd>; defm VFNMADD132 : avx512_fma3p_132_f<0x9C, "vfnmadd132", X86Fnmadd, X86FnmaddRnd>; defm VFNMSUB132 : avx512_fma3p_132_f<0x9E, "vfnmsub132", X86Fnmsub, X86FnmsubRnd>; // Scalar FMA multiclass avx512_fma3s_common<bits<8> opc, string OpcodeStr, X86VectorVTInfo _, dag RHS_r, dag RHS_m, dag RHS_b, bit MaskOnlyReg> { let Constraints = "$src1 = $dst", hasSideEffects = 0 in { defm r_Int: AVX512_maskable_3src_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src2, _.RC:$src3), OpcodeStr, "$src3, $src2", "$src2, $src3", (null_frag), 1, 1>, AVX512FMA3Base, Sched<[SchedWriteFMA.Scl]>; let mayLoad = 1 in defm m_Int: AVX512_maskable_3src_scalar<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src2, _.IntScalarMemOp:$src3), OpcodeStr, "$src3, $src2", "$src2, $src3", (null_frag), 1, 1>, AVX512FMA3Base, Sched<[SchedWriteFMA.Scl.Folded, ReadAfterLd]>; defm rb_Int: AVX512_maskable_3src_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src2, _.RC:$src3, AVX512RC:$rc), OpcodeStr, "$rc, $src3, $src2", "$src2, $src3, $rc", (null_frag), 1, 1>, AVX512FMA3Base, EVEX_B, EVEX_RC, Sched<[SchedWriteFMA.Scl]>; let isCodeGenOnly = 1, isCommutable = 1 in { def r : AVX512FMA3S<opc, MRMSrcReg, (outs _.FRC:$dst), (ins _.FRC:$src1, _.FRC:$src2, _.FRC:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), !if(MaskOnlyReg, [], [RHS_r])>, Sched<[SchedWriteFMA.Scl]>; def m : AVX512FMA3S<opc, MRMSrcMem, (outs _.FRC:$dst), (ins _.FRC:$src1, _.FRC:$src2, _.ScalarMemOp:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), [RHS_m]>, Sched<[SchedWriteFMA.Scl.Folded, ReadAfterLd]>; def rb : AVX512FMA3S<opc, MRMSrcReg, (outs _.FRC:$dst), (ins _.FRC:$src1, _.FRC:$src2, _.FRC:$src3, AVX512RC:$rc), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), !if(MaskOnlyReg, [], [RHS_b])>, EVEX_B, EVEX_RC, Sched<[SchedWriteFMA.Scl]>; }// isCodeGenOnly = 1 }// Constraints = "$src1 = $dst" } multiclass avx512_fma3s_all<bits<8> opc213, bits<8> opc231, bits<8> opc132, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, X86VectorVTInfo _, string SUFF> { let ExeDomain = _.ExeDomain in { defm NAME#213#SUFF#Z: avx512_fma3s_common<opc213, OpcodeStr#"213"#_.Suffix, _, // Operands for intrinsic are in 123 order to preserve passthu // semantics. (set _.FRC:$dst, (_.EltVT (OpNode _.FRC:$src2, _.FRC:$src1, _.FRC:$src3))), (set _.FRC:$dst, (_.EltVT (OpNode _.FRC:$src2, _.FRC:$src1, (_.ScalarLdFrag addr:$src3)))), (set _.FRC:$dst, (_.EltVT (OpNodeRnd _.FRC:$src2, _.FRC:$src1, _.FRC:$src3, (i32 imm:$rc)))), 0>; defm NAME#231#SUFF#Z: avx512_fma3s_common<opc231, OpcodeStr#"231"#_.Suffix, _, (set _.FRC:$dst, (_.EltVT (OpNode _.FRC:$src2, _.FRC:$src3, _.FRC:$src1))), (set _.FRC:$dst, (_.EltVT (OpNode _.FRC:$src2, (_.ScalarLdFrag addr:$src3), _.FRC:$src1))), (set _.FRC:$dst, (_.EltVT (OpNodeRnd _.FRC:$src2, _.FRC:$src3, _.FRC:$src1, (i32 imm:$rc)))), 1>; // One pattern is 312 order so that the load is in a different place from the // 213 and 231 patterns this helps tablegen's duplicate pattern detection. defm NAME#132#SUFF#Z: avx512_fma3s_common<opc132, OpcodeStr#"132"#_.Suffix, _, (set _.FRC:$dst, (_.EltVT (OpNode _.FRC:$src1, _.FRC:$src3, _.FRC:$src2))), (set _.FRC:$dst, (_.EltVT (OpNode (_.ScalarLdFrag addr:$src3), _.FRC:$src1, _.FRC:$src2))), (set _.FRC:$dst, (_.EltVT (OpNodeRnd _.FRC:$src1, _.FRC:$src3, _.FRC:$src2, (i32 imm:$rc)))), 1>; } } multiclass avx512_fma3s<bits<8> opc213, bits<8> opc231, bits<8> opc132, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd> { let Predicates = [HasAVX512] in { defm NAME : avx512_fma3s_all<opc213, opc231, opc132, OpcodeStr, OpNode, OpNodeRnd, f32x_info, "SS">, EVEX_CD8<32, CD8VT1>, VEX_LIG; defm NAME : avx512_fma3s_all<opc213, opc231, opc132, OpcodeStr, OpNode, OpNodeRnd, f64x_info, "SD">, EVEX_CD8<64, CD8VT1>, VEX_LIG, VEX_W; } } defm VFMADD : avx512_fma3s<0xA9, 0xB9, 0x99, "vfmadd", X86Fmadd, X86FmaddRnd>; defm VFMSUB : avx512_fma3s<0xAB, 0xBB, 0x9B, "vfmsub", X86Fmsub, X86FmsubRnd>; defm VFNMADD : avx512_fma3s<0xAD, 0xBD, 0x9D, "vfnmadd", X86Fnmadd, X86FnmaddRnd>; defm VFNMSUB : avx512_fma3s<0xAF, 0xBF, 0x9F, "vfnmsub", X86Fnmsub, X86FnmsubRnd>; multiclass avx512_scalar_fma_patterns<SDNode Op, SDNode RndOp, string Prefix, string Suffix, SDNode Move, X86VectorVTInfo _, PatLeaf ZeroFP> { let Predicates = [HasAVX512] in { def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector (Op _.FRC:$src2, (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))), _.FRC:$src3))))), (!cast<I>(Prefix#"213"#Suffix#"Zr_Int") VR128X:$src1, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), (_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)))>; def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector (Op _.FRC:$src2, _.FRC:$src3, (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))))))), (!cast<I>(Prefix#"231"#Suffix#"Zr_Int") VR128X:$src1, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), (_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)))>; def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector (Op _.FRC:$src2, (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))), (_.ScalarLdFrag addr:$src3)))))), (!cast<I>(Prefix#"213"#Suffix#"Zm_Int") VR128X:$src1, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), addr:$src3)>; def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector (Op (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))), (_.ScalarLdFrag addr:$src3), _.FRC:$src2))))), (!cast<I>(Prefix#"132"#Suffix#"Zm_Int") VR128X:$src1, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), addr:$src3)>; def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector (Op _.FRC:$src2, (_.ScalarLdFrag addr:$src3), (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))))))), (!cast<I>(Prefix#"231"#Suffix#"Zm_Int") VR128X:$src1, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), addr:$src3)>; def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector (X86selects VK1WM:$mask, (Op _.FRC:$src2, (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))), _.FRC:$src3), (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))))))), (!cast<I>(Prefix#"213"#Suffix#"Zr_Intk") VR128X:$src1, VK1WM:$mask, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), (_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)))>; def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector (X86selects VK1WM:$mask, (Op _.FRC:$src2, (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))), (_.ScalarLdFrag addr:$src3)), (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))))))), (!cast<I>(Prefix#"213"#Suffix#"Zm_Intk") VR128X:$src1, VK1WM:$mask, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), addr:$src3)>; def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector (X86selects VK1WM:$mask, (Op (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))), (_.ScalarLdFrag addr:$src3), _.FRC:$src2), (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))))))), (!cast<I>(Prefix#"132"#Suffix#"Zm_Intk") VR128X:$src1, VK1WM:$mask, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), addr:$src3)>; def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector (X86selects VK1WM:$mask, (Op _.FRC:$src2, _.FRC:$src3, (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))), (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))))))), (!cast<I>(Prefix#"231"#Suffix#"Zr_Intk") VR128X:$src1, VK1WM:$mask, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), (_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)))>; def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector (X86selects VK1WM:$mask, (Op _.FRC:$src2, (_.ScalarLdFrag addr:$src3), (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))), (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))))))), (!cast<I>(Prefix#"231"#Suffix#"Zm_Intk") VR128X:$src1, VK1WM:$mask, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), addr:$src3)>; def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector (X86selects VK1WM:$mask, (Op _.FRC:$src2, (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))), _.FRC:$src3), (_.EltVT ZeroFP)))))), (!cast<I>(Prefix#"213"#Suffix#"Zr_Intkz") VR128X:$src1, VK1WM:$mask, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), (_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)))>; def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector (X86selects VK1WM:$mask, (Op _.FRC:$src2, _.FRC:$src3, (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))), (_.EltVT ZeroFP)))))), (!cast<I>(Prefix#"231"#Suffix#"Zr_Intkz") VR128X:$src1, VK1WM:$mask, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), (_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)))>; def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector (X86selects VK1WM:$mask, (Op _.FRC:$src2, (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))), (_.ScalarLdFrag addr:$src3)), (_.EltVT ZeroFP)))))), (!cast<I>(Prefix#"213"#Suffix#"Zm_Intkz") VR128X:$src1, VK1WM:$mask, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), addr:$src3)>; def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector (X86selects VK1WM:$mask, (Op (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))), _.FRC:$src2, (_.ScalarLdFrag addr:$src3)), (_.EltVT ZeroFP)))))), (!cast<I>(Prefix#"132"#Suffix#"Zm_Intkz") VR128X:$src1, VK1WM:$mask, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), addr:$src3)>; def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector (X86selects VK1WM:$mask, (Op _.FRC:$src2, (_.ScalarLdFrag addr:$src3), (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))), (_.EltVT ZeroFP)))))), (!cast<I>(Prefix#"231"#Suffix#"Zm_Intkz") VR128X:$src1, VK1WM:$mask, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), addr:$src3)>; // Patterns with rounding mode. def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector (RndOp _.FRC:$src2, (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))), _.FRC:$src3, (i32 imm:$rc)))))), (!cast<I>(Prefix#"213"#Suffix#"Zrb_Int") VR128X:$src1, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), (_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)), imm:$rc)>; def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector (RndOp _.FRC:$src2, _.FRC:$src3, (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))), (i32 imm:$rc)))))), (!cast<I>(Prefix#"231"#Suffix#"Zrb_Int") VR128X:$src1, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), (_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)), imm:$rc)>; def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector (X86selects VK1WM:$mask, (RndOp _.FRC:$src2, (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))), _.FRC:$src3, (i32 imm:$rc)), (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))))))), (!cast<I>(Prefix#"213"#Suffix#"Zrb_Intk") VR128X:$src1, VK1WM:$mask, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), (_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)), imm:$rc)>; def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector (X86selects VK1WM:$mask, (RndOp _.FRC:$src2, _.FRC:$src3, (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))), (i32 imm:$rc)), (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0)))))))), (!cast<I>(Prefix#"231"#Suffix#"Zrb_Intk") VR128X:$src1, VK1WM:$mask, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), (_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)), imm:$rc)>; def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector (X86selects VK1WM:$mask, (RndOp _.FRC:$src2, (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))), _.FRC:$src3, (i32 imm:$rc)), (_.EltVT ZeroFP)))))), (!cast<I>(Prefix#"213"#Suffix#"Zrb_Intkz") VR128X:$src1, VK1WM:$mask, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), (_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)), imm:$rc)>; def : Pat<(_.VT (Move (_.VT VR128X:$src1), (_.VT (scalar_to_vector (X86selects VK1WM:$mask, (RndOp _.FRC:$src2, _.FRC:$src3, (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))), (i32 imm:$rc)), (_.EltVT ZeroFP)))))), (!cast<I>(Prefix#"231"#Suffix#"Zrb_Intkz") VR128X:$src1, VK1WM:$mask, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)), (_.VT (COPY_TO_REGCLASS _.FRC:$src3, VR128X)), imm:$rc)>; } } defm : avx512_scalar_fma_patterns<X86Fmadd, X86FmaddRnd, "VFMADD", "SS", X86Movss, v4f32x_info, fp32imm0>; defm : avx512_scalar_fma_patterns<X86Fmsub, X86FmsubRnd, "VFMSUB", "SS", X86Movss, v4f32x_info, fp32imm0>; defm : avx512_scalar_fma_patterns<X86Fnmadd, X86FnmaddRnd, "VFNMADD", "SS", X86Movss, v4f32x_info, fp32imm0>; defm : avx512_scalar_fma_patterns<X86Fnmsub, X86FnmsubRnd, "VFNMSUB", "SS", X86Movss, v4f32x_info, fp32imm0>; defm : avx512_scalar_fma_patterns<X86Fmadd, X86FmaddRnd, "VFMADD", "SD", X86Movsd, v2f64x_info, fp64imm0>; defm : avx512_scalar_fma_patterns<X86Fmsub, X86FmsubRnd, "VFMSUB", "SD", X86Movsd, v2f64x_info, fp64imm0>; defm : avx512_scalar_fma_patterns<X86Fnmadd, X86FnmaddRnd, "VFNMADD", "SD", X86Movsd, v2f64x_info, fp64imm0>; defm : avx512_scalar_fma_patterns<X86Fnmsub, X86FnmsubRnd, "VFNMSUB", "SD", X86Movsd, v2f64x_info, fp64imm0>; //===----------------------------------------------------------------------===// // AVX-512 Packed Multiply of Unsigned 52-bit Integers and Add the Low 52-bit IFMA //===----------------------------------------------------------------------===// let Constraints = "$src1 = $dst" in { multiclass avx512_pmadd52_rm<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _> { // NOTE: The SDNode have the multiply operands first with the add last. // This enables commuted load patterns to be autogenerated by tablegen. let ExeDomain = _.ExeDomain in { defm r: AVX512_maskable_3src<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src2, _.RC:$src3), OpcodeStr, "$src3, $src2", "$src2, $src3", (_.VT (OpNode _.RC:$src2, _.RC:$src3, _.RC:$src1)), 1, 1>, AVX512FMA3Base, Sched<[sched]>; defm m: AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src2, _.MemOp:$src3), OpcodeStr, "$src3, $src2", "$src2, $src3", (_.VT (OpNode _.RC:$src2, (_.LdFrag addr:$src3), _.RC:$src1))>, AVX512FMA3Base, Sched<[sched.Folded, ReadAfterLd]>; defm mb: AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src2, _.ScalarMemOp:$src3), OpcodeStr, !strconcat("${src3}", _.BroadcastStr,", $src2"), !strconcat("$src2, ${src3}", _.BroadcastStr ), (OpNode _.RC:$src2, (_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src3))), _.RC:$src1)>, AVX512FMA3Base, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; } } } // Constraints = "$src1 = $dst" multiclass avx512_pmadd52_common<bits<8> opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched, AVX512VLVectorVTInfo _> { let Predicates = [HasIFMA] in { defm Z : avx512_pmadd52_rm<opc, OpcodeStr, OpNode, sched.ZMM, _.info512>, EVEX_V512, EVEX_CD8<_.info512.EltSize, CD8VF>; } let Predicates = [HasVLX, HasIFMA] in { defm Z256 : avx512_pmadd52_rm<opc, OpcodeStr, OpNode, sched.YMM, _.info256>, EVEX_V256, EVEX_CD8<_.info256.EltSize, CD8VF>; defm Z128 : avx512_pmadd52_rm<opc, OpcodeStr, OpNode, sched.XMM, _.info128>, EVEX_V128, EVEX_CD8<_.info128.EltSize, CD8VF>; } } defm VPMADD52LUQ : avx512_pmadd52_common<0xb4, "vpmadd52luq", x86vpmadd52l, SchedWriteVecIMul, avx512vl_i64_info>, VEX_W; defm VPMADD52HUQ : avx512_pmadd52_common<0xb5, "vpmadd52huq", x86vpmadd52h, SchedWriteVecIMul, avx512vl_i64_info>, VEX_W; //===----------------------------------------------------------------------===// // AVX-512 Scalar convert from sign integer to float/double //===----------------------------------------------------------------------===// multiclass avx512_vcvtsi<bits<8> opc, SDNode OpNode, X86FoldableSchedWrite sched, RegisterClass SrcRC, X86VectorVTInfo DstVT, X86MemOperand x86memop, PatFrag ld_frag, string asm> { let hasSideEffects = 0 in { def rr : SI<opc, MRMSrcReg, (outs DstVT.FRC:$dst), (ins DstVT.FRC:$src1, SrcRC:$src), !strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>, EVEX_4V, Sched<[sched]>; let mayLoad = 1 in def rm : SI<opc, MRMSrcMem, (outs DstVT.FRC:$dst), (ins DstVT.FRC:$src1, x86memop:$src), !strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>, EVEX_4V, Sched<[sched.Folded, ReadAfterLd]>; } // hasSideEffects = 0 let isCodeGenOnly = 1 in { def rr_Int : SI<opc, MRMSrcReg, (outs DstVT.RC:$dst), (ins DstVT.RC:$src1, SrcRC:$src2), !strconcat(asm,"\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set DstVT.RC:$dst, (OpNode (DstVT.VT DstVT.RC:$src1), SrcRC:$src2, (i32 FROUND_CURRENT)))]>, EVEX_4V, Sched<[sched]>; def rm_Int : SI<opc, MRMSrcMem, (outs DstVT.RC:$dst), (ins DstVT.RC:$src1, x86memop:$src2), !strconcat(asm,"\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set DstVT.RC:$dst, (OpNode (DstVT.VT DstVT.RC:$src1), (ld_frag addr:$src2), (i32 FROUND_CURRENT)))]>, EVEX_4V, Sched<[sched.Folded, ReadAfterLd]>; }//isCodeGenOnly = 1 } multiclass avx512_vcvtsi_round<bits<8> opc, SDNode OpNode, X86FoldableSchedWrite sched, RegisterClass SrcRC, X86VectorVTInfo DstVT, string asm> { def rrb_Int : SI<opc, MRMSrcReg, (outs DstVT.RC:$dst), (ins DstVT.RC:$src1, SrcRC:$src2, AVX512RC:$rc), !strconcat(asm, "\t{$src2, $rc, $src1, $dst|$dst, $src1, $rc, $src2}"), [(set DstVT.RC:$dst, (OpNode (DstVT.VT DstVT.RC:$src1), SrcRC:$src2, (i32 imm:$rc)))]>, EVEX_4V, EVEX_B, EVEX_RC, Sched<[sched]>; } multiclass avx512_vcvtsi_common<bits<8> opc, SDNode OpNode, X86FoldableSchedWrite sched, RegisterClass SrcRC, X86VectorVTInfo DstVT, X86MemOperand x86memop, PatFrag ld_frag, string asm> { defm NAME : avx512_vcvtsi_round<opc, OpNode, sched, SrcRC, DstVT, asm>, avx512_vcvtsi<opc, OpNode, sched, SrcRC, DstVT, x86memop, ld_frag, asm>, VEX_LIG; } let Predicates = [HasAVX512] in { defm VCVTSI2SSZ : avx512_vcvtsi_common<0x2A, X86SintToFpRnd, WriteCvtI2SS, GR32, v4f32x_info, i32mem, loadi32, "cvtsi2ss{l}">, XS, EVEX_CD8<32, CD8VT1>; defm VCVTSI642SSZ: avx512_vcvtsi_common<0x2A, X86SintToFpRnd, WriteCvtI2SS, GR64, v4f32x_info, i64mem, loadi64, "cvtsi2ss{q}">, XS, VEX_W, EVEX_CD8<64, CD8VT1>; defm VCVTSI2SDZ : avx512_vcvtsi_common<0x2A, X86SintToFpRnd, WriteCvtI2SD, GR32, v2f64x_info, i32mem, loadi32, "cvtsi2sd{l}">, XD, EVEX_CD8<32, CD8VT1>; defm VCVTSI642SDZ: avx512_vcvtsi_common<0x2A, X86SintToFpRnd, WriteCvtI2SD, GR64, v2f64x_info, i64mem, loadi64, "cvtsi2sd{q}">, XD, VEX_W, EVEX_CD8<64, CD8VT1>; def : InstAlias<"vcvtsi2ss\t{$src, $src1, $dst|$dst, $src1, $src}", (VCVTSI2SSZrm FR64X:$dst, FR64X:$src1, i32mem:$src), 0, "att">; def : InstAlias<"vcvtsi2sd\t{$src, $src1, $dst|$dst, $src1, $src}", (VCVTSI2SDZrm FR64X:$dst, FR64X:$src1, i32mem:$src), 0, "att">; def : Pat<(f32 (sint_to_fp (loadi32 addr:$src))), (VCVTSI2SSZrm (f32 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f32 (sint_to_fp (loadi64 addr:$src))), (VCVTSI642SSZrm (f32 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f64 (sint_to_fp (loadi32 addr:$src))), (VCVTSI2SDZrm (f64 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f64 (sint_to_fp (loadi64 addr:$src))), (VCVTSI642SDZrm (f64 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f32 (sint_to_fp GR32:$src)), (VCVTSI2SSZrr (f32 (IMPLICIT_DEF)), GR32:$src)>; def : Pat<(f32 (sint_to_fp GR64:$src)), (VCVTSI642SSZrr (f32 (IMPLICIT_DEF)), GR64:$src)>; def : Pat<(f64 (sint_to_fp GR32:$src)), (VCVTSI2SDZrr (f64 (IMPLICIT_DEF)), GR32:$src)>; def : Pat<(f64 (sint_to_fp GR64:$src)), (VCVTSI642SDZrr (f64 (IMPLICIT_DEF)), GR64:$src)>; defm VCVTUSI2SSZ : avx512_vcvtsi_common<0x7B, X86UintToFpRnd, WriteCvtI2SS, GR32, v4f32x_info, i32mem, loadi32, "cvtusi2ss{l}">, XS, EVEX_CD8<32, CD8VT1>; defm VCVTUSI642SSZ : avx512_vcvtsi_common<0x7B, X86UintToFpRnd, WriteCvtI2SS, GR64, v4f32x_info, i64mem, loadi64, "cvtusi2ss{q}">, XS, VEX_W, EVEX_CD8<64, CD8VT1>; defm VCVTUSI2SDZ : avx512_vcvtsi<0x7B, X86UintToFpRnd, WriteCvtI2SD, GR32, v2f64x_info, i32mem, loadi32, "cvtusi2sd{l}">, XD, VEX_LIG, EVEX_CD8<32, CD8VT1>; defm VCVTUSI642SDZ : avx512_vcvtsi_common<0x7B, X86UintToFpRnd, WriteCvtI2SD, GR64, v2f64x_info, i64mem, loadi64, "cvtusi2sd{q}">, XD, VEX_W, EVEX_CD8<64, CD8VT1>; def : InstAlias<"vcvtusi2ss\t{$src, $src1, $dst|$dst, $src1, $src}", (VCVTUSI2SSZrm FR64X:$dst, FR64X:$src1, i32mem:$src), 0, "att">; def : InstAlias<"vcvtusi2sd\t{$src, $src1, $dst|$dst, $src1, $src}", (VCVTUSI2SDZrm FR64X:$dst, FR64X:$src1, i32mem:$src), 0, "att">; def : Pat<(f32 (uint_to_fp (loadi32 addr:$src))), (VCVTUSI2SSZrm (f32 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f32 (uint_to_fp (loadi64 addr:$src))), (VCVTUSI642SSZrm (f32 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f64 (uint_to_fp (loadi32 addr:$src))), (VCVTUSI2SDZrm (f64 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f64 (uint_to_fp (loadi64 addr:$src))), (VCVTUSI642SDZrm (f64 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f32 (uint_to_fp GR32:$src)), (VCVTUSI2SSZrr (f32 (IMPLICIT_DEF)), GR32:$src)>; def : Pat<(f32 (uint_to_fp GR64:$src)), (VCVTUSI642SSZrr (f32 (IMPLICIT_DEF)), GR64:$src)>; def : Pat<(f64 (uint_to_fp GR32:$src)), (VCVTUSI2SDZrr (f64 (IMPLICIT_DEF)), GR32:$src)>; def : Pat<(f64 (uint_to_fp GR64:$src)), (VCVTUSI642SDZrr (f64 (IMPLICIT_DEF)), GR64:$src)>; } //===----------------------------------------------------------------------===// // AVX-512 Scalar convert from float/double to integer //===----------------------------------------------------------------------===// multiclass avx512_cvt_s_int_round<bits<8> opc, X86VectorVTInfo SrcVT, X86VectorVTInfo DstVT, SDNode OpNode, X86FoldableSchedWrite sched, string asm, string aliasStr, bit CodeGenOnly = 1> { let Predicates = [HasAVX512] in { def rr_Int : SI<opc, MRMSrcReg, (outs DstVT.RC:$dst), (ins SrcVT.RC:$src), !strconcat(asm,"\t{$src, $dst|$dst, $src}"), [(set DstVT.RC:$dst, (OpNode (SrcVT.VT SrcVT.RC:$src),(i32 FROUND_CURRENT)))]>, EVEX, VEX_LIG, Sched<[sched]>; def rrb_Int : SI<opc, MRMSrcReg, (outs DstVT.RC:$dst), (ins SrcVT.RC:$src, AVX512RC:$rc), !strconcat(asm,"\t{$rc, $src, $dst|$dst, $src, $rc}"), [(set DstVT.RC:$dst, (OpNode (SrcVT.VT SrcVT.RC:$src),(i32 imm:$rc)))]>, EVEX, VEX_LIG, EVEX_B, EVEX_RC, Sched<[sched]>; let isCodeGenOnly = CodeGenOnly, ForceDisassemble = CodeGenOnly in def rm_Int : SI<opc, MRMSrcMem, (outs DstVT.RC:$dst), (ins SrcVT.IntScalarMemOp:$src), !strconcat(asm,"\t{$src, $dst|$dst, $src}"), [(set DstVT.RC:$dst, (OpNode (SrcVT.VT SrcVT.ScalarIntMemCPat:$src), (i32 FROUND_CURRENT)))]>, EVEX, VEX_LIG, Sched<[sched.Folded, ReadAfterLd]>; def : InstAlias<"v" # asm # aliasStr # "\t{$src, $dst|$dst, $src}", (!cast<Instruction>(NAME # "rr_Int") DstVT.RC:$dst, SrcVT.RC:$src), 0, "att">; def : InstAlias<"v" # asm # aliasStr # "\t{$rc, $src, $dst|$dst, $src, $rc}", (!cast<Instruction>(NAME # "rrb_Int") DstVT.RC:$dst, SrcVT.RC:$src, AVX512RC:$rc), 0, "att">; } // Predicates = [HasAVX512] } multiclass avx512_cvt_s_int_round_aliases<bits<8> opc, X86VectorVTInfo SrcVT, X86VectorVTInfo DstVT, SDNode OpNode, X86FoldableSchedWrite sched, string asm, string aliasStr> : avx512_cvt_s_int_round<opc, SrcVT, DstVT, OpNode, sched, asm, aliasStr, 0> { let Predicates = [HasAVX512] in { def : InstAlias<"v" # asm # aliasStr # "\t{$src, $dst|$dst, $src}", (!cast<Instruction>(NAME # "rm_Int") DstVT.RC:$dst, SrcVT.IntScalarMemOp:$src), 0, "att">; } // Predicates = [HasAVX512] } // Convert float/double to signed/unsigned int 32/64 defm VCVTSS2SIZ: avx512_cvt_s_int_round<0x2D, f32x_info, i32x_info, X86cvts2si, WriteCvtSS2I, "cvtss2si", "{l}">, XS, EVEX_CD8<32, CD8VT1>; defm VCVTSS2SI64Z: avx512_cvt_s_int_round<0x2D, f32x_info, i64x_info, X86cvts2si, WriteCvtSS2I, "cvtss2si", "{q}">, XS, VEX_W, EVEX_CD8<32, CD8VT1>; defm VCVTSS2USIZ: avx512_cvt_s_int_round_aliases<0x79, f32x_info, i32x_info, X86cvts2usi, WriteCvtSS2I, "cvtss2usi", "{l}">, XS, EVEX_CD8<32, CD8VT1>; defm VCVTSS2USI64Z: avx512_cvt_s_int_round_aliases<0x79, f32x_info, i64x_info, X86cvts2usi, WriteCvtSS2I, "cvtss2usi", "{q}">, XS, VEX_W, EVEX_CD8<32, CD8VT1>; defm VCVTSD2SIZ: avx512_cvt_s_int_round<0x2D, f64x_info, i32x_info, X86cvts2si, WriteCvtSD2I, "cvtsd2si", "{l}">, XD, EVEX_CD8<64, CD8VT1>; defm VCVTSD2SI64Z: avx512_cvt_s_int_round<0x2D, f64x_info, i64x_info, X86cvts2si, WriteCvtSD2I, "cvtsd2si", "{q}">, XD, VEX_W, EVEX_CD8<64, CD8VT1>; defm VCVTSD2USIZ: avx512_cvt_s_int_round_aliases<0x79, f64x_info, i32x_info, X86cvts2usi, WriteCvtSD2I, "cvtsd2usi", "{l}">, XD, EVEX_CD8<64, CD8VT1>; defm VCVTSD2USI64Z: avx512_cvt_s_int_round_aliases<0x79, f64x_info, i64x_info, X86cvts2usi, WriteCvtSD2I, "cvtsd2usi", "{q}">, XD, VEX_W, EVEX_CD8<64, CD8VT1>; // The SSE version of these instructions are disabled for AVX512. // Therefore, the SSE intrinsics are mapped to the AVX512 instructions. let Predicates = [HasAVX512] in { def : Pat<(i32 (int_x86_sse_cvtss2si (v4f32 VR128X:$src))), (VCVTSS2SIZrr_Int VR128X:$src)>; def : Pat<(i32 (int_x86_sse_cvtss2si sse_load_f32:$src)), (VCVTSS2SIZrm_Int sse_load_f32:$src)>; def : Pat<(i64 (int_x86_sse_cvtss2si64 (v4f32 VR128X:$src))), (VCVTSS2SI64Zrr_Int VR128X:$src)>; def : Pat<(i64 (int_x86_sse_cvtss2si64 sse_load_f32:$src)), (VCVTSS2SI64Zrm_Int sse_load_f32:$src)>; def : Pat<(i32 (int_x86_sse2_cvtsd2si (v2f64 VR128X:$src))), (VCVTSD2SIZrr_Int VR128X:$src)>; def : Pat<(i32 (int_x86_sse2_cvtsd2si sse_load_f64:$src)), (VCVTSD2SIZrm_Int sse_load_f64:$src)>; def : Pat<(i64 (int_x86_sse2_cvtsd2si64 (v2f64 VR128X:$src))), (VCVTSD2SI64Zrr_Int VR128X:$src)>; def : Pat<(i64 (int_x86_sse2_cvtsd2si64 sse_load_f64:$src)), (VCVTSD2SI64Zrm_Int sse_load_f64:$src)>; } // HasAVX512 // Patterns used for matching vcvtsi2s{s,d} intrinsic sequences from clang // which produce unnecessary vmovs{s,d} instructions let Predicates = [HasAVX512] in { def : Pat<(v4f32 (X86Movss (v4f32 VR128X:$dst), (v4f32 (scalar_to_vector (f32 (sint_to_fp GR64:$src)))))), (VCVTSI642SSZrr_Int VR128X:$dst, GR64:$src)>; def : Pat<(v4f32 (X86Movss (v4f32 VR128X:$dst), (v4f32 (scalar_to_vector (f32 (sint_to_fp (loadi64 addr:$src))))))), (VCVTSI642SSZrm_Int VR128X:$dst, addr:$src)>; def : Pat<(v4f32 (X86Movss (v4f32 VR128X:$dst), (v4f32 (scalar_to_vector (f32 (sint_to_fp GR32:$src)))))), (VCVTSI2SSZrr_Int VR128X:$dst, GR32:$src)>; def : Pat<(v4f32 (X86Movss (v4f32 VR128X:$dst), (v4f32 (scalar_to_vector (f32 (sint_to_fp (loadi32 addr:$src))))))), (VCVTSI2SSZrm_Int VR128X:$dst, addr:$src)>; def : Pat<(v2f64 (X86Movsd (v2f64 VR128X:$dst), (v2f64 (scalar_to_vector (f64 (sint_to_fp GR64:$src)))))), (VCVTSI642SDZrr_Int VR128X:$dst, GR64:$src)>; def : Pat<(v2f64 (X86Movsd (v2f64 VR128X:$dst), (v2f64 (scalar_to_vector (f64 (sint_to_fp (loadi64 addr:$src))))))), (VCVTSI642SDZrm_Int VR128X:$dst, addr:$src)>; def : Pat<(v2f64 (X86Movsd (v2f64 VR128X:$dst), (v2f64 (scalar_to_vector (f64 (sint_to_fp GR32:$src)))))), (VCVTSI2SDZrr_Int VR128X:$dst, GR32:$src)>; def : Pat<(v2f64 (X86Movsd (v2f64 VR128X:$dst), (v2f64 (scalar_to_vector (f64 (sint_to_fp (loadi32 addr:$src))))))), (VCVTSI2SDZrm_Int VR128X:$dst, addr:$src)>; def : Pat<(v4f32 (X86Movss (v4f32 VR128X:$dst), (v4f32 (scalar_to_vector (f32 (uint_to_fp GR64:$src)))))), (VCVTUSI642SSZrr_Int VR128X:$dst, GR64:$src)>; def : Pat<(v4f32 (X86Movss (v4f32 VR128X:$dst), (v4f32 (scalar_to_vector (f32 (uint_to_fp (loadi64 addr:$src))))))), (VCVTUSI642SSZrm_Int VR128X:$dst, addr:$src)>; def : Pat<(v4f32 (X86Movss (v4f32 VR128X:$dst), (v4f32 (scalar_to_vector (f32 (uint_to_fp GR32:$src)))))), (VCVTUSI2SSZrr_Int VR128X:$dst, GR32:$src)>; def : Pat<(v4f32 (X86Movss (v4f32 VR128X:$dst), (v4f32 (scalar_to_vector (f32 (uint_to_fp (loadi32 addr:$src))))))), (VCVTUSI2SSZrm_Int VR128X:$dst, addr:$src)>; def : Pat<(v2f64 (X86Movsd (v2f64 VR128X:$dst), (v2f64 (scalar_to_vector (f64 (uint_to_fp GR64:$src)))))), (VCVTUSI642SDZrr_Int VR128X:$dst, GR64:$src)>; def : Pat<(v2f64 (X86Movsd (v2f64 VR128X:$dst), (v2f64 (scalar_to_vector (f64 (uint_to_fp (loadi64 addr:$src))))))), (VCVTUSI642SDZrm_Int VR128X:$dst, addr:$src)>; def : Pat<(v2f64 (X86Movsd (v2f64 VR128X:$dst), (v2f64 (scalar_to_vector (f64 (uint_to_fp GR32:$src)))))), (VCVTUSI2SDZrr_Int VR128X:$dst, GR32:$src)>; def : Pat<(v2f64 (X86Movsd (v2f64 VR128X:$dst), (v2f64 (scalar_to_vector (f64 (uint_to_fp (loadi32 addr:$src))))))), (VCVTUSI2SDZrm_Int VR128X:$dst, addr:$src)>; } // Predicates = [HasAVX512] // Convert float/double to signed/unsigned int 32/64 with truncation multiclass avx512_cvt_s_all<bits<8> opc, string asm, X86VectorVTInfo _SrcRC, X86VectorVTInfo _DstRC, SDNode OpNode, SDNode OpNodeRnd, X86FoldableSchedWrite sched, string aliasStr, bit CodeGenOnly = 1>{ let Predicates = [HasAVX512] in { let isCodeGenOnly = 1 in { def rr : AVX512<opc, MRMSrcReg, (outs _DstRC.RC:$dst), (ins _SrcRC.FRC:$src), !strconcat(asm,"\t{$src, $dst|$dst, $src}"), [(set _DstRC.RC:$dst, (OpNode _SrcRC.FRC:$src))]>, EVEX, Sched<[sched]>; def rm : AVX512<opc, MRMSrcMem, (outs _DstRC.RC:$dst), (ins _SrcRC.ScalarMemOp:$src), !strconcat(asm,"\t{$src, $dst|$dst, $src}"), [(set _DstRC.RC:$dst, (OpNode (_SrcRC.ScalarLdFrag addr:$src)))]>, EVEX, Sched<[sched.Folded, ReadAfterLd]>; } def rr_Int : AVX512<opc, MRMSrcReg, (outs _DstRC.RC:$dst), (ins _SrcRC.RC:$src), !strconcat(asm,"\t{$src, $dst|$dst, $src}"), [(set _DstRC.RC:$dst, (OpNodeRnd (_SrcRC.VT _SrcRC.RC:$src), (i32 FROUND_CURRENT)))]>, EVEX, VEX_LIG, Sched<[sched]>; def rrb_Int : AVX512<opc, MRMSrcReg, (outs _DstRC.RC:$dst), (ins _SrcRC.RC:$src), !strconcat(asm,"\t{{sae}, $src, $dst|$dst, $src, {sae}}"), [(set _DstRC.RC:$dst, (OpNodeRnd (_SrcRC.VT _SrcRC.RC:$src), (i32 FROUND_NO_EXC)))]>, EVEX,VEX_LIG , EVEX_B, Sched<[sched]>; let isCodeGenOnly = CodeGenOnly, ForceDisassemble = CodeGenOnly in def rm_Int : AVX512<opc, MRMSrcMem, (outs _DstRC.RC:$dst), (ins _SrcRC.IntScalarMemOp:$src), !strconcat(asm,"\t{$src, $dst|$dst, $src}"), [(set _DstRC.RC:$dst, (OpNodeRnd (_SrcRC.VT _SrcRC.ScalarIntMemCPat:$src), (i32 FROUND_CURRENT)))]>, EVEX, VEX_LIG, Sched<[sched.Folded, ReadAfterLd]>; def : InstAlias<asm # aliasStr # "\t{$src, $dst|$dst, $src}", (!cast<Instruction>(NAME # "rr_Int") _DstRC.RC:$dst, _SrcRC.RC:$src), 0, "att">; def : InstAlias<asm # aliasStr # "\t{{sae}, $src, $dst|$dst, $src, {sae}}", (!cast<Instruction>(NAME # "rrb_Int") _DstRC.RC:$dst, _SrcRC.RC:$src), 0, "att">; } //HasAVX512 } multiclass avx512_cvt_s_all_unsigned<bits<8> opc, string asm, X86VectorVTInfo _SrcRC, X86VectorVTInfo _DstRC, SDNode OpNode, SDNode OpNodeRnd, X86FoldableSchedWrite sched, string aliasStr> : avx512_cvt_s_all<opc, asm, _SrcRC, _DstRC, OpNode, OpNodeRnd, sched, aliasStr, 0> { let Predicates = [HasAVX512] in { def : InstAlias<asm # aliasStr # "\t{$src, $dst|$dst, $src}", (!cast<Instruction>(NAME # "rm_Int") _DstRC.RC:$dst, _SrcRC.IntScalarMemOp:$src), 0, "att">; } } defm VCVTTSS2SIZ: avx512_cvt_s_all<0x2C, "vcvttss2si", f32x_info, i32x_info, fp_to_sint, X86cvtts2IntRnd, WriteCvtSS2I, "{l}">, XS, EVEX_CD8<32, CD8VT1>; defm VCVTTSS2SI64Z: avx512_cvt_s_all<0x2C, "vcvttss2si", f32x_info, i64x_info, fp_to_sint, X86cvtts2IntRnd, WriteCvtSS2I, "{q}">, VEX_W, XS, EVEX_CD8<32, CD8VT1>; defm VCVTTSD2SIZ: avx512_cvt_s_all<0x2C, "vcvttsd2si", f64x_info, i32x_info, fp_to_sint, X86cvtts2IntRnd, WriteCvtSD2I, "{l}">, XD, EVEX_CD8<64, CD8VT1>; defm VCVTTSD2SI64Z: avx512_cvt_s_all<0x2C, "vcvttsd2si", f64x_info, i64x_info, fp_to_sint, X86cvtts2IntRnd, WriteCvtSD2I, "{q}">, VEX_W, XD, EVEX_CD8<64, CD8VT1>; defm VCVTTSS2USIZ: avx512_cvt_s_all_unsigned<0x78, "vcvttss2usi", f32x_info, i32x_info, fp_to_uint, X86cvtts2UIntRnd, WriteCvtSS2I, "{l}">, XS, EVEX_CD8<32, CD8VT1>; defm VCVTTSS2USI64Z: avx512_cvt_s_all_unsigned<0x78, "vcvttss2usi", f32x_info, i64x_info, fp_to_uint, X86cvtts2UIntRnd, WriteCvtSS2I, "{q}">, XS,VEX_W, EVEX_CD8<32, CD8VT1>; defm VCVTTSD2USIZ: avx512_cvt_s_all_unsigned<0x78, "vcvttsd2usi", f64x_info, i32x_info, fp_to_uint, X86cvtts2UIntRnd, WriteCvtSD2I, "{l}">, XD, EVEX_CD8<64, CD8VT1>; defm VCVTTSD2USI64Z: avx512_cvt_s_all_unsigned<0x78, "vcvttsd2usi", f64x_info, i64x_info, fp_to_uint, X86cvtts2UIntRnd, WriteCvtSD2I, "{q}">, XD, VEX_W, EVEX_CD8<64, CD8VT1>; let Predicates = [HasAVX512] in { def : Pat<(i32 (int_x86_sse_cvttss2si (v4f32 VR128X:$src))), (VCVTTSS2SIZrr_Int VR128X:$src)>; def : Pat<(i32 (int_x86_sse_cvttss2si sse_load_f32:$src)), (VCVTTSS2SIZrm_Int ssmem:$src)>; def : Pat<(i64 (int_x86_sse_cvttss2si64 (v4f32 VR128X:$src))), (VCVTTSS2SI64Zrr_Int VR128X:$src)>; def : Pat<(i64 (int_x86_sse_cvttss2si64 sse_load_f32:$src)), (VCVTTSS2SI64Zrm_Int ssmem:$src)>; def : Pat<(i32 (int_x86_sse2_cvttsd2si (v2f64 VR128X:$src))), (VCVTTSD2SIZrr_Int VR128X:$src)>; def : Pat<(i32 (int_x86_sse2_cvttsd2si sse_load_f64:$src)), (VCVTTSD2SIZrm_Int sdmem:$src)>; def : Pat<(i64 (int_x86_sse2_cvttsd2si64 (v2f64 VR128X:$src))), (VCVTTSD2SI64Zrr_Int VR128X:$src)>; def : Pat<(i64 (int_x86_sse2_cvttsd2si64 sse_load_f64:$src)), (VCVTTSD2SI64Zrm_Int sdmem:$src)>; } // HasAVX512 //===----------------------------------------------------------------------===// // AVX-512 Convert form float to double and back //===----------------------------------------------------------------------===// multiclass avx512_cvt_fp_scalar<bits<8> opc, string OpcodeStr, X86VectorVTInfo _, X86VectorVTInfo _Src, SDNode OpNode, X86FoldableSchedWrite sched> { defm rr_Int : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _Src.RC:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (_.VT (OpNode (_.VT _.RC:$src1), (_Src.VT _Src.RC:$src2), (i32 FROUND_CURRENT)))>, EVEX_4V, VEX_LIG, Sched<[sched]>; defm rm_Int : AVX512_maskable_scalar<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _Src.IntScalarMemOp:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (_.VT (OpNode (_.VT _.RC:$src1), (_Src.VT _Src.ScalarIntMemCPat:$src2), (i32 FROUND_CURRENT)))>, EVEX_4V, VEX_LIG, Sched<[sched.Folded, ReadAfterLd]>; let isCodeGenOnly = 1, hasSideEffects = 0 in { def rr : I<opc, MRMSrcReg, (outs _.FRC:$dst), (ins _.FRC:$src1, _Src.FRC:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, EVEX_4V, VEX_LIG, Sched<[sched]>; let mayLoad = 1 in def rm : I<opc, MRMSrcMem, (outs _.FRC:$dst), (ins _.FRC:$src1, _Src.ScalarMemOp:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, EVEX_4V, VEX_LIG, Sched<[sched.Folded, ReadAfterLd]>; } } // Scalar Coversion with SAE - suppress all exceptions multiclass avx512_cvt_fp_sae_scalar<bits<8> opc, string OpcodeStr, X86VectorVTInfo _, X86VectorVTInfo _Src, SDNode OpNodeRnd, X86FoldableSchedWrite sched> { defm rrb_Int : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _Src.RC:$src2), OpcodeStr, "{sae}, $src2, $src1", "$src1, $src2, {sae}", (_.VT (OpNodeRnd (_.VT _.RC:$src1), (_Src.VT _Src.RC:$src2), (i32 FROUND_NO_EXC)))>, EVEX_4V, VEX_LIG, EVEX_B, Sched<[sched]>; } // Scalar Conversion with rounding control (RC) multiclass avx512_cvt_fp_rc_scalar<bits<8> opc, string OpcodeStr, X86VectorVTInfo _, X86VectorVTInfo _Src, SDNode OpNodeRnd, X86FoldableSchedWrite sched> { defm rrb_Int : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _Src.RC:$src2, AVX512RC:$rc), OpcodeStr, "$rc, $src2, $src1", "$src1, $src2, $rc", (_.VT (OpNodeRnd (_.VT _.RC:$src1), (_Src.VT _Src.RC:$src2), (i32 imm:$rc)))>, EVEX_4V, VEX_LIG, Sched<[sched]>, EVEX_B, EVEX_RC; } multiclass avx512_cvt_fp_scalar_sd2ss<bits<8> opc, string OpcodeStr, SDNode OpNodeRnd, X86FoldableSchedWrite sched, X86VectorVTInfo _src, X86VectorVTInfo _dst> { let Predicates = [HasAVX512] in { defm Z : avx512_cvt_fp_scalar<opc, OpcodeStr, _dst, _src, OpNodeRnd, sched>, avx512_cvt_fp_rc_scalar<opc, OpcodeStr, _dst, _src, OpNodeRnd, sched>, VEX_W, EVEX_CD8<64, CD8VT1>, XD; } } multiclass avx512_cvt_fp_scalar_ss2sd<bits<8> opc, string OpcodeStr, SDNode OpNodeRnd, X86FoldableSchedWrite sched, X86VectorVTInfo _src, X86VectorVTInfo _dst> { let Predicates = [HasAVX512] in { defm Z : avx512_cvt_fp_scalar<opc, OpcodeStr, _dst, _src, OpNodeRnd, sched>, avx512_cvt_fp_sae_scalar<opc, OpcodeStr, _dst, _src, OpNodeRnd, sched>, EVEX_CD8<32, CD8VT1>, XS; } } defm VCVTSD2SS : avx512_cvt_fp_scalar_sd2ss<0x5A, "vcvtsd2ss", X86froundRnd, WriteCvtSD2SS, f64x_info, f32x_info>; defm VCVTSS2SD : avx512_cvt_fp_scalar_ss2sd<0x5A, "vcvtss2sd", X86fpextRnd, WriteCvtSS2SD, f32x_info, f64x_info>; def : Pat<(f64 (fpextend FR32X:$src)), (VCVTSS2SDZrr (f64 (IMPLICIT_DEF)), FR32X:$src)>, Requires<[HasAVX512]>; def : Pat<(f64 (fpextend (loadf32 addr:$src))), (VCVTSS2SDZrm (f64 (IMPLICIT_DEF)), addr:$src)>, Requires<[HasAVX512, OptForSize]>; def : Pat<(f64 (extloadf32 addr:$src)), (VCVTSS2SDZrm (f64 (IMPLICIT_DEF)), addr:$src)>, Requires<[HasAVX512, OptForSize]>; def : Pat<(f64 (extloadf32 addr:$src)), (VCVTSS2SDZrr (f64 (IMPLICIT_DEF)), (VMOVSSZrm addr:$src))>, Requires<[HasAVX512, OptForSpeed]>; def : Pat<(f32 (fpround FR64X:$src)), (VCVTSD2SSZrr (f32 (IMPLICIT_DEF)), FR64X:$src)>, Requires<[HasAVX512]>; def : Pat<(v4f32 (X86Movss (v4f32 VR128X:$dst), (v4f32 (scalar_to_vector (f32 (fpround (f64 (extractelt VR128X:$src, (iPTR 0))))))))), (VCVTSD2SSZrr_Int VR128X:$dst, VR128X:$src)>, Requires<[HasAVX512]>; def : Pat<(v2f64 (X86Movsd (v2f64 VR128X:$dst), (v2f64 (scalar_to_vector (f64 (fpextend (f32 (extractelt VR128X:$src, (iPTR 0))))))))), (VCVTSS2SDZrr_Int VR128X:$dst, VR128X:$src)>, Requires<[HasAVX512]>; //===----------------------------------------------------------------------===// // AVX-512 Vector convert from signed/unsigned integer to float/double // and from float/double to signed/unsigned integer //===----------------------------------------------------------------------===// multiclass avx512_vcvt_fp<bits<8> opc, string OpcodeStr, X86VectorVTInfo _, X86VectorVTInfo _Src, SDNode OpNode, X86FoldableSchedWrite sched, string Broadcast = _.BroadcastStr, string Alias = "", X86MemOperand MemOp = _Src.MemOp> { defm rr : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _Src.RC:$src), OpcodeStr, "$src", "$src", (_.VT (OpNode (_Src.VT _Src.RC:$src)))>, EVEX, Sched<[sched]>; defm rm : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins MemOp:$src), OpcodeStr#Alias, "$src", "$src", (_.VT (OpNode (_Src.VT (bitconvert (_Src.LdFrag addr:$src)))))>, EVEX, Sched<[sched.Folded]>; defm rmb : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _Src.ScalarMemOp:$src), OpcodeStr, "${src}"##Broadcast, "${src}"##Broadcast, (_.VT (OpNode (_Src.VT (X86VBroadcast (_Src.ScalarLdFrag addr:$src))) ))>, EVEX, EVEX_B, Sched<[sched.Folded]>; } // Coversion with SAE - suppress all exceptions multiclass avx512_vcvt_fp_sae<bits<8> opc, string OpcodeStr, X86VectorVTInfo _, X86VectorVTInfo _Src, SDNode OpNodeRnd, X86FoldableSchedWrite sched> { defm rrb : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _Src.RC:$src), OpcodeStr, "{sae}, $src", "$src, {sae}", (_.VT (OpNodeRnd (_Src.VT _Src.RC:$src), (i32 FROUND_NO_EXC)))>, EVEX, EVEX_B, Sched<[sched]>; } // Conversion with rounding control (RC) multiclass avx512_vcvt_fp_rc<bits<8> opc, string OpcodeStr, X86VectorVTInfo _, X86VectorVTInfo _Src, SDNode OpNodeRnd, X86FoldableSchedWrite sched> { defm rrb : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _Src.RC:$src, AVX512RC:$rc), OpcodeStr, "$rc, $src", "$src, $rc", (_.VT (OpNodeRnd (_Src.VT _Src.RC:$src), (i32 imm:$rc)))>, EVEX, EVEX_B, EVEX_RC, Sched<[sched]>; } // Extend Float to Double multiclass avx512_cvtps2pd<bits<8> opc, string OpcodeStr, X86SchedWriteWidths sched> { let Predicates = [HasAVX512] in { defm Z : avx512_vcvt_fp<opc, OpcodeStr, v8f64_info, v8f32x_info, fpextend, sched.ZMM>, avx512_vcvt_fp_sae<opc, OpcodeStr, v8f64_info, v8f32x_info, X86vfpextRnd, sched.ZMM>, EVEX_V512; } let Predicates = [HasVLX] in { defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v2f64x_info, v4f32x_info, X86vfpext, sched.XMM, "{1to2}", "", f64mem>, EVEX_V128; defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v4f64x_info, v4f32x_info, fpextend, sched.YMM>, EVEX_V256; } } // Truncate Double to Float multiclass avx512_cvtpd2ps<bits<8> opc, string OpcodeStr, X86SchedWriteWidths sched> { let Predicates = [HasAVX512] in { defm Z : avx512_vcvt_fp<opc, OpcodeStr, v8f32x_info, v8f64_info, fpround, sched.ZMM>, avx512_vcvt_fp_rc<opc, OpcodeStr, v8f32x_info, v8f64_info, X86vfproundRnd, sched.ZMM>, EVEX_V512; } let Predicates = [HasVLX] in { defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v4f32x_info, v2f64x_info, X86vfpround, sched.XMM, "{1to2}", "{x}">, EVEX_V128; defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v4f32x_info, v4f64x_info, fpround, sched.YMM, "{1to4}", "{y}">, EVEX_V256; def : InstAlias<OpcodeStr##"x\t{$src, $dst|$dst, $src}", (!cast<Instruction>(NAME # "Z128rr") VR128X:$dst, VR128X:$src), 0>; def : InstAlias<OpcodeStr##"x\t{$src, $dst|$dst, $src}", (!cast<Instruction>(NAME # "Z128rm") VR128X:$dst, f128mem:$src), 0, "intel">; def : InstAlias<OpcodeStr##"y\t{$src, $dst|$dst, $src}", (!cast<Instruction>(NAME # "Z256rr") VR128X:$dst, VR256X:$src), 0>; def : InstAlias<OpcodeStr##"y\t{$src, $dst|$dst, $src}", (!cast<Instruction>(NAME # "Z256rm") VR128X:$dst, f256mem:$src), 0, "intel">; } } defm VCVTPD2PS : avx512_cvtpd2ps<0x5A, "vcvtpd2ps", SchedWriteCvtPD2PS>, VEX_W, PD, EVEX_CD8<64, CD8VF>; defm VCVTPS2PD : avx512_cvtps2pd<0x5A, "vcvtps2pd", SchedWriteCvtPS2PD>, PS, EVEX_CD8<32, CD8VH>; def : Pat<(v8f64 (extloadv8f32 addr:$src)), (VCVTPS2PDZrm addr:$src)>; let Predicates = [HasVLX] in { def : Pat<(X86vzmovl (v2f64 (bitconvert (v4f32 (X86vfpround (v2f64 VR128X:$src)))))), (VCVTPD2PSZ128rr VR128X:$src)>; def : Pat<(X86vzmovl (v2f64 (bitconvert (v4f32 (X86vfpround (loadv2f64 addr:$src)))))), (VCVTPD2PSZ128rm addr:$src)>; def : Pat<(v2f64 (extloadv2f32 addr:$src)), (VCVTPS2PDZ128rm addr:$src)>; def : Pat<(v4f64 (extloadv4f32 addr:$src)), (VCVTPS2PDZ256rm addr:$src)>; } // Convert Signed/Unsigned Doubleword to Double multiclass avx512_cvtdq2pd<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode OpNode128, X86SchedWriteWidths sched> { // No rounding in this op let Predicates = [HasAVX512] in defm Z : avx512_vcvt_fp<opc, OpcodeStr, v8f64_info, v8i32x_info, OpNode, sched.ZMM>, EVEX_V512; let Predicates = [HasVLX] in { defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v2f64x_info, v4i32x_info, OpNode128, sched.XMM, "{1to2}", "", i64mem>, EVEX_V128; defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v4f64x_info, v4i32x_info, OpNode, sched.YMM>, EVEX_V256; } } // Convert Signed/Unsigned Doubleword to Float multiclass avx512_cvtdq2ps<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, X86SchedWriteWidths sched> { let Predicates = [HasAVX512] in defm Z : avx512_vcvt_fp<opc, OpcodeStr, v16f32_info, v16i32_info, OpNode, sched.ZMM>, avx512_vcvt_fp_rc<opc, OpcodeStr, v16f32_info, v16i32_info, OpNodeRnd, sched.ZMM>, EVEX_V512; let Predicates = [HasVLX] in { defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v4f32x_info, v4i32x_info, OpNode, sched.XMM>, EVEX_V128; defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v8f32x_info, v8i32x_info, OpNode, sched.YMM>, EVEX_V256; } } // Convert Float to Signed/Unsigned Doubleword with truncation multiclass avx512_cvttps2dq<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, X86SchedWriteWidths sched> { let Predicates = [HasAVX512] in { defm Z : avx512_vcvt_fp<opc, OpcodeStr, v16i32_info, v16f32_info, OpNode, sched.ZMM>, avx512_vcvt_fp_sae<opc, OpcodeStr, v16i32_info, v16f32_info, OpNodeRnd, sched.ZMM>, EVEX_V512; } let Predicates = [HasVLX] in { defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v4i32x_info, v4f32x_info, OpNode, sched.XMM>, EVEX_V128; defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v8i32x_info, v8f32x_info, OpNode, sched.YMM>, EVEX_V256; } } // Convert Float to Signed/Unsigned Doubleword multiclass avx512_cvtps2dq<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, X86SchedWriteWidths sched> { let Predicates = [HasAVX512] in { defm Z : avx512_vcvt_fp<opc, OpcodeStr, v16i32_info, v16f32_info, OpNode, sched.ZMM>, avx512_vcvt_fp_rc<opc, OpcodeStr, v16i32_info, v16f32_info, OpNodeRnd, sched.ZMM>, EVEX_V512; } let Predicates = [HasVLX] in { defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v4i32x_info, v4f32x_info, OpNode, sched.XMM>, EVEX_V128; defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v8i32x_info, v8f32x_info, OpNode, sched.YMM>, EVEX_V256; } } // Convert Double to Signed/Unsigned Doubleword with truncation multiclass avx512_cvttpd2dq<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, X86SchedWriteWidths sched> { let Predicates = [HasAVX512] in { defm Z : avx512_vcvt_fp<opc, OpcodeStr, v8i32x_info, v8f64_info, OpNode, sched.ZMM>, avx512_vcvt_fp_sae<opc, OpcodeStr, v8i32x_info, v8f64_info, OpNodeRnd, sched.ZMM>, EVEX_V512; } let Predicates = [HasVLX] in { // we need "x"/"y" suffixes in order to distinguish between 128 and 256 // memory forms of these instructions in Asm Parser. They have the same // dest type - 'v4i32x_info'. We also specify the broadcast string explicitly // due to the same reason. defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v4i32x_info, v2f64x_info, OpNode, sched.XMM, "{1to2}", "{x}">, EVEX_V128; defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v4i32x_info, v4f64x_info, OpNode, sched.YMM, "{1to4}", "{y}">, EVEX_V256; def : InstAlias<OpcodeStr##"x\t{$src, $dst|$dst, $src}", (!cast<Instruction>(NAME # "Z128rr") VR128X:$dst, VR128X:$src), 0>; def : InstAlias<OpcodeStr##"x\t{$src, $dst|$dst, $src}", (!cast<Instruction>(NAME # "Z128rm") VR128X:$dst, i128mem:$src), 0, "intel">; def : InstAlias<OpcodeStr##"y\t{$src, $dst|$dst, $src}", (!cast<Instruction>(NAME # "Z256rr") VR128X:$dst, VR256X:$src), 0>; def : InstAlias<OpcodeStr##"y\t{$src, $dst|$dst, $src}", (!cast<Instruction>(NAME # "Z256rm") VR128X:$dst, i256mem:$src), 0, "intel">; } } // Convert Double to Signed/Unsigned Doubleword multiclass avx512_cvtpd2dq<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, X86SchedWriteWidths sched> { let Predicates = [HasAVX512] in { defm Z : avx512_vcvt_fp<opc, OpcodeStr, v8i32x_info, v8f64_info, OpNode, sched.ZMM>, avx512_vcvt_fp_rc<opc, OpcodeStr, v8i32x_info, v8f64_info, OpNodeRnd, sched.ZMM>, EVEX_V512; } let Predicates = [HasVLX] in { // we need "x"/"y" suffixes in order to distinguish between 128 and 256 // memory forms of these instructions in Asm Parcer. They have the same // dest type - 'v4i32x_info'. We also specify the broadcast string explicitly // due to the same reason. defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v4i32x_info, v2f64x_info, OpNode, sched.XMM, "{1to2}", "{x}">, EVEX_V128; defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v4i32x_info, v4f64x_info, OpNode, sched.YMM, "{1to4}", "{y}">, EVEX_V256; def : InstAlias<OpcodeStr##"x\t{$src, $dst|$dst, $src}", (!cast<Instruction>(NAME # "Z128rr") VR128X:$dst, VR128X:$src), 0>; def : InstAlias<OpcodeStr##"x\t{$src, $dst|$dst, $src}", (!cast<Instruction>(NAME # "Z128rm") VR128X:$dst, f128mem:$src), 0, "intel">; def : InstAlias<OpcodeStr##"y\t{$src, $dst|$dst, $src}", (!cast<Instruction>(NAME # "Z256rr") VR128X:$dst, VR256X:$src), 0>; def : InstAlias<OpcodeStr##"y\t{$src, $dst|$dst, $src}", (!cast<Instruction>(NAME # "Z256rm") VR128X:$dst, f256mem:$src), 0, "intel">; } } // Convert Double to Signed/Unsigned Quardword multiclass avx512_cvtpd2qq<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, X86SchedWriteWidths sched> { let Predicates = [HasDQI] in { defm Z : avx512_vcvt_fp<opc, OpcodeStr, v8i64_info, v8f64_info, OpNode, sched.ZMM>, avx512_vcvt_fp_rc<opc, OpcodeStr, v8i64_info, v8f64_info, OpNodeRnd, sched.ZMM>, EVEX_V512; } let Predicates = [HasDQI, HasVLX] in { defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v2i64x_info, v2f64x_info, OpNode, sched.XMM>, EVEX_V128; defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v4i64x_info, v4f64x_info, OpNode, sched.YMM>, EVEX_V256; } } // Convert Double to Signed/Unsigned Quardword with truncation multiclass avx512_cvttpd2qq<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, X86SchedWriteWidths sched> { let Predicates = [HasDQI] in { defm Z : avx512_vcvt_fp<opc, OpcodeStr, v8i64_info, v8f64_info, OpNode, sched.ZMM>, avx512_vcvt_fp_sae<opc, OpcodeStr, v8i64_info, v8f64_info, OpNodeRnd, sched.ZMM>, EVEX_V512; } let Predicates = [HasDQI, HasVLX] in { defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v2i64x_info, v2f64x_info, OpNode, sched.XMM>, EVEX_V128; defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v4i64x_info, v4f64x_info, OpNode, sched.YMM>, EVEX_V256; } } // Convert Signed/Unsigned Quardword to Double multiclass avx512_cvtqq2pd<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, X86SchedWriteWidths sched> { let Predicates = [HasDQI] in { defm Z : avx512_vcvt_fp<opc, OpcodeStr, v8f64_info, v8i64_info, OpNode, sched.ZMM>, avx512_vcvt_fp_rc<opc, OpcodeStr, v8f64_info, v8i64_info, OpNodeRnd, sched.ZMM>, EVEX_V512; } let Predicates = [HasDQI, HasVLX] in { defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v2f64x_info, v2i64x_info, OpNode, sched.XMM>, EVEX_V128, NotEVEX2VEXConvertible; defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v4f64x_info, v4i64x_info, OpNode, sched.YMM>, EVEX_V256, NotEVEX2VEXConvertible; } } // Convert Float to Signed/Unsigned Quardword multiclass avx512_cvtps2qq<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, X86SchedWriteWidths sched> { let Predicates = [HasDQI] in { defm Z : avx512_vcvt_fp<opc, OpcodeStr, v8i64_info, v8f32x_info, OpNode, sched.ZMM>, avx512_vcvt_fp_rc<opc, OpcodeStr, v8i64_info, v8f32x_info, OpNodeRnd, sched.ZMM>, EVEX_V512; } let Predicates = [HasDQI, HasVLX] in { // Explicitly specified broadcast string, since we take only 2 elements // from v4f32x_info source defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v2i64x_info, v4f32x_info, OpNode, sched.XMM, "{1to2}", "", f64mem>, EVEX_V128; defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v4i64x_info, v4f32x_info, OpNode, sched.YMM>, EVEX_V256; } } // Convert Float to Signed/Unsigned Quardword with truncation multiclass avx512_cvttps2qq<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode OpNodeRnd, X86SchedWriteWidths sched> { let Predicates = [HasDQI] in { defm Z : avx512_vcvt_fp<opc, OpcodeStr, v8i64_info, v8f32x_info, OpNode, sched.ZMM>, avx512_vcvt_fp_sae<opc, OpcodeStr, v8i64_info, v8f32x_info, OpNodeRnd, sched.ZMM>, EVEX_V512; } let Predicates = [HasDQI, HasVLX] in { // Explicitly specified broadcast string, since we take only 2 elements // from v4f32x_info source defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v2i64x_info, v4f32x_info, OpNode, sched.XMM, "{1to2}", "", f64mem>, EVEX_V128; defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v4i64x_info, v4f32x_info, OpNode, sched.YMM>, EVEX_V256; } } // Convert Signed/Unsigned Quardword to Float multiclass avx512_cvtqq2ps<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode OpNode128, SDNode OpNodeRnd, X86SchedWriteWidths sched> { let Predicates = [HasDQI] in { defm Z : avx512_vcvt_fp<opc, OpcodeStr, v8f32x_info, v8i64_info, OpNode, sched.ZMM>, avx512_vcvt_fp_rc<opc, OpcodeStr, v8f32x_info, v8i64_info, OpNodeRnd, sched.ZMM>, EVEX_V512; } let Predicates = [HasDQI, HasVLX] in { // we need "x"/"y" suffixes in order to distinguish between 128 and 256 // memory forms of these instructions in Asm Parcer. They have the same // dest type - 'v4i32x_info'. We also specify the broadcast string explicitly // due to the same reason. defm Z128 : avx512_vcvt_fp<opc, OpcodeStr, v4f32x_info, v2i64x_info, OpNode128, sched.XMM, "{1to2}", "{x}">, EVEX_V128, NotEVEX2VEXConvertible; defm Z256 : avx512_vcvt_fp<opc, OpcodeStr, v4f32x_info, v4i64x_info, OpNode, sched.YMM, "{1to4}", "{y}">, EVEX_V256, NotEVEX2VEXConvertible; def : InstAlias<OpcodeStr##"x\t{$src, $dst|$dst, $src}", (!cast<Instruction>(NAME # "Z128rr") VR128X:$dst, VR128X:$src), 0>; def : InstAlias<OpcodeStr##"x\t{$src, $dst|$dst, $src}", (!cast<Instruction>(NAME # "Z128rm") VR128X:$dst, i128mem:$src), 0, "intel">; def : InstAlias<OpcodeStr##"y\t{$src, $dst|$dst, $src}", (!cast<Instruction>(NAME # "Z256rr") VR128X:$dst, VR256X:$src), 0>; def : InstAlias<OpcodeStr##"y\t{$src, $dst|$dst, $src}", (!cast<Instruction>(NAME # "Z256rm") VR128X:$dst, i256mem:$src), 0, "intel">; } } defm VCVTDQ2PD : avx512_cvtdq2pd<0xE6, "vcvtdq2pd", sint_to_fp, X86VSintToFP, SchedWriteCvtDQ2PD>, XS, EVEX_CD8<32, CD8VH>; defm VCVTDQ2PS : avx512_cvtdq2ps<0x5B, "vcvtdq2ps", sint_to_fp, X86VSintToFpRnd, SchedWriteCvtDQ2PS>, PS, EVEX_CD8<32, CD8VF>; defm VCVTTPS2DQ : avx512_cvttps2dq<0x5B, "vcvttps2dq", X86cvttp2si, X86cvttp2siRnd, SchedWriteCvtPS2DQ>, XS, EVEX_CD8<32, CD8VF>; defm VCVTTPD2DQ : avx512_cvttpd2dq<0xE6, "vcvttpd2dq", X86cvttp2si, X86cvttp2siRnd, SchedWriteCvtPD2DQ>, PD, VEX_W, EVEX_CD8<64, CD8VF>; defm VCVTTPS2UDQ : avx512_cvttps2dq<0x78, "vcvttps2udq", X86cvttp2ui, X86cvttp2uiRnd, SchedWriteCvtPS2DQ>, PS, EVEX_CD8<32, CD8VF>; defm VCVTTPD2UDQ : avx512_cvttpd2dq<0x78, "vcvttpd2udq", X86cvttp2ui, X86cvttp2uiRnd, SchedWriteCvtPD2DQ>, PS, VEX_W, EVEX_CD8<64, CD8VF>; defm VCVTUDQ2PD : avx512_cvtdq2pd<0x7A, "vcvtudq2pd", uint_to_fp, X86VUintToFP, SchedWriteCvtDQ2PD>, XS, EVEX_CD8<32, CD8VH>; defm VCVTUDQ2PS : avx512_cvtdq2ps<0x7A, "vcvtudq2ps", uint_to_fp, X86VUintToFpRnd, SchedWriteCvtDQ2PS>, XD, EVEX_CD8<32, CD8VF>; defm VCVTPS2DQ : avx512_cvtps2dq<0x5B, "vcvtps2dq", X86cvtp2Int, X86cvtp2IntRnd, SchedWriteCvtPS2DQ>, PD, EVEX_CD8<32, CD8VF>; defm VCVTPD2DQ : avx512_cvtpd2dq<0xE6, "vcvtpd2dq", X86cvtp2Int, X86cvtp2IntRnd, SchedWriteCvtPD2DQ>, XD, VEX_W, EVEX_CD8<64, CD8VF>; defm VCVTPS2UDQ : avx512_cvtps2dq<0x79, "vcvtps2udq", X86cvtp2UInt, X86cvtp2UIntRnd, SchedWriteCvtPS2DQ>, PS, EVEX_CD8<32, CD8VF>; defm VCVTPD2UDQ : avx512_cvtpd2dq<0x79, "vcvtpd2udq", X86cvtp2UInt, X86cvtp2UIntRnd, SchedWriteCvtPD2DQ>, VEX_W, PS, EVEX_CD8<64, CD8VF>; defm VCVTPD2QQ : avx512_cvtpd2qq<0x7B, "vcvtpd2qq", X86cvtp2Int, X86cvtp2IntRnd, SchedWriteCvtPD2DQ>, VEX_W, PD, EVEX_CD8<64, CD8VF>; defm VCVTPS2QQ : avx512_cvtps2qq<0x7B, "vcvtps2qq", X86cvtp2Int, X86cvtp2IntRnd, SchedWriteCvtPS2DQ>, PD, EVEX_CD8<32, CD8VH>; defm VCVTPD2UQQ : avx512_cvtpd2qq<0x79, "vcvtpd2uqq", X86cvtp2UInt, X86cvtp2UIntRnd, SchedWriteCvtPD2DQ>, VEX_W, PD, EVEX_CD8<64, CD8VF>; defm VCVTPS2UQQ : avx512_cvtps2qq<0x79, "vcvtps2uqq", X86cvtp2UInt, X86cvtp2UIntRnd, SchedWriteCvtPS2DQ>, PD, EVEX_CD8<32, CD8VH>; defm VCVTTPD2QQ : avx512_cvttpd2qq<0x7A, "vcvttpd2qq", X86cvttp2si, X86cvttp2siRnd, SchedWriteCvtPD2DQ>, VEX_W, PD, EVEX_CD8<64, CD8VF>; defm VCVTTPS2QQ : avx512_cvttps2qq<0x7A, "vcvttps2qq", X86cvttp2si, X86cvttp2siRnd, SchedWriteCvtPS2DQ>, PD, EVEX_CD8<32, CD8VH>; defm VCVTTPD2UQQ : avx512_cvttpd2qq<0x78, "vcvttpd2uqq", X86cvttp2ui, X86cvttp2uiRnd, SchedWriteCvtPD2DQ>, VEX_W, PD, EVEX_CD8<64, CD8VF>; defm VCVTTPS2UQQ : avx512_cvttps2qq<0x78, "vcvttps2uqq", X86cvttp2ui, X86cvttp2uiRnd, SchedWriteCvtPS2DQ>, PD, EVEX_CD8<32, CD8VH>; defm VCVTQQ2PD : avx512_cvtqq2pd<0xE6, "vcvtqq2pd", sint_to_fp, X86VSintToFpRnd, SchedWriteCvtDQ2PD>, VEX_W, XS, EVEX_CD8<64, CD8VF>; defm VCVTUQQ2PD : avx512_cvtqq2pd<0x7A, "vcvtuqq2pd", uint_to_fp, X86VUintToFpRnd, SchedWriteCvtDQ2PD>, VEX_W, XS, EVEX_CD8<64, CD8VF>; defm VCVTQQ2PS : avx512_cvtqq2ps<0x5B, "vcvtqq2ps", sint_to_fp, X86VSintToFP, X86VSintToFpRnd, SchedWriteCvtDQ2PS>, VEX_W, PS, EVEX_CD8<64, CD8VF>; defm VCVTUQQ2PS : avx512_cvtqq2ps<0x7A, "vcvtuqq2ps", uint_to_fp, X86VUintToFP, X86VUintToFpRnd, SchedWriteCvtDQ2PS>, VEX_W, XD, EVEX_CD8<64, CD8VF>; let Predicates = [HasAVX512] in { def : Pat<(v16i32 (fp_to_sint (v16f32 VR512:$src))), (VCVTTPS2DQZrr VR512:$src)>; def : Pat<(v16i32 (fp_to_sint (loadv16f32 addr:$src))), (VCVTTPS2DQZrm addr:$src)>; def : Pat<(v16i32 (fp_to_uint (v16f32 VR512:$src))), (VCVTTPS2UDQZrr VR512:$src)>; def : Pat<(v16i32 (fp_to_uint (loadv16f32 addr:$src))), (VCVTTPS2UDQZrm addr:$src)>; def : Pat<(v8i32 (fp_to_sint (v8f64 VR512:$src))), (VCVTTPD2DQZrr VR512:$src)>; def : Pat<(v8i32 (fp_to_sint (loadv8f64 addr:$src))), (VCVTTPD2DQZrm addr:$src)>; def : Pat<(v8i32 (fp_to_uint (v8f64 VR512:$src))), (VCVTTPD2UDQZrr VR512:$src)>; def : Pat<(v8i32 (fp_to_uint (loadv8f64 addr:$src))), (VCVTTPD2UDQZrm addr:$src)>; } let Predicates = [HasVLX] in { def : Pat<(v4i32 (fp_to_sint (v4f32 VR128X:$src))), (VCVTTPS2DQZ128rr VR128X:$src)>; def : Pat<(v4i32 (fp_to_sint (loadv4f32 addr:$src))), (VCVTTPS2DQZ128rm addr:$src)>; def : Pat<(v4i32 (fp_to_uint (v4f32 VR128X:$src))), (VCVTTPS2UDQZ128rr VR128X:$src)>; def : Pat<(v4i32 (fp_to_uint (loadv4f32 addr:$src))), (VCVTTPS2UDQZ128rm addr:$src)>; def : Pat<(v8i32 (fp_to_sint (v8f32 VR256X:$src))), (VCVTTPS2DQZ256rr VR256X:$src)>; def : Pat<(v8i32 (fp_to_sint (loadv8f32 addr:$src))), (VCVTTPS2DQZ256rm addr:$src)>; def : Pat<(v8i32 (fp_to_uint (v8f32 VR256X:$src))), (VCVTTPS2UDQZ256rr VR256X:$src)>; def : Pat<(v8i32 (fp_to_uint (loadv8f32 addr:$src))), (VCVTTPS2UDQZ256rm addr:$src)>; def : Pat<(v4i32 (fp_to_sint (v4f64 VR256X:$src))), (VCVTTPD2DQZ256rr VR256X:$src)>; def : Pat<(v4i32 (fp_to_sint (loadv4f64 addr:$src))), (VCVTTPD2DQZ256rm addr:$src)>; def : Pat<(v4i32 (fp_to_uint (v4f64 VR256X:$src))), (VCVTTPD2UDQZ256rr VR256X:$src)>; def : Pat<(v4i32 (fp_to_uint (loadv4f64 addr:$src))), (VCVTTPD2UDQZ256rm addr:$src)>; } let Predicates = [HasDQI] in { def : Pat<(v8i64 (fp_to_sint (v8f32 VR256X:$src))), (VCVTTPS2QQZrr VR256X:$src)>; def : Pat<(v8i64 (fp_to_sint (loadv8f32 addr:$src))), (VCVTTPS2QQZrm addr:$src)>; def : Pat<(v8i64 (fp_to_uint (v8f32 VR256X:$src))), (VCVTTPS2UQQZrr VR256X:$src)>; def : Pat<(v8i64 (fp_to_uint (loadv8f32 addr:$src))), (VCVTTPS2UQQZrm addr:$src)>; def : Pat<(v8i64 (fp_to_sint (v8f64 VR512:$src))), (VCVTTPD2QQZrr VR512:$src)>; def : Pat<(v8i64 (fp_to_sint (loadv8f64 addr:$src))), (VCVTTPD2QQZrm addr:$src)>; def : Pat<(v8i64 (fp_to_uint (v8f64 VR512:$src))), (VCVTTPD2UQQZrr VR512:$src)>; def : Pat<(v8i64 (fp_to_uint (loadv8f64 addr:$src))), (VCVTTPD2UQQZrm addr:$src)>; } let Predicates = [HasDQI, HasVLX] in { def : Pat<(v4i64 (fp_to_sint (v4f32 VR128X:$src))), (VCVTTPS2QQZ256rr VR128X:$src)>; def : Pat<(v4i64 (fp_to_sint (loadv4f32 addr:$src))), (VCVTTPS2QQZ256rm addr:$src)>; def : Pat<(v4i64 (fp_to_uint (v4f32 VR128X:$src))), (VCVTTPS2UQQZ256rr VR128X:$src)>; def : Pat<(v4i64 (fp_to_uint (loadv4f32 addr:$src))), (VCVTTPS2UQQZ256rm addr:$src)>; def : Pat<(v2i64 (fp_to_sint (v2f64 VR128X:$src))), (VCVTTPD2QQZ128rr VR128X:$src)>; def : Pat<(v2i64 (fp_to_sint (loadv2f64 addr:$src))), (VCVTTPD2QQZ128rm addr:$src)>; def : Pat<(v2i64 (fp_to_uint (v2f64 VR128X:$src))), (VCVTTPD2UQQZ128rr VR128X:$src)>; def : Pat<(v2i64 (fp_to_uint (loadv2f64 addr:$src))), (VCVTTPD2UQQZ128rm addr:$src)>; def : Pat<(v4i64 (fp_to_sint (v4f64 VR256X:$src))), (VCVTTPD2QQZ256rr VR256X:$src)>; def : Pat<(v4i64 (fp_to_sint (loadv4f64 addr:$src))), (VCVTTPD2QQZ256rm addr:$src)>; def : Pat<(v4i64 (fp_to_uint (v4f64 VR256X:$src))), (VCVTTPD2UQQZ256rr VR256X:$src)>; def : Pat<(v4i64 (fp_to_uint (loadv4f64 addr:$src))), (VCVTTPD2UQQZ256rm addr:$src)>; } let Predicates = [HasAVX512, NoVLX] in { def : Pat<(v8i32 (fp_to_uint (v8f32 VR256X:$src1))), (EXTRACT_SUBREG (v16i32 (VCVTTPS2UDQZrr (v16f32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)))), sub_ymm)>; def : Pat<(v4i32 (fp_to_uint (v4f32 VR128X:$src1))), (EXTRACT_SUBREG (v16i32 (VCVTTPS2UDQZrr (v16f32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)))), sub_xmm)>; def : Pat<(v4i32 (fp_to_uint (v4f64 VR256X:$src1))), (EXTRACT_SUBREG (v8i32 (VCVTTPD2UDQZrr (v8f64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)))), sub_xmm)>; def : Pat<(v8f32 (uint_to_fp (v8i32 VR256X:$src1))), (EXTRACT_SUBREG (v16f32 (VCVTUDQ2PSZrr (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)))), sub_ymm)>; def : Pat<(v4f32 (uint_to_fp (v4i32 VR128X:$src1))), (EXTRACT_SUBREG (v16f32 (VCVTUDQ2PSZrr (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)))), sub_xmm)>; def : Pat<(v4f64 (uint_to_fp (v4i32 VR128X:$src1))), (EXTRACT_SUBREG (v8f64 (VCVTUDQ2PDZrr (v8i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)))), sub_ymm)>; def : Pat<(v2f64 (X86VUintToFP (v4i32 VR128X:$src1))), (EXTRACT_SUBREG (v8f64 (VCVTUDQ2PDZrr (v8i32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)))), sub_xmm)>; } let Predicates = [HasAVX512, HasVLX] in { def : Pat<(X86vzmovl (v2i64 (bitconvert (v4i32 (X86cvtp2Int (v2f64 VR128X:$src)))))), (VCVTPD2DQZ128rr VR128X:$src)>; def : Pat<(X86vzmovl (v2i64 (bitconvert (v4i32 (X86cvtp2Int (loadv2f64 addr:$src)))))), (VCVTPD2DQZ128rm addr:$src)>; def : Pat<(X86vzmovl (v2i64 (bitconvert (v4i32 (X86cvtp2UInt (v2f64 VR128X:$src)))))), (VCVTPD2UDQZ128rr VR128X:$src)>; def : Pat<(X86vzmovl (v2i64 (bitconvert (v4i32 (X86cvttp2si (v2f64 VR128X:$src)))))), (VCVTTPD2DQZ128rr VR128X:$src)>; def : Pat<(X86vzmovl (v2i64 (bitconvert (v4i32 (X86cvttp2si (loadv2f64 addr:$src)))))), (VCVTTPD2DQZ128rm addr:$src)>; def : Pat<(X86vzmovl (v2i64 (bitconvert (v4i32 (X86cvttp2ui (v2f64 VR128X:$src)))))), (VCVTTPD2UDQZ128rr VR128X:$src)>; def : Pat<(v2f64 (X86VSintToFP (bc_v4i32 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), (VCVTDQ2PDZ128rm addr:$src)>; def : Pat<(v2f64 (X86VSintToFP (bc_v4i32 (v2i64 (X86vzload addr:$src))))), (VCVTDQ2PDZ128rm addr:$src)>; def : Pat<(v2f64 (X86VUintToFP (bc_v4i32 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), (VCVTUDQ2PDZ128rm addr:$src)>; def : Pat<(v2f64 (X86VUintToFP (bc_v4i32 (v2i64 (X86vzload addr:$src))))), (VCVTUDQ2PDZ128rm addr:$src)>; } let Predicates = [HasAVX512] in { def : Pat<(v8f32 (fpround (loadv8f64 addr:$src))), (VCVTPD2PSZrm addr:$src)>; def : Pat<(v8f64 (extloadv8f32 addr:$src)), (VCVTPS2PDZrm addr:$src)>; } let Predicates = [HasDQI, HasVLX] in { def : Pat<(X86vzmovl (v2f64 (bitconvert (v4f32 (X86VSintToFP (v2i64 VR128X:$src)))))), (VCVTQQ2PSZ128rr VR128X:$src)>; def : Pat<(X86vzmovl (v2f64 (bitconvert (v4f32 (X86VUintToFP (v2i64 VR128X:$src)))))), (VCVTUQQ2PSZ128rr VR128X:$src)>; } let Predicates = [HasDQI, NoVLX] in { def : Pat<(v2i64 (fp_to_sint (v2f64 VR128X:$src1))), (EXTRACT_SUBREG (v8i64 (VCVTTPD2QQZrr (v8f64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)))), sub_xmm)>; def : Pat<(v4i64 (fp_to_sint (v4f32 VR128X:$src1))), (EXTRACT_SUBREG (v8i64 (VCVTTPS2QQZrr (v8f32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)))), sub_ymm)>; def : Pat<(v4i64 (fp_to_sint (v4f64 VR256X:$src1))), (EXTRACT_SUBREG (v8i64 (VCVTTPD2QQZrr (v8f64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)))), sub_ymm)>; def : Pat<(v2i64 (fp_to_uint (v2f64 VR128X:$src1))), (EXTRACT_SUBREG (v8i64 (VCVTTPD2UQQZrr (v8f64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)))), sub_xmm)>; def : Pat<(v4i64 (fp_to_uint (v4f32 VR128X:$src1))), (EXTRACT_SUBREG (v8i64 (VCVTTPS2UQQZrr (v8f32 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)))), sub_ymm)>; def : Pat<(v4i64 (fp_to_uint (v4f64 VR256X:$src1))), (EXTRACT_SUBREG (v8i64 (VCVTTPD2UQQZrr (v8f64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)))), sub_ymm)>; def : Pat<(v4f32 (sint_to_fp (v4i64 VR256X:$src1))), (EXTRACT_SUBREG (v8f32 (VCVTQQ2PSZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)))), sub_xmm)>; def : Pat<(v2f64 (sint_to_fp (v2i64 VR128X:$src1))), (EXTRACT_SUBREG (v8f64 (VCVTQQ2PDZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)))), sub_xmm)>; def : Pat<(v4f64 (sint_to_fp (v4i64 VR256X:$src1))), (EXTRACT_SUBREG (v8f64 (VCVTQQ2PDZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)))), sub_ymm)>; def : Pat<(v4f32 (uint_to_fp (v4i64 VR256X:$src1))), (EXTRACT_SUBREG (v8f32 (VCVTUQQ2PSZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)))), sub_xmm)>; def : Pat<(v2f64 (uint_to_fp (v2i64 VR128X:$src1))), (EXTRACT_SUBREG (v8f64 (VCVTUQQ2PDZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR128X:$src1, sub_xmm)))), sub_xmm)>; def : Pat<(v4f64 (uint_to_fp (v4i64 VR256X:$src1))), (EXTRACT_SUBREG (v8f64 (VCVTUQQ2PDZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src1, sub_ymm)))), sub_ymm)>; } //===----------------------------------------------------------------------===// // Half precision conversion instructions //===----------------------------------------------------------------------===// multiclass avx512_cvtph2ps<X86VectorVTInfo _dest, X86VectorVTInfo _src, X86MemOperand x86memop, PatFrag ld_frag, X86FoldableSchedWrite sched> { defm rr : AVX512_maskable<0x13, MRMSrcReg, _dest ,(outs _dest.RC:$dst), (ins _src.RC:$src), "vcvtph2ps", "$src", "$src", (X86cvtph2ps (_src.VT _src.RC:$src))>, T8PD, Sched<[sched]>; defm rm : AVX512_maskable<0x13, MRMSrcMem, _dest, (outs _dest.RC:$dst), (ins x86memop:$src), "vcvtph2ps", "$src", "$src", (X86cvtph2ps (_src.VT (bitconvert (ld_frag addr:$src))))>, T8PD, Sched<[sched.Folded]>; } multiclass avx512_cvtph2ps_sae<X86VectorVTInfo _dest, X86VectorVTInfo _src, X86FoldableSchedWrite sched> { defm rrb : AVX512_maskable<0x13, MRMSrcReg, _dest, (outs _dest.RC:$dst), (ins _src.RC:$src), "vcvtph2ps", "{sae}, $src", "$src, {sae}", (X86cvtph2psRnd (_src.VT _src.RC:$src), (i32 FROUND_NO_EXC))>, T8PD, EVEX_B, Sched<[sched]>; } let Predicates = [HasAVX512] in defm VCVTPH2PSZ : avx512_cvtph2ps<v16f32_info, v16i16x_info, f256mem, loadv4i64, WriteCvtPH2PSZ>, avx512_cvtph2ps_sae<v16f32_info, v16i16x_info, WriteCvtPH2PSZ>, EVEX, EVEX_V512, EVEX_CD8<32, CD8VH>; let Predicates = [HasVLX] in { defm VCVTPH2PSZ256 : avx512_cvtph2ps<v8f32x_info, v8i16x_info, f128mem, loadv2i64, WriteCvtPH2PSY>, EVEX, EVEX_V256, EVEX_CD8<32, CD8VH>; defm VCVTPH2PSZ128 : avx512_cvtph2ps<v4f32x_info, v8i16x_info, f64mem, loadv2i64, WriteCvtPH2PS>, EVEX, EVEX_V128, EVEX_CD8<32, CD8VH>; // Pattern match vcvtph2ps of a scalar i64 load. def : Pat<(v4f32 (X86cvtph2ps (v8i16 (vzmovl_v2i64 addr:$src)))), (VCVTPH2PSZ128rm addr:$src)>; def : Pat<(v4f32 (X86cvtph2ps (v8i16 (vzload_v2i64 addr:$src)))), (VCVTPH2PSZ128rm addr:$src)>; def : Pat<(v4f32 (X86cvtph2ps (v8i16 (bitconvert (v2i64 (scalar_to_vector (loadi64 addr:$src))))))), (VCVTPH2PSZ128rm addr:$src)>; } multiclass avx512_cvtps2ph<X86VectorVTInfo _dest, X86VectorVTInfo _src, X86MemOperand x86memop, SchedWrite RR, SchedWrite MR> { defm rr : AVX512_maskable<0x1D, MRMDestReg, _dest ,(outs _dest.RC:$dst), (ins _src.RC:$src1, i32u8imm:$src2), "vcvtps2ph", "$src2, $src1", "$src1, $src2", (X86cvtps2ph (_src.VT _src.RC:$src1), (i32 imm:$src2)), 0, 0>, AVX512AIi8Base, Sched<[RR]>; let hasSideEffects = 0, mayStore = 1 in { def mr : AVX512AIi8<0x1D, MRMDestMem, (outs), (ins x86memop:$dst, _src.RC:$src1, i32u8imm:$src2), "vcvtps2ph\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, Sched<[MR]>; def mrk : AVX512AIi8<0x1D, MRMDestMem, (outs), (ins x86memop:$dst, _dest.KRCWM:$mask, _src.RC:$src1, i32u8imm:$src2), "vcvtps2ph\t{$src2, $src1, $dst {${mask}}|$dst {${mask}}, $src1, $src2}", []>, EVEX_K, Sched<[MR]>, NotMemoryFoldable; } } multiclass avx512_cvtps2ph_sae<X86VectorVTInfo _dest, X86VectorVTInfo _src, SchedWrite Sched> { let hasSideEffects = 0 in defm rrb : AVX512_maskable_in_asm<0x1D, MRMDestReg, _dest, (outs _dest.RC:$dst), (ins _src.RC:$src1, i32u8imm:$src2), "vcvtps2ph", "$src2, {sae}, $src1", "$src1, {sae}, $src2", []>, EVEX_B, AVX512AIi8Base, Sched<[Sched]>; } let Predicates = [HasAVX512] in { defm VCVTPS2PHZ : avx512_cvtps2ph<v16i16x_info, v16f32_info, f256mem, WriteCvtPS2PHZ, WriteCvtPS2PHZSt>, avx512_cvtps2ph_sae<v16i16x_info, v16f32_info, WriteCvtPS2PHZ>, EVEX, EVEX_V512, EVEX_CD8<32, CD8VH>; let Predicates = [HasVLX] in { defm VCVTPS2PHZ256 : avx512_cvtps2ph<v8i16x_info, v8f32x_info, f128mem, WriteCvtPS2PHY, WriteCvtPS2PHYSt>, EVEX, EVEX_V256, EVEX_CD8<32, CD8VH>; defm VCVTPS2PHZ128 : avx512_cvtps2ph<v8i16x_info, v4f32x_info, f64mem, WriteCvtPS2PH, WriteCvtPS2PHSt>, EVEX, EVEX_V128, EVEX_CD8<32, CD8VH>; } def : Pat<(store (f64 (extractelt (bc_v2f64 (v8i16 (X86cvtps2ph VR128X:$src1, i32:$src2))), (iPTR 0))), addr:$dst), (VCVTPS2PHZ128mr addr:$dst, VR128X:$src1, imm:$src2)>; def : Pat<(store (i64 (extractelt (bc_v2i64 (v8i16 (X86cvtps2ph VR128X:$src1, i32:$src2))), (iPTR 0))), addr:$dst), (VCVTPS2PHZ128mr addr:$dst, VR128X:$src1, imm:$src2)>; def : Pat<(store (v8i16 (X86cvtps2ph VR256X:$src1, i32:$src2)), addr:$dst), (VCVTPS2PHZ256mr addr:$dst, VR256X:$src1, imm:$src2)>; def : Pat<(store (v16i16 (X86cvtps2ph VR512:$src1, i32:$src2)), addr:$dst), (VCVTPS2PHZmr addr:$dst, VR512:$src1, imm:$src2)>; } // Patterns for matching conversions from float to half-float and vice versa. let Predicates = [HasVLX] in { // Use MXCSR.RC for rounding instead of explicitly specifying the default // rounding mode (Nearest-Even, encoded as 0). Both are equivalent in the // configurations we support (the default). However, falling back to MXCSR is // more consistent with other instructions, which are always controlled by it. // It's encoded as 0b100. def : Pat<(fp_to_f16 FR32X:$src), (i16 (EXTRACT_SUBREG (VMOVPDI2DIZrr (v8i16 (VCVTPS2PHZ128rr (v4f32 (COPY_TO_REGCLASS FR32X:$src, VR128X)), 4))), sub_16bit))>; def : Pat<(f16_to_fp GR16:$src), (f32 (COPY_TO_REGCLASS (v4f32 (VCVTPH2PSZ128rr (v8i16 (COPY_TO_REGCLASS (MOVSX32rr16 GR16:$src), VR128X)))), FR32X)) >; def : Pat<(f16_to_fp (i16 (fp_to_f16 FR32X:$src))), (f32 (COPY_TO_REGCLASS (v4f32 (VCVTPH2PSZ128rr (v8i16 (VCVTPS2PHZ128rr (v4f32 (COPY_TO_REGCLASS FR32X:$src, VR128X)), 4)))), FR32X)) >; } // Unordered/Ordered scalar fp compare with Sea and set EFLAGS multiclass avx512_ord_cmp_sae<bits<8> opc, X86VectorVTInfo _, string OpcodeStr, X86FoldableSchedWrite sched> { let hasSideEffects = 0 in def rrb: AVX512<opc, MRMSrcReg, (outs), (ins _.RC:$src1, _.RC:$src2), !strconcat(OpcodeStr, "\t{{sae}, $src2, $src1|$src1, $src2, {sae}}"), []>, EVEX, EVEX_B, VEX_LIG, EVEX_V128, Sched<[sched]>; } let Defs = [EFLAGS], Predicates = [HasAVX512] in { defm VUCOMISSZ : avx512_ord_cmp_sae<0x2E, v4f32x_info, "vucomiss", WriteFCom>, AVX512PSIi8Base, EVEX_CD8<32, CD8VT1>; defm VUCOMISDZ : avx512_ord_cmp_sae<0x2E, v2f64x_info, "vucomisd", WriteFCom>, AVX512PDIi8Base, VEX_W, EVEX_CD8<64, CD8VT1>; defm VCOMISSZ : avx512_ord_cmp_sae<0x2F, v4f32x_info, "vcomiss", WriteFCom>, AVX512PSIi8Base, EVEX_CD8<32, CD8VT1>; defm VCOMISDZ : avx512_ord_cmp_sae<0x2F, v2f64x_info, "vcomisd", WriteFCom>, AVX512PDIi8Base, VEX_W, EVEX_CD8<64, CD8VT1>; } let Defs = [EFLAGS], Predicates = [HasAVX512] in { defm VUCOMISSZ : sse12_ord_cmp<0x2E, FR32X, X86cmp, f32, f32mem, loadf32, "ucomiss", WriteFCom>, PS, EVEX, VEX_LIG, EVEX_CD8<32, CD8VT1>; defm VUCOMISDZ : sse12_ord_cmp<0x2E, FR64X, X86cmp, f64, f64mem, loadf64, "ucomisd", WriteFCom>, PD, EVEX, VEX_LIG, VEX_W, EVEX_CD8<64, CD8VT1>; let Pattern = []<dag> in { defm VCOMISSZ : sse12_ord_cmp<0x2F, FR32X, undef, f32, f32mem, loadf32, "comiss", WriteFCom>, PS, EVEX, VEX_LIG, EVEX_CD8<32, CD8VT1>; defm VCOMISDZ : sse12_ord_cmp<0x2F, FR64X, undef, f64, f64mem, loadf64, "comisd", WriteFCom>, PD, EVEX, VEX_LIG, VEX_W, EVEX_CD8<64, CD8VT1>; } let isCodeGenOnly = 1 in { defm VUCOMISSZ : sse12_ord_cmp_int<0x2E, VR128X, X86ucomi, v4f32, ssmem, sse_load_f32, "ucomiss", WriteFCom>, PS, EVEX, VEX_LIG, EVEX_CD8<32, CD8VT1>; defm VUCOMISDZ : sse12_ord_cmp_int<0x2E, VR128X, X86ucomi, v2f64, sdmem, sse_load_f64, "ucomisd", WriteFCom>, PD, EVEX, VEX_LIG, VEX_W, EVEX_CD8<64, CD8VT1>; defm VCOMISSZ : sse12_ord_cmp_int<0x2F, VR128X, X86comi, v4f32, ssmem, sse_load_f32, "comiss", WriteFCom>, PS, EVEX, VEX_LIG, EVEX_CD8<32, CD8VT1>; defm VCOMISDZ : sse12_ord_cmp_int<0x2F, VR128X, X86comi, v2f64, sdmem, sse_load_f64, "comisd", WriteFCom>, PD, EVEX, VEX_LIG, VEX_W, EVEX_CD8<64, CD8VT1>; } } /// avx512_fp14_s rcp14ss, rcp14sd, rsqrt14ss, rsqrt14sd multiclass avx512_fp14_s<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _> { let Predicates = [HasAVX512], ExeDomain = _.ExeDomain in { defm rr : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2))>, EVEX_4V, Sched<[sched]>; defm rm : AVX512_maskable_scalar<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.IntScalarMemOp:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (OpNode (_.VT _.RC:$src1), _.ScalarIntMemCPat:$src2)>, EVEX_4V, Sched<[sched.Folded, ReadAfterLd]>; } } defm VRCP14SSZ : avx512_fp14_s<0x4D, "vrcp14ss", X86rcp14s, SchedWriteFRcp.Scl, f32x_info>, EVEX_CD8<32, CD8VT1>, T8PD; defm VRCP14SDZ : avx512_fp14_s<0x4D, "vrcp14sd", X86rcp14s, SchedWriteFRcp.Scl, f64x_info>, VEX_W, EVEX_CD8<64, CD8VT1>, T8PD; defm VRSQRT14SSZ : avx512_fp14_s<0x4F, "vrsqrt14ss", X86rsqrt14s, SchedWriteFRsqrt.Scl, f32x_info>, EVEX_CD8<32, CD8VT1>, T8PD; defm VRSQRT14SDZ : avx512_fp14_s<0x4F, "vrsqrt14sd", X86rsqrt14s, SchedWriteFRsqrt.Scl, f64x_info>, VEX_W, EVEX_CD8<64, CD8VT1>, T8PD; /// avx512_fp14_p rcp14ps, rcp14pd, rsqrt14ps, rsqrt14pd multiclass avx512_fp14_p<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in { defm r: AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src), OpcodeStr, "$src", "$src", (_.VT (OpNode _.RC:$src))>, EVEX, T8PD, Sched<[sched]>; defm m: AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.MemOp:$src), OpcodeStr, "$src", "$src", (OpNode (_.VT (bitconvert (_.LdFrag addr:$src))))>, EVEX, T8PD, Sched<[sched.Folded, ReadAfterLd]>; defm mb: AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.ScalarMemOp:$src), OpcodeStr, "${src}"##_.BroadcastStr, "${src}"##_.BroadcastStr, (OpNode (_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src))))>, EVEX, T8PD, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; } } multiclass avx512_fp14_p_vl_all<bits<8> opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched> { defm PSZ : avx512_fp14_p<opc, !strconcat(OpcodeStr, "ps"), OpNode, sched.ZMM, v16f32_info>, EVEX_V512, EVEX_CD8<32, CD8VF>; defm PDZ : avx512_fp14_p<opc, !strconcat(OpcodeStr, "pd"), OpNode, sched.ZMM, v8f64_info>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>; // Define only if AVX512VL feature is present. let Predicates = [HasVLX] in { defm PSZ128 : avx512_fp14_p<opc, !strconcat(OpcodeStr, "ps"), OpNode, sched.XMM, v4f32x_info>, EVEX_V128, EVEX_CD8<32, CD8VF>; defm PSZ256 : avx512_fp14_p<opc, !strconcat(OpcodeStr, "ps"), OpNode, sched.YMM, v8f32x_info>, EVEX_V256, EVEX_CD8<32, CD8VF>; defm PDZ128 : avx512_fp14_p<opc, !strconcat(OpcodeStr, "pd"), OpNode, sched.XMM, v2f64x_info>, EVEX_V128, VEX_W, EVEX_CD8<64, CD8VF>; defm PDZ256 : avx512_fp14_p<opc, !strconcat(OpcodeStr, "pd"), OpNode, sched.YMM, v4f64x_info>, EVEX_V256, VEX_W, EVEX_CD8<64, CD8VF>; } } defm VRSQRT14 : avx512_fp14_p_vl_all<0x4E, "vrsqrt14", X86rsqrt14, SchedWriteFRsqrt>; defm VRCP14 : avx512_fp14_p_vl_all<0x4C, "vrcp14", X86rcp14, SchedWriteFRcp>; /// avx512_fp28_s rcp28ss, rcp28sd, rsqrt28ss, rsqrt28sd multiclass avx512_fp28_s<bits<8> opc, string OpcodeStr,X86VectorVTInfo _, SDNode OpNode, X86FoldableSchedWrite sched> { let ExeDomain = _.ExeDomain in { defm r : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2), (i32 FROUND_CURRENT))>, Sched<[sched]>; defm rb : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2), OpcodeStr, "{sae}, $src2, $src1", "$src1, $src2, {sae}", (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2), (i32 FROUND_NO_EXC))>, EVEX_B, Sched<[sched]>; defm m : AVX512_maskable_scalar<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.IntScalarMemOp:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (OpNode (_.VT _.RC:$src1), _.ScalarIntMemCPat:$src2, (i32 FROUND_CURRENT))>, Sched<[sched.Folded, ReadAfterLd]>; } } multiclass avx512_eri_s<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched> { defm SSZ : avx512_fp28_s<opc, OpcodeStr#"ss", f32x_info, OpNode, sched>, EVEX_CD8<32, CD8VT1>; defm SDZ : avx512_fp28_s<opc, OpcodeStr#"sd", f64x_info, OpNode, sched>, EVEX_CD8<64, CD8VT1>, VEX_W; } let Predicates = [HasERI] in { defm VRCP28 : avx512_eri_s<0xCB, "vrcp28", X86rcp28s, SchedWriteFRcp.Scl>, T8PD, EVEX_4V; defm VRSQRT28 : avx512_eri_s<0xCD, "vrsqrt28", X86rsqrt28s, SchedWriteFRsqrt.Scl>, T8PD, EVEX_4V; } defm VGETEXP : avx512_eri_s<0x43, "vgetexp", X86fgetexpRnds, SchedWriteFRnd.Scl>, T8PD, EVEX_4V; /// avx512_fp28_p rcp28ps, rcp28pd, rsqrt28ps, rsqrt28pd multiclass avx512_fp28_p<bits<8> opc, string OpcodeStr, X86VectorVTInfo _, SDNode OpNode, X86FoldableSchedWrite sched> { let ExeDomain = _.ExeDomain in { defm r : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src), OpcodeStr, "$src", "$src", (OpNode (_.VT _.RC:$src), (i32 FROUND_CURRENT))>, Sched<[sched]>; defm m : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.MemOp:$src), OpcodeStr, "$src", "$src", (OpNode (_.VT (bitconvert (_.LdFrag addr:$src))), (i32 FROUND_CURRENT))>, Sched<[sched.Folded, ReadAfterLd]>; defm mb : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.ScalarMemOp:$src), OpcodeStr, "${src}"##_.BroadcastStr, "${src}"##_.BroadcastStr, (OpNode (_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src))), (i32 FROUND_CURRENT))>, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; } } multiclass avx512_fp28_p_round<bits<8> opc, string OpcodeStr, X86VectorVTInfo _, SDNode OpNode, X86FoldableSchedWrite sched> { let ExeDomain = _.ExeDomain in defm rb : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src), OpcodeStr, "{sae}, $src", "$src, {sae}", (OpNode (_.VT _.RC:$src), (i32 FROUND_NO_EXC))>, EVEX_B, Sched<[sched]>; } multiclass avx512_eri<bits<8> opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched> { defm PSZ : avx512_fp28_p<opc, OpcodeStr#"ps", v16f32_info, OpNode, sched.ZMM>, avx512_fp28_p_round<opc, OpcodeStr#"ps", v16f32_info, OpNode, sched.ZMM>, T8PD, EVEX_V512, EVEX_CD8<32, CD8VF>; defm PDZ : avx512_fp28_p<opc, OpcodeStr#"pd", v8f64_info, OpNode, sched.ZMM>, avx512_fp28_p_round<opc, OpcodeStr#"pd", v8f64_info, OpNode, sched.ZMM>, T8PD, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VF>; } multiclass avx512_fp_unaryop_packed<bits<8> opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched> { // Define only if AVX512VL feature is present. let Predicates = [HasVLX] in { defm PSZ128 : avx512_fp28_p<opc, OpcodeStr#"ps", v4f32x_info, OpNode, sched.XMM>, EVEX_V128, T8PD, EVEX_CD8<32, CD8VF>; defm PSZ256 : avx512_fp28_p<opc, OpcodeStr#"ps", v8f32x_info, OpNode, sched.YMM>, EVEX_V256, T8PD, EVEX_CD8<32, CD8VF>; defm PDZ128 : avx512_fp28_p<opc, OpcodeStr#"pd", v2f64x_info, OpNode, sched.XMM>, EVEX_V128, VEX_W, T8PD, EVEX_CD8<64, CD8VF>; defm PDZ256 : avx512_fp28_p<opc, OpcodeStr#"pd", v4f64x_info, OpNode, sched.YMM>, EVEX_V256, VEX_W, T8PD, EVEX_CD8<64, CD8VF>; } } let Predicates = [HasERI] in { defm VRSQRT28 : avx512_eri<0xCC, "vrsqrt28", X86rsqrt28, SchedWriteFRsqrt>, EVEX; defm VRCP28 : avx512_eri<0xCA, "vrcp28", X86rcp28, SchedWriteFRcp>, EVEX; defm VEXP2 : avx512_eri<0xC8, "vexp2", X86exp2, SchedWriteFAdd>, EVEX; } defm VGETEXP : avx512_eri<0x42, "vgetexp", X86fgetexpRnd, SchedWriteFRnd>, avx512_fp_unaryop_packed<0x42, "vgetexp", X86fgetexpRnd, SchedWriteFRnd>, EVEX; multiclass avx512_sqrt_packed_round<bits<8> opc, string OpcodeStr, X86FoldableSchedWrite sched, X86VectorVTInfo _>{ let ExeDomain = _.ExeDomain in defm rb: AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src, AVX512RC:$rc), OpcodeStr, "$rc, $src", "$src, $rc", (_.VT (X86fsqrtRnd _.RC:$src, (i32 imm:$rc)))>, EVEX, EVEX_B, EVEX_RC, Sched<[sched]>; } multiclass avx512_sqrt_packed<bits<8> opc, string OpcodeStr, X86FoldableSchedWrite sched, X86VectorVTInfo _>{ let ExeDomain = _.ExeDomain in { defm r: AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src), OpcodeStr, "$src", "$src", (_.VT (fsqrt _.RC:$src))>, EVEX, Sched<[sched]>; defm m: AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.MemOp:$src), OpcodeStr, "$src", "$src", (fsqrt (_.VT (bitconvert (_.LdFrag addr:$src))))>, EVEX, Sched<[sched.Folded, ReadAfterLd]>; defm mb: AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.ScalarMemOp:$src), OpcodeStr, "${src}"##_.BroadcastStr, "${src}"##_.BroadcastStr, (fsqrt (_.VT (X86VBroadcast (_.ScalarLdFrag addr:$src))))>, EVEX, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; } } multiclass avx512_sqrt_packed_all<bits<8> opc, string OpcodeStr, X86SchedWriteSizes sched> { defm PSZ : avx512_sqrt_packed<opc, !strconcat(OpcodeStr, "ps"), sched.PS.ZMM, v16f32_info>, EVEX_V512, PS, EVEX_CD8<32, CD8VF>; defm PDZ : avx512_sqrt_packed<opc, !strconcat(OpcodeStr, "pd"), sched.PD.ZMM, v8f64_info>, EVEX_V512, VEX_W, PD, EVEX_CD8<64, CD8VF>; // Define only if AVX512VL feature is present. let Predicates = [HasVLX] in { defm PSZ128 : avx512_sqrt_packed<opc, !strconcat(OpcodeStr, "ps"), sched.PS.XMM, v4f32x_info>, EVEX_V128, PS, EVEX_CD8<32, CD8VF>; defm PSZ256 : avx512_sqrt_packed<opc, !strconcat(OpcodeStr, "ps"), sched.PS.YMM, v8f32x_info>, EVEX_V256, PS, EVEX_CD8<32, CD8VF>; defm PDZ128 : avx512_sqrt_packed<opc, !strconcat(OpcodeStr, "pd"), sched.PD.XMM, v2f64x_info>, EVEX_V128, VEX_W, PD, EVEX_CD8<64, CD8VF>; defm PDZ256 : avx512_sqrt_packed<opc, !strconcat(OpcodeStr, "pd"), sched.PD.YMM, v4f64x_info>, EVEX_V256, VEX_W, PD, EVEX_CD8<64, CD8VF>; } } multiclass avx512_sqrt_packed_all_round<bits<8> opc, string OpcodeStr, X86SchedWriteSizes sched> { defm PSZ : avx512_sqrt_packed_round<opc, !strconcat(OpcodeStr, "ps"), sched.PS.ZMM, v16f32_info>, EVEX_V512, PS, EVEX_CD8<32, CD8VF>; defm PDZ : avx512_sqrt_packed_round<opc, !strconcat(OpcodeStr, "pd"), sched.PD.ZMM, v8f64_info>, EVEX_V512, VEX_W, PD, EVEX_CD8<64, CD8VF>; } multiclass avx512_sqrt_scalar<bits<8> opc, string OpcodeStr, X86FoldableSchedWrite sched, X86VectorVTInfo _, string Name> { let ExeDomain = _.ExeDomain in { defm r_Int : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (X86fsqrtRnds (_.VT _.RC:$src1), (_.VT _.RC:$src2), (i32 FROUND_CURRENT))>, Sched<[sched]>; defm m_Int : AVX512_maskable_scalar<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.IntScalarMemOp:$src2), OpcodeStr, "$src2, $src1", "$src1, $src2", (X86fsqrtRnds (_.VT _.RC:$src1), _.ScalarIntMemCPat:$src2, (i32 FROUND_CURRENT))>, Sched<[sched.Folded, ReadAfterLd]>; defm rb_Int : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2, AVX512RC:$rc), OpcodeStr, "$rc, $src2, $src1", "$src1, $src2, $rc", (X86fsqrtRnds (_.VT _.RC:$src1), (_.VT _.RC:$src2), (i32 imm:$rc))>, EVEX_B, EVEX_RC, Sched<[sched]>; let isCodeGenOnly = 1, hasSideEffects = 0, Predicates=[HasAVX512] in { def r : I<opc, MRMSrcReg, (outs _.FRC:$dst), (ins _.FRC:$src1, _.FRC:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, Sched<[sched]>; let mayLoad = 1 in def m : I<opc, MRMSrcMem, (outs _.FRC:$dst), (ins _.FRC:$src1, _.ScalarMemOp:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, Sched<[sched.Folded, ReadAfterLd]>; } } let Predicates = [HasAVX512] in { def : Pat<(_.EltVT (fsqrt _.FRC:$src)), (!cast<Instruction>(Name#Zr) (_.EltVT (IMPLICIT_DEF)), _.FRC:$src)>; } let Predicates = [HasAVX512, OptForSize] in { def : Pat<(_.EltVT (fsqrt (load addr:$src))), (!cast<Instruction>(Name#Zm) (_.EltVT (IMPLICIT_DEF)), addr:$src)>; } } multiclass avx512_sqrt_scalar_all<bits<8> opc, string OpcodeStr, X86SchedWriteSizes sched> { defm SSZ : avx512_sqrt_scalar<opc, OpcodeStr#"ss", sched.PS.Scl, f32x_info, NAME#"SS">, EVEX_CD8<32, CD8VT1>, EVEX_4V, XS; defm SDZ : avx512_sqrt_scalar<opc, OpcodeStr#"sd", sched.PD.Scl, f64x_info, NAME#"SD">, EVEX_CD8<64, CD8VT1>, EVEX_4V, XD, VEX_W; } defm VSQRT : avx512_sqrt_packed_all<0x51, "vsqrt", SchedWriteFSqrtSizes>, avx512_sqrt_packed_all_round<0x51, "vsqrt", SchedWriteFSqrtSizes>; defm VSQRT : avx512_sqrt_scalar_all<0x51, "vsqrt", SchedWriteFSqrtSizes>, VEX_LIG; multiclass avx512_rndscale_scalar<bits<8> opc, string OpcodeStr, X86FoldableSchedWrite sched, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in { defm r_Int : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2, i32u8imm:$src3), OpcodeStr, "$src3, $src2, $src1", "$src1, $src2, $src3", (_.VT (X86RndScales (_.VT _.RC:$src1), (_.VT _.RC:$src2), (i32 imm:$src3)))>, Sched<[sched]>; defm rb_Int : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2, i32u8imm:$src3), OpcodeStr, "$src3, {sae}, $src2, $src1", "$src1, $src2, {sae}, $src3", (_.VT (X86RndScalesRnd (_.VT _.RC:$src1), (_.VT _.RC:$src2), (i32 imm:$src3), (i32 FROUND_NO_EXC)))>, EVEX_B, Sched<[sched]>; defm m_Int : AVX512_maskable_scalar<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.IntScalarMemOp:$src2, i32u8imm:$src3), OpcodeStr, "$src3, $src2, $src1", "$src1, $src2, $src3", (_.VT (X86RndScales _.RC:$src1, _.ScalarIntMemCPat:$src2, (i32 imm:$src3)))>, Sched<[sched.Folded, ReadAfterLd]>; let isCodeGenOnly = 1, hasSideEffects = 0, Predicates = [HasAVX512] in { def r : I<opc, MRMSrcReg, (outs _.FRC:$dst), (ins _.FRC:$src1, _.FRC:$src2, i32u8imm:$src3), OpcodeStr#"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", []>, Sched<[sched]>; let mayLoad = 1 in def m : I<opc, MRMSrcMem, (outs _.FRC:$dst), (ins _.FRC:$src1, _.ScalarMemOp:$src2, i32u8imm:$src3), OpcodeStr#"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", []>, Sched<[sched.Folded, ReadAfterLd]>; } } let Predicates = [HasAVX512] in { def : Pat<(ffloor _.FRC:$src), (_.EltVT (!cast<Instruction>(NAME##r) (_.EltVT (IMPLICIT_DEF)), _.FRC:$src, (i32 0x9)))>; def : Pat<(fceil _.FRC:$src), (_.EltVT (!cast<Instruction>(NAME##r) (_.EltVT (IMPLICIT_DEF)), _.FRC:$src, (i32 0xa)))>; def : Pat<(ftrunc _.FRC:$src), (_.EltVT (!cast<Instruction>(NAME##r) (_.EltVT (IMPLICIT_DEF)), _.FRC:$src, (i32 0xb)))>; def : Pat<(frint _.FRC:$src), (_.EltVT (!cast<Instruction>(NAME##r) (_.EltVT (IMPLICIT_DEF)), _.FRC:$src, (i32 0x4)))>; def : Pat<(fnearbyint _.FRC:$src), (_.EltVT (!cast<Instruction>(NAME##r) (_.EltVT (IMPLICIT_DEF)), _.FRC:$src, (i32 0xc)))>; } let Predicates = [HasAVX512, OptForSize] in { def : Pat<(ffloor (_.ScalarLdFrag addr:$src)), (_.EltVT (!cast<Instruction>(NAME##m) (_.EltVT (IMPLICIT_DEF)), addr:$src, (i32 0x9)))>; def : Pat<(fceil (_.ScalarLdFrag addr:$src)), (_.EltVT (!cast<Instruction>(NAME##m) (_.EltVT (IMPLICIT_DEF)), addr:$src, (i32 0xa)))>; def : Pat<(ftrunc (_.ScalarLdFrag addr:$src)), (_.EltVT (!cast<Instruction>(NAME##m) (_.EltVT (IMPLICIT_DEF)), addr:$src, (i32 0xb)))>; def : Pat<(frint (_.ScalarLdFrag addr:$src)), (_.EltVT (!cast<Instruction>(NAME##m) (_.EltVT (IMPLICIT_DEF)), addr:$src, (i32 0x4)))>; def : Pat<(fnearbyint (_.ScalarLdFrag addr:$src)), (_.EltVT (!cast<Instruction>(NAME##m) (_.EltVT (IMPLICIT_DEF)), addr:$src, (i32 0xc)))>; } } defm VRNDSCALESSZ : avx512_rndscale_scalar<0x0A, "vrndscaless", SchedWriteFRnd.Scl, f32x_info>, AVX512AIi8Base, EVEX_4V, EVEX_CD8<32, CD8VT1>; defm VRNDSCALESDZ : avx512_rndscale_scalar<0x0B, "vrndscalesd", SchedWriteFRnd.Scl, f64x_info>, VEX_W, AVX512AIi8Base, EVEX_4V, EVEX_CD8<64, CD8VT1>; multiclass avx512_masked_scalar<SDNode OpNode, string OpcPrefix, SDNode Move, dag Mask, X86VectorVTInfo _, PatLeaf ZeroFP, dag OutMask, Predicate BasePredicate> { let Predicates = [BasePredicate] in { def : Pat<(Move _.VT:$src1, (scalar_to_vector (X86selects Mask, (OpNode (extractelt _.VT:$src2, (iPTR 0))), (extractelt _.VT:$dst, (iPTR 0))))), (!cast<Instruction>("V"#OpcPrefix#r_Intk) _.VT:$dst, OutMask, _.VT:$src2, _.VT:$src1)>; def : Pat<(Move _.VT:$src1, (scalar_to_vector (X86selects Mask, (OpNode (extractelt _.VT:$src2, (iPTR 0))), ZeroFP))), (!cast<Instruction>("V"#OpcPrefix#r_Intkz) OutMask, _.VT:$src2, _.VT:$src1)>; } } defm : avx512_masked_scalar<fsqrt, "SQRTSSZ", X86Movss, (v1i1 (scalar_to_vector (i8 (trunc (i32 GR32:$mask))))), v4f32x_info, fp32imm0, (COPY_TO_REGCLASS $mask, VK1WM), HasAVX512>; defm : avx512_masked_scalar<fsqrt, "SQRTSDZ", X86Movsd, (v1i1 (scalar_to_vector (i8 (trunc (i32 GR32:$mask))))), v2f64x_info, fp64imm0, (COPY_TO_REGCLASS $mask, VK1WM), HasAVX512>; multiclass avx512_masked_scalar_imm<SDNode OpNode, string OpcPrefix, SDNode Move, X86VectorVTInfo _, PatLeaf ZeroFP, bits<8> ImmV, Predicate BasePredicate> { let Predicates = [BasePredicate] in { def : Pat<(Move _.VT:$src1, (scalar_to_vector (X86selects VK1WM:$mask, (OpNode (extractelt _.VT:$src2, (iPTR 0))), (extractelt _.VT:$dst, (iPTR 0))))), (!cast<Instruction>("V"#OpcPrefix#Zr_Intk) _.VT:$dst, VK1WM:$mask, _.VT:$src1, _.VT:$src2, (i32 ImmV))>; def : Pat<(Move _.VT:$src1, (scalar_to_vector (X86selects VK1WM:$mask, (OpNode (extractelt _.VT:$src2, (iPTR 0))), ZeroFP))), (!cast<Instruction>("V"#OpcPrefix#Zr_Intkz) VK1WM:$mask, _.VT:$src1, _.VT:$src2, (i32 ImmV))>; } } defm : avx512_masked_scalar_imm<ffloor, "RNDSCALESS", X86Movss, v4f32x_info, fp32imm0, 0x01, HasAVX512>; defm : avx512_masked_scalar_imm<fceil, "RNDSCALESS", X86Movss, v4f32x_info, fp32imm0, 0x02, HasAVX512>; defm : avx512_masked_scalar_imm<ffloor, "RNDSCALESD", X86Movsd, v2f64x_info, fp64imm0, 0x01, HasAVX512>; defm : avx512_masked_scalar_imm<fceil, "RNDSCALESD", X86Movsd, v2f64x_info, fp64imm0, 0x02, HasAVX512>; //------------------------------------------------- // Integer truncate and extend operations //------------------------------------------------- multiclass avx512_trunc_common<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo SrcInfo, X86VectorVTInfo DestInfo, X86MemOperand x86memop> { let ExeDomain = DestInfo.ExeDomain in defm rr : AVX512_maskable<opc, MRMDestReg, DestInfo, (outs DestInfo.RC:$dst), (ins SrcInfo.RC:$src1), OpcodeStr ,"$src1", "$src1", (DestInfo.VT (OpNode (SrcInfo.VT SrcInfo.RC:$src1)))>, EVEX, T8XS, Sched<[sched]>; let mayStore = 1, hasSideEffects = 0, ExeDomain = DestInfo.ExeDomain in { def mr : AVX512XS8I<opc, MRMDestMem, (outs), (ins x86memop:$dst, SrcInfo.RC:$src), OpcodeStr # "\t{$src, $dst|$dst, $src}", []>, EVEX, Sched<[sched.Folded]>; def mrk : AVX512XS8I<opc, MRMDestMem, (outs), (ins x86memop:$dst, SrcInfo.KRCWM:$mask, SrcInfo.RC:$src), OpcodeStr # "\t{$src, $dst {${mask}}|$dst {${mask}}, $src}", []>, EVEX, EVEX_K, Sched<[sched.Folded]>, NotMemoryFoldable; }//mayStore = 1, hasSideEffects = 0 } multiclass avx512_trunc_mr_lowering<X86VectorVTInfo SrcInfo, X86VectorVTInfo DestInfo, PatFrag truncFrag, PatFrag mtruncFrag, string Name> { def : Pat<(truncFrag (SrcInfo.VT SrcInfo.RC:$src), addr:$dst), (!cast<Instruction>(Name#SrcInfo.ZSuffix##mr) addr:$dst, SrcInfo.RC:$src)>; def : Pat<(mtruncFrag addr:$dst, SrcInfo.KRCWM:$mask, (SrcInfo.VT SrcInfo.RC:$src)), (!cast<Instruction>(Name#SrcInfo.ZSuffix##mrk) addr:$dst, SrcInfo.KRCWM:$mask, SrcInfo.RC:$src)>; } multiclass avx512_trunc<bits<8> opc, string OpcodeStr, SDNode OpNode128, SDNode OpNode256, SDNode OpNode512, X86FoldableSchedWrite sched, AVX512VLVectorVTInfo VTSrcInfo, X86VectorVTInfo DestInfoZ128, X86VectorVTInfo DestInfoZ256, X86VectorVTInfo DestInfoZ, X86MemOperand x86memopZ128, X86MemOperand x86memopZ256, X86MemOperand x86memopZ, PatFrag truncFrag, PatFrag mtruncFrag, Predicate prd = HasAVX512>{ let Predicates = [HasVLX, prd] in { defm Z128: avx512_trunc_common<opc, OpcodeStr, OpNode128, sched, VTSrcInfo.info128, DestInfoZ128, x86memopZ128>, avx512_trunc_mr_lowering<VTSrcInfo.info128, DestInfoZ128, truncFrag, mtruncFrag, NAME>, EVEX_V128; defm Z256: avx512_trunc_common<opc, OpcodeStr, OpNode256, sched, VTSrcInfo.info256, DestInfoZ256, x86memopZ256>, avx512_trunc_mr_lowering<VTSrcInfo.info256, DestInfoZ256, truncFrag, mtruncFrag, NAME>, EVEX_V256; } let Predicates = [prd] in defm Z: avx512_trunc_common<opc, OpcodeStr, OpNode512, sched, VTSrcInfo.info512, DestInfoZ, x86memopZ>, avx512_trunc_mr_lowering<VTSrcInfo.info512, DestInfoZ, truncFrag, mtruncFrag, NAME>, EVEX_V512; } multiclass avx512_trunc_qb<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, PatFrag StoreNode, PatFrag MaskedStoreNode, SDNode InVecNode = OpNode> { defm NAME: avx512_trunc<opc, OpcodeStr, InVecNode, InVecNode, InVecNode, sched, avx512vl_i64_info, v16i8x_info, v16i8x_info, v16i8x_info, i16mem, i32mem, i64mem, StoreNode, MaskedStoreNode>, EVEX_CD8<8, CD8VO>; } multiclass avx512_trunc_qw<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, PatFrag StoreNode, PatFrag MaskedStoreNode, SDNode InVecNode = OpNode> { defm NAME: avx512_trunc<opc, OpcodeStr, InVecNode, InVecNode, OpNode, sched, avx512vl_i64_info, v8i16x_info, v8i16x_info, v8i16x_info, i32mem, i64mem, i128mem, StoreNode, MaskedStoreNode>, EVEX_CD8<16, CD8VQ>; } multiclass avx512_trunc_qd<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, PatFrag StoreNode, PatFrag MaskedStoreNode, SDNode InVecNode = OpNode> { defm NAME: avx512_trunc<opc, OpcodeStr, InVecNode, OpNode, OpNode, sched, avx512vl_i64_info, v4i32x_info, v4i32x_info, v8i32x_info, i64mem, i128mem, i256mem, StoreNode, MaskedStoreNode>, EVEX_CD8<32, CD8VH>; } multiclass avx512_trunc_db<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, PatFrag StoreNode, PatFrag MaskedStoreNode, SDNode InVecNode = OpNode> { defm NAME: avx512_trunc<opc, OpcodeStr, InVecNode, InVecNode, OpNode, sched, avx512vl_i32_info, v16i8x_info, v16i8x_info, v16i8x_info, i32mem, i64mem, i128mem, StoreNode, MaskedStoreNode>, EVEX_CD8<8, CD8VQ>; } multiclass avx512_trunc_dw<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, PatFrag StoreNode, PatFrag MaskedStoreNode, SDNode InVecNode = OpNode> { defm NAME: avx512_trunc<opc, OpcodeStr, InVecNode, OpNode, OpNode, sched, avx512vl_i32_info, v8i16x_info, v8i16x_info, v16i16x_info, i64mem, i128mem, i256mem, StoreNode, MaskedStoreNode>, EVEX_CD8<16, CD8VH>; } multiclass avx512_trunc_wb<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, PatFrag StoreNode, PatFrag MaskedStoreNode, SDNode InVecNode = OpNode> { defm NAME: avx512_trunc<opc, OpcodeStr, InVecNode, OpNode, OpNode, sched, avx512vl_i16_info, v16i8x_info, v16i8x_info, v32i8x_info, i64mem, i128mem, i256mem, StoreNode, MaskedStoreNode, HasBWI>, EVEX_CD8<16, CD8VH>; } defm VPMOVQB : avx512_trunc_qb<0x32, "vpmovqb", trunc, WriteShuffle256, truncstorevi8, masked_truncstorevi8, X86vtrunc>; defm VPMOVSQB : avx512_trunc_qb<0x22, "vpmovsqb", X86vtruncs, WriteShuffle256, truncstore_s_vi8, masked_truncstore_s_vi8>; defm VPMOVUSQB : avx512_trunc_qb<0x12, "vpmovusqb", X86vtruncus, WriteShuffle256, truncstore_us_vi8, masked_truncstore_us_vi8>; defm VPMOVQW : avx512_trunc_qw<0x34, "vpmovqw", trunc, WriteShuffle256, truncstorevi16, masked_truncstorevi16, X86vtrunc>; defm VPMOVSQW : avx512_trunc_qw<0x24, "vpmovsqw", X86vtruncs, WriteShuffle256, truncstore_s_vi16, masked_truncstore_s_vi16>; defm VPMOVUSQW : avx512_trunc_qw<0x14, "vpmovusqw", X86vtruncus, WriteShuffle256, truncstore_us_vi16, masked_truncstore_us_vi16>; defm VPMOVQD : avx512_trunc_qd<0x35, "vpmovqd", trunc, WriteShuffle256, truncstorevi32, masked_truncstorevi32, X86vtrunc>; defm VPMOVSQD : avx512_trunc_qd<0x25, "vpmovsqd", X86vtruncs, WriteShuffle256, truncstore_s_vi32, masked_truncstore_s_vi32>; defm VPMOVUSQD : avx512_trunc_qd<0x15, "vpmovusqd", X86vtruncus, WriteShuffle256, truncstore_us_vi32, masked_truncstore_us_vi32>; defm VPMOVDB : avx512_trunc_db<0x31, "vpmovdb", trunc, WriteShuffle256, truncstorevi8, masked_truncstorevi8, X86vtrunc>; defm VPMOVSDB : avx512_trunc_db<0x21, "vpmovsdb", X86vtruncs, WriteShuffle256, truncstore_s_vi8, masked_truncstore_s_vi8>; defm VPMOVUSDB : avx512_trunc_db<0x11, "vpmovusdb", X86vtruncus, WriteShuffle256, truncstore_us_vi8, masked_truncstore_us_vi8>; defm VPMOVDW : avx512_trunc_dw<0x33, "vpmovdw", trunc, WriteShuffle256, truncstorevi16, masked_truncstorevi16, X86vtrunc>; defm VPMOVSDW : avx512_trunc_dw<0x23, "vpmovsdw", X86vtruncs, WriteShuffle256, truncstore_s_vi16, masked_truncstore_s_vi16>; defm VPMOVUSDW : avx512_trunc_dw<0x13, "vpmovusdw", X86vtruncus, WriteShuffle256, truncstore_us_vi16, masked_truncstore_us_vi16>; defm VPMOVWB : avx512_trunc_wb<0x30, "vpmovwb", trunc, WriteShuffle256, truncstorevi8, masked_truncstorevi8, X86vtrunc>; defm VPMOVSWB : avx512_trunc_wb<0x20, "vpmovswb", X86vtruncs, WriteShuffle256, truncstore_s_vi8, masked_truncstore_s_vi8>; defm VPMOVUSWB : avx512_trunc_wb<0x10, "vpmovuswb", X86vtruncus, WriteShuffle256, truncstore_us_vi8, masked_truncstore_us_vi8>; let Predicates = [HasAVX512, NoVLX] in { def: Pat<(v8i16 (trunc (v8i32 VR256X:$src))), (v8i16 (EXTRACT_SUBREG (v16i16 (VPMOVDWZrr (v16i32 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src, sub_ymm)))), sub_xmm))>; def: Pat<(v4i32 (trunc (v4i64 VR256X:$src))), (v4i32 (EXTRACT_SUBREG (v8i32 (VPMOVQDZrr (v8i64 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src, sub_ymm)))), sub_xmm))>; } let Predicates = [HasBWI, NoVLX] in { def: Pat<(v16i8 (trunc (v16i16 VR256X:$src))), (v16i8 (EXTRACT_SUBREG (VPMOVWBZrr (v32i16 (INSERT_SUBREG (IMPLICIT_DEF), VR256X:$src, sub_ymm))), sub_xmm))>; } multiclass WriteShuffle256_common<bits<8> opc, string OpcodeStr, X86FoldableSchedWrite sched, X86VectorVTInfo DestInfo, X86VectorVTInfo SrcInfo, X86MemOperand x86memop, PatFrag LdFrag, SDNode OpNode>{ let ExeDomain = DestInfo.ExeDomain in { defm rr : AVX512_maskable<opc, MRMSrcReg, DestInfo, (outs DestInfo.RC:$dst), (ins SrcInfo.RC:$src), OpcodeStr ,"$src", "$src", (DestInfo.VT (OpNode (SrcInfo.VT SrcInfo.RC:$src)))>, EVEX, Sched<[sched]>; defm rm : AVX512_maskable<opc, MRMSrcMem, DestInfo, (outs DestInfo.RC:$dst), (ins x86memop:$src), OpcodeStr ,"$src", "$src", (DestInfo.VT (LdFrag addr:$src))>, EVEX, Sched<[sched.Folded]>; } } multiclass WriteShuffle256_BW<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode InVecNode, string ExtTy, X86FoldableSchedWrite sched, PatFrag LdFrag = !cast<PatFrag>(ExtTy#"extloadvi8")> { let Predicates = [HasVLX, HasBWI] in { defm Z128: WriteShuffle256_common<opc, OpcodeStr, sched, v8i16x_info, v16i8x_info, i64mem, LdFrag, InVecNode>, EVEX_CD8<8, CD8VH>, T8PD, EVEX_V128, VEX_WIG; defm Z256: WriteShuffle256_common<opc, OpcodeStr, sched, v16i16x_info, v16i8x_info, i128mem, LdFrag, OpNode>, EVEX_CD8<8, CD8VH>, T8PD, EVEX_V256, VEX_WIG; } let Predicates = [HasBWI] in { defm Z : WriteShuffle256_common<opc, OpcodeStr, sched, v32i16_info, v32i8x_info, i256mem, LdFrag, OpNode>, EVEX_CD8<8, CD8VH>, T8PD, EVEX_V512, VEX_WIG; } } multiclass WriteShuffle256_BD<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode InVecNode, string ExtTy, X86FoldableSchedWrite sched, PatFrag LdFrag = !cast<PatFrag>(ExtTy#"extloadvi8")> { let Predicates = [HasVLX, HasAVX512] in { defm Z128: WriteShuffle256_common<opc, OpcodeStr, sched, v4i32x_info, v16i8x_info, i32mem, LdFrag, InVecNode>, EVEX_CD8<8, CD8VQ>, T8PD, EVEX_V128, VEX_WIG; defm Z256: WriteShuffle256_common<opc, OpcodeStr, sched, v8i32x_info, v16i8x_info, i64mem, LdFrag, OpNode>, EVEX_CD8<8, CD8VQ>, T8PD, EVEX_V256, VEX_WIG; } let Predicates = [HasAVX512] in { defm Z : WriteShuffle256_common<opc, OpcodeStr, sched, v16i32_info, v16i8x_info, i128mem, LdFrag, OpNode>, EVEX_CD8<8, CD8VQ>, T8PD, EVEX_V512, VEX_WIG; } } multiclass WriteShuffle256_BQ<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode InVecNode, string ExtTy, X86FoldableSchedWrite sched, PatFrag LdFrag = !cast<PatFrag>(ExtTy#"extloadvi8")> { let Predicates = [HasVLX, HasAVX512] in { defm Z128: WriteShuffle256_common<opc, OpcodeStr, sched, v2i64x_info, v16i8x_info, i16mem, LdFrag, InVecNode>, EVEX_CD8<8, CD8VO>, T8PD, EVEX_V128, VEX_WIG; defm Z256: WriteShuffle256_common<opc, OpcodeStr, sched, v4i64x_info, v16i8x_info, i32mem, LdFrag, OpNode>, EVEX_CD8<8, CD8VO>, T8PD, EVEX_V256, VEX_WIG; } let Predicates = [HasAVX512] in { defm Z : WriteShuffle256_common<opc, OpcodeStr, sched, v8i64_info, v16i8x_info, i64mem, LdFrag, OpNode>, EVEX_CD8<8, CD8VO>, T8PD, EVEX_V512, VEX_WIG; } } multiclass WriteShuffle256_WD<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode InVecNode, string ExtTy, X86FoldableSchedWrite sched, PatFrag LdFrag = !cast<PatFrag>(ExtTy#"extloadvi16")> { let Predicates = [HasVLX, HasAVX512] in { defm Z128: WriteShuffle256_common<opc, OpcodeStr, sched, v4i32x_info, v8i16x_info, i64mem, LdFrag, InVecNode>, EVEX_CD8<16, CD8VH>, T8PD, EVEX_V128, VEX_WIG; defm Z256: WriteShuffle256_common<opc, OpcodeStr, sched, v8i32x_info, v8i16x_info, i128mem, LdFrag, OpNode>, EVEX_CD8<16, CD8VH>, T8PD, EVEX_V256, VEX_WIG; } let Predicates = [HasAVX512] in { defm Z : WriteShuffle256_common<opc, OpcodeStr, sched, v16i32_info, v16i16x_info, i256mem, LdFrag, OpNode>, EVEX_CD8<16, CD8VH>, T8PD, EVEX_V512, VEX_WIG; } } multiclass WriteShuffle256_WQ<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode InVecNode, string ExtTy, X86FoldableSchedWrite sched, PatFrag LdFrag = !cast<PatFrag>(ExtTy#"extloadvi16")> { let Predicates = [HasVLX, HasAVX512] in { defm Z128: WriteShuffle256_common<opc, OpcodeStr, sched, v2i64x_info, v8i16x_info, i32mem, LdFrag, InVecNode>, EVEX_CD8<16, CD8VQ>, T8PD, EVEX_V128, VEX_WIG; defm Z256: WriteShuffle256_common<opc, OpcodeStr, sched, v4i64x_info, v8i16x_info, i64mem, LdFrag, OpNode>, EVEX_CD8<16, CD8VQ>, T8PD, EVEX_V256, VEX_WIG; } let Predicates = [HasAVX512] in { defm Z : WriteShuffle256_common<opc, OpcodeStr, sched, v8i64_info, v8i16x_info, i128mem, LdFrag, OpNode>, EVEX_CD8<16, CD8VQ>, T8PD, EVEX_V512, VEX_WIG; } } multiclass WriteShuffle256_DQ<bits<8> opc, string OpcodeStr, SDNode OpNode, SDNode InVecNode, string ExtTy, X86FoldableSchedWrite sched, PatFrag LdFrag = !cast<PatFrag>(ExtTy#"extloadvi32")> { let Predicates = [HasVLX, HasAVX512] in { defm Z128: WriteShuffle256_common<opc, OpcodeStr, sched, v2i64x_info, v4i32x_info, i64mem, LdFrag, InVecNode>, EVEX_CD8<32, CD8VH>, T8PD, EVEX_V128; defm Z256: WriteShuffle256_common<opc, OpcodeStr, sched, v4i64x_info, v4i32x_info, i128mem, LdFrag, OpNode>, EVEX_CD8<32, CD8VH>, T8PD, EVEX_V256; } let Predicates = [HasAVX512] in { defm Z : WriteShuffle256_common<opc, OpcodeStr, sched, v8i64_info, v8i32x_info, i256mem, LdFrag, OpNode>, EVEX_CD8<32, CD8VH>, T8PD, EVEX_V512; } } defm VPMOVZXBW : WriteShuffle256_BW<0x30, "vpmovzxbw", X86vzext, zext_invec, "z", WriteShuffle256>; defm VPMOVZXBD : WriteShuffle256_BD<0x31, "vpmovzxbd", X86vzext, zext_invec, "z", WriteShuffle256>; defm VPMOVZXBQ : WriteShuffle256_BQ<0x32, "vpmovzxbq", X86vzext, zext_invec, "z", WriteShuffle256>; defm VPMOVZXWD : WriteShuffle256_WD<0x33, "vpmovzxwd", X86vzext, zext_invec, "z", WriteShuffle256>; defm VPMOVZXWQ : WriteShuffle256_WQ<0x34, "vpmovzxwq", X86vzext, zext_invec, "z", WriteShuffle256>; defm VPMOVZXDQ : WriteShuffle256_DQ<0x35, "vpmovzxdq", X86vzext, zext_invec, "z", WriteShuffle256>; defm VPMOVSXBW: WriteShuffle256_BW<0x20, "vpmovsxbw", X86vsext, sext_invec, "s", WriteShuffle256>; defm VPMOVSXBD: WriteShuffle256_BD<0x21, "vpmovsxbd", X86vsext, sext_invec, "s", WriteShuffle256>; defm VPMOVSXBQ: WriteShuffle256_BQ<0x22, "vpmovsxbq", X86vsext, sext_invec, "s", WriteShuffle256>; defm VPMOVSXWD: WriteShuffle256_WD<0x23, "vpmovsxwd", X86vsext, sext_invec, "s", WriteShuffle256>; defm VPMOVSXWQ: WriteShuffle256_WQ<0x24, "vpmovsxwq", X86vsext, sext_invec, "s", WriteShuffle256>; defm VPMOVSXDQ: WriteShuffle256_DQ<0x25, "vpmovsxdq", X86vsext, sext_invec, "s", WriteShuffle256>; multiclass AVX512_pmovx_patterns<string OpcPrefix, SDNode ExtOp, SDNode InVecOp> { // 128-bit patterns let Predicates = [HasVLX, HasBWI] in { def : Pat<(v8i16 (InVecOp (bc_v16i8 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), (!cast<I>(OpcPrefix#BWZ128rm) addr:$src)>; def : Pat<(v8i16 (InVecOp (bc_v16i8 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))), (!cast<I>(OpcPrefix#BWZ128rm) addr:$src)>; def : Pat<(v8i16 (InVecOp (v16i8 (vzmovl_v2i64 addr:$src)))), (!cast<I>(OpcPrefix#BWZ128rm) addr:$src)>; def : Pat<(v8i16 (InVecOp (v16i8 (vzload_v2i64 addr:$src)))), (!cast<I>(OpcPrefix#BWZ128rm) addr:$src)>; def : Pat<(v8i16 (InVecOp (bc_v16i8 (loadv2i64 addr:$src)))), (!cast<I>(OpcPrefix#BWZ128rm) addr:$src)>; } let Predicates = [HasVLX] in { def : Pat<(v4i32 (InVecOp (bc_v16i8 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))), (!cast<I>(OpcPrefix#BDZ128rm) addr:$src)>; def : Pat<(v4i32 (InVecOp (v16i8 (vzmovl_v4i32 addr:$src)))), (!cast<I>(OpcPrefix#BDZ128rm) addr:$src)>; def : Pat<(v4i32 (InVecOp (v16i8 (vzload_v2i64 addr:$src)))), (!cast<I>(OpcPrefix#BDZ128rm) addr:$src)>; def : Pat<(v4i32 (InVecOp (bc_v16i8 (loadv2i64 addr:$src)))), (!cast<I>(OpcPrefix#BDZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (bc_v16i8 (v4i32 (scalar_to_vector (extloadi32i16 addr:$src)))))), (!cast<I>(OpcPrefix#BQZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (v16i8 (vzmovl_v4i32 addr:$src)))), (!cast<I>(OpcPrefix#BQZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (v16i8 (vzload_v2i64 addr:$src)))), (!cast<I>(OpcPrefix#BQZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (bc_v16i8 (loadv2i64 addr:$src)))), (!cast<I>(OpcPrefix#BQZ128rm) addr:$src)>; def : Pat<(v4i32 (InVecOp (bc_v8i16 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), (!cast<I>(OpcPrefix#WDZ128rm) addr:$src)>; def : Pat<(v4i32 (InVecOp (bc_v8i16 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))), (!cast<I>(OpcPrefix#WDZ128rm) addr:$src)>; def : Pat<(v4i32 (InVecOp (v8i16 (vzmovl_v2i64 addr:$src)))), (!cast<I>(OpcPrefix#WDZ128rm) addr:$src)>; def : Pat<(v4i32 (InVecOp (v8i16 (vzload_v2i64 addr:$src)))), (!cast<I>(OpcPrefix#WDZ128rm) addr:$src)>; def : Pat<(v4i32 (InVecOp (bc_v8i16 (loadv2i64 addr:$src)))), (!cast<I>(OpcPrefix#WDZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (bc_v8i16 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))), (!cast<I>(OpcPrefix#WQZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (v8i16 (vzmovl_v4i32 addr:$src)))), (!cast<I>(OpcPrefix#WQZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (v8i16 (vzload_v2i64 addr:$src)))), (!cast<I>(OpcPrefix#WQZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (bc_v8i16 (loadv2i64 addr:$src)))), (!cast<I>(OpcPrefix#WQZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (bc_v4i32 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), (!cast<I>(OpcPrefix#DQZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (bc_v4i32 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))), (!cast<I>(OpcPrefix#DQZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (v4i32 (vzmovl_v2i64 addr:$src)))), (!cast<I>(OpcPrefix#DQZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (v4i32 (vzload_v2i64 addr:$src)))), (!cast<I>(OpcPrefix#DQZ128rm) addr:$src)>; def : Pat<(v2i64 (InVecOp (bc_v4i32 (loadv2i64 addr:$src)))), (!cast<I>(OpcPrefix#DQZ128rm) addr:$src)>; } // 256-bit patterns let Predicates = [HasVLX, HasBWI] in { def : Pat<(v16i16 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))), (!cast<I>(OpcPrefix#BWZ256rm) addr:$src)>; def : Pat<(v16i16 (ExtOp (v16i8 (vzmovl_v2i64 addr:$src)))), (!cast<I>(OpcPrefix#BWZ256rm) addr:$src)>; def : Pat<(v16i16 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))), (!cast<I>(OpcPrefix#BWZ256rm) addr:$src)>; } let Predicates = [HasVLX] in { def : Pat<(v8i32 (ExtOp (bc_v16i8 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), (!cast<I>(OpcPrefix#BDZ256rm) addr:$src)>; def : Pat<(v8i32 (ExtOp (v16i8 (vzmovl_v2i64 addr:$src)))), (!cast<I>(OpcPrefix#BDZ256rm) addr:$src)>; def : Pat<(v8i32 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))), (!cast<I>(OpcPrefix#BDZ256rm) addr:$src)>; def : Pat<(v8i32 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))), (!cast<I>(OpcPrefix#BDZ256rm) addr:$src)>; def : Pat<(v4i64 (ExtOp (bc_v16i8 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))), (!cast<I>(OpcPrefix#BQZ256rm) addr:$src)>; def : Pat<(v4i64 (ExtOp (v16i8 (vzmovl_v4i32 addr:$src)))), (!cast<I>(OpcPrefix#BQZ256rm) addr:$src)>; def : Pat<(v4i64 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))), (!cast<I>(OpcPrefix#BQZ256rm) addr:$src)>; def : Pat<(v4i64 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))), (!cast<I>(OpcPrefix#BQZ256rm) addr:$src)>; def : Pat<(v8i32 (ExtOp (bc_v8i16 (loadv2i64 addr:$src)))), (!cast<I>(OpcPrefix#WDZ256rm) addr:$src)>; def : Pat<(v8i32 (ExtOp (v8i16 (vzmovl_v2i64 addr:$src)))), (!cast<I>(OpcPrefix#WDZ256rm) addr:$src)>; def : Pat<(v8i32 (ExtOp (v8i16 (vzload_v2i64 addr:$src)))), (!cast<I>(OpcPrefix#WDZ256rm) addr:$src)>; def : Pat<(v4i64 (ExtOp (bc_v8i16 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), (!cast<I>(OpcPrefix#WQZ256rm) addr:$src)>; def : Pat<(v4i64 (ExtOp (v8i16 (vzmovl_v2i64 addr:$src)))), (!cast<I>(OpcPrefix#WQZ256rm) addr:$src)>; def : Pat<(v4i64 (ExtOp (v8i16 (vzload_v2i64 addr:$src)))), (!cast<I>(OpcPrefix#WQZ256rm) addr:$src)>; def : Pat<(v4i64 (ExtOp (bc_v8i16 (loadv2i64 addr:$src)))), (!cast<I>(OpcPrefix#WQZ256rm) addr:$src)>; def : Pat<(v4i64 (ExtOp (bc_v4i32 (loadv2i64 addr:$src)))), (!cast<I>(OpcPrefix#DQZ256rm) addr:$src)>; def : Pat<(v4i64 (ExtOp (v4i32 (vzmovl_v2i64 addr:$src)))), (!cast<I>(OpcPrefix#DQZ256rm) addr:$src)>; def : Pat<(v4i64 (ExtOp (v4i32 (vzload_v2i64 addr:$src)))), (!cast<I>(OpcPrefix#DQZ256rm) addr:$src)>; } // 512-bit patterns let Predicates = [HasBWI] in { def : Pat<(v32i16 (ExtOp (bc_v32i8 (loadv4i64 addr:$src)))), (!cast<I>(OpcPrefix#BWZrm) addr:$src)>; } let Predicates = [HasAVX512] in { def : Pat<(v16i32 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))), (!cast<I>(OpcPrefix#BDZrm) addr:$src)>; def : Pat<(v8i64 (ExtOp (bc_v16i8 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), (!cast<I>(OpcPrefix#BQZrm) addr:$src)>; def : Pat<(v8i64 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))), (!cast<I>(OpcPrefix#BQZrm) addr:$src)>; def : Pat<(v16i32 (ExtOp (bc_v16i16 (loadv4i64 addr:$src)))), (!cast<I>(OpcPrefix#WDZrm) addr:$src)>; def : Pat<(v8i64 (ExtOp (bc_v8i16 (loadv2i64 addr:$src)))), (!cast<I>(OpcPrefix#WQZrm) addr:$src)>; def : Pat<(v8i64 (ExtOp (bc_v8i32 (loadv4i64 addr:$src)))), (!cast<I>(OpcPrefix#DQZrm) addr:$src)>; } } defm : AVX512_pmovx_patterns<"VPMOVSX", X86vsext, sext_invec>; defm : AVX512_pmovx_patterns<"VPMOVZX", X86vzext, zext_invec>; //===----------------------------------------------------------------------===// // GATHER - SCATTER Operations // FIXME: Improve scheduling of gather/scatter instructions. multiclass avx512_gather<bits<8> opc, string OpcodeStr, X86VectorVTInfo _, X86MemOperand memop, PatFrag GatherNode, RegisterClass MaskRC = _.KRCWM> { let Constraints = "@earlyclobber $dst, $src1 = $dst, $mask = $mask_wb", ExeDomain = _.ExeDomain in def rm : AVX5128I<opc, MRMSrcMem, (outs _.RC:$dst, MaskRC:$mask_wb), (ins _.RC:$src1, MaskRC:$mask, memop:$src2), !strconcat(OpcodeStr#_.Suffix, "\t{$src2, ${dst} {${mask}}|${dst} {${mask}}, $src2}"), [(set _.RC:$dst, MaskRC:$mask_wb, (GatherNode (_.VT _.RC:$src1), MaskRC:$mask, vectoraddr:$src2))]>, EVEX, EVEX_K, EVEX_CD8<_.EltSize, CD8VT1>, Sched<[WriteLoad]>; } multiclass avx512_gather_q_pd<bits<8> dopc, bits<8> qopc, AVX512VLVectorVTInfo _, string OpcodeStr, string SUFF> { defm NAME##D##SUFF##Z: avx512_gather<dopc, OpcodeStr##"d", _.info512, vy512xmem, mgatherv8i32>, EVEX_V512, VEX_W; defm NAME##Q##SUFF##Z: avx512_gather<qopc, OpcodeStr##"q", _.info512, vz512mem, mgatherv8i64>, EVEX_V512, VEX_W; let Predicates = [HasVLX] in { defm NAME##D##SUFF##Z256: avx512_gather<dopc, OpcodeStr##"d", _.info256, vx256xmem, mgatherv4i32>, EVEX_V256, VEX_W; defm NAME##Q##SUFF##Z256: avx512_gather<qopc, OpcodeStr##"q", _.info256, vy256xmem, mgatherv4i64>, EVEX_V256, VEX_W; defm NAME##D##SUFF##Z128: avx512_gather<dopc, OpcodeStr##"d", _.info128, vx128xmem, mgatherv4i32>, EVEX_V128, VEX_W; defm NAME##Q##SUFF##Z128: avx512_gather<qopc, OpcodeStr##"q", _.info128, vx128xmem, mgatherv2i64>, EVEX_V128, VEX_W; } } multiclass avx512_gather_d_ps<bits<8> dopc, bits<8> qopc, AVX512VLVectorVTInfo _, string OpcodeStr, string SUFF> { defm NAME##D##SUFF##Z: avx512_gather<dopc, OpcodeStr##"d", _.info512, vz512mem, mgatherv16i32>, EVEX_V512; defm NAME##Q##SUFF##Z: avx512_gather<qopc, OpcodeStr##"q", _.info256, vz256mem, mgatherv8i64>, EVEX_V512; let Predicates = [HasVLX] in { defm NAME##D##SUFF##Z256: avx512_gather<dopc, OpcodeStr##"d", _.info256, vy256xmem, mgatherv8i32>, EVEX_V256; defm NAME##Q##SUFF##Z256: avx512_gather<qopc, OpcodeStr##"q", _.info128, vy128xmem, mgatherv4i64>, EVEX_V256; defm NAME##D##SUFF##Z128: avx512_gather<dopc, OpcodeStr##"d", _.info128, vx128xmem, mgatherv4i32>, EVEX_V128; defm NAME##Q##SUFF##Z128: avx512_gather<qopc, OpcodeStr##"q", _.info128, vx64xmem, mgatherv2i64, VK2WM>, EVEX_V128; } } defm VGATHER : avx512_gather_q_pd<0x92, 0x93, avx512vl_f64_info, "vgather", "PD">, avx512_gather_d_ps<0x92, 0x93, avx512vl_f32_info, "vgather", "PS">; defm VPGATHER : avx512_gather_q_pd<0x90, 0x91, avx512vl_i64_info, "vpgather", "Q">, avx512_gather_d_ps<0x90, 0x91, avx512vl_i32_info, "vpgather", "D">; multiclass avx512_scatter<bits<8> opc, string OpcodeStr, X86VectorVTInfo _, X86MemOperand memop, PatFrag ScatterNode, RegisterClass MaskRC = _.KRCWM> { let mayStore = 1, Constraints = "$mask = $mask_wb", ExeDomain = _.ExeDomain in def mr : AVX5128I<opc, MRMDestMem, (outs MaskRC:$mask_wb), (ins memop:$dst, MaskRC:$mask, _.RC:$src), !strconcat(OpcodeStr#_.Suffix, "\t{$src, ${dst} {${mask}}|${dst} {${mask}}, $src}"), [(set MaskRC:$mask_wb, (ScatterNode (_.VT _.RC:$src), MaskRC:$mask, vectoraddr:$dst))]>, EVEX, EVEX_K, EVEX_CD8<_.EltSize, CD8VT1>, Sched<[WriteStore]>; } multiclass avx512_scatter_q_pd<bits<8> dopc, bits<8> qopc, AVX512VLVectorVTInfo _, string OpcodeStr, string SUFF> { defm NAME##D##SUFF##Z: avx512_scatter<dopc, OpcodeStr##"d", _.info512, vy512xmem, mscatterv8i32>, EVEX_V512, VEX_W; defm NAME##Q##SUFF##Z: avx512_scatter<qopc, OpcodeStr##"q", _.info512, vz512mem, mscatterv8i64>, EVEX_V512, VEX_W; let Predicates = [HasVLX] in { defm NAME##D##SUFF##Z256: avx512_scatter<dopc, OpcodeStr##"d", _.info256, vx256xmem, mscatterv4i32>, EVEX_V256, VEX_W; defm NAME##Q##SUFF##Z256: avx512_scatter<qopc, OpcodeStr##"q", _.info256, vy256xmem, mscatterv4i64>, EVEX_V256, VEX_W; defm NAME##D##SUFF##Z128: avx512_scatter<dopc, OpcodeStr##"d", _.info128, vx128xmem, mscatterv4i32>, EVEX_V128, VEX_W; defm NAME##Q##SUFF##Z128: avx512_scatter<qopc, OpcodeStr##"q", _.info128, vx128xmem, mscatterv2i64>, EVEX_V128, VEX_W; } } multiclass avx512_scatter_d_ps<bits<8> dopc, bits<8> qopc, AVX512VLVectorVTInfo _, string OpcodeStr, string SUFF> { defm NAME##D##SUFF##Z: avx512_scatter<dopc, OpcodeStr##"d", _.info512, vz512mem, mscatterv16i32>, EVEX_V512; defm NAME##Q##SUFF##Z: avx512_scatter<qopc, OpcodeStr##"q", _.info256, vz256mem, mscatterv8i64>, EVEX_V512; let Predicates = [HasVLX] in { defm NAME##D##SUFF##Z256: avx512_scatter<dopc, OpcodeStr##"d", _.info256, vy256xmem, mscatterv8i32>, EVEX_V256; defm NAME##Q##SUFF##Z256: avx512_scatter<qopc, OpcodeStr##"q", _.info128, vy128xmem, mscatterv4i64>, EVEX_V256; defm NAME##D##SUFF##Z128: avx512_scatter<dopc, OpcodeStr##"d", _.info128, vx128xmem, mscatterv4i32>, EVEX_V128; defm NAME##Q##SUFF##Z128: avx512_scatter<qopc, OpcodeStr##"q", _.info128, vx64xmem, mscatterv2i64, VK2WM>, EVEX_V128; } } defm VSCATTER : avx512_scatter_q_pd<0xA2, 0xA3, avx512vl_f64_info, "vscatter", "PD">, avx512_scatter_d_ps<0xA2, 0xA3, avx512vl_f32_info, "vscatter", "PS">; defm VPSCATTER : avx512_scatter_q_pd<0xA0, 0xA1, avx512vl_i64_info, "vpscatter", "Q">, avx512_scatter_d_ps<0xA0, 0xA1, avx512vl_i32_info, "vpscatter", "D">; // prefetch multiclass avx512_gather_scatter_prefetch<bits<8> opc, Format F, string OpcodeStr, RegisterClass KRC, X86MemOperand memop> { let Predicates = [HasPFI], mayLoad = 1, mayStore = 1 in def m : AVX5128I<opc, F, (outs), (ins KRC:$mask, memop:$src), !strconcat(OpcodeStr, "\t{$src {${mask}}|{${mask}}, $src}"), []>, EVEX, EVEX_K, Sched<[WriteLoad]>; } defm VGATHERPF0DPS: avx512_gather_scatter_prefetch<0xC6, MRM1m, "vgatherpf0dps", VK16WM, vz512mem>, EVEX_V512, EVEX_CD8<32, CD8VT1>; defm VGATHERPF0QPS: avx512_gather_scatter_prefetch<0xC7, MRM1m, "vgatherpf0qps", VK8WM, vz256mem>, EVEX_V512, EVEX_CD8<64, CD8VT1>; defm VGATHERPF0DPD: avx512_gather_scatter_prefetch<0xC6, MRM1m, "vgatherpf0dpd", VK8WM, vy512xmem>, EVEX_V512, VEX_W, EVEX_CD8<32, CD8VT1>; defm VGATHERPF0QPD: avx512_gather_scatter_prefetch<0xC7, MRM1m, "vgatherpf0qpd", VK8WM, vz512mem>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>; defm VGATHERPF1DPS: avx512_gather_scatter_prefetch<0xC6, MRM2m, "vgatherpf1dps", VK16WM, vz512mem>, EVEX_V512, EVEX_CD8<32, CD8VT1>; defm VGATHERPF1QPS: avx512_gather_scatter_prefetch<0xC7, MRM2m, "vgatherpf1qps", VK8WM, vz256mem>, EVEX_V512, EVEX_CD8<64, CD8VT1>; defm VGATHERPF1DPD: avx512_gather_scatter_prefetch<0xC6, MRM2m, "vgatherpf1dpd", VK8WM, vy512xmem>, EVEX_V512, VEX_W, EVEX_CD8<32, CD8VT1>; defm VGATHERPF1QPD: avx512_gather_scatter_prefetch<0xC7, MRM2m, "vgatherpf1qpd", VK8WM, vz512mem>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>; defm VSCATTERPF0DPS: avx512_gather_scatter_prefetch<0xC6, MRM5m, "vscatterpf0dps", VK16WM, vz512mem>, EVEX_V512, EVEX_CD8<32, CD8VT1>; defm VSCATTERPF0QPS: avx512_gather_scatter_prefetch<0xC7, MRM5m, "vscatterpf0qps", VK8WM, vz256mem>, EVEX_V512, EVEX_CD8<64, CD8VT1>; defm VSCATTERPF0DPD: avx512_gather_scatter_prefetch<0xC6, MRM5m, "vscatterpf0dpd", VK8WM, vy512xmem>, EVEX_V512, VEX_W, EVEX_CD8<32, CD8VT1>; defm VSCATTERPF0QPD: avx512_gather_scatter_prefetch<0xC7, MRM5m, "vscatterpf0qpd", VK8WM, vz512mem>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>; defm VSCATTERPF1DPS: avx512_gather_scatter_prefetch<0xC6, MRM6m, "vscatterpf1dps", VK16WM, vz512mem>, EVEX_V512, EVEX_CD8<32, CD8VT1>; defm VSCATTERPF1QPS: avx512_gather_scatter_prefetch<0xC7, MRM6m, "vscatterpf1qps", VK8WM, vz256mem>, EVEX_V512, EVEX_CD8<64, CD8VT1>; defm VSCATTERPF1DPD: avx512_gather_scatter_prefetch<0xC6, MRM6m, "vscatterpf1dpd", VK8WM, vy512xmem>, EVEX_V512, VEX_W, EVEX_CD8<32, CD8VT1>; defm VSCATTERPF1QPD: avx512_gather_scatter_prefetch<0xC7, MRM6m, "vscatterpf1qpd", VK8WM, vz512mem>, EVEX_V512, VEX_W, EVEX_CD8<64, CD8VT1>; multiclass cvt_by_vec_width<bits<8> opc, X86VectorVTInfo Vec, string OpcodeStr > { def rr : AVX512XS8I<opc, MRMSrcReg, (outs Vec.RC:$dst), (ins Vec.KRC:$src), !strconcat(OpcodeStr##Vec.Suffix, "\t{$src, $dst|$dst, $src}"), [(set Vec.RC:$dst, (Vec.VT (sext Vec.KRC:$src)))]>, EVEX, Sched<[WriteMove]>; // TODO - WriteVecTrunc? } multiclass cvt_mask_by_elt_width<bits<8> opc, AVX512VLVectorVTInfo VTInfo, string OpcodeStr, Predicate prd> { let Predicates = [prd] in defm Z : cvt_by_vec_width<opc, VTInfo.info512, OpcodeStr>, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : cvt_by_vec_width<opc, VTInfo.info256, OpcodeStr>, EVEX_V256; defm Z128 : cvt_by_vec_width<opc, VTInfo.info128, OpcodeStr>, EVEX_V128; } } defm VPMOVM2B : cvt_mask_by_elt_width<0x28, avx512vl_i8_info, "vpmovm2" , HasBWI>; defm VPMOVM2W : cvt_mask_by_elt_width<0x28, avx512vl_i16_info, "vpmovm2", HasBWI> , VEX_W; defm VPMOVM2D : cvt_mask_by_elt_width<0x38, avx512vl_i32_info, "vpmovm2", HasDQI>; defm VPMOVM2Q : cvt_mask_by_elt_width<0x38, avx512vl_i64_info, "vpmovm2", HasDQI> , VEX_W; multiclass convert_vector_to_mask_common<bits<8> opc, X86VectorVTInfo _, string OpcodeStr > { def rr : AVX512XS8I<opc, MRMSrcReg, (outs _.KRC:$dst), (ins _.RC:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set _.KRC:$dst, (X86pcmpgtm _.ImmAllZerosV, (_.VT _.RC:$src)))]>, EVEX, Sched<[WriteMove]>; } // Use 512bit version to implement 128/256 bit in case NoVLX. multiclass convert_vector_to_mask_lowering<X86VectorVTInfo ExtendInfo, X86VectorVTInfo _, string Name> { def : Pat<(_.KVT (X86pcmpgtm _.ImmAllZerosV, (_.VT _.RC:$src))), (_.KVT (COPY_TO_REGCLASS (!cast<Instruction>(Name#"Zrr") (INSERT_SUBREG (ExtendInfo.VT (IMPLICIT_DEF)), _.RC:$src, _.SubRegIdx)), _.KRC))>; } multiclass avx512_convert_vector_to_mask<bits<8> opc, string OpcodeStr, AVX512VLVectorVTInfo VTInfo, Predicate prd> { let Predicates = [prd] in defm Z : convert_vector_to_mask_common <opc, VTInfo.info512, OpcodeStr>, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : convert_vector_to_mask_common<opc, VTInfo.info256, OpcodeStr>, EVEX_V256; defm Z128 : convert_vector_to_mask_common<opc, VTInfo.info128, OpcodeStr>, EVEX_V128; } let Predicates = [prd, NoVLX] in { defm Z256_Alt : convert_vector_to_mask_lowering<VTInfo.info512, VTInfo.info256, NAME>; defm Z128_Alt : convert_vector_to_mask_lowering<VTInfo.info512, VTInfo.info128, NAME>; } } defm VPMOVB2M : avx512_convert_vector_to_mask<0x29, "vpmovb2m", avx512vl_i8_info, HasBWI>; defm VPMOVW2M : avx512_convert_vector_to_mask<0x29, "vpmovw2m", avx512vl_i16_info, HasBWI>, VEX_W; defm VPMOVD2M : avx512_convert_vector_to_mask<0x39, "vpmovd2m", avx512vl_i32_info, HasDQI>; defm VPMOVQ2M : avx512_convert_vector_to_mask<0x39, "vpmovq2m", avx512vl_i64_info, HasDQI>, VEX_W; // Patterns for handling sext from a mask register to v16i8/v16i16 when DQI // is available, but BWI is not. We can't handle this in lowering because // a target independent DAG combine likes to combine sext and trunc. let Predicates = [HasDQI, NoBWI] in { def : Pat<(v16i8 (sext (v16i1 VK16:$src))), (VPMOVDBZrr (v16i32 (VPMOVM2DZrr VK16:$src)))>; def : Pat<(v16i16 (sext (v16i1 VK16:$src))), (VPMOVDWZrr (v16i32 (VPMOVM2DZrr VK16:$src)))>; } //===----------------------------------------------------------------------===// // AVX-512 - COMPRESS and EXPAND // multiclass compress_by_vec_width_common<bits<8> opc, X86VectorVTInfo _, string OpcodeStr, X86FoldableSchedWrite sched> { defm rr : AVX512_maskable<opc, MRMDestReg, _, (outs _.RC:$dst), (ins _.RC:$src1), OpcodeStr, "$src1", "$src1", (_.VT (X86compress _.RC:$src1))>, AVX5128IBase, Sched<[sched]>; let mayStore = 1, hasSideEffects = 0 in def mr : AVX5128I<opc, MRMDestMem, (outs), (ins _.MemOp:$dst, _.RC:$src), OpcodeStr # "\t{$src, $dst|$dst, $src}", []>, EVEX_CD8<_.EltSize, CD8VT1>, Sched<[sched.Folded]>; def mrk : AVX5128I<opc, MRMDestMem, (outs), (ins _.MemOp:$dst, _.KRCWM:$mask, _.RC:$src), OpcodeStr # "\t{$src, $dst {${mask}}|$dst {${mask}}, $src}", []>, EVEX_K, EVEX_CD8<_.EltSize, CD8VT1>, Sched<[sched.Folded]>; } multiclass compress_by_vec_width_lowering<X86VectorVTInfo _, string Name> { def : Pat<(X86mCompressingStore addr:$dst, _.KRCWM:$mask, (_.VT _.RC:$src)), (!cast<Instruction>(Name#_.ZSuffix##mrk) addr:$dst, _.KRCWM:$mask, _.RC:$src)>; } multiclass compress_by_elt_width<bits<8> opc, string OpcodeStr, X86FoldableSchedWrite sched, AVX512VLVectorVTInfo VTInfo, Predicate Pred = HasAVX512> { let Predicates = [Pred] in defm Z : compress_by_vec_width_common<opc, VTInfo.info512, OpcodeStr, sched>, compress_by_vec_width_lowering<VTInfo.info512, NAME>, EVEX_V512; let Predicates = [Pred, HasVLX] in { defm Z256 : compress_by_vec_width_common<opc, VTInfo.info256, OpcodeStr, sched>, compress_by_vec_width_lowering<VTInfo.info256, NAME>, EVEX_V256; defm Z128 : compress_by_vec_width_common<opc, VTInfo.info128, OpcodeStr, sched>, compress_by_vec_width_lowering<VTInfo.info128, NAME>, EVEX_V128; } } // FIXME: Is there a better scheduler class for VPCOMPRESS? defm VPCOMPRESSD : compress_by_elt_width <0x8B, "vpcompressd", WriteVarShuffle256, avx512vl_i32_info>, EVEX, NotMemoryFoldable; defm VPCOMPRESSQ : compress_by_elt_width <0x8B, "vpcompressq", WriteVarShuffle256, avx512vl_i64_info>, EVEX, VEX_W, NotMemoryFoldable; defm VCOMPRESSPS : compress_by_elt_width <0x8A, "vcompressps", WriteVarShuffle256, avx512vl_f32_info>, EVEX, NotMemoryFoldable; defm VCOMPRESSPD : compress_by_elt_width <0x8A, "vcompresspd", WriteVarShuffle256, avx512vl_f64_info>, EVEX, VEX_W, NotMemoryFoldable; // expand multiclass expand_by_vec_width<bits<8> opc, X86VectorVTInfo _, string OpcodeStr, X86FoldableSchedWrite sched> { defm rr : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1), OpcodeStr, "$src1", "$src1", (_.VT (X86expand _.RC:$src1))>, AVX5128IBase, Sched<[sched]>; defm rm : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.MemOp:$src1), OpcodeStr, "$src1", "$src1", (_.VT (X86expand (_.VT (bitconvert (_.LdFrag addr:$src1)))))>, AVX5128IBase, EVEX_CD8<_.EltSize, CD8VT1>, Sched<[sched.Folded, ReadAfterLd]>; } multiclass expand_by_vec_width_lowering<X86VectorVTInfo _, string Name> { def : Pat<(_.VT (X86mExpandingLoad addr:$src, _.KRCWM:$mask, undef)), (!cast<Instruction>(Name#_.ZSuffix##rmkz) _.KRCWM:$mask, addr:$src)>; def : Pat<(_.VT (X86mExpandingLoad addr:$src, _.KRCWM:$mask, _.ImmAllZerosV)), (!cast<Instruction>(Name#_.ZSuffix##rmkz) _.KRCWM:$mask, addr:$src)>; def : Pat<(_.VT (X86mExpandingLoad addr:$src, _.KRCWM:$mask, (_.VT _.RC:$src0))), (!cast<Instruction>(Name#_.ZSuffix##rmk) _.RC:$src0, _.KRCWM:$mask, addr:$src)>; } multiclass expand_by_elt_width<bits<8> opc, string OpcodeStr, X86FoldableSchedWrite sched, AVX512VLVectorVTInfo VTInfo, Predicate Pred = HasAVX512> { let Predicates = [Pred] in defm Z : expand_by_vec_width<opc, VTInfo.info512, OpcodeStr, sched>, expand_by_vec_width_lowering<VTInfo.info512, NAME>, EVEX_V512; let Predicates = [Pred, HasVLX] in { defm Z256 : expand_by_vec_width<opc, VTInfo.info256, OpcodeStr, sched>, expand_by_vec_width_lowering<VTInfo.info256, NAME>, EVEX_V256; defm Z128 : expand_by_vec_width<opc, VTInfo.info128, OpcodeStr, sched>, expand_by_vec_width_lowering<VTInfo.info128, NAME>, EVEX_V128; } } // FIXME: Is there a better scheduler class for VPEXPAND? defm VPEXPANDD : expand_by_elt_width <0x89, "vpexpandd", WriteVarShuffle256, avx512vl_i32_info>, EVEX; defm VPEXPANDQ : expand_by_elt_width <0x89, "vpexpandq", WriteVarShuffle256, avx512vl_i64_info>, EVEX, VEX_W; defm VEXPANDPS : expand_by_elt_width <0x88, "vexpandps", WriteVarShuffle256, avx512vl_f32_info>, EVEX; defm VEXPANDPD : expand_by_elt_width <0x88, "vexpandpd", WriteVarShuffle256, avx512vl_f64_info>, EVEX, VEX_W; //handle instruction reg_vec1 = op(reg_vec,imm) // op(mem_vec,imm) // op(broadcast(eltVt),imm) //all instruction created with FROUND_CURRENT multiclass avx512_unary_fp_packed_imm<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in { defm rri : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, i32u8imm:$src2), OpcodeStr##_.Suffix, "$src2, $src1", "$src1, $src2", (OpNode (_.VT _.RC:$src1), (i32 imm:$src2))>, Sched<[sched]>; defm rmi : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.MemOp:$src1, i32u8imm:$src2), OpcodeStr##_.Suffix, "$src2, $src1", "$src1, $src2", (OpNode (_.VT (bitconvert (_.LdFrag addr:$src1))), (i32 imm:$src2))>, Sched<[sched.Folded, ReadAfterLd]>; defm rmbi : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.ScalarMemOp:$src1, i32u8imm:$src2), OpcodeStr##_.Suffix, "$src2, ${src1}"##_.BroadcastStr, "${src1}"##_.BroadcastStr##", $src2", (OpNode (_.VT (X86VBroadcast(_.ScalarLdFrag addr:$src1))), (i32 imm:$src2))>, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; } } //handle instruction reg_vec1 = op(reg_vec2,reg_vec3,imm),{sae} multiclass avx512_unary_fp_sae_packed_imm<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in defm rrib : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, i32u8imm:$src2), OpcodeStr##_.Suffix, "$src2, {sae}, $src1", "$src1, {sae}, $src2", (OpNode (_.VT _.RC:$src1), (i32 imm:$src2), (i32 FROUND_NO_EXC))>, EVEX_B, Sched<[sched]>; } multiclass avx512_common_unary_fp_sae_packed_imm<string OpcodeStr, AVX512VLVectorVTInfo _, bits<8> opc, SDNode OpNode, SDNode OpNodeRnd, X86SchedWriteWidths sched, Predicate prd>{ let Predicates = [prd] in { defm Z : avx512_unary_fp_packed_imm<opc, OpcodeStr, OpNode, sched.ZMM, _.info512>, avx512_unary_fp_sae_packed_imm<opc, OpcodeStr, OpNodeRnd, sched.ZMM, _.info512>, EVEX_V512; } let Predicates = [prd, HasVLX] in { defm Z128 : avx512_unary_fp_packed_imm<opc, OpcodeStr, OpNode, sched.XMM, _.info128>, EVEX_V128; defm Z256 : avx512_unary_fp_packed_imm<opc, OpcodeStr, OpNode, sched.YMM, _.info256>, EVEX_V256; } } //handle instruction reg_vec1 = op(reg_vec2,reg_vec3,imm) // op(reg_vec2,mem_vec,imm) // op(reg_vec2,broadcast(eltVt),imm) //all instruction created with FROUND_CURRENT multiclass avx512_fp_packed_imm<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _>{ let ExeDomain = _.ExeDomain in { defm rri : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2, i32u8imm:$src3), OpcodeStr, "$src3, $src2, $src1", "$src1, $src2, $src3", (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2), (i32 imm:$src3))>, Sched<[sched]>; defm rmi : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.MemOp:$src2, i32u8imm:$src3), OpcodeStr, "$src3, $src2, $src1", "$src1, $src2, $src3", (OpNode (_.VT _.RC:$src1), (_.VT (bitconvert (_.LdFrag addr:$src2))), (i32 imm:$src3))>, Sched<[sched.Folded, ReadAfterLd]>; defm rmbi : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2, i32u8imm:$src3), OpcodeStr, "$src3, ${src2}"##_.BroadcastStr##", $src1", "$src1, ${src2}"##_.BroadcastStr##", $src3", (OpNode (_.VT _.RC:$src1), (_.VT (X86VBroadcast(_.ScalarLdFrag addr:$src2))), (i32 imm:$src3))>, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; } } //handle instruction reg_vec1 = op(reg_vec2,reg_vec3,imm) // op(reg_vec2,mem_vec,imm) multiclass avx512_3Op_rm_imm8<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo DestInfo, X86VectorVTInfo SrcInfo>{ let ExeDomain = DestInfo.ExeDomain in { defm rri : AVX512_maskable<opc, MRMSrcReg, DestInfo, (outs DestInfo.RC:$dst), (ins SrcInfo.RC:$src1, SrcInfo.RC:$src2, u8imm:$src3), OpcodeStr, "$src3, $src2, $src1", "$src1, $src2, $src3", (DestInfo.VT (OpNode (SrcInfo.VT SrcInfo.RC:$src1), (SrcInfo.VT SrcInfo.RC:$src2), (i8 imm:$src3)))>, Sched<[sched]>; defm rmi : AVX512_maskable<opc, MRMSrcMem, DestInfo, (outs DestInfo.RC:$dst), (ins SrcInfo.RC:$src1, SrcInfo.MemOp:$src2, u8imm:$src3), OpcodeStr, "$src3, $src2, $src1", "$src1, $src2, $src3", (DestInfo.VT (OpNode (SrcInfo.VT SrcInfo.RC:$src1), (SrcInfo.VT (bitconvert (SrcInfo.LdFrag addr:$src2))), (i8 imm:$src3)))>, Sched<[sched.Folded, ReadAfterLd]>; } } //handle instruction reg_vec1 = op(reg_vec2,reg_vec3,imm) // op(reg_vec2,mem_vec,imm) // op(reg_vec2,broadcast(eltVt),imm) multiclass avx512_3Op_imm8<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _>: avx512_3Op_rm_imm8<opc, OpcodeStr, OpNode, sched, _, _>{ let ExeDomain = _.ExeDomain in defm rmbi : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2, u8imm:$src3), OpcodeStr, "$src3, ${src2}"##_.BroadcastStr##", $src1", "$src1, ${src2}"##_.BroadcastStr##", $src3", (OpNode (_.VT _.RC:$src1), (_.VT (X86VBroadcast(_.ScalarLdFrag addr:$src2))), (i8 imm:$src3))>, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; } //handle scalar instruction reg_vec1 = op(reg_vec2,reg_vec3,imm) // op(reg_vec2,mem_scalar,imm) multiclass avx512_fp_scalar_imm<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in { defm rri : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2, i32u8imm:$src3), OpcodeStr, "$src3, $src2, $src1", "$src1, $src2, $src3", (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2), (i32 imm:$src3))>, Sched<[sched]>; defm rmi : AVX512_maskable_scalar<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2, i32u8imm:$src3), OpcodeStr, "$src3, $src2, $src1", "$src1, $src2, $src3", (OpNode (_.VT _.RC:$src1), (_.VT (scalar_to_vector (_.ScalarLdFrag addr:$src2))), (i32 imm:$src3))>, Sched<[sched.Folded, ReadAfterLd]>; } } //handle instruction reg_vec1 = op(reg_vec2,reg_vec3,imm),{sae} multiclass avx512_fp_sae_packed_imm<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in defm rrib : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2, i32u8imm:$src3), OpcodeStr, "$src3, {sae}, $src2, $src1", "$src1, $src2, {sae}, $src3", (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2), (i32 imm:$src3), (i32 FROUND_NO_EXC))>, EVEX_B, Sched<[sched]>; } //handle scalar instruction reg_vec1 = op(reg_vec2,reg_vec3,imm),{sae} multiclass avx512_fp_sae_scalar_imm<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in defm NAME#rrib : AVX512_maskable_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2, i32u8imm:$src3), OpcodeStr, "$src3, {sae}, $src2, $src1", "$src1, $src2, {sae}, $src3", (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2), (i32 imm:$src3), (i32 FROUND_NO_EXC))>, EVEX_B, Sched<[sched]>; } multiclass avx512_common_fp_sae_packed_imm<string OpcodeStr, AVX512VLVectorVTInfo _, bits<8> opc, SDNode OpNode, SDNode OpNodeRnd, X86SchedWriteWidths sched, Predicate prd>{ let Predicates = [prd] in { defm Z : avx512_fp_packed_imm<opc, OpcodeStr, OpNode, sched.ZMM, _.info512>, avx512_fp_sae_packed_imm<opc, OpcodeStr, OpNodeRnd, sched.ZMM, _.info512>, EVEX_V512; } let Predicates = [prd, HasVLX] in { defm Z128 : avx512_fp_packed_imm<opc, OpcodeStr, OpNode, sched.XMM, _.info128>, EVEX_V128; defm Z256 : avx512_fp_packed_imm<opc, OpcodeStr, OpNode, sched.YMM, _.info256>, EVEX_V256; } } multiclass avx512_common_3Op_rm_imm8<bits<8> opc, SDNode OpNode, string OpStr, X86SchedWriteWidths sched, AVX512VLVectorVTInfo DestInfo, AVX512VLVectorVTInfo SrcInfo, Predicate Pred = HasBWI> { let Predicates = [Pred] in { defm Z : avx512_3Op_rm_imm8<opc, OpStr, OpNode, sched.ZMM, DestInfo.info512, SrcInfo.info512>, EVEX_V512, AVX512AIi8Base, EVEX_4V; } let Predicates = [Pred, HasVLX] in { defm Z128 : avx512_3Op_rm_imm8<opc, OpStr, OpNode, sched.XMM, DestInfo.info128, SrcInfo.info128>, EVEX_V128, AVX512AIi8Base, EVEX_4V; defm Z256 : avx512_3Op_rm_imm8<opc, OpStr, OpNode, sched.YMM, DestInfo.info256, SrcInfo.info256>, EVEX_V256, AVX512AIi8Base, EVEX_4V; } } multiclass avx512_common_3Op_imm8<string OpcodeStr, AVX512VLVectorVTInfo _, bits<8> opc, SDNode OpNode, X86SchedWriteWidths sched, Predicate Pred = HasAVX512> { let Predicates = [Pred] in { defm Z : avx512_3Op_imm8<opc, OpcodeStr, OpNode, sched.ZMM, _.info512>, EVEX_V512; } let Predicates = [Pred, HasVLX] in { defm Z128 : avx512_3Op_imm8<opc, OpcodeStr, OpNode, sched.XMM, _.info128>, EVEX_V128; defm Z256 : avx512_3Op_imm8<opc, OpcodeStr, OpNode, sched.YMM, _.info256>, EVEX_V256; } } multiclass avx512_common_fp_sae_scalar_imm<string OpcodeStr, X86VectorVTInfo _, bits<8> opc, SDNode OpNode, SDNode OpNodeRnd, X86SchedWriteWidths sched, Predicate prd> { let Predicates = [prd] in { defm Z : avx512_fp_scalar_imm<opc, OpcodeStr, OpNode, sched.XMM, _>, avx512_fp_sae_scalar_imm<opc, OpcodeStr, OpNodeRnd, sched.XMM, _>; } } multiclass avx512_common_unary_fp_sae_packed_imm_all<string OpcodeStr, bits<8> opcPs, bits<8> opcPd, SDNode OpNode, SDNode OpNodeRnd, X86SchedWriteWidths sched, Predicate prd>{ defm PS : avx512_common_unary_fp_sae_packed_imm<OpcodeStr, avx512vl_f32_info, opcPs, OpNode, OpNodeRnd, sched, prd>, EVEX_CD8<32, CD8VF>; defm PD : avx512_common_unary_fp_sae_packed_imm<OpcodeStr, avx512vl_f64_info, opcPd, OpNode, OpNodeRnd, sched, prd>, EVEX_CD8<64, CD8VF>, VEX_W; } defm VREDUCE : avx512_common_unary_fp_sae_packed_imm_all<"vreduce", 0x56, 0x56, X86VReduce, X86VReduceRnd, SchedWriteFRnd, HasDQI>, AVX512AIi8Base, EVEX; defm VRNDSCALE : avx512_common_unary_fp_sae_packed_imm_all<"vrndscale", 0x08, 0x09, X86VRndScale, X86VRndScaleRnd, SchedWriteFRnd, HasAVX512>, AVX512AIi8Base, EVEX; defm VGETMANT : avx512_common_unary_fp_sae_packed_imm_all<"vgetmant", 0x26, 0x26, X86VGetMant, X86VGetMantRnd, SchedWriteFRnd, HasAVX512>, AVX512AIi8Base, EVEX; defm VRANGEPD : avx512_common_fp_sae_packed_imm<"vrangepd", avx512vl_f64_info, 0x50, X86VRange, X86VRangeRnd, SchedWriteFAdd, HasDQI>, AVX512AIi8Base, EVEX_4V, EVEX_CD8<64, CD8VF>, VEX_W; defm VRANGEPS : avx512_common_fp_sae_packed_imm<"vrangeps", avx512vl_f32_info, 0x50, X86VRange, X86VRangeRnd, SchedWriteFAdd, HasDQI>, AVX512AIi8Base, EVEX_4V, EVEX_CD8<32, CD8VF>; defm VRANGESD: avx512_common_fp_sae_scalar_imm<"vrangesd", f64x_info, 0x51, X86Ranges, X86RangesRnd, SchedWriteFAdd, HasDQI>, AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<64, CD8VT1>, VEX_W; defm VRANGESS: avx512_common_fp_sae_scalar_imm<"vrangess", f32x_info, 0x51, X86Ranges, X86RangesRnd, SchedWriteFAdd, HasDQI>, AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<32, CD8VT1>; defm VREDUCESD: avx512_common_fp_sae_scalar_imm<"vreducesd", f64x_info, 0x57, X86Reduces, X86ReducesRnd, SchedWriteFRnd, HasDQI>, AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<64, CD8VT1>, VEX_W; defm VREDUCESS: avx512_common_fp_sae_scalar_imm<"vreducess", f32x_info, 0x57, X86Reduces, X86ReducesRnd, SchedWriteFRnd, HasDQI>, AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<32, CD8VT1>; defm VGETMANTSD: avx512_common_fp_sae_scalar_imm<"vgetmantsd", f64x_info, 0x27, X86GetMants, X86GetMantsRnd, SchedWriteFRnd, HasAVX512>, AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<64, CD8VT1>, VEX_W; defm VGETMANTSS: avx512_common_fp_sae_scalar_imm<"vgetmantss", f32x_info, 0x27, X86GetMants, X86GetMantsRnd, SchedWriteFRnd, HasAVX512>, AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<32, CD8VT1>; multiclass AVX512_rndscale_lowering<X86VectorVTInfo _, string Suffix> { // Register def : Pat<(_.VT (ffloor _.RC:$src)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rri") _.RC:$src, (i32 0x9))>; def : Pat<(_.VT (fnearbyint _.RC:$src)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rri") _.RC:$src, (i32 0xC))>; def : Pat<(_.VT (fceil _.RC:$src)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rri") _.RC:$src, (i32 0xA))>; def : Pat<(_.VT (frint _.RC:$src)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rri") _.RC:$src, (i32 0x4))>; def : Pat<(_.VT (ftrunc _.RC:$src)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rri") _.RC:$src, (i32 0xB))>; // Merge-masking def : Pat<(_.VT (vselect _.KRCWM:$mask, (ffloor _.RC:$src), _.RC:$dst)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rrik") _.RC:$dst, _.KRCWM:$mask, _.RC:$src, (i32 0x9))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (fnearbyint _.RC:$src), _.RC:$dst)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rrik") _.RC:$dst, _.KRCWM:$mask, _.RC:$src, (i32 0xC))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (fceil _.RC:$src), _.RC:$dst)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rrik") _.RC:$dst, _.KRCWM:$mask, _.RC:$src, (i32 0xA))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (frint _.RC:$src), _.RC:$dst)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rrik") _.RC:$dst, _.KRCWM:$mask, _.RC:$src, (i32 0x4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (ftrunc _.RC:$src), _.RC:$dst)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rrik") _.RC:$dst, _.KRCWM:$mask, _.RC:$src, (i32 0xB))>; // Zero-masking def : Pat<(_.VT (vselect _.KRCWM:$mask, (ffloor _.RC:$src), _.ImmAllZerosV)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rrikz") _.KRCWM:$mask, _.RC:$src, (i32 0x9))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (fnearbyint _.RC:$src), _.ImmAllZerosV)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rrikz") _.KRCWM:$mask, _.RC:$src, (i32 0xC))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (fceil _.RC:$src), _.ImmAllZerosV)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rrikz") _.KRCWM:$mask, _.RC:$src, (i32 0xA))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (frint _.RC:$src), _.ImmAllZerosV)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rrikz") _.KRCWM:$mask, _.RC:$src, (i32 0x4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (ftrunc _.RC:$src), _.ImmAllZerosV)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rrikz") _.KRCWM:$mask, _.RC:$src, (i32 0xB))>; // Load def : Pat<(_.VT (ffloor (_.LdFrag addr:$src))), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmi") addr:$src, (i32 0x9))>; def : Pat<(_.VT (fnearbyint (_.LdFrag addr:$src))), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmi") addr:$src, (i32 0xC))>; def : Pat<(_.VT (fceil (_.LdFrag addr:$src))), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmi") addr:$src, (i32 0xA))>; def : Pat<(_.VT (frint (_.LdFrag addr:$src))), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmi") addr:$src, (i32 0x4))>; def : Pat<(_.VT (ftrunc (_.LdFrag addr:$src))), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmi") addr:$src, (i32 0xB))>; // Merge-masking + load def : Pat<(_.VT (vselect _.KRCWM:$mask, (ffloor (_.LdFrag addr:$src)), _.RC:$dst)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmik") _.RC:$dst, _.KRCWM:$mask, addr:$src, (i32 0x9))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (fnearbyint (_.LdFrag addr:$src)), _.RC:$dst)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmik") _.RC:$dst, _.KRCWM:$mask, addr:$src, (i32 0xC))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (fceil (_.LdFrag addr:$src)), _.RC:$dst)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmik") _.RC:$dst, _.KRCWM:$mask, addr:$src, (i32 0xA))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (frint (_.LdFrag addr:$src)), _.RC:$dst)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmik") _.RC:$dst, _.KRCWM:$mask, addr:$src, (i32 0x4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (ftrunc (_.LdFrag addr:$src)), _.RC:$dst)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmik") _.RC:$dst, _.KRCWM:$mask, addr:$src, (i32 0xB))>; // Zero-masking + load def : Pat<(_.VT (vselect _.KRCWM:$mask, (ffloor (_.LdFrag addr:$src)), _.ImmAllZerosV)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmikz") _.KRCWM:$mask, addr:$src, (i32 0x9))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (fnearbyint (_.LdFrag addr:$src)), _.ImmAllZerosV)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmikz") _.KRCWM:$mask, addr:$src, (i32 0xC))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (fceil (_.LdFrag addr:$src)), _.ImmAllZerosV)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmikz") _.KRCWM:$mask, addr:$src, (i32 0xA))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (frint (_.LdFrag addr:$src)), _.ImmAllZerosV)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmikz") _.KRCWM:$mask, addr:$src, (i32 0x4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (ftrunc (_.LdFrag addr:$src)), _.ImmAllZerosV)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmikz") _.KRCWM:$mask, addr:$src, (i32 0xB))>; // Broadcast load def : Pat<(_.VT (ffloor (X86VBroadcast (_.ScalarLdFrag addr:$src)))), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbi") addr:$src, (i32 0x9))>; def : Pat<(_.VT (fnearbyint (X86VBroadcast (_.ScalarLdFrag addr:$src)))), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbi") addr:$src, (i32 0xC))>; def : Pat<(_.VT (fceil (X86VBroadcast (_.ScalarLdFrag addr:$src)))), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbi") addr:$src, (i32 0xA))>; def : Pat<(_.VT (frint (X86VBroadcast (_.ScalarLdFrag addr:$src)))), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbi") addr:$src, (i32 0x4))>; def : Pat<(_.VT (ftrunc (X86VBroadcast (_.ScalarLdFrag addr:$src)))), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbi") addr:$src, (i32 0xB))>; // Merge-masking + broadcast load def : Pat<(_.VT (vselect _.KRCWM:$mask, (ffloor (X86VBroadcast (_.ScalarLdFrag addr:$src))), _.RC:$dst)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbik") _.RC:$dst, _.KRCWM:$mask, addr:$src, (i32 0x9))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (fnearbyint (X86VBroadcast (_.ScalarLdFrag addr:$src))), _.RC:$dst)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbik") _.RC:$dst, _.KRCWM:$mask, addr:$src, (i32 0xC))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (fceil (X86VBroadcast (_.ScalarLdFrag addr:$src))), _.RC:$dst)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbik") _.RC:$dst, _.KRCWM:$mask, addr:$src, (i32 0xA))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (frint (X86VBroadcast (_.ScalarLdFrag addr:$src))), _.RC:$dst)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbik") _.RC:$dst, _.KRCWM:$mask, addr:$src, (i32 0x4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (ftrunc (X86VBroadcast (_.ScalarLdFrag addr:$src))), _.RC:$dst)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbik") _.RC:$dst, _.KRCWM:$mask, addr:$src, (i32 0xB))>; // Zero-masking + broadcast load def : Pat<(_.VT (vselect _.KRCWM:$mask, (ffloor (X86VBroadcast (_.ScalarLdFrag addr:$src))), _.ImmAllZerosV)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbikz") _.KRCWM:$mask, addr:$src, (i32 0x9))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (fnearbyint (X86VBroadcast (_.ScalarLdFrag addr:$src))), _.ImmAllZerosV)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbikz") _.KRCWM:$mask, addr:$src, (i32 0xC))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (fceil (X86VBroadcast (_.ScalarLdFrag addr:$src))), _.ImmAllZerosV)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbikz") _.KRCWM:$mask, addr:$src, (i32 0xA))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (frint (X86VBroadcast (_.ScalarLdFrag addr:$src))), _.ImmAllZerosV)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbikz") _.KRCWM:$mask, addr:$src, (i32 0x4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (ftrunc (X86VBroadcast (_.ScalarLdFrag addr:$src))), _.ImmAllZerosV)), (!cast<Instruction>("VRNDSCALE"#Suffix#_.ZSuffix#"rmbikz") _.KRCWM:$mask, addr:$src, (i32 0xB))>; } let Predicates = [HasAVX512] in { defm : AVX512_rndscale_lowering<v16f32_info, "PS">; defm : AVX512_rndscale_lowering<v8f64_info, "PD">; } let Predicates = [HasVLX] in { defm : AVX512_rndscale_lowering<v8f32x_info, "PS">; defm : AVX512_rndscale_lowering<v4f64x_info, "PD">; defm : AVX512_rndscale_lowering<v4f32x_info, "PS">; defm : AVX512_rndscale_lowering<v2f64x_info, "PD">; } multiclass avx512_shuff_packed_128_common<bits<8> opc, string OpcodeStr, X86FoldableSchedWrite sched, X86VectorVTInfo _, X86VectorVTInfo CastInfo, string EVEX2VEXOvrd> { let ExeDomain = _.ExeDomain in { defm rri : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2, u8imm:$src3), OpcodeStr, "$src3, $src2, $src1", "$src1, $src2, $src3", (_.VT (bitconvert (CastInfo.VT (X86Shuf128 _.RC:$src1, _.RC:$src2, (i8 imm:$src3)))))>, Sched<[sched]>, EVEX2VEXOverride<EVEX2VEXOvrd#"rr">; defm rmi : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.MemOp:$src2, u8imm:$src3), OpcodeStr, "$src3, $src2, $src1", "$src1, $src2, $src3", (_.VT (bitconvert (CastInfo.VT (X86Shuf128 _.RC:$src1, (bitconvert (_.LdFrag addr:$src2)), (i8 imm:$src3)))))>, Sched<[sched.Folded, ReadAfterLd]>, EVEX2VEXOverride<EVEX2VEXOvrd#"rm">; defm rmbi : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2, u8imm:$src3), OpcodeStr, "$src3, ${src2}"##_.BroadcastStr##", $src1", "$src1, ${src2}"##_.BroadcastStr##", $src3", (_.VT (bitconvert (CastInfo.VT (X86Shuf128 _.RC:$src1, (X86VBroadcast (_.ScalarLdFrag addr:$src2)), (i8 imm:$src3)))))>, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; } } multiclass avx512_shuff_packed_128<string OpcodeStr, X86FoldableSchedWrite sched, AVX512VLVectorVTInfo _, AVX512VLVectorVTInfo CastInfo, bits<8> opc, string EVEX2VEXOvrd>{ let Predicates = [HasAVX512] in defm Z : avx512_shuff_packed_128_common<opc, OpcodeStr, sched, _.info512, CastInfo.info512, "">, EVEX_V512; let Predicates = [HasAVX512, HasVLX] in defm Z256 : avx512_shuff_packed_128_common<opc, OpcodeStr, sched, _.info256, CastInfo.info256, EVEX2VEXOvrd>, EVEX_V256; } defm VSHUFF32X4 : avx512_shuff_packed_128<"vshuff32x4", WriteFShuffle256, avx512vl_f32_info, avx512vl_f64_info, 0x23, "VPERM2F128">, AVX512AIi8Base, EVEX_4V, EVEX_CD8<32, CD8VF>; defm VSHUFF64X2 : avx512_shuff_packed_128<"vshuff64x2", WriteFShuffle256, avx512vl_f64_info, avx512vl_f64_info, 0x23, "VPERM2F128">, AVX512AIi8Base, EVEX_4V, EVEX_CD8<64, CD8VF>, VEX_W; defm VSHUFI32X4 : avx512_shuff_packed_128<"vshufi32x4", WriteFShuffle256, avx512vl_i32_info, avx512vl_i64_info, 0x43, "VPERM2I128">, AVX512AIi8Base, EVEX_4V, EVEX_CD8<32, CD8VF>; defm VSHUFI64X2 : avx512_shuff_packed_128<"vshufi64x2", WriteFShuffle256, avx512vl_i64_info, avx512vl_i64_info, 0x43, "VPERM2I128">, AVX512AIi8Base, EVEX_4V, EVEX_CD8<64, CD8VF>, VEX_W; let Predicates = [HasAVX512] in { // Provide fallback in case the load node that is used in the broadcast // patterns above is used by additional users, which prevents the pattern // selection. def : Pat<(v8f64 (X86SubVBroadcast (v2f64 VR128X:$src))), (VSHUFF64X2Zrri (INSERT_SUBREG (v8f64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (INSERT_SUBREG (v8f64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), 0)>; def : Pat<(v8i64 (X86SubVBroadcast (v2i64 VR128X:$src))), (VSHUFI64X2Zrri (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), 0)>; def : Pat<(v16f32 (X86SubVBroadcast (v4f32 VR128X:$src))), (VSHUFF32X4Zrri (INSERT_SUBREG (v16f32 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (INSERT_SUBREG (v16f32 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), 0)>; def : Pat<(v16i32 (X86SubVBroadcast (v4i32 VR128X:$src))), (VSHUFI32X4Zrri (INSERT_SUBREG (v16i32 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (INSERT_SUBREG (v16i32 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), 0)>; def : Pat<(v32i16 (X86SubVBroadcast (v8i16 VR128X:$src))), (VSHUFI32X4Zrri (INSERT_SUBREG (v32i16 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (INSERT_SUBREG (v32i16 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), 0)>; def : Pat<(v64i8 (X86SubVBroadcast (v16i8 VR128X:$src))), (VSHUFI32X4Zrri (INSERT_SUBREG (v64i8 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (INSERT_SUBREG (v64i8 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), 0)>; } multiclass avx512_valign<bits<8> opc, string OpcodeStr, X86FoldableSchedWrite sched, X86VectorVTInfo _>{ // NOTE: EVEX2VEXOverride changed back to Unset for 256-bit at the // instantiation of this class. let ExeDomain = _.ExeDomain in { defm rri : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1, _.RC:$src2, u8imm:$src3), OpcodeStr, "$src3, $src2, $src1", "$src1, $src2, $src3", (_.VT (X86VAlign _.RC:$src1, _.RC:$src2, (i8 imm:$src3)))>, Sched<[sched]>, EVEX2VEXOverride<"VPALIGNRrri">; defm rmi : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.MemOp:$src2, u8imm:$src3), OpcodeStr, "$src3, $src2, $src1", "$src1, $src2, $src3", (_.VT (X86VAlign _.RC:$src1, (bitconvert (_.LdFrag addr:$src2)), (i8 imm:$src3)))>, Sched<[sched.Folded, ReadAfterLd]>, EVEX2VEXOverride<"VPALIGNRrmi">; defm rmbi : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2, u8imm:$src3), OpcodeStr, "$src3, ${src2}"##_.BroadcastStr##", $src1", "$src1, ${src2}"##_.BroadcastStr##", $src3", (X86VAlign _.RC:$src1, (_.VT (X86VBroadcast(_.ScalarLdFrag addr:$src2))), (i8 imm:$src3))>, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; } } multiclass avx512_valign_common<string OpcodeStr, X86SchedWriteWidths sched, AVX512VLVectorVTInfo _> { let Predicates = [HasAVX512] in { defm Z : avx512_valign<0x03, OpcodeStr, sched.ZMM, _.info512>, AVX512AIi8Base, EVEX_4V, EVEX_V512; } let Predicates = [HasAVX512, HasVLX] in { defm Z128 : avx512_valign<0x03, OpcodeStr, sched.XMM, _.info128>, AVX512AIi8Base, EVEX_4V, EVEX_V128; // We can't really override the 256-bit version so change it back to unset. let EVEX2VEXOverride = ? in defm Z256 : avx512_valign<0x03, OpcodeStr, sched.YMM, _.info256>, AVX512AIi8Base, EVEX_4V, EVEX_V256; } } defm VALIGND: avx512_valign_common<"valignd", SchedWriteShuffle, avx512vl_i32_info>, EVEX_CD8<32, CD8VF>; defm VALIGNQ: avx512_valign_common<"valignq", SchedWriteShuffle, avx512vl_i64_info>, EVEX_CD8<64, CD8VF>, VEX_W; defm VPALIGNR: avx512_common_3Op_rm_imm8<0x0F, X86PAlignr, "vpalignr", SchedWriteShuffle, avx512vl_i8_info, avx512vl_i8_info>, EVEX_CD8<8, CD8VF>; // Fragments to help convert valignq into masked valignd. Or valignq/valignd // into vpalignr. def ValignqImm32XForm : SDNodeXForm<imm, [{ return getI8Imm(N->getZExtValue() * 2, SDLoc(N)); }]>; def ValignqImm8XForm : SDNodeXForm<imm, [{ return getI8Imm(N->getZExtValue() * 8, SDLoc(N)); }]>; def ValigndImm8XForm : SDNodeXForm<imm, [{ return getI8Imm(N->getZExtValue() * 4, SDLoc(N)); }]>; multiclass avx512_vpalign_mask_lowering<string OpcodeStr, SDNode OpNode, X86VectorVTInfo From, X86VectorVTInfo To, SDNodeXForm ImmXForm> { def : Pat<(To.VT (vselect To.KRCWM:$mask, (bitconvert (From.VT (OpNode From.RC:$src1, From.RC:$src2, imm:$src3))), To.RC:$src0)), (!cast<Instruction>(OpcodeStr#"rrik") To.RC:$src0, To.KRCWM:$mask, To.RC:$src1, To.RC:$src2, (ImmXForm imm:$src3))>; def : Pat<(To.VT (vselect To.KRCWM:$mask, (bitconvert (From.VT (OpNode From.RC:$src1, From.RC:$src2, imm:$src3))), To.ImmAllZerosV)), (!cast<Instruction>(OpcodeStr#"rrikz") To.KRCWM:$mask, To.RC:$src1, To.RC:$src2, (ImmXForm imm:$src3))>; def : Pat<(To.VT (vselect To.KRCWM:$mask, (bitconvert (From.VT (OpNode From.RC:$src1, (bitconvert (To.LdFrag addr:$src2)), imm:$src3))), To.RC:$src0)), (!cast<Instruction>(OpcodeStr#"rmik") To.RC:$src0, To.KRCWM:$mask, To.RC:$src1, addr:$src2, (ImmXForm imm:$src3))>; def : Pat<(To.VT (vselect To.KRCWM:$mask, (bitconvert (From.VT (OpNode From.RC:$src1, (bitconvert (To.LdFrag addr:$src2)), imm:$src3))), To.ImmAllZerosV)), (!cast<Instruction>(OpcodeStr#"rmikz") To.KRCWM:$mask, To.RC:$src1, addr:$src2, (ImmXForm imm:$src3))>; } multiclass avx512_vpalign_mask_lowering_mb<string OpcodeStr, SDNode OpNode, X86VectorVTInfo From, X86VectorVTInfo To, SDNodeXForm ImmXForm> : avx512_vpalign_mask_lowering<OpcodeStr, OpNode, From, To, ImmXForm> { def : Pat<(From.VT (OpNode From.RC:$src1, (bitconvert (To.VT (X86VBroadcast (To.ScalarLdFrag addr:$src2)))), imm:$src3)), (!cast<Instruction>(OpcodeStr#"rmbi") To.RC:$src1, addr:$src2, (ImmXForm imm:$src3))>; def : Pat<(To.VT (vselect To.KRCWM:$mask, (bitconvert (From.VT (OpNode From.RC:$src1, (bitconvert (To.VT (X86VBroadcast (To.ScalarLdFrag addr:$src2)))), imm:$src3))), To.RC:$src0)), (!cast<Instruction>(OpcodeStr#"rmbik") To.RC:$src0, To.KRCWM:$mask, To.RC:$src1, addr:$src2, (ImmXForm imm:$src3))>; def : Pat<(To.VT (vselect To.KRCWM:$mask, (bitconvert (From.VT (OpNode From.RC:$src1, (bitconvert (To.VT (X86VBroadcast (To.ScalarLdFrag addr:$src2)))), imm:$src3))), To.ImmAllZerosV)), (!cast<Instruction>(OpcodeStr#"rmbikz") To.KRCWM:$mask, To.RC:$src1, addr:$src2, (ImmXForm imm:$src3))>; } let Predicates = [HasAVX512] in { // For 512-bit we lower to the widest element type we can. So we only need // to handle converting valignq to valignd. defm : avx512_vpalign_mask_lowering_mb<"VALIGNDZ", X86VAlign, v8i64_info, v16i32_info, ValignqImm32XForm>; } let Predicates = [HasVLX] in { // For 128-bit we lower to the widest element type we can. So we only need // to handle converting valignq to valignd. defm : avx512_vpalign_mask_lowering_mb<"VALIGNDZ128", X86VAlign, v2i64x_info, v4i32x_info, ValignqImm32XForm>; // For 256-bit we lower to the widest element type we can. So we only need // to handle converting valignq to valignd. defm : avx512_vpalign_mask_lowering_mb<"VALIGNDZ256", X86VAlign, v4i64x_info, v8i32x_info, ValignqImm32XForm>; } let Predicates = [HasVLX, HasBWI] in { // We can turn 128 and 256 bit VALIGND/VALIGNQ into VPALIGNR. defm : avx512_vpalign_mask_lowering<"VPALIGNRZ128", X86VAlign, v2i64x_info, v16i8x_info, ValignqImm8XForm>; defm : avx512_vpalign_mask_lowering<"VPALIGNRZ128", X86VAlign, v4i32x_info, v16i8x_info, ValigndImm8XForm>; } defm VDBPSADBW: avx512_common_3Op_rm_imm8<0x42, X86dbpsadbw, "vdbpsadbw", SchedWritePSADBW, avx512vl_i16_info, avx512vl_i8_info>, EVEX_CD8<8, CD8VF>, NotEVEX2VEXConvertible; multiclass avx512_unary_rm<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in { defm rr : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src1), OpcodeStr, "$src1", "$src1", (_.VT (OpNode _.RC:$src1))>, EVEX, AVX5128IBase, Sched<[sched]>; defm rm : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.MemOp:$src1), OpcodeStr, "$src1", "$src1", (_.VT (OpNode (bitconvert (_.LdFrag addr:$src1))))>, EVEX, AVX5128IBase, EVEX_CD8<_.EltSize, CD8VF>, Sched<[sched.Folded]>; } } multiclass avx512_unary_rmb<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _> : avx512_unary_rm<opc, OpcodeStr, OpNode, sched, _> { defm rmb : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.ScalarMemOp:$src1), OpcodeStr, "${src1}"##_.BroadcastStr, "${src1}"##_.BroadcastStr, (_.VT (OpNode (X86VBroadcast (_.ScalarLdFrag addr:$src1))))>, EVEX, AVX5128IBase, EVEX_B, EVEX_CD8<_.EltSize, CD8VF>, Sched<[sched.Folded]>; } multiclass avx512_unary_rm_vl<bits<8> opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched, AVX512VLVectorVTInfo VTInfo, Predicate prd> { let Predicates = [prd] in defm Z : avx512_unary_rm<opc, OpcodeStr, OpNode, sched.ZMM, VTInfo.info512>, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_unary_rm<opc, OpcodeStr, OpNode, sched.YMM, VTInfo.info256>, EVEX_V256; defm Z128 : avx512_unary_rm<opc, OpcodeStr, OpNode, sched.XMM, VTInfo.info128>, EVEX_V128; } } multiclass avx512_unary_rmb_vl<bits<8> opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched, AVX512VLVectorVTInfo VTInfo, Predicate prd> { let Predicates = [prd] in defm Z : avx512_unary_rmb<opc, OpcodeStr, OpNode, sched.ZMM, VTInfo.info512>, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_unary_rmb<opc, OpcodeStr, OpNode, sched.YMM, VTInfo.info256>, EVEX_V256; defm Z128 : avx512_unary_rmb<opc, OpcodeStr, OpNode, sched.XMM, VTInfo.info128>, EVEX_V128; } } multiclass avx512_unary_rm_vl_dq<bits<8> opc_d, bits<8> opc_q, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched, Predicate prd> { defm Q : avx512_unary_rmb_vl<opc_q, OpcodeStr#"q", OpNode, sched, avx512vl_i64_info, prd>, VEX_W; defm D : avx512_unary_rmb_vl<opc_d, OpcodeStr#"d", OpNode, sched, avx512vl_i32_info, prd>; } multiclass avx512_unary_rm_vl_bw<bits<8> opc_b, bits<8> opc_w, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched, Predicate prd> { defm W : avx512_unary_rm_vl<opc_w, OpcodeStr#"w", OpNode, sched, avx512vl_i16_info, prd>, VEX_WIG; defm B : avx512_unary_rm_vl<opc_b, OpcodeStr#"b", OpNode, sched, avx512vl_i8_info, prd>, VEX_WIG; } multiclass avx512_unary_rm_vl_all<bits<8> opc_b, bits<8> opc_w, bits<8> opc_d, bits<8> opc_q, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched> { defm NAME : avx512_unary_rm_vl_dq<opc_d, opc_q, OpcodeStr, OpNode, sched, HasAVX512>, avx512_unary_rm_vl_bw<opc_b, opc_w, OpcodeStr, OpNode, sched, HasBWI>; } defm VPABS : avx512_unary_rm_vl_all<0x1C, 0x1D, 0x1E, 0x1F, "vpabs", abs, SchedWriteVecALU>; // VPABS: Use 512bit version to implement 128/256 bit in case NoVLX. let Predicates = [HasAVX512, NoVLX] in { def : Pat<(v4i64 (abs VR256X:$src)), (EXTRACT_SUBREG (VPABSQZrr (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm)), sub_ymm)>; def : Pat<(v2i64 (abs VR128X:$src)), (EXTRACT_SUBREG (VPABSQZrr (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm)), sub_xmm)>; } // Use 512bit version to implement 128/256 bit. multiclass avx512_unary_lowering<string InstrStr, SDNode OpNode, AVX512VLVectorVTInfo _, Predicate prd> { let Predicates = [prd, NoVLX] in { def : Pat<(_.info256.VT(OpNode _.info256.RC:$src1)), (EXTRACT_SUBREG (!cast<Instruction>(InstrStr # "Zrr") (INSERT_SUBREG(_.info512.VT(IMPLICIT_DEF)), _.info256.RC:$src1, _.info256.SubRegIdx)), _.info256.SubRegIdx)>; def : Pat<(_.info128.VT(OpNode _.info128.RC:$src1)), (EXTRACT_SUBREG (!cast<Instruction>(InstrStr # "Zrr") (INSERT_SUBREG(_.info512.VT(IMPLICIT_DEF)), _.info128.RC:$src1, _.info128.SubRegIdx)), _.info128.SubRegIdx)>; } } defm VPLZCNT : avx512_unary_rm_vl_dq<0x44, 0x44, "vplzcnt", ctlz, SchedWriteVecIMul, HasCDI>; // FIXME: Is there a better scheduler class for VPCONFLICT? defm VPCONFLICT : avx512_unary_rm_vl_dq<0xC4, 0xC4, "vpconflict", X86Conflict, SchedWriteVecALU, HasCDI>; // VPLZCNT: Use 512bit version to implement 128/256 bit in case NoVLX. defm : avx512_unary_lowering<"VPLZCNTQ", ctlz, avx512vl_i64_info, HasCDI>; defm : avx512_unary_lowering<"VPLZCNTD", ctlz, avx512vl_i32_info, HasCDI>; //===---------------------------------------------------------------------===// // Counts number of ones - VPOPCNTD and VPOPCNTQ //===---------------------------------------------------------------------===// // FIXME: Is there a better scheduler class for VPOPCNTD/VPOPCNTQ? defm VPOPCNT : avx512_unary_rm_vl_dq<0x55, 0x55, "vpopcnt", ctpop, SchedWriteVecALU, HasVPOPCNTDQ>; defm : avx512_unary_lowering<"VPOPCNTQ", ctpop, avx512vl_i64_info, HasVPOPCNTDQ>; defm : avx512_unary_lowering<"VPOPCNTD", ctpop, avx512vl_i32_info, HasVPOPCNTDQ>; //===---------------------------------------------------------------------===// // Replicate Single FP - MOVSHDUP and MOVSLDUP //===---------------------------------------------------------------------===// multiclass avx512_replicate<bits<8> opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched> { defm NAME: avx512_unary_rm_vl<opc, OpcodeStr, OpNode, sched, avx512vl_f32_info, HasAVX512>, XS; } defm VMOVSHDUP : avx512_replicate<0x16, "vmovshdup", X86Movshdup, SchedWriteFShuffle>; defm VMOVSLDUP : avx512_replicate<0x12, "vmovsldup", X86Movsldup, SchedWriteFShuffle>; //===----------------------------------------------------------------------===// // AVX-512 - MOVDDUP //===----------------------------------------------------------------------===// multiclass avx512_movddup_128<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _> { let ExeDomain = _.ExeDomain in { defm rr : AVX512_maskable<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src), OpcodeStr, "$src", "$src", (_.VT (OpNode (_.VT _.RC:$src)))>, EVEX, Sched<[sched]>; defm rm : AVX512_maskable<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.ScalarMemOp:$src), OpcodeStr, "$src", "$src", (_.VT (OpNode (_.VT (scalar_to_vector (_.ScalarLdFrag addr:$src)))))>, EVEX, EVEX_CD8<_.EltSize, CD8VH>, Sched<[sched.Folded]>; } } multiclass avx512_movddup_common<bits<8> opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched, AVX512VLVectorVTInfo VTInfo> { defm Z : avx512_unary_rm<opc, OpcodeStr, X86Movddup, sched.ZMM, VTInfo.info512>, EVEX_V512; let Predicates = [HasAVX512, HasVLX] in { defm Z256 : avx512_unary_rm<opc, OpcodeStr, X86Movddup, sched.YMM, VTInfo.info256>, EVEX_V256; defm Z128 : avx512_movddup_128<opc, OpcodeStr, X86VBroadcast, sched.XMM, VTInfo.info128>, EVEX_V128; } } multiclass avx512_movddup<bits<8> opc, string OpcodeStr, SDNode OpNode, X86SchedWriteWidths sched> { defm NAME: avx512_movddup_common<opc, OpcodeStr, OpNode, sched, avx512vl_f64_info>, XD, VEX_W; } defm VMOVDDUP : avx512_movddup<0x12, "vmovddup", X86Movddup, SchedWriteFShuffle>; let Predicates = [HasVLX] in { def : Pat<(v2f64 (X86VBroadcast (loadf64 addr:$src))), (VMOVDDUPZ128rm addr:$src)>; def : Pat<(v2f64 (X86VBroadcast f64:$src)), (VMOVDDUPZ128rr (v2f64 (COPY_TO_REGCLASS FR64X:$src, VR128X)))>; def : Pat<(v2f64 (X86VBroadcast (loadv2f64 addr:$src))), (VMOVDDUPZ128rm addr:$src)>; def : Pat<(vselect (v2i1 VK2WM:$mask), (v2f64 (X86VBroadcast f64:$src)), (v2f64 VR128X:$src0)), (VMOVDDUPZ128rrk VR128X:$src0, VK2WM:$mask, (v2f64 (COPY_TO_REGCLASS FR64X:$src, VR128X)))>; def : Pat<(vselect (v2i1 VK2WM:$mask), (v2f64 (X86VBroadcast f64:$src)), (bitconvert (v4i32 immAllZerosV))), (VMOVDDUPZ128rrkz VK2WM:$mask, (v2f64 (COPY_TO_REGCLASS FR64X:$src, VR128X)))>; def : Pat<(vselect (v2i1 VK2WM:$mask), (v2f64 (X86VBroadcast (loadf64 addr:$src))), (v2f64 VR128X:$src0)), (VMOVDDUPZ128rmk VR128X:$src0, VK2WM:$mask, addr:$src)>; def : Pat<(vselect (v2i1 VK2WM:$mask), (v2f64 (X86VBroadcast (loadf64 addr:$src))), (bitconvert (v4i32 immAllZerosV))), (VMOVDDUPZ128rmkz VK2WM:$mask, addr:$src)>; def : Pat<(vselect (v2i1 VK2WM:$mask), (v2f64 (X86VBroadcast (loadv2f64 addr:$src))), (v2f64 VR128X:$src0)), (VMOVDDUPZ128rmk VR128X:$src0, VK2WM:$mask, addr:$src)>; def : Pat<(vselect (v2i1 VK2WM:$mask), (v2f64 (X86VBroadcast (loadv2f64 addr:$src))), (bitconvert (v4i32 immAllZerosV))), (VMOVDDUPZ128rmkz VK2WM:$mask, addr:$src)>; } //===----------------------------------------------------------------------===// // AVX-512 - Unpack Instructions //===----------------------------------------------------------------------===// defm VUNPCKH : avx512_fp_binop_p<0x15, "vunpckh", X86Unpckh, HasAVX512, SchedWriteFShuffleSizes, 0, 1>; defm VUNPCKL : avx512_fp_binop_p<0x14, "vunpckl", X86Unpckl, HasAVX512, SchedWriteFShuffleSizes>; defm VPUNPCKLBW : avx512_binop_rm_vl_b<0x60, "vpunpcklbw", X86Unpckl, SchedWriteShuffle, HasBWI>; defm VPUNPCKHBW : avx512_binop_rm_vl_b<0x68, "vpunpckhbw", X86Unpckh, SchedWriteShuffle, HasBWI>; defm VPUNPCKLWD : avx512_binop_rm_vl_w<0x61, "vpunpcklwd", X86Unpckl, SchedWriteShuffle, HasBWI>; defm VPUNPCKHWD : avx512_binop_rm_vl_w<0x69, "vpunpckhwd", X86Unpckh, SchedWriteShuffle, HasBWI>; defm VPUNPCKLDQ : avx512_binop_rm_vl_d<0x62, "vpunpckldq", X86Unpckl, SchedWriteShuffle, HasAVX512>; defm VPUNPCKHDQ : avx512_binop_rm_vl_d<0x6A, "vpunpckhdq", X86Unpckh, SchedWriteShuffle, HasAVX512>; defm VPUNPCKLQDQ : avx512_binop_rm_vl_q<0x6C, "vpunpcklqdq", X86Unpckl, SchedWriteShuffle, HasAVX512>; defm VPUNPCKHQDQ : avx512_binop_rm_vl_q<0x6D, "vpunpckhqdq", X86Unpckh, SchedWriteShuffle, HasAVX512>; //===----------------------------------------------------------------------===// // AVX-512 - Extract & Insert Integer Instructions //===----------------------------------------------------------------------===// multiclass avx512_extract_elt_bw_m<bits<8> opc, string OpcodeStr, SDNode OpNode, X86VectorVTInfo _> { def mr : AVX512Ii8<opc, MRMDestMem, (outs), (ins _.ScalarMemOp:$dst, _.RC:$src1, u8imm:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(store (_.EltVT (trunc (OpNode (_.VT _.RC:$src1), imm:$src2))), addr:$dst)]>, EVEX, EVEX_CD8<_.EltSize, CD8VT1>, Sched<[WriteVecExtractSt]>; } multiclass avx512_extract_elt_b<string OpcodeStr, X86VectorVTInfo _> { let Predicates = [HasBWI] in { def rr : AVX512Ii8<0x14, MRMDestReg, (outs GR32orGR64:$dst), (ins _.RC:$src1, u8imm:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32orGR64:$dst, (X86pextrb (_.VT _.RC:$src1), imm:$src2))]>, EVEX, TAPD, Sched<[WriteVecExtract]>; defm NAME : avx512_extract_elt_bw_m<0x14, OpcodeStr, X86pextrb, _>, TAPD; } } multiclass avx512_extract_elt_w<string OpcodeStr, X86VectorVTInfo _> { let Predicates = [HasBWI] in { def rr : AVX512Ii8<0xC5, MRMSrcReg, (outs GR32orGR64:$dst), (ins _.RC:$src1, u8imm:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32orGR64:$dst, (X86pextrw (_.VT _.RC:$src1), imm:$src2))]>, EVEX, PD, Sched<[WriteVecExtract]>; let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in def rr_REV : AVX512Ii8<0x15, MRMDestReg, (outs GR32orGR64:$dst), (ins _.RC:$src1, u8imm:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, EVEX, TAPD, FoldGenData<NAME#rr>, Sched<[WriteVecExtract]>; defm NAME : avx512_extract_elt_bw_m<0x15, OpcodeStr, X86pextrw, _>, TAPD; } } multiclass avx512_extract_elt_dq<string OpcodeStr, X86VectorVTInfo _, RegisterClass GRC> { let Predicates = [HasDQI] in { def rr : AVX512Ii8<0x16, MRMDestReg, (outs GRC:$dst), (ins _.RC:$src1, u8imm:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GRC:$dst, (extractelt (_.VT _.RC:$src1), imm:$src2))]>, EVEX, TAPD, Sched<[WriteVecExtract]>; def mr : AVX512Ii8<0x16, MRMDestMem, (outs), (ins _.ScalarMemOp:$dst, _.RC:$src1, u8imm:$src2), OpcodeStr#"\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(store (extractelt (_.VT _.RC:$src1), imm:$src2),addr:$dst)]>, EVEX, EVEX_CD8<_.EltSize, CD8VT1>, TAPD, Sched<[WriteVecExtractSt]>; } } defm VPEXTRBZ : avx512_extract_elt_b<"vpextrb", v16i8x_info>, VEX_WIG; defm VPEXTRWZ : avx512_extract_elt_w<"vpextrw", v8i16x_info>, VEX_WIG; defm VPEXTRDZ : avx512_extract_elt_dq<"vpextrd", v4i32x_info, GR32>; defm VPEXTRQZ : avx512_extract_elt_dq<"vpextrq", v2i64x_info, GR64>, VEX_W; multiclass avx512_insert_elt_m<bits<8> opc, string OpcodeStr, SDNode OpNode, X86VectorVTInfo _, PatFrag LdFrag> { def rm : AVX512Ii8<opc, MRMSrcMem, (outs _.RC:$dst), (ins _.RC:$src1, _.ScalarMemOp:$src2, u8imm:$src3), OpcodeStr#"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", [(set _.RC:$dst, (_.VT (OpNode _.RC:$src1, (LdFrag addr:$src2), imm:$src3)))]>, EVEX_4V, EVEX_CD8<_.EltSize, CD8VT1>, Sched<[WriteVecInsertLd, ReadAfterLd]>; } multiclass avx512_insert_elt_bw<bits<8> opc, string OpcodeStr, SDNode OpNode, X86VectorVTInfo _, PatFrag LdFrag> { let Predicates = [HasBWI] in { def rr : AVX512Ii8<opc, MRMSrcReg, (outs _.RC:$dst), (ins _.RC:$src1, GR32orGR64:$src2, u8imm:$src3), OpcodeStr#"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", [(set _.RC:$dst, (OpNode _.RC:$src1, GR32orGR64:$src2, imm:$src3))]>, EVEX_4V, Sched<[WriteVecInsert]>; defm NAME : avx512_insert_elt_m<opc, OpcodeStr, OpNode, _, LdFrag>; } } multiclass avx512_insert_elt_dq<bits<8> opc, string OpcodeStr, X86VectorVTInfo _, RegisterClass GRC> { let Predicates = [HasDQI] in { def rr : AVX512Ii8<opc, MRMSrcReg, (outs _.RC:$dst), (ins _.RC:$src1, GRC:$src2, u8imm:$src3), OpcodeStr#"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", [(set _.RC:$dst, (_.VT (insertelt _.RC:$src1, GRC:$src2, imm:$src3)))]>, EVEX_4V, TAPD, Sched<[WriteVecInsert]>; defm NAME : avx512_insert_elt_m<opc, OpcodeStr, insertelt, _, _.ScalarLdFrag>, TAPD; } } defm VPINSRBZ : avx512_insert_elt_bw<0x20, "vpinsrb", X86pinsrb, v16i8x_info, extloadi8>, TAPD, VEX_WIG; defm VPINSRWZ : avx512_insert_elt_bw<0xC4, "vpinsrw", X86pinsrw, v8i16x_info, extloadi16>, PD, VEX_WIG; defm VPINSRDZ : avx512_insert_elt_dq<0x22, "vpinsrd", v4i32x_info, GR32>; defm VPINSRQZ : avx512_insert_elt_dq<0x22, "vpinsrq", v2i64x_info, GR64>, VEX_W; //===----------------------------------------------------------------------===// // VSHUFPS - VSHUFPD Operations //===----------------------------------------------------------------------===// multiclass avx512_shufp<string OpcodeStr, AVX512VLVectorVTInfo VTInfo_I, AVX512VLVectorVTInfo VTInfo_FP>{ defm NAME: avx512_common_3Op_imm8<OpcodeStr, VTInfo_FP, 0xC6, X86Shufp, SchedWriteFShuffle>, EVEX_CD8<VTInfo_FP.info512.EltSize, CD8VF>, AVX512AIi8Base, EVEX_4V; } defm VSHUFPS: avx512_shufp<"vshufps", avx512vl_i32_info, avx512vl_f32_info>, PS; defm VSHUFPD: avx512_shufp<"vshufpd", avx512vl_i64_info, avx512vl_f64_info>, PD, VEX_W; //===----------------------------------------------------------------------===// // AVX-512 - Byte shift Left/Right //===----------------------------------------------------------------------===// // FIXME: The SSE/AVX names are PSLLDQri etc. - should we add the i here as well? multiclass avx512_shift_packed<bits<8> opc, SDNode OpNode, Format MRMr, Format MRMm, string OpcodeStr, X86FoldableSchedWrite sched, X86VectorVTInfo _>{ def rr : AVX512<opc, MRMr, (outs _.RC:$dst), (ins _.RC:$src1, u8imm:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set _.RC:$dst,(_.VT (OpNode _.RC:$src1, (i8 imm:$src2))))]>, Sched<[sched]>; def rm : AVX512<opc, MRMm, (outs _.RC:$dst), (ins _.MemOp:$src1, u8imm:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set _.RC:$dst,(_.VT (OpNode (_.VT (bitconvert (_.LdFrag addr:$src1))), (i8 imm:$src2))))]>, Sched<[sched.Folded, ReadAfterLd]>; } multiclass avx512_shift_packed_all<bits<8> opc, SDNode OpNode, Format MRMr, Format MRMm, string OpcodeStr, X86SchedWriteWidths sched, Predicate prd>{ let Predicates = [prd] in defm Z : avx512_shift_packed<opc, OpNode, MRMr, MRMm, OpcodeStr, sched.ZMM, v64i8_info>, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_shift_packed<opc, OpNode, MRMr, MRMm, OpcodeStr, sched.YMM, v32i8x_info>, EVEX_V256; defm Z128 : avx512_shift_packed<opc, OpNode, MRMr, MRMm, OpcodeStr, sched.XMM, v16i8x_info>, EVEX_V128; } } defm VPSLLDQ : avx512_shift_packed_all<0x73, X86vshldq, MRM7r, MRM7m, "vpslldq", SchedWriteShuffle, HasBWI>, AVX512PDIi8Base, EVEX_4V, VEX_WIG; defm VPSRLDQ : avx512_shift_packed_all<0x73, X86vshrdq, MRM3r, MRM3m, "vpsrldq", SchedWriteShuffle, HasBWI>, AVX512PDIi8Base, EVEX_4V, VEX_WIG; multiclass avx512_psadbw_packed<bits<8> opc, SDNode OpNode, string OpcodeStr, X86FoldableSchedWrite sched, X86VectorVTInfo _dst, X86VectorVTInfo _src> { def rr : AVX512BI<opc, MRMSrcReg, (outs _dst.RC:$dst), (ins _src.RC:$src1, _src.RC:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set _dst.RC:$dst,(_dst.VT (OpNode (_src.VT _src.RC:$src1), (_src.VT _src.RC:$src2))))]>, Sched<[sched]>; def rm : AVX512BI<opc, MRMSrcMem, (outs _dst.RC:$dst), (ins _src.RC:$src1, _src.MemOp:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set _dst.RC:$dst,(_dst.VT (OpNode (_src.VT _src.RC:$src1), (_src.VT (bitconvert (_src.LdFrag addr:$src2))))))]>, Sched<[sched.Folded, ReadAfterLd]>; } multiclass avx512_psadbw_packed_all<bits<8> opc, SDNode OpNode, string OpcodeStr, X86SchedWriteWidths sched, Predicate prd> { let Predicates = [prd] in defm Z : avx512_psadbw_packed<opc, OpNode, OpcodeStr, sched.ZMM, v8i64_info, v64i8_info>, EVEX_V512; let Predicates = [prd, HasVLX] in { defm Z256 : avx512_psadbw_packed<opc, OpNode, OpcodeStr, sched.YMM, v4i64x_info, v32i8x_info>, EVEX_V256; defm Z128 : avx512_psadbw_packed<opc, OpNode, OpcodeStr, sched.XMM, v2i64x_info, v16i8x_info>, EVEX_V128; } } defm VPSADBW : avx512_psadbw_packed_all<0xf6, X86psadbw, "vpsadbw", SchedWritePSADBW, HasBWI>, EVEX_4V, VEX_WIG; // Transforms to swizzle an immediate to enable better matching when // memory operand isn't in the right place. def VPTERNLOG321_imm8 : SDNodeXForm<imm, [{ // Convert a VPTERNLOG immediate by swapping operand 0 and operand 2. uint8_t Imm = N->getZExtValue(); // Swap bits 1/4 and 3/6. uint8_t NewImm = Imm & 0xa5; if (Imm & 0x02) NewImm |= 0x10; if (Imm & 0x10) NewImm |= 0x02; if (Imm & 0x08) NewImm |= 0x40; if (Imm & 0x40) NewImm |= 0x08; return getI8Imm(NewImm, SDLoc(N)); }]>; def VPTERNLOG213_imm8 : SDNodeXForm<imm, [{ // Convert a VPTERNLOG immediate by swapping operand 1 and operand 2. uint8_t Imm = N->getZExtValue(); // Swap bits 2/4 and 3/5. uint8_t NewImm = Imm & 0xc3; if (Imm & 0x04) NewImm |= 0x10; if (Imm & 0x10) NewImm |= 0x04; if (Imm & 0x08) NewImm |= 0x20; if (Imm & 0x20) NewImm |= 0x08; return getI8Imm(NewImm, SDLoc(N)); }]>; def VPTERNLOG132_imm8 : SDNodeXForm<imm, [{ // Convert a VPTERNLOG immediate by swapping operand 1 and operand 2. uint8_t Imm = N->getZExtValue(); // Swap bits 1/2 and 5/6. uint8_t NewImm = Imm & 0x99; if (Imm & 0x02) NewImm |= 0x04; if (Imm & 0x04) NewImm |= 0x02; if (Imm & 0x20) NewImm |= 0x40; if (Imm & 0x40) NewImm |= 0x20; return getI8Imm(NewImm, SDLoc(N)); }]>; def VPTERNLOG231_imm8 : SDNodeXForm<imm, [{ // Convert a VPTERNLOG immediate by moving operand 1 to the end. uint8_t Imm = N->getZExtValue(); // Move bits 1->2, 2->4, 3->6, 4->1, 5->3, 6->5 uint8_t NewImm = Imm & 0x81; if (Imm & 0x02) NewImm |= 0x04; if (Imm & 0x04) NewImm |= 0x10; if (Imm & 0x08) NewImm |= 0x40; if (Imm & 0x10) NewImm |= 0x02; if (Imm & 0x20) NewImm |= 0x08; if (Imm & 0x40) NewImm |= 0x20; return getI8Imm(NewImm, SDLoc(N)); }]>; def VPTERNLOG312_imm8 : SDNodeXForm<imm, [{ // Convert a VPTERNLOG immediate by moving operand 2 to the beginning. uint8_t Imm = N->getZExtValue(); // Move bits 1->4, 2->1, 3->5, 4->2, 5->6, 6->3 uint8_t NewImm = Imm & 0x81; if (Imm & 0x02) NewImm |= 0x10; if (Imm & 0x04) NewImm |= 0x02; if (Imm & 0x08) NewImm |= 0x20; if (Imm & 0x10) NewImm |= 0x04; if (Imm & 0x20) NewImm |= 0x40; if (Imm & 0x40) NewImm |= 0x08; return getI8Imm(NewImm, SDLoc(N)); }]>; multiclass avx512_ternlog<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _, string Name>{ let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain in { defm rri : AVX512_maskable_3src<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src2, _.RC:$src3, u8imm:$src4), OpcodeStr, "$src4, $src3, $src2", "$src2, $src3, $src4", (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2), (_.VT _.RC:$src3), (i8 imm:$src4)), 1, 1>, AVX512AIi8Base, EVEX_4V, Sched<[sched]>; defm rmi : AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src2, _.MemOp:$src3, u8imm:$src4), OpcodeStr, "$src4, $src3, $src2", "$src2, $src3, $src4", (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2), (_.VT (bitconvert (_.LdFrag addr:$src3))), (i8 imm:$src4)), 1, 0>, AVX512AIi8Base, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>, Sched<[sched.Folded, ReadAfterLd]>; defm rmbi : AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src2, _.ScalarMemOp:$src3, u8imm:$src4), OpcodeStr, "$src4, ${src3}"##_.BroadcastStr##", $src2", "$src2, ${src3}"##_.BroadcastStr##", $src4", (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2), (_.VT (X86VBroadcast(_.ScalarLdFrag addr:$src3))), (i8 imm:$src4)), 1, 0>, EVEX_B, AVX512AIi8Base, EVEX_4V, EVEX_CD8<_.EltSize, CD8VF>, Sched<[sched.Folded, ReadAfterLd]>; }// Constraints = "$src1 = $dst" // Additional patterns for matching passthru operand in other positions. def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode _.RC:$src3, _.RC:$src2, _.RC:$src1, (i8 imm:$src4)), _.RC:$src1)), (!cast<Instruction>(Name#_.ZSuffix#rrik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, _.RC:$src3, (VPTERNLOG321_imm8 imm:$src4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode _.RC:$src2, _.RC:$src1, _.RC:$src3, (i8 imm:$src4)), _.RC:$src1)), (!cast<Instruction>(Name#_.ZSuffix#rrik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, _.RC:$src3, (VPTERNLOG213_imm8 imm:$src4))>; // Additional patterns for matching loads in other positions. def : Pat<(_.VT (OpNode (bitconvert (_.LdFrag addr:$src3)), _.RC:$src2, _.RC:$src1, (i8 imm:$src4))), (!cast<Instruction>(Name#_.ZSuffix#rmi) _.RC:$src1, _.RC:$src2, addr:$src3, (VPTERNLOG321_imm8 imm:$src4))>; def : Pat<(_.VT (OpNode _.RC:$src1, (bitconvert (_.LdFrag addr:$src3)), _.RC:$src2, (i8 imm:$src4))), (!cast<Instruction>(Name#_.ZSuffix#rmi) _.RC:$src1, _.RC:$src2, addr:$src3, (VPTERNLOG132_imm8 imm:$src4))>; // Additional patterns for matching zero masking with loads in other // positions. def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode (bitconvert (_.LdFrag addr:$src3)), _.RC:$src2, _.RC:$src1, (i8 imm:$src4)), _.ImmAllZerosV)), (!cast<Instruction>(Name#_.ZSuffix#rmikz) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG321_imm8 imm:$src4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode _.RC:$src1, (bitconvert (_.LdFrag addr:$src3)), _.RC:$src2, (i8 imm:$src4)), _.ImmAllZerosV)), (!cast<Instruction>(Name#_.ZSuffix#rmikz) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG132_imm8 imm:$src4))>; // Additional patterns for matching masked loads with different // operand orders. def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode _.RC:$src1, (bitconvert (_.LdFrag addr:$src3)), _.RC:$src2, (i8 imm:$src4)), _.RC:$src1)), (!cast<Instruction>(Name#_.ZSuffix#rmik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG132_imm8 imm:$src4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode (bitconvert (_.LdFrag addr:$src3)), _.RC:$src2, _.RC:$src1, (i8 imm:$src4)), _.RC:$src1)), (!cast<Instruction>(Name#_.ZSuffix#rmik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG321_imm8 imm:$src4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode _.RC:$src2, _.RC:$src1, (bitconvert (_.LdFrag addr:$src3)), (i8 imm:$src4)), _.RC:$src1)), (!cast<Instruction>(Name#_.ZSuffix#rmik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG213_imm8 imm:$src4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode _.RC:$src2, (bitconvert (_.LdFrag addr:$src3)), _.RC:$src1, (i8 imm:$src4)), _.RC:$src1)), (!cast<Instruction>(Name#_.ZSuffix#rmik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG231_imm8 imm:$src4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode (bitconvert (_.LdFrag addr:$src3)), _.RC:$src1, _.RC:$src2, (i8 imm:$src4)), _.RC:$src1)), (!cast<Instruction>(Name#_.ZSuffix#rmik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG312_imm8 imm:$src4))>; // Additional patterns for matching broadcasts in other positions. def : Pat<(_.VT (OpNode (X86VBroadcast (_.ScalarLdFrag addr:$src3)), _.RC:$src2, _.RC:$src1, (i8 imm:$src4))), (!cast<Instruction>(Name#_.ZSuffix#rmbi) _.RC:$src1, _.RC:$src2, addr:$src3, (VPTERNLOG321_imm8 imm:$src4))>; def : Pat<(_.VT (OpNode _.RC:$src1, (X86VBroadcast (_.ScalarLdFrag addr:$src3)), _.RC:$src2, (i8 imm:$src4))), (!cast<Instruction>(Name#_.ZSuffix#rmbi) _.RC:$src1, _.RC:$src2, addr:$src3, (VPTERNLOG132_imm8 imm:$src4))>; // Additional patterns for matching zero masking with broadcasts in other // positions. def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode (X86VBroadcast (_.ScalarLdFrag addr:$src3)), _.RC:$src2, _.RC:$src1, (i8 imm:$src4)), _.ImmAllZerosV)), (!cast<Instruction>(Name#_.ZSuffix#rmbikz) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG321_imm8 imm:$src4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode _.RC:$src1, (X86VBroadcast (_.ScalarLdFrag addr:$src3)), _.RC:$src2, (i8 imm:$src4)), _.ImmAllZerosV)), (!cast<Instruction>(Name#_.ZSuffix#rmbikz) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG132_imm8 imm:$src4))>; // Additional patterns for matching masked broadcasts with different // operand orders. def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode _.RC:$src1, (X86VBroadcast (_.ScalarLdFrag addr:$src3)), _.RC:$src2, (i8 imm:$src4)), _.RC:$src1)), (!cast<Instruction>(Name#_.ZSuffix#rmbik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG132_imm8 imm:$src4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode (X86VBroadcast (_.ScalarLdFrag addr:$src3)), _.RC:$src2, _.RC:$src1, (i8 imm:$src4)), _.RC:$src1)), (!cast<Instruction>(Name#_.ZSuffix#rmbik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG321_imm8 imm:$src4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode _.RC:$src2, _.RC:$src1, (X86VBroadcast (_.ScalarLdFrag addr:$src3)), (i8 imm:$src4)), _.RC:$src1)), (!cast<Instruction>(Name#_.ZSuffix#rmbik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG213_imm8 imm:$src4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode _.RC:$src2, (X86VBroadcast (_.ScalarLdFrag addr:$src3)), _.RC:$src1, (i8 imm:$src4)), _.RC:$src1)), (!cast<Instruction>(Name#_.ZSuffix#rmbik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG231_imm8 imm:$src4))>; def : Pat<(_.VT (vselect _.KRCWM:$mask, (OpNode (X86VBroadcast (_.ScalarLdFrag addr:$src3)), _.RC:$src1, _.RC:$src2, (i8 imm:$src4)), _.RC:$src1)), (!cast<Instruction>(Name#_.ZSuffix#rmbik) _.RC:$src1, _.KRCWM:$mask, _.RC:$src2, addr:$src3, (VPTERNLOG312_imm8 imm:$src4))>; } multiclass avx512_common_ternlog<string OpcodeStr, X86SchedWriteWidths sched, AVX512VLVectorVTInfo _> { let Predicates = [HasAVX512] in defm Z : avx512_ternlog<0x25, OpcodeStr, X86vpternlog, sched.ZMM, _.info512, NAME>, EVEX_V512; let Predicates = [HasAVX512, HasVLX] in { defm Z128 : avx512_ternlog<0x25, OpcodeStr, X86vpternlog, sched.XMM, _.info128, NAME>, EVEX_V128; defm Z256 : avx512_ternlog<0x25, OpcodeStr, X86vpternlog, sched.YMM, _.info256, NAME>, EVEX_V256; } } defm VPTERNLOGD : avx512_common_ternlog<"vpternlogd", SchedWriteVecALU, avx512vl_i32_info>; defm VPTERNLOGQ : avx512_common_ternlog<"vpternlogq", SchedWriteVecALU, avx512vl_i64_info>, VEX_W; // Patterns to implement vnot using vpternlog instead of creating all ones // using pcmpeq or vpternlog and then xoring with that. The value 15 is chosen // so that the result is only dependent on src0. But we use the same source // for all operands to prevent a false dependency. // TODO: We should maybe have a more generalized algorithm for folding to // vpternlog. let Predicates = [HasAVX512] in { def : Pat<(v8i64 (xor VR512:$src, (bc_v8i64 (v16i32 immAllOnesV)))), (VPTERNLOGQZrri VR512:$src, VR512:$src, VR512:$src, (i8 15))>; } let Predicates = [HasAVX512, NoVLX] in { def : Pat<(v2i64 (xor VR128X:$src, (bc_v2i64 (v4i32 immAllOnesV)))), (EXTRACT_SUBREG (VPTERNLOGQZrri (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR128X:$src, sub_xmm), (i8 15)), sub_xmm)>; def : Pat<(v4i64 (xor VR256X:$src, (bc_v4i64 (v8i32 immAllOnesV)))), (EXTRACT_SUBREG (VPTERNLOGQZrri (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm), (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm), (INSERT_SUBREG (v8i64 (IMPLICIT_DEF)), VR256X:$src, sub_ymm), (i8 15)), sub_ymm)>; } let Predicates = [HasVLX] in { def : Pat<(v2i64 (xor VR128X:$src, (bc_v2i64 (v4i32 immAllOnesV)))), (VPTERNLOGQZ128rri VR128X:$src, VR128X:$src, VR128X:$src, (i8 15))>; def : Pat<(v4i64 (xor VR256X:$src, (bc_v4i64 (v8i32 immAllOnesV)))), (VPTERNLOGQZ256rri VR256X:$src, VR256X:$src, VR256X:$src, (i8 15))>; } //===----------------------------------------------------------------------===// // AVX-512 - FixupImm //===----------------------------------------------------------------------===// multiclass avx512_fixupimm_packed<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _, X86VectorVTInfo TblVT>{ let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain in { defm rri : AVX512_maskable_3src<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src2, _.RC:$src3, i32u8imm:$src4), OpcodeStr##_.Suffix, "$src4, $src3, $src2", "$src2, $src3, $src4", (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2), (TblVT.VT _.RC:$src3), (i32 imm:$src4), (i32 FROUND_CURRENT))>, Sched<[sched]>; defm rmi : AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src2, _.MemOp:$src3, i32u8imm:$src4), OpcodeStr##_.Suffix, "$src4, $src3, $src2", "$src2, $src3, $src4", (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2), (TblVT.VT (bitconvert (TblVT.LdFrag addr:$src3))), (i32 imm:$src4), (i32 FROUND_CURRENT))>, Sched<[sched.Folded, ReadAfterLd]>; defm rmbi : AVX512_maskable_3src<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src2, _.ScalarMemOp:$src3, i32u8imm:$src4), OpcodeStr##_.Suffix, "$src4, ${src3}"##_.BroadcastStr##", $src2", "$src2, ${src3}"##_.BroadcastStr##", $src4", (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2), (TblVT.VT (X86VBroadcast(TblVT.ScalarLdFrag addr:$src3))), (i32 imm:$src4), (i32 FROUND_CURRENT))>, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; } // Constraints = "$src1 = $dst" } multiclass avx512_fixupimm_packed_sae<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _, X86VectorVTInfo TblVT>{ let Constraints = "$src1 = $dst", ExeDomain = _.ExeDomain in { defm rrib : AVX512_maskable_3src<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src2, _.RC:$src3, i32u8imm:$src4), OpcodeStr##_.Suffix, "$src4, {sae}, $src3, $src2", "$src2, $src3, {sae}, $src4", (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2), (TblVT.VT _.RC:$src3), (i32 imm:$src4), (i32 FROUND_NO_EXC))>, EVEX_B, Sched<[sched]>; } } multiclass avx512_fixupimm_scalar<bits<8> opc, string OpcodeStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo _, X86VectorVTInfo _src3VT> { let Constraints = "$src1 = $dst" , Predicates = [HasAVX512], ExeDomain = _.ExeDomain in { defm rri : AVX512_maskable_3src_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src2, _.RC:$src3, i32u8imm:$src4), OpcodeStr##_.Suffix, "$src4, $src3, $src2", "$src2, $src3, $src4", (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2), (_src3VT.VT _src3VT.RC:$src3), (i32 imm:$src4), (i32 FROUND_CURRENT))>, Sched<[sched]>; defm rrib : AVX512_maskable_3src_scalar<opc, MRMSrcReg, _, (outs _.RC:$dst), (ins _.RC:$src2, _.RC:$src3, i32u8imm:$src4), OpcodeStr##_.Suffix, "$src4, {sae}, $src3, $src2", "$src2, $src3, {sae}, $src4", (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2), (_src3VT.VT _src3VT.RC:$src3), (i32 imm:$src4), (i32 FROUND_NO_EXC))>, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; defm rmi : AVX512_maskable_3src_scalar<opc, MRMSrcMem, _, (outs _.RC:$dst), (ins _.RC:$src2, _.ScalarMemOp:$src3, i32u8imm:$src4), OpcodeStr##_.Suffix, "$src4, $src3, $src2", "$src2, $src3, $src4", (OpNode (_.VT _.RC:$src1), (_.VT _.RC:$src2), (_src3VT.VT (scalar_to_vector (_src3VT.ScalarLdFrag addr:$src3))), (i32 imm:$src4), (i32 FROUND_CURRENT))>, Sched<[sched.Folded, ReadAfterLd]>; } } multiclass avx512_fixupimm_packed_all<X86SchedWriteWidths sched, AVX512VLVectorVTInfo _Vec, AVX512VLVectorVTInfo _Tbl> { let Predicates = [HasAVX512] in defm Z : avx512_fixupimm_packed<0x54, "vfixupimm", X86VFixupimm, sched.ZMM, _Vec.info512, _Tbl.info512>, avx512_fixupimm_packed_sae<0x54, "vfixupimm", X86VFixupimm, sched.ZMM, _Vec.info512, _Tbl.info512>, AVX512AIi8Base, EVEX_4V, EVEX_V512; let Predicates = [HasAVX512, HasVLX] in { defm Z128 : avx512_fixupimm_packed<0x54, "vfixupimm", X86VFixupimm, sched.XMM, _Vec.info128, _Tbl.info128>, AVX512AIi8Base, EVEX_4V, EVEX_V128; defm Z256 : avx512_fixupimm_packed<0x54, "vfixupimm", X86VFixupimm, sched.YMM, _Vec.info256, _Tbl.info256>, AVX512AIi8Base, EVEX_4V, EVEX_V256; } } defm VFIXUPIMMSSZ : avx512_fixupimm_scalar<0x55, "vfixupimm", X86VFixupimmScalar, SchedWriteFAdd.Scl, f32x_info, v4i32x_info>, AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<32, CD8VT1>; defm VFIXUPIMMSDZ : avx512_fixupimm_scalar<0x55, "vfixupimm", X86VFixupimmScalar, SchedWriteFAdd.Scl, f64x_info, v2i64x_info>, AVX512AIi8Base, VEX_LIG, EVEX_4V, EVEX_CD8<64, CD8VT1>, VEX_W; defm VFIXUPIMMPS : avx512_fixupimm_packed_all<SchedWriteFAdd, avx512vl_f32_info, avx512vl_i32_info>, EVEX_CD8<32, CD8VF>; defm VFIXUPIMMPD : avx512_fixupimm_packed_all<SchedWriteFAdd, avx512vl_f64_info, avx512vl_i64_info>, EVEX_CD8<64, CD8VF>, VEX_W; // Patterns used to select SSE scalar fp arithmetic instructions from // either: // // (1) a scalar fp operation followed by a blend // // The effect is that the backend no longer emits unnecessary vector // insert instructions immediately after SSE scalar fp instructions // like addss or mulss. // // For example, given the following code: // __m128 foo(__m128 A, __m128 B) { // A[0] += B[0]; // return A; // } // // Previously we generated: // addss %xmm0, %xmm1 // movss %xmm1, %xmm0 // // We now generate: // addss %xmm1, %xmm0 // // (2) a vector packed single/double fp operation followed by a vector insert // // The effect is that the backend converts the packed fp instruction // followed by a vector insert into a single SSE scalar fp instruction. // // For example, given the following code: // __m128 foo(__m128 A, __m128 B) { // __m128 C = A + B; // return (__m128) {c[0], a[1], a[2], a[3]}; // } // // Previously we generated: // addps %xmm0, %xmm1 // movss %xmm1, %xmm0 // // We now generate: // addss %xmm1, %xmm0 // TODO: Some canonicalization in lowering would simplify the number of // patterns we have to try to match. multiclass AVX512_scalar_math_fp_patterns<SDNode Op, string OpcPrefix, SDNode MoveNode, X86VectorVTInfo _, PatLeaf ZeroFP> { let Predicates = [HasAVX512] in { // extracted scalar math op with insert via movss def : Pat<(MoveNode (_.VT VR128X:$dst), (_.VT (scalar_to_vector (Op (_.EltVT (extractelt (_.VT VR128X:$dst), (iPTR 0))), _.FRC:$src)))), (!cast<Instruction>("V"#OpcPrefix#Zrr_Int) _.VT:$dst, (_.VT (COPY_TO_REGCLASS _.FRC:$src, VR128X)))>; // extracted masked scalar math op with insert via movss def : Pat<(MoveNode (_.VT VR128X:$src1), (scalar_to_vector (X86selects VK1WM:$mask, (Op (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))), _.FRC:$src2), _.FRC:$src0))), (!cast<Instruction>("V"#OpcPrefix#Zrr_Intk) (_.VT (COPY_TO_REGCLASS _.FRC:$src0, VR128X)), VK1WM:$mask, _.VT:$src1, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)))>; // extracted masked scalar math op with insert via movss def : Pat<(MoveNode (_.VT VR128X:$src1), (scalar_to_vector (X86selects VK1WM:$mask, (Op (_.EltVT (extractelt (_.VT VR128X:$src1), (iPTR 0))), _.FRC:$src2), (_.EltVT ZeroFP)))), (!cast<I>("V"#OpcPrefix#Zrr_Intkz) VK1WM:$mask, _.VT:$src1, (_.VT (COPY_TO_REGCLASS _.FRC:$src2, VR128X)))>; } } defm : AVX512_scalar_math_fp_patterns<fadd, "ADDSS", X86Movss, v4f32x_info, fp32imm0>; defm : AVX512_scalar_math_fp_patterns<fsub, "SUBSS", X86Movss, v4f32x_info, fp32imm0>; defm : AVX512_scalar_math_fp_patterns<fmul, "MULSS", X86Movss, v4f32x_info, fp32imm0>; defm : AVX512_scalar_math_fp_patterns<fdiv, "DIVSS", X86Movss, v4f32x_info, fp32imm0>; defm : AVX512_scalar_math_fp_patterns<fadd, "ADDSD", X86Movsd, v2f64x_info, fp64imm0>; defm : AVX512_scalar_math_fp_patterns<fsub, "SUBSD", X86Movsd, v2f64x_info, fp64imm0>; defm : AVX512_scalar_math_fp_patterns<fmul, "MULSD", X86Movsd, v2f64x_info, fp64imm0>; defm : AVX512_scalar_math_fp_patterns<fdiv, "DIVSD", X86Movsd, v2f64x_info, fp64imm0>; multiclass AVX512_scalar_unary_math_patterns<SDNode OpNode, string OpcPrefix, SDNode Move, X86VectorVTInfo _> { let Predicates = [HasAVX512] in { def : Pat<(_.VT (Move _.VT:$dst, (scalar_to_vector (OpNode (extractelt _.VT:$src, 0))))), (!cast<Instruction>("V"#OpcPrefix#Zr_Int) _.VT:$dst, _.VT:$src)>; } } defm : AVX512_scalar_unary_math_patterns<fsqrt, "SQRTSS", X86Movss, v4f32x_info>; defm : AVX512_scalar_unary_math_patterns<fsqrt, "SQRTSD", X86Movsd, v2f64x_info>; multiclass AVX512_scalar_unary_math_imm_patterns<SDNode OpNode, string OpcPrefix, SDNode Move, X86VectorVTInfo _, bits<8> ImmV> { let Predicates = [HasAVX512] in { def : Pat<(_.VT (Move _.VT:$dst, (scalar_to_vector (OpNode (extractelt _.VT:$src, 0))))), (!cast<Instruction>("V"#OpcPrefix#Zr_Int) _.VT:$dst, _.VT:$src, (i32 ImmV))>; } } defm : AVX512_scalar_unary_math_imm_patterns<ffloor, "RNDSCALESS", X86Movss, v4f32x_info, 0x01>; defm : AVX512_scalar_unary_math_imm_patterns<fceil, "RNDSCALESS", X86Movss, v4f32x_info, 0x02>; defm : AVX512_scalar_unary_math_imm_patterns<ffloor, "RNDSCALESD", X86Movsd, v2f64x_info, 0x01>; defm : AVX512_scalar_unary_math_imm_patterns<fceil, "RNDSCALESD", X86Movsd, v2f64x_info, 0x02>; //===----------------------------------------------------------------------===// // AES instructions //===----------------------------------------------------------------------===// multiclass avx512_vaes<bits<8> Op, string OpStr, string IntPrefix> { let Predicates = [HasVLX, HasVAES] in { defm Z128 : AESI_binop_rm_int<Op, OpStr, !cast<Intrinsic>(IntPrefix), loadv2i64, 0, VR128X, i128mem>, EVEX_4V, EVEX_CD8<64, CD8VF>, EVEX_V128, VEX_WIG; defm Z256 : AESI_binop_rm_int<Op, OpStr, !cast<Intrinsic>(IntPrefix##"_256"), loadv4i64, 0, VR256X, i256mem>, EVEX_4V, EVEX_CD8<64, CD8VF>, EVEX_V256, VEX_WIG; } let Predicates = [HasAVX512, HasVAES] in defm Z : AESI_binop_rm_int<Op, OpStr, !cast<Intrinsic>(IntPrefix##"_512"), loadv8i64, 0, VR512, i512mem>, EVEX_4V, EVEX_CD8<64, CD8VF>, EVEX_V512, VEX_WIG; } defm VAESENC : avx512_vaes<0xDC, "vaesenc", "int_x86_aesni_aesenc">; defm VAESENCLAST : avx512_vaes<0xDD, "vaesenclast", "int_x86_aesni_aesenclast">; defm VAESDEC : avx512_vaes<0xDE, "vaesdec", "int_x86_aesni_aesdec">; defm VAESDECLAST : avx512_vaes<0xDF, "vaesdeclast", "int_x86_aesni_aesdeclast">; //===----------------------------------------------------------------------===// // PCLMUL instructions - Carry less multiplication //===----------------------------------------------------------------------===// let Predicates = [HasAVX512, HasVPCLMULQDQ] in defm VPCLMULQDQZ : vpclmulqdq<VR512, i512mem, loadv8i64, int_x86_pclmulqdq_512>, EVEX_4V, EVEX_V512, EVEX_CD8<64, CD8VF>, VEX_WIG; let Predicates = [HasVLX, HasVPCLMULQDQ] in { defm VPCLMULQDQZ128 : vpclmulqdq<VR128X, i128mem, loadv2i64, int_x86_pclmulqdq>, EVEX_4V, EVEX_V128, EVEX_CD8<64, CD8VF>, VEX_WIG; defm VPCLMULQDQZ256: vpclmulqdq<VR256X, i256mem, loadv4i64, int_x86_pclmulqdq_256>, EVEX_4V, EVEX_V256, EVEX_CD8<64, CD8VF>, VEX_WIG; } // Aliases defm : vpclmulqdq_aliases<"VPCLMULQDQZ", VR512, i512mem>; defm : vpclmulqdq_aliases<"VPCLMULQDQZ128", VR128X, i128mem>; defm : vpclmulqdq_aliases<"VPCLMULQDQZ256", VR256X, i256mem>; //===----------------------------------------------------------------------===// // VBMI2 //===----------------------------------------------------------------------===// multiclass VBMI2_shift_var_rm<bits<8> Op, string OpStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo VTI> { let Constraints = "$src1 = $dst", ExeDomain = VTI.ExeDomain in { defm r: AVX512_maskable_3src<Op, MRMSrcReg, VTI, (outs VTI.RC:$dst), (ins VTI.RC:$src2, VTI.RC:$src3), OpStr, "$src3, $src2", "$src2, $src3", (VTI.VT (OpNode VTI.RC:$src1, VTI.RC:$src2, VTI.RC:$src3))>, AVX512FMA3Base, Sched<[sched]>; defm m: AVX512_maskable_3src<Op, MRMSrcMem, VTI, (outs VTI.RC:$dst), (ins VTI.RC:$src2, VTI.MemOp:$src3), OpStr, "$src3, $src2", "$src2, $src3", (VTI.VT (OpNode VTI.RC:$src1, VTI.RC:$src2, (VTI.VT (bitconvert (VTI.LdFrag addr:$src3)))))>, AVX512FMA3Base, Sched<[sched.Folded, ReadAfterLd]>; } } multiclass VBMI2_shift_var_rmb<bits<8> Op, string OpStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo VTI> : VBMI2_shift_var_rm<Op, OpStr, OpNode, sched, VTI> { let Constraints = "$src1 = $dst", ExeDomain = VTI.ExeDomain in defm mb: AVX512_maskable_3src<Op, MRMSrcMem, VTI, (outs VTI.RC:$dst), (ins VTI.RC:$src2, VTI.ScalarMemOp:$src3), OpStr, "${src3}"##VTI.BroadcastStr##", $src2", "$src2, ${src3}"##VTI.BroadcastStr, (OpNode VTI.RC:$src1, VTI.RC:$src2, (VTI.VT (X86VBroadcast (VTI.ScalarLdFrag addr:$src3))))>, AVX512FMA3Base, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; } multiclass VBMI2_shift_var_rm_common<bits<8> Op, string OpStr, SDNode OpNode, X86SchedWriteWidths sched, AVX512VLVectorVTInfo VTI> { let Predicates = [HasVBMI2] in defm Z : VBMI2_shift_var_rm<Op, OpStr, OpNode, sched.ZMM, VTI.info512>, EVEX_V512; let Predicates = [HasVBMI2, HasVLX] in { defm Z256 : VBMI2_shift_var_rm<Op, OpStr, OpNode, sched.YMM, VTI.info256>, EVEX_V256; defm Z128 : VBMI2_shift_var_rm<Op, OpStr, OpNode, sched.XMM, VTI.info128>, EVEX_V128; } } multiclass VBMI2_shift_var_rmb_common<bits<8> Op, string OpStr, SDNode OpNode, X86SchedWriteWidths sched, AVX512VLVectorVTInfo VTI> { let Predicates = [HasVBMI2] in defm Z : VBMI2_shift_var_rmb<Op, OpStr, OpNode, sched.ZMM, VTI.info512>, EVEX_V512; let Predicates = [HasVBMI2, HasVLX] in { defm Z256 : VBMI2_shift_var_rmb<Op, OpStr, OpNode, sched.YMM, VTI.info256>, EVEX_V256; defm Z128 : VBMI2_shift_var_rmb<Op, OpStr, OpNode, sched.XMM, VTI.info128>, EVEX_V128; } } multiclass VBMI2_shift_var<bits<8> wOp, bits<8> dqOp, string Prefix, SDNode OpNode, X86SchedWriteWidths sched> { defm W : VBMI2_shift_var_rm_common<wOp, Prefix##"w", OpNode, sched, avx512vl_i16_info>, VEX_W, EVEX_CD8<16, CD8VF>; defm D : VBMI2_shift_var_rmb_common<dqOp, Prefix##"d", OpNode, sched, avx512vl_i32_info>, EVEX_CD8<32, CD8VF>; defm Q : VBMI2_shift_var_rmb_common<dqOp, Prefix##"q", OpNode, sched, avx512vl_i64_info>, VEX_W, EVEX_CD8<64, CD8VF>; } multiclass VBMI2_shift_imm<bits<8> wOp, bits<8> dqOp, string Prefix, SDNode OpNode, X86SchedWriteWidths sched> { defm W : avx512_common_3Op_rm_imm8<wOp, OpNode, Prefix##"w", sched, avx512vl_i16_info, avx512vl_i16_info, HasVBMI2>, VEX_W, EVEX_CD8<16, CD8VF>; defm D : avx512_common_3Op_imm8<Prefix##"d", avx512vl_i32_info, dqOp, OpNode, sched, HasVBMI2>, AVX512AIi8Base, EVEX_4V, EVEX_CD8<32, CD8VF>; defm Q : avx512_common_3Op_imm8<Prefix##"q", avx512vl_i64_info, dqOp, OpNode, sched, HasVBMI2>, AVX512AIi8Base, EVEX_4V, EVEX_CD8<64, CD8VF>, VEX_W; } // Concat & Shift defm VPSHLDV : VBMI2_shift_var<0x70, 0x71, "vpshldv", X86VShldv, SchedWriteVecIMul>; defm VPSHRDV : VBMI2_shift_var<0x72, 0x73, "vpshrdv", X86VShrdv, SchedWriteVecIMul>; defm VPSHLD : VBMI2_shift_imm<0x70, 0x71, "vpshld", X86VShld, SchedWriteVecIMul>; defm VPSHRD : VBMI2_shift_imm<0x72, 0x73, "vpshrd", X86VShrd, SchedWriteVecIMul>; // Compress defm VPCOMPRESSB : compress_by_elt_width<0x63, "vpcompressb", WriteVarShuffle256, avx512vl_i8_info, HasVBMI2>, EVEX, NotMemoryFoldable; defm VPCOMPRESSW : compress_by_elt_width <0x63, "vpcompressw", WriteVarShuffle256, avx512vl_i16_info, HasVBMI2>, EVEX, VEX_W, NotMemoryFoldable; // Expand defm VPEXPANDB : expand_by_elt_width <0x62, "vpexpandb", WriteVarShuffle256, avx512vl_i8_info, HasVBMI2>, EVEX; defm VPEXPANDW : expand_by_elt_width <0x62, "vpexpandw", WriteVarShuffle256, avx512vl_i16_info, HasVBMI2>, EVEX, VEX_W; //===----------------------------------------------------------------------===// // VNNI //===----------------------------------------------------------------------===// let Constraints = "$src1 = $dst" in multiclass VNNI_rmb<bits<8> Op, string OpStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo VTI> { defm r : AVX512_maskable_3src<Op, MRMSrcReg, VTI, (outs VTI.RC:$dst), (ins VTI.RC:$src2, VTI.RC:$src3), OpStr, "$src3, $src2", "$src2, $src3", (VTI.VT (OpNode VTI.RC:$src1, VTI.RC:$src2, VTI.RC:$src3))>, EVEX_4V, T8PD, Sched<[sched]>; defm m : AVX512_maskable_3src<Op, MRMSrcMem, VTI, (outs VTI.RC:$dst), (ins VTI.RC:$src2, VTI.MemOp:$src3), OpStr, "$src3, $src2", "$src2, $src3", (VTI.VT (OpNode VTI.RC:$src1, VTI.RC:$src2, (VTI.VT (bitconvert (VTI.LdFrag addr:$src3)))))>, EVEX_4V, EVEX_CD8<32, CD8VF>, T8PD, Sched<[sched.Folded, ReadAfterLd]>; defm mb : AVX512_maskable_3src<Op, MRMSrcMem, VTI, (outs VTI.RC:$dst), (ins VTI.RC:$src2, VTI.ScalarMemOp:$src3), OpStr, "${src3}"##VTI.BroadcastStr##", $src2", "$src2, ${src3}"##VTI.BroadcastStr, (OpNode VTI.RC:$src1, VTI.RC:$src2, (VTI.VT (X86VBroadcast (VTI.ScalarLdFrag addr:$src3))))>, EVEX_4V, EVEX_CD8<32, CD8VF>, EVEX_B, T8PD, Sched<[sched.Folded, ReadAfterLd]>; } multiclass VNNI_common<bits<8> Op, string OpStr, SDNode OpNode, X86SchedWriteWidths sched> { let Predicates = [HasVNNI] in defm Z : VNNI_rmb<Op, OpStr, OpNode, sched.ZMM, v16i32_info>, EVEX_V512; let Predicates = [HasVNNI, HasVLX] in { defm Z256 : VNNI_rmb<Op, OpStr, OpNode, sched.YMM, v8i32x_info>, EVEX_V256; defm Z128 : VNNI_rmb<Op, OpStr, OpNode, sched.XMM, v4i32x_info>, EVEX_V128; } } // FIXME: Is there a better scheduler class for VPDP? defm VPDPBUSD : VNNI_common<0x50, "vpdpbusd", X86Vpdpbusd, SchedWriteVecIMul>; defm VPDPBUSDS : VNNI_common<0x51, "vpdpbusds", X86Vpdpbusds, SchedWriteVecIMul>; defm VPDPWSSD : VNNI_common<0x52, "vpdpwssd", X86Vpdpwssd, SchedWriteVecIMul>; defm VPDPWSSDS : VNNI_common<0x53, "vpdpwssds", X86Vpdpwssds, SchedWriteVecIMul>; //===----------------------------------------------------------------------===// // Bit Algorithms //===----------------------------------------------------------------------===// // FIXME: Is there a better scheduler class for VPOPCNTB/VPOPCNTW? defm VPOPCNTB : avx512_unary_rm_vl<0x54, "vpopcntb", ctpop, SchedWriteVecALU, avx512vl_i8_info, HasBITALG>; defm VPOPCNTW : avx512_unary_rm_vl<0x54, "vpopcntw", ctpop, SchedWriteVecALU, avx512vl_i16_info, HasBITALG>, VEX_W; defm : avx512_unary_lowering<"VPOPCNTB", ctpop, avx512vl_i8_info, HasBITALG>; defm : avx512_unary_lowering<"VPOPCNTW", ctpop, avx512vl_i16_info, HasBITALG>; multiclass VPSHUFBITQMB_rm<X86FoldableSchedWrite sched, X86VectorVTInfo VTI> { defm rr : AVX512_maskable_cmp<0x8F, MRMSrcReg, VTI, (outs VTI.KRC:$dst), (ins VTI.RC:$src1, VTI.RC:$src2), "vpshufbitqmb", "$src2, $src1", "$src1, $src2", (X86Vpshufbitqmb (VTI.VT VTI.RC:$src1), (VTI.VT VTI.RC:$src2))>, EVEX_4V, T8PD, Sched<[sched]>; defm rm : AVX512_maskable_cmp<0x8F, MRMSrcMem, VTI, (outs VTI.KRC:$dst), (ins VTI.RC:$src1, VTI.MemOp:$src2), "vpshufbitqmb", "$src2, $src1", "$src1, $src2", (X86Vpshufbitqmb (VTI.VT VTI.RC:$src1), (VTI.VT (bitconvert (VTI.LdFrag addr:$src2))))>, EVEX_4V, EVEX_CD8<8, CD8VF>, T8PD, Sched<[sched.Folded, ReadAfterLd]>; } multiclass VPSHUFBITQMB_common<X86SchedWriteWidths sched, AVX512VLVectorVTInfo VTI> { let Predicates = [HasBITALG] in defm Z : VPSHUFBITQMB_rm<sched.ZMM, VTI.info512>, EVEX_V512; let Predicates = [HasBITALG, HasVLX] in { defm Z256 : VPSHUFBITQMB_rm<sched.YMM, VTI.info256>, EVEX_V256; defm Z128 : VPSHUFBITQMB_rm<sched.XMM, VTI.info128>, EVEX_V128; } } // FIXME: Is there a better scheduler class for VPSHUFBITQMB? defm VPSHUFBITQMB : VPSHUFBITQMB_common<SchedWriteVecIMul, avx512vl_i8_info>; //===----------------------------------------------------------------------===// // GFNI //===----------------------------------------------------------------------===// multiclass GF2P8MULB_avx512_common<bits<8> Op, string OpStr, SDNode OpNode, X86SchedWriteWidths sched> { let Predicates = [HasGFNI, HasAVX512, HasBWI] in defm Z : avx512_binop_rm<Op, OpStr, OpNode, v64i8_info, sched.ZMM, 1>, EVEX_V512; let Predicates = [HasGFNI, HasVLX, HasBWI] in { defm Z256 : avx512_binop_rm<Op, OpStr, OpNode, v32i8x_info, sched.YMM, 1>, EVEX_V256; defm Z128 : avx512_binop_rm<Op, OpStr, OpNode, v16i8x_info, sched.XMM, 1>, EVEX_V128; } } defm VGF2P8MULB : GF2P8MULB_avx512_common<0xCF, "vgf2p8mulb", X86GF2P8mulb, SchedWriteVecALU>, EVEX_CD8<8, CD8VF>, T8PD; multiclass GF2P8AFFINE_avx512_rmb_imm<bits<8> Op, string OpStr, SDNode OpNode, X86FoldableSchedWrite sched, X86VectorVTInfo VTI, X86VectorVTInfo BcstVTI> : avx512_3Op_rm_imm8<Op, OpStr, OpNode, sched, VTI, VTI> { let ExeDomain = VTI.ExeDomain in defm rmbi : AVX512_maskable<Op, MRMSrcMem, VTI, (outs VTI.RC:$dst), (ins VTI.RC:$src1, VTI.ScalarMemOp:$src2, u8imm:$src3), OpStr, "$src3, ${src2}"##BcstVTI.BroadcastStr##", $src1", "$src1, ${src2}"##BcstVTI.BroadcastStr##", $src3", (OpNode (VTI.VT VTI.RC:$src1), (bitconvert (BcstVTI.VT (X86VBroadcast (loadi64 addr:$src2)))), (i8 imm:$src3))>, EVEX_B, Sched<[sched.Folded, ReadAfterLd]>; } multiclass GF2P8AFFINE_avx512_common<bits<8> Op, string OpStr, SDNode OpNode, X86SchedWriteWidths sched> { let Predicates = [HasGFNI, HasAVX512, HasBWI] in defm Z : GF2P8AFFINE_avx512_rmb_imm<Op, OpStr, OpNode, sched.ZMM, v64i8_info, v8i64_info>, EVEX_V512; let Predicates = [HasGFNI, HasVLX, HasBWI] in { defm Z256 : GF2P8AFFINE_avx512_rmb_imm<Op, OpStr, OpNode, sched.YMM, v32i8x_info, v4i64x_info>, EVEX_V256; defm Z128 : GF2P8AFFINE_avx512_rmb_imm<Op, OpStr, OpNode, sched.XMM, v16i8x_info, v2i64x_info>, EVEX_V128; } } defm VGF2P8AFFINEINVQB : GF2P8AFFINE_avx512_common<0xCF, "vgf2p8affineinvqb", X86GF2P8affineinvqb, SchedWriteVecIMul>, EVEX_4V, EVEX_CD8<8, CD8VF>, VEX_W, AVX512AIi8Base; defm VGF2P8AFFINEQB : GF2P8AFFINE_avx512_common<0xCE, "vgf2p8affineqb", X86GF2P8affineqb, SchedWriteVecIMul>, EVEX_4V, EVEX_CD8<8, CD8VF>, VEX_W, AVX512AIi8Base; //===----------------------------------------------------------------------===// // AVX5124FMAPS //===----------------------------------------------------------------------===// let hasSideEffects = 0, mayLoad = 1, ExeDomain = SSEPackedSingle, Constraints = "$src1 = $dst" in { defm V4FMADDPSrm : AVX512_maskable_3src_in_asm<0x9A, MRMSrcMem, v16f32_info, (outs VR512:$dst), (ins VR512:$src2, f128mem:$src3), "v4fmaddps", "$src3, $src2", "$src2, $src3", []>, EVEX_V512, EVEX_4V, T8XD, EVEX_CD8<32, CD8VQ>, Sched<[SchedWriteFMA.ZMM.Folded]>; defm V4FNMADDPSrm : AVX512_maskable_3src_in_asm<0xAA, MRMSrcMem, v16f32_info, (outs VR512:$dst), (ins VR512:$src2, f128mem:$src3), "v4fnmaddps", "$src3, $src2", "$src2, $src3", []>, EVEX_V512, EVEX_4V, T8XD, EVEX_CD8<32, CD8VQ>, Sched<[SchedWriteFMA.ZMM.Folded]>; defm V4FMADDSSrm : AVX512_maskable_3src_in_asm<0x9B, MRMSrcMem, f32x_info, (outs VR128X:$dst), (ins VR128X:$src2, f128mem:$src3), "v4fmaddss", "$src3, $src2", "$src2, $src3", []>, EVEX_V128, EVEX_4V, T8XD, EVEX_CD8<32, CD8VF>, Sched<[SchedWriteFMA.Scl.Folded]>; defm V4FNMADDSSrm : AVX512_maskable_3src_in_asm<0xAB, MRMSrcMem, f32x_info, (outs VR128X:$dst), (ins VR128X:$src2, f128mem:$src3), "v4fnmaddss", "$src3, $src2", "$src2, $src3", []>, EVEX_V128, EVEX_4V, T8XD, EVEX_CD8<32, CD8VF>, Sched<[SchedWriteFMA.Scl.Folded]>; } //===----------------------------------------------------------------------===// // AVX5124VNNIW //===----------------------------------------------------------------------===// let hasSideEffects = 0, mayLoad = 1, ExeDomain = SSEPackedInt, Constraints = "$src1 = $dst" in { defm VP4DPWSSDrm : AVX512_maskable_3src_in_asm<0x52, MRMSrcMem, v16i32_info, (outs VR512:$dst), (ins VR512:$src2, f128mem:$src3), "vp4dpwssd", "$src3, $src2", "$src2, $src3", []>, EVEX_V512, EVEX_4V, T8XD, EVEX_CD8<32, CD8VQ>, Sched<[SchedWriteFMA.ZMM.Folded]>; defm VP4DPWSSDSrm : AVX512_maskable_3src_in_asm<0x53, MRMSrcMem, v16i32_info, (outs VR512:$dst), (ins VR512:$src2, f128mem:$src3), "vp4dpwssds", "$src3, $src2", "$src2, $src3", []>, EVEX_V512, EVEX_4V, T8XD, EVEX_CD8<32, CD8VQ>, Sched<[SchedWriteFMA.ZMM.Folded]>; }