//===-- X86InstrCMovSetCC.td - Conditional Move and SetCC --*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the X86 conditional move and set on condition // instructions. // //===----------------------------------------------------------------------===// // CMOV instructions. multiclass CMOV<bits<8> opc, string Mnemonic, X86FoldableSchedWrite Sched, PatLeaf CondNode> { let Uses = [EFLAGS], Predicates = [HasCMov], Constraints = "$src1 = $dst", isCommutable = 1, SchedRW = [Sched] in { def NAME#16rr : I<opc, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), !strconcat(Mnemonic, "{w}\t{$src2, $dst|$dst, $src2}"), [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, CondNode, EFLAGS))]>, TB, OpSize16; def NAME#32rr : I<opc, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), !strconcat(Mnemonic, "{l}\t{$src2, $dst|$dst, $src2}"), [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, CondNode, EFLAGS))]>, TB, OpSize32; def NAME#64rr :RI<opc, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), !strconcat(Mnemonic, "{q}\t{$src2, $dst|$dst, $src2}"), [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2, CondNode, EFLAGS))]>, TB; } let Uses = [EFLAGS], Predicates = [HasCMov], Constraints = "$src1 = $dst", SchedRW = [Sched.Folded, ReadAfterLd] in { def NAME#16rm : I<opc, MRMSrcMem, (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), !strconcat(Mnemonic, "{w}\t{$src2, $dst|$dst, $src2}"), [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), CondNode, EFLAGS))]>, TB, OpSize16; def NAME#32rm : I<opc, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), !strconcat(Mnemonic, "{l}\t{$src2, $dst|$dst, $src2}"), [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), CondNode, EFLAGS))]>, TB, OpSize32; def NAME#64rm :RI<opc, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), !strconcat(Mnemonic, "{q}\t{$src2, $dst|$dst, $src2}"), [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2), CondNode, EFLAGS))]>, TB; } // Uses = [EFLAGS], Predicates = [HasCMov], Constraints = "$src1 = $dst" } // end multiclass // Conditional Moves. defm CMOVO : CMOV<0x40, "cmovo" , WriteCMOV, X86_COND_O>; defm CMOVNO : CMOV<0x41, "cmovno", WriteCMOV, X86_COND_NO>; defm CMOVB : CMOV<0x42, "cmovb" , WriteCMOV, X86_COND_B>; defm CMOVAE : CMOV<0x43, "cmovae", WriteCMOV, X86_COND_AE>; defm CMOVE : CMOV<0x44, "cmove" , WriteCMOV, X86_COND_E>; defm CMOVNE : CMOV<0x45, "cmovne", WriteCMOV, X86_COND_NE>; defm CMOVBE : CMOV<0x46, "cmovbe", WriteCMOV2, X86_COND_BE>; defm CMOVA : CMOV<0x47, "cmova" , WriteCMOV2, X86_COND_A>; defm CMOVS : CMOV<0x48, "cmovs" , WriteCMOV, X86_COND_S>; defm CMOVNS : CMOV<0x49, "cmovns", WriteCMOV, X86_COND_NS>; defm CMOVP : CMOV<0x4A, "cmovp" , WriteCMOV, X86_COND_P>; defm CMOVNP : CMOV<0x4B, "cmovnp", WriteCMOV, X86_COND_NP>; defm CMOVL : CMOV<0x4C, "cmovl" , WriteCMOV, X86_COND_L>; defm CMOVGE : CMOV<0x4D, "cmovge", WriteCMOV, X86_COND_GE>; defm CMOVLE : CMOV<0x4E, "cmovle", WriteCMOV, X86_COND_LE>; defm CMOVG : CMOV<0x4F, "cmovg" , WriteCMOV, X86_COND_G>; // SetCC instructions. multiclass SETCC<bits<8> opc, string Mnemonic, PatLeaf OpNode> { let Uses = [EFLAGS] in { def r : I<opc, MRMXr, (outs GR8:$dst), (ins), !strconcat(Mnemonic, "\t$dst"), [(set GR8:$dst, (X86setcc OpNode, EFLAGS))]>, TB, Sched<[WriteSETCC]>; def m : I<opc, MRMXm, (outs), (ins i8mem:$dst), !strconcat(Mnemonic, "\t$dst"), [(store (X86setcc OpNode, EFLAGS), addr:$dst)]>, TB, Sched<[WriteSETCCStore]>; } // Uses = [EFLAGS] } defm SETO : SETCC<0x90, "seto", X86_COND_O>; // is overflow bit set defm SETNO : SETCC<0x91, "setno", X86_COND_NO>; // is overflow bit not set defm SETB : SETCC<0x92, "setb", X86_COND_B>; // unsigned less than defm SETAE : SETCC<0x93, "setae", X86_COND_AE>; // unsigned greater or equal defm SETE : SETCC<0x94, "sete", X86_COND_E>; // equal to defm SETNE : SETCC<0x95, "setne", X86_COND_NE>; // not equal to defm SETBE : SETCC<0x96, "setbe", X86_COND_BE>; // unsigned less than or equal defm SETA : SETCC<0x97, "seta", X86_COND_A>; // unsigned greater than defm SETS : SETCC<0x98, "sets", X86_COND_S>; // is signed bit set defm SETNS : SETCC<0x99, "setns", X86_COND_NS>; // is not signed defm SETP : SETCC<0x9A, "setp", X86_COND_P>; // is parity bit set defm SETNP : SETCC<0x9B, "setnp", X86_COND_NP>; // is parity bit not set defm SETL : SETCC<0x9C, "setl", X86_COND_L>; // signed less than defm SETGE : SETCC<0x9D, "setge", X86_COND_GE>; // signed greater or equal defm SETLE : SETCC<0x9E, "setle", X86_COND_LE>; // signed less than or equal defm SETG : SETCC<0x9F, "setg", X86_COND_G>; // signed greater than // SALC is an undocumented instruction. Information for this instruction can be found // here http://www.rcollins.org/secrets/opcodes/SALC.html // Set AL if carry. let Uses = [EFLAGS], Defs = [AL], SchedRW = [WriteALU] in { def SALC : I<0xD6, RawFrm, (outs), (ins), "salc", []>, Requires<[Not64BitMode]>; }