//===-- X86InstrControl.td - Control Flow Instructions -----*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the X86 jump, return, call, and related instructions. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Control Flow Instructions. // // Return instructions. // // The X86retflag return instructions are variadic because we may add ST0 and // ST1 arguments when returning values on the x87 stack. let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1, FPForm = SpecialFP, SchedRW = [WriteJumpLd] in { def RETL : I <0xC3, RawFrm, (outs), (ins variable_ops), "ret{l}", []>, OpSize32, Requires<[Not64BitMode]>; def RETQ : I <0xC3, RawFrm, (outs), (ins variable_ops), "ret{q}", []>, OpSize32, Requires<[In64BitMode]>; def RETW : I <0xC3, RawFrm, (outs), (ins), "ret{w}", []>, OpSize16; def RETIL : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops), "ret{l}\t$amt", []>, OpSize32, Requires<[Not64BitMode]>; def RETIQ : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops), "ret{q}\t$amt", []>, OpSize32, Requires<[In64BitMode]>; def RETIW : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt), "ret{w}\t$amt", []>, OpSize16; def LRETL : I <0xCB, RawFrm, (outs), (ins), "{l}ret{l|f}", []>, OpSize32; def LRETQ : RI <0xCB, RawFrm, (outs), (ins), "{l}ret{|f}q", []>, Requires<[In64BitMode]>; def LRETW : I <0xCB, RawFrm, (outs), (ins), "{l}ret{w|f}", []>, OpSize16; def LRETIL : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt), "{l}ret{l|f}\t$amt", []>, OpSize32; def LRETIQ : RIi16<0xCA, RawFrm, (outs), (ins i16imm:$amt), "{l}ret{|f}q\t$amt", []>, Requires<[In64BitMode]>; def LRETIW : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt), "{l}ret{w|f}\t$amt", []>, OpSize16; // The machine return from interrupt instruction, but sometimes we need to // perform a post-epilogue stack adjustment. Codegen emits the pseudo form // which expands to include an SP adjustment if necessary. def IRET16 : I <0xcf, RawFrm, (outs), (ins), "iret{w}", []>, OpSize16; def IRET32 : I <0xcf, RawFrm, (outs), (ins), "iret{l|d}", []>, OpSize32; def IRET64 : RI <0xcf, RawFrm, (outs), (ins), "iretq", []>, Requires<[In64BitMode]>; let isCodeGenOnly = 1 in def IRET : PseudoI<(outs), (ins i32imm:$adj), [(X86iret timm:$adj)]>; def RET : PseudoI<(outs), (ins i32imm:$adj, variable_ops), [(X86retflag timm:$adj)]>; } // Unconditional branches. let isBarrier = 1, isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in { def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst), "jmp\t$dst", [(br bb:$dst)]>; let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in { def JMP_2 : Ii16PCRel<0xE9, RawFrm, (outs), (ins brtarget16:$dst), "jmp\t$dst", []>, OpSize16; def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget32:$dst), "jmp\t$dst", []>, OpSize32; } } // Conditional Branches. let isBranch = 1, isTerminator = 1, Uses = [EFLAGS], SchedRW = [WriteJump] in { multiclass ICBr<bits<8> opc1, bits<8> opc4, string asm, PatFrag Cond> { def _1 : Ii8PCRel <opc1, RawFrm, (outs), (ins brtarget8:$dst), asm, [(X86brcond bb:$dst, Cond, EFLAGS)]>; let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in { def _2 : Ii16PCRel<opc4, RawFrm, (outs), (ins brtarget16:$dst), asm, []>, OpSize16, TB; def _4 : Ii32PCRel<opc4, RawFrm, (outs), (ins brtarget32:$dst), asm, []>, TB, OpSize32; } } } defm JO : ICBr<0x70, 0x80, "jo\t$dst" , X86_COND_O>; defm JNO : ICBr<0x71, 0x81, "jno\t$dst", X86_COND_NO>; defm JB : ICBr<0x72, 0x82, "jb\t$dst" , X86_COND_B>; defm JAE : ICBr<0x73, 0x83, "jae\t$dst", X86_COND_AE>; defm JE : ICBr<0x74, 0x84, "je\t$dst" , X86_COND_E>; defm JNE : ICBr<0x75, 0x85, "jne\t$dst", X86_COND_NE>; defm JBE : ICBr<0x76, 0x86, "jbe\t$dst", X86_COND_BE>; defm JA : ICBr<0x77, 0x87, "ja\t$dst" , X86_COND_A>; defm JS : ICBr<0x78, 0x88, "js\t$dst" , X86_COND_S>; defm JNS : ICBr<0x79, 0x89, "jns\t$dst", X86_COND_NS>; defm JP : ICBr<0x7A, 0x8A, "jp\t$dst" , X86_COND_P>; defm JNP : ICBr<0x7B, 0x8B, "jnp\t$dst", X86_COND_NP>; defm JL : ICBr<0x7C, 0x8C, "jl\t$dst" , X86_COND_L>; defm JGE : ICBr<0x7D, 0x8D, "jge\t$dst", X86_COND_GE>; defm JLE : ICBr<0x7E, 0x8E, "jle\t$dst", X86_COND_LE>; defm JG : ICBr<0x7F, 0x8F, "jg\t$dst" , X86_COND_G>; // jcx/jecx/jrcx instructions. let isBranch = 1, isTerminator = 1, hasSideEffects = 0, SchedRW = [WriteJump] in { // These are the 32-bit versions of this instruction for the asmparser. In // 32-bit mode, the address size prefix is jcxz and the unprefixed version is // jecxz. let Uses = [CX] in def JCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst), "jcxz\t$dst", []>, AdSize16, Requires<[Not64BitMode]>; let Uses = [ECX] in def JECXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst), "jecxz\t$dst", []>, AdSize32; let Uses = [RCX] in def JRCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst), "jrcxz\t$dst", []>, AdSize64, Requires<[In64BitMode]>; } // Indirect branches let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { def JMP16r : I<0xFF, MRM4r, (outs), (ins GR16:$dst), "jmp{w}\t{*}$dst", [(brind GR16:$dst)]>, Requires<[Not64BitMode]>, OpSize16, Sched<[WriteJump]>; def JMP16m : I<0xFF, MRM4m, (outs), (ins i16mem:$dst), "jmp{w}\t{*}$dst", [(brind (loadi16 addr:$dst))]>, Requires<[Not64BitMode]>, OpSize16, Sched<[WriteJumpLd]>; def JMP32r : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst", [(brind GR32:$dst)]>, Requires<[Not64BitMode]>, OpSize32, Sched<[WriteJump]>; def JMP32m : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst", [(brind (loadi32 addr:$dst))]>, Requires<[Not64BitMode]>, OpSize32, Sched<[WriteJumpLd]>; def JMP64r : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst", [(brind GR64:$dst)]>, Requires<[In64BitMode]>, Sched<[WriteJump]>; def JMP64m : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst", [(brind (loadi64 addr:$dst))]>, Requires<[In64BitMode]>, Sched<[WriteJumpLd]>; // Non-tracking jumps for IBT, use with caution. let isCodeGenOnly = 1 in { def JMP16r_NT : I<0xFF, MRM4r, (outs), (ins GR16 : $dst), "jmp{w}\t{*}$dst", [(X86NoTrackBrind GR16 : $dst)]>, Requires<[Not64BitMode]>, OpSize16, Sched<[WriteJump]>, NOTRACK; def JMP16m_NT : I<0xFF, MRM4m, (outs), (ins i16mem : $dst), "jmp{w}\t{*}$dst", [(X86NoTrackBrind (loadi16 addr : $dst))]>, Requires<[Not64BitMode]>, OpSize16, Sched<[WriteJumpLd]>, NOTRACK; def JMP32r_NT : I<0xFF, MRM4r, (outs), (ins GR32 : $dst), "jmp{l}\t{*}$dst", [(X86NoTrackBrind GR32 : $dst)]>, Requires<[Not64BitMode]>, OpSize32, Sched<[WriteJump]>, NOTRACK; def JMP32m_NT : I<0xFF, MRM4m, (outs), (ins i32mem : $dst), "jmp{l}\t{*}$dst", [(X86NoTrackBrind (loadi32 addr : $dst))]>, Requires<[Not64BitMode]>, OpSize32, Sched<[WriteJumpLd]>, NOTRACK; def JMP64r_NT : I<0xFF, MRM4r, (outs), (ins GR64 : $dst), "jmp{q}\t{*}$dst", [(X86NoTrackBrind GR64 : $dst)]>, Requires<[In64BitMode]>, Sched<[WriteJump]>, NOTRACK; def JMP64m_NT : I<0xFF, MRM4m, (outs), (ins i64mem : $dst), "jmp{q}\t{*}$dst", [(X86NoTrackBrind(loadi64 addr : $dst))]>, Requires<[In64BitMode]>, Sched<[WriteJumpLd]>, NOTRACK; } let Predicates = [Not64BitMode], AsmVariantName = "att" in { def FARJMP16i : Iseg16<0xEA, RawFrmImm16, (outs), (ins i16imm:$off, i16imm:$seg), "ljmp{w}\t$seg, $off", []>, OpSize16, Sched<[WriteJump]>; def FARJMP32i : Iseg32<0xEA, RawFrmImm16, (outs), (ins i32imm:$off, i16imm:$seg), "ljmp{l}\t$seg, $off", []>, OpSize32, Sched<[WriteJump]>; } def FARJMP64 : RI<0xFF, MRM5m, (outs), (ins opaquemem:$dst), "ljmp{q}\t{*}$dst", []>, Sched<[WriteJump]>, Requires<[In64BitMode]>; let AsmVariantName = "att" in def FARJMP16m : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst), "ljmp{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>; def FARJMP32m : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst), "{l}jmp{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>; } // Loop instructions let SchedRW = [WriteJump] in { def LOOP : Ii8PCRel<0xE2, RawFrm, (outs), (ins brtarget8:$dst), "loop\t$dst", []>; def LOOPE : Ii8PCRel<0xE1, RawFrm, (outs), (ins brtarget8:$dst), "loope\t$dst", []>; def LOOPNE : Ii8PCRel<0xE0, RawFrm, (outs), (ins brtarget8:$dst), "loopne\t$dst", []>; } //===----------------------------------------------------------------------===// // Call Instructions... // let isCall = 1 in // All calls clobber the non-callee saved registers. ESP is marked as // a use to prevent stack-pointer assignments that appear immediately // before calls from potentially appearing dead. Uses for argument // registers are added manually. let Uses = [ESP, SSP] in { def CALLpcrel32 : Ii32PCRel<0xE8, RawFrm, (outs), (ins i32imm_pcrel:$dst), "call{l}\t$dst", []>, OpSize32, Requires<[Not64BitMode]>, Sched<[WriteJump]>; let hasSideEffects = 0 in def CALLpcrel16 : Ii16PCRel<0xE8, RawFrm, (outs), (ins i16imm_pcrel:$dst), "call{w}\t$dst", []>, OpSize16, Sched<[WriteJump]>; def CALL16r : I<0xFF, MRM2r, (outs), (ins GR16:$dst), "call{w}\t{*}$dst", [(X86call GR16:$dst)]>, OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>; def CALL16m : I<0xFF, MRM2m, (outs), (ins i16mem:$dst), "call{w}\t{*}$dst", [(X86call (loadi16 addr:$dst))]>, OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>, Sched<[WriteJumpLd]>; def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst), "call{l}\t{*}$dst", [(X86call GR32:$dst)]>, OpSize32, Requires<[Not64BitMode,NotUseRetpoline]>, Sched<[WriteJump]>; def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst), "call{l}\t{*}$dst", [(X86call (loadi32 addr:$dst))]>, OpSize32, Requires<[Not64BitMode,FavorMemIndirectCall,NotUseRetpoline]>, Sched<[WriteJumpLd]>; // Non-tracking calls for IBT, use with caution. let isCodeGenOnly = 1 in { def CALL16r_NT : I<0xFF, MRM2r, (outs), (ins GR16 : $dst), "call{w}\t{*}$dst",[(X86NoTrackCall GR16 : $dst)]>, OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK; def CALL16m_NT : I<0xFF, MRM2m, (outs), (ins i16mem : $dst), "call{w}\t{*}$dst",[(X86NoTrackCall(loadi16 addr : $dst))]>, OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>, Sched<[WriteJumpLd]>, NOTRACK; def CALL32r_NT : I<0xFF, MRM2r, (outs), (ins GR32 : $dst), "call{l}\t{*}$dst",[(X86NoTrackCall GR32 : $dst)]>, OpSize32, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK; def CALL32m_NT : I<0xFF, MRM2m, (outs), (ins i32mem : $dst), "call{l}\t{*}$dst",[(X86NoTrackCall(loadi32 addr : $dst))]>, OpSize32, Requires<[Not64BitMode,FavorMemIndirectCall]>, Sched<[WriteJumpLd]>, NOTRACK; } let Predicates = [Not64BitMode], AsmVariantName = "att" in { def FARCALL16i : Iseg16<0x9A, RawFrmImm16, (outs), (ins i16imm:$off, i16imm:$seg), "lcall{w}\t$seg, $off", []>, OpSize16, Sched<[WriteJump]>; def FARCALL32i : Iseg32<0x9A, RawFrmImm16, (outs), (ins i32imm:$off, i16imm:$seg), "lcall{l}\t$seg, $off", []>, OpSize32, Sched<[WriteJump]>; } def FARCALL16m : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst), "lcall{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>; def FARCALL32m : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst), "{l}call{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>; } // Tail call stuff. let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in let Uses = [ESP, SSP] in { def TCRETURNdi : PseudoI<(outs), (ins i32imm_pcrel:$dst, i32imm:$offset), []>, NotMemoryFoldable; def TCRETURNri : PseudoI<(outs), (ins ptr_rc_tailcall:$dst, i32imm:$offset), []>, NotMemoryFoldable; let mayLoad = 1 in def TCRETURNmi : PseudoI<(outs), (ins i32mem_TC:$dst, i32imm:$offset), []>; // FIXME: The should be pseudo instructions that are lowered when going to // mcinst. def TAILJMPd : Ii32PCRel<0xE9, RawFrm, (outs), (ins i32imm_pcrel:$dst), "jmp\t$dst", []>; def TAILJMPr : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst), "", []>; // FIXME: Remove encoding when JIT is dead. let mayLoad = 1 in def TAILJMPm : I<0xFF, MRM4m, (outs), (ins i32mem_TC:$dst), "jmp{l}\t{*}$dst", []>; } // Conditional tail calls are similar to the above, but they are branches // rather than barriers, and they use EFLAGS. let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1, isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in let Uses = [ESP, EFLAGS, SSP] in { def TCRETURNdicc : PseudoI<(outs), (ins i32imm_pcrel:$dst, i32imm:$offset, i32imm:$cond), []>; // This gets substituted to a conditional jump instruction in MC lowering. def TAILJMPd_CC : Ii32PCRel<0x80, RawFrm, (outs), (ins i32imm_pcrel:$dst, i32imm:$cond), "", []>; } //===----------------------------------------------------------------------===// // Call Instructions... // // RSP is marked as a use to prevent stack-pointer assignments that appear // immediately before calls from potentially appearing dead. Uses for argument // registers are added manually. let isCall = 1, Uses = [RSP, SSP], SchedRW = [WriteJump] in { // NOTE: this pattern doesn't match "X86call imm", because we do not know // that the offset between an arbitrary immediate and the call will fit in // the 32-bit pcrel field that we have. def CALL64pcrel32 : Ii32PCRel<0xE8, RawFrm, (outs), (ins i64i32imm_pcrel:$dst), "call{q}\t$dst", []>, OpSize32, Requires<[In64BitMode]>; def CALL64r : I<0xFF, MRM2r, (outs), (ins GR64:$dst), "call{q}\t{*}$dst", [(X86call GR64:$dst)]>, Requires<[In64BitMode,NotUseRetpoline]>; def CALL64m : I<0xFF, MRM2m, (outs), (ins i64mem:$dst), "call{q}\t{*}$dst", [(X86call (loadi64 addr:$dst))]>, Requires<[In64BitMode,FavorMemIndirectCall, NotUseRetpoline]>; // Non-tracking calls for IBT, use with caution. let isCodeGenOnly = 1 in { def CALL64r_NT : I<0xFF, MRM2r, (outs), (ins GR64 : $dst), "call{q}\t{*}$dst",[(X86NoTrackCall GR64 : $dst)]>, Requires<[In64BitMode]>, NOTRACK; def CALL64m_NT : I<0xFF, MRM2m, (outs), (ins i64mem : $dst), "call{q}\t{*}$dst", [(X86NoTrackCall(loadi64 addr : $dst))]>, Requires<[In64BitMode,FavorMemIndirectCall]>, NOTRACK; } def FARCALL64 : RI<0xFF, MRM3m, (outs), (ins opaquemem:$dst), "lcall{q}\t{*}$dst", []>; } let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, isCodeGenOnly = 1, Uses = [RSP, SSP], SchedRW = [WriteJump] in { def TCRETURNdi64 : PseudoI<(outs), (ins i64i32imm_pcrel:$dst, i32imm:$offset), []>; def TCRETURNri64 : PseudoI<(outs), (ins ptr_rc_tailcall:$dst, i32imm:$offset), []>, NotMemoryFoldable; let mayLoad = 1 in def TCRETURNmi64 : PseudoI<(outs), (ins i64mem_TC:$dst, i32imm:$offset), []>, NotMemoryFoldable; def TAILJMPd64 : Ii32PCRel<0xE9, RawFrm, (outs), (ins i64i32imm_pcrel:$dst), "jmp\t$dst", []>; def TAILJMPr64 : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst), "jmp{q}\t{*}$dst", []>; let mayLoad = 1 in def TAILJMPm64 : I<0xFF, MRM4m, (outs), (ins i64mem_TC:$dst), "jmp{q}\t{*}$dst", []>; // Win64 wants indirect jumps leaving the function to have a REX_W prefix. let hasREX_WPrefix = 1 in { def TAILJMPr64_REX : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst), "rex64 jmp{q}\t{*}$dst", []>; let mayLoad = 1 in def TAILJMPm64_REX : I<0xFF, MRM4m, (outs), (ins i64mem_TC:$dst), "rex64 jmp{q}\t{*}$dst", []>; } } let isPseudo = 1, isCall = 1, isCodeGenOnly = 1, Uses = [RSP, SSP], usesCustomInserter = 1, SchedRW = [WriteJump] in { def RETPOLINE_CALL32 : PseudoI<(outs), (ins GR32:$dst), [(X86call GR32:$dst)]>, Requires<[Not64BitMode,UseRetpoline]>; def RETPOLINE_CALL64 : PseudoI<(outs), (ins GR64:$dst), [(X86call GR64:$dst)]>, Requires<[In64BitMode,UseRetpoline]>; // Retpoline variant of indirect tail calls. let isTerminator = 1, isReturn = 1, isBarrier = 1 in { def RETPOLINE_TCRETURN64 : PseudoI<(outs), (ins GR64:$dst, i32imm:$offset), []>; def RETPOLINE_TCRETURN32 : PseudoI<(outs), (ins GR32:$dst, i32imm:$offset), []>; } } // Conditional tail calls are similar to the above, but they are branches // rather than barriers, and they use EFLAGS. let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1, isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in let Uses = [RSP, EFLAGS, SSP] in { def TCRETURNdi64cc : PseudoI<(outs), (ins i64i32imm_pcrel:$dst, i32imm:$offset, i32imm:$cond), []>; // This gets substituted to a conditional jump instruction in MC lowering. def TAILJMPd64_CC : Ii32PCRel<0x80, RawFrm, (outs), (ins i64i32imm_pcrel:$dst, i32imm:$cond), "", []>; }