//===-- X86InstrFMA.td - FMA Instruction Set ---------------*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes FMA (Fused Multiply-Add) instructions. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // FMA3 - Intel 3 operand Fused Multiply-Add instructions //===----------------------------------------------------------------------===// // For all FMA opcodes declared in fma3p_rm_* and fma3s_rm_* multiclasses // defined below, both the register and memory variants are commutable. // For the register form the commutable operands are 1, 2 and 3. // For the memory variant the folded operand must be in 3. Thus, // in that case, only the operands 1 and 2 can be swapped. // Commuting some of operands may require the opcode change. // FMA*213*: // operands 1 and 2 (memory & register forms): *213* --> *213*(no changes); // operands 1 and 3 (register forms only): *213* --> *231*; // operands 2 and 3 (register forms only): *213* --> *132*. // FMA*132*: // operands 1 and 2 (memory & register forms): *132* --> *231*; // operands 1 and 3 (register forms only): *132* --> *132*(no changes); // operands 2 and 3 (register forms only): *132* --> *213*. // FMA*231*: // operands 1 and 2 (memory & register forms): *231* --> *132*; // operands 1 and 3 (register forms only): *231* --> *213*; // operands 2 and 3 (register forms only): *231* --> *231*(no changes). multiclass fma3p_rm_213<bits<8> opc, string OpcodeStr, RegisterClass RC, ValueType VT, X86MemOperand x86memop, PatFrag MemFrag, SDNode Op, X86FoldableSchedWrite sched> { def r : FMA3<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, RC:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), [(set RC:$dst, (VT (Op RC:$src2, RC:$src1, RC:$src3)))]>, Sched<[sched]>; let mayLoad = 1 in def m : FMA3<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, RC:$src2, x86memop:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), [(set RC:$dst, (VT (Op RC:$src2, RC:$src1, (MemFrag addr:$src3))))]>, Sched<[sched.Folded, ReadAfterLd, ReadAfterLd]>; } multiclass fma3p_rm_231<bits<8> opc, string OpcodeStr, RegisterClass RC, ValueType VT, X86MemOperand x86memop, PatFrag MemFrag, SDNode Op, X86FoldableSchedWrite sched> { let hasSideEffects = 0 in def r : FMA3<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, RC:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), []>, Sched<[sched]>; let mayLoad = 1 in def m : FMA3<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, RC:$src2, x86memop:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), [(set RC:$dst, (VT (Op RC:$src2, (MemFrag addr:$src3), RC:$src1)))]>, Sched<[sched.Folded, ReadAfterLd, ReadAfterLd]>; } multiclass fma3p_rm_132<bits<8> opc, string OpcodeStr, RegisterClass RC, ValueType VT, X86MemOperand x86memop, PatFrag MemFrag, SDNode Op, X86FoldableSchedWrite sched> { let hasSideEffects = 0 in def r : FMA3<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, RC:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), []>, Sched<[sched]>; // Pattern is 312 order so that the load is in a different place from the // 213 and 231 patterns this helps tablegen's duplicate pattern detection. let mayLoad = 1 in def m : FMA3<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, RC:$src2, x86memop:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), [(set RC:$dst, (VT (Op (MemFrag addr:$src3), RC:$src1, RC:$src2)))]>, Sched<[sched.Folded, ReadAfterLd, ReadAfterLd]>; } let Constraints = "$src1 = $dst", hasSideEffects = 0, isCommutable = 1 in multiclass fma3p_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231, string OpcodeStr, string PackTy, string Suff, PatFrag MemFrag128, PatFrag MemFrag256, SDNode Op, ValueType OpTy128, ValueType OpTy256, X86SchedWriteWidths sched> { defm NAME#213#Suff : fma3p_rm_213<opc213, !strconcat(OpcodeStr, "213", PackTy), VR128, OpTy128, f128mem, MemFrag128, Op, sched.XMM>; defm NAME#231#Suff : fma3p_rm_231<opc231, !strconcat(OpcodeStr, "231", PackTy), VR128, OpTy128, f128mem, MemFrag128, Op, sched.XMM>; defm NAME#132#Suff : fma3p_rm_132<opc132, !strconcat(OpcodeStr, "132", PackTy), VR128, OpTy128, f128mem, MemFrag128, Op, sched.XMM>; defm NAME#213#Suff#Y : fma3p_rm_213<opc213, !strconcat(OpcodeStr, "213", PackTy), VR256, OpTy256, f256mem, MemFrag256, Op, sched.YMM>, VEX_L; defm NAME#231#Suff#Y : fma3p_rm_231<opc231, !strconcat(OpcodeStr, "231", PackTy), VR256, OpTy256, f256mem, MemFrag256, Op, sched.YMM>, VEX_L; defm NAME#132#Suff#Y : fma3p_rm_132<opc132, !strconcat(OpcodeStr, "132", PackTy), VR256, OpTy256, f256mem, MemFrag256, Op, sched.YMM>, VEX_L; } // Fused Multiply-Add let ExeDomain = SSEPackedSingle in { defm VFMADD : fma3p_forms<0x98, 0xA8, 0xB8, "vfmadd", "ps", "PS", loadv4f32, loadv8f32, X86Fmadd, v4f32, v8f32, SchedWriteFMA>; defm VFMSUB : fma3p_forms<0x9A, 0xAA, 0xBA, "vfmsub", "ps", "PS", loadv4f32, loadv8f32, X86Fmsub, v4f32, v8f32, SchedWriteFMA>; defm VFMADDSUB : fma3p_forms<0x96, 0xA6, 0xB6, "vfmaddsub", "ps", "PS", loadv4f32, loadv8f32, X86Fmaddsub, v4f32, v8f32, SchedWriteFMA>; defm VFMSUBADD : fma3p_forms<0x97, 0xA7, 0xB7, "vfmsubadd", "ps", "PS", loadv4f32, loadv8f32, X86Fmsubadd, v4f32, v8f32, SchedWriteFMA>; } let ExeDomain = SSEPackedDouble in { defm VFMADD : fma3p_forms<0x98, 0xA8, 0xB8, "vfmadd", "pd", "PD", loadv2f64, loadv4f64, X86Fmadd, v2f64, v4f64, SchedWriteFMA>, VEX_W; defm VFMSUB : fma3p_forms<0x9A, 0xAA, 0xBA, "vfmsub", "pd", "PD", loadv2f64, loadv4f64, X86Fmsub, v2f64, v4f64, SchedWriteFMA>, VEX_W; defm VFMADDSUB : fma3p_forms<0x96, 0xA6, 0xB6, "vfmaddsub", "pd", "PD", loadv2f64, loadv4f64, X86Fmaddsub, v2f64, v4f64, SchedWriteFMA>, VEX_W; defm VFMSUBADD : fma3p_forms<0x97, 0xA7, 0xB7, "vfmsubadd", "pd", "PD", loadv2f64, loadv4f64, X86Fmsubadd, v2f64, v4f64, SchedWriteFMA>, VEX_W; } // Fused Negative Multiply-Add let ExeDomain = SSEPackedSingle in { defm VFNMADD : fma3p_forms<0x9C, 0xAC, 0xBC, "vfnmadd", "ps", "PS", loadv4f32, loadv8f32, X86Fnmadd, v4f32, v8f32, SchedWriteFMA>; defm VFNMSUB : fma3p_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "ps", "PS", loadv4f32, loadv8f32, X86Fnmsub, v4f32, v8f32, SchedWriteFMA>; } let ExeDomain = SSEPackedDouble in { defm VFNMADD : fma3p_forms<0x9C, 0xAC, 0xBC, "vfnmadd", "pd", "PD", loadv2f64, loadv4f64, X86Fnmadd, v2f64, v4f64, SchedWriteFMA>, VEX_W; defm VFNMSUB : fma3p_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "pd", "PD", loadv2f64, loadv4f64, X86Fnmsub, v2f64, v4f64, SchedWriteFMA>, VEX_W; } // All source register operands of FMA opcodes defined in fma3s_rm multiclass // can be commuted. In many cases such commute transformation requres an opcode // adjustment, for example, commuting the operands 1 and 2 in FMA*132 form // would require an opcode change to FMA*231: // FMA*132* reg1, reg2, reg3; // reg1 * reg3 + reg2; // --> // FMA*231* reg2, reg1, reg3; // reg1 * reg3 + reg2; // Please see more detailed comment at the very beginning of the section // defining FMA3 opcodes above. multiclass fma3s_rm_213<bits<8> opc, string OpcodeStr, X86MemOperand x86memop, RegisterClass RC, SDPatternOperator OpNode, X86FoldableSchedWrite sched> { def r : FMA3S<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, RC:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), [(set RC:$dst, (OpNode RC:$src2, RC:$src1, RC:$src3))]>, Sched<[sched]>; let mayLoad = 1 in def m : FMA3S<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, RC:$src2, x86memop:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), [(set RC:$dst, (OpNode RC:$src2, RC:$src1, (load addr:$src3)))]>, Sched<[sched.Folded, ReadAfterLd, ReadAfterLd]>; } multiclass fma3s_rm_231<bits<8> opc, string OpcodeStr, X86MemOperand x86memop, RegisterClass RC, SDPatternOperator OpNode, X86FoldableSchedWrite sched> { let hasSideEffects = 0 in def r : FMA3S<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, RC:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), []>, Sched<[sched]>; let mayLoad = 1 in def m : FMA3S<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, RC:$src2, x86memop:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), [(set RC:$dst, (OpNode RC:$src2, (load addr:$src3), RC:$src1))]>, Sched<[sched.Folded, ReadAfterLd, ReadAfterLd]>; } multiclass fma3s_rm_132<bits<8> opc, string OpcodeStr, X86MemOperand x86memop, RegisterClass RC, SDPatternOperator OpNode, X86FoldableSchedWrite sched> { let hasSideEffects = 0 in def r : FMA3S<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, RC:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), []>, Sched<[sched]>; // Pattern is 312 order so that the load is in a different place from the // 213 and 231 patterns this helps tablegen's duplicate pattern detection. let mayLoad = 1 in def m : FMA3S<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, RC:$src2, x86memop:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), [(set RC:$dst, (OpNode (load addr:$src3), RC:$src1, RC:$src2))]>, Sched<[sched.Folded, ReadAfterLd, ReadAfterLd]>; } let Constraints = "$src1 = $dst", isCommutable = 1, hasSideEffects = 0 in multiclass fma3s_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231, string OpStr, string PackTy, string Suff, SDNode OpNode, RegisterClass RC, X86MemOperand x86memop, X86FoldableSchedWrite sched> { defm NAME#213#Suff : fma3s_rm_213<opc213, !strconcat(OpStr, "213", PackTy), x86memop, RC, OpNode, sched>; defm NAME#231#Suff : fma3s_rm_231<opc231, !strconcat(OpStr, "231", PackTy), x86memop, RC, OpNode, sched>; defm NAME#132#Suff : fma3s_rm_132<opc132, !strconcat(OpStr, "132", PackTy), x86memop, RC, OpNode, sched>; } // These FMA*_Int instructions are defined specially for being used when // the scalar FMA intrinsics are lowered to machine instructions, and in that // sense, they are similar to existing ADD*_Int, SUB*_Int, MUL*_Int, etc. // instructions. // // All of the FMA*_Int opcodes are defined as commutable here. // Commuting the 2nd and 3rd source register operands of FMAs is quite trivial // and the corresponding optimizations have been developed. // Commuting the 1st operand of FMA*_Int requires some additional analysis, // the commute optimization is legal only if all users of FMA*_Int use only // the lowest element of the FMA*_Int instruction. Even though such analysis // may be not implemented yet we allow the routines doing the actual commute // transformation to decide if one or another instruction is commutable or not. let Constraints = "$src1 = $dst", isCommutable = 1, isCodeGenOnly = 1, hasSideEffects = 0 in multiclass fma3s_rm_int<bits<8> opc, string OpcodeStr, Operand memopr, RegisterClass RC, X86FoldableSchedWrite sched> { def r_Int : FMA3S_Int<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, RC:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), []>, Sched<[sched]>; let mayLoad = 1 in def m_Int : FMA3S_Int<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, RC:$src2, memopr:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), []>, Sched<[sched.Folded, ReadAfterLd, ReadAfterLd]>; } // The FMA 213 form is created for lowering of scalar FMA intrinscis // to machine instructions. // The FMA 132 form can trivially be get by commuting the 2nd and 3rd operands // of FMA 213 form. // The FMA 231 form can be get only by commuting the 1st operand of 213 or 132 // forms and is possible only after special analysis of all uses of the initial // instruction. Such analysis do not exist yet and thus introducing the 231 // form of FMA*_Int instructions is done using an optimistic assumption that // such analysis will be implemented eventually. multiclass fma3s_int_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231, string OpStr, string PackTy, string Suff, RegisterClass RC, Operand memop, X86FoldableSchedWrite sched> { defm NAME#132#Suff : fma3s_rm_int<opc132, !strconcat(OpStr, "132", PackTy), memop, RC, sched>; defm NAME#213#Suff : fma3s_rm_int<opc213, !strconcat(OpStr, "213", PackTy), memop, RC, sched>; defm NAME#231#Suff : fma3s_rm_int<opc231, !strconcat(OpStr, "231", PackTy), memop, RC, sched>; } multiclass fma3s<bits<8> opc132, bits<8> opc213, bits<8> opc231, string OpStr, SDNode OpNode, X86FoldableSchedWrite sched> { let ExeDomain = SSEPackedSingle in defm NAME : fma3s_forms<opc132, opc213, opc231, OpStr, "ss", "SS", OpNode, FR32, f32mem, sched>, fma3s_int_forms<opc132, opc213, opc231, OpStr, "ss", "SS", VR128, ssmem, sched>; let ExeDomain = SSEPackedDouble in defm NAME : fma3s_forms<opc132, opc213, opc231, OpStr, "sd", "SD", OpNode, FR64, f64mem, sched>, fma3s_int_forms<opc132, opc213, opc231, OpStr, "sd", "SD", VR128, sdmem, sched>, VEX_W; } defm VFMADD : fma3s<0x99, 0xA9, 0xB9, "vfmadd", X86Fmadd, SchedWriteFMA.Scl>, VEX_LIG; defm VFMSUB : fma3s<0x9B, 0xAB, 0xBB, "vfmsub", X86Fmsub, SchedWriteFMA.Scl>, VEX_LIG; defm VFNMADD : fma3s<0x9D, 0xAD, 0xBD, "vfnmadd", X86Fnmadd, SchedWriteFMA.Scl>, VEX_LIG; defm VFNMSUB : fma3s<0x9F, 0xAF, 0xBF, "vfnmsub", X86Fnmsub, SchedWriteFMA.Scl>, VEX_LIG; multiclass scalar_fma_patterns<SDNode Op, string Prefix, string Suffix, SDNode Move, ValueType VT, ValueType EltVT, RegisterClass RC, PatFrag mem_frag> { let Predicates = [HasFMA, NoAVX512] in { def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector (Op RC:$src2, (EltVT (extractelt (VT VR128:$src1), (iPTR 0))), RC:$src3))))), (!cast<Instruction>(Prefix#"213"#Suffix#"r_Int") VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)), (VT (COPY_TO_REGCLASS RC:$src3, VR128)))>; def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector (Op RC:$src2, RC:$src3, (EltVT (extractelt (VT VR128:$src1), (iPTR 0)))))))), (!cast<Instruction>(Prefix#"231"#Suffix#"r_Int") VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)), (VT (COPY_TO_REGCLASS RC:$src3, VR128)))>; def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector (Op RC:$src2, (EltVT (extractelt (VT VR128:$src1), (iPTR 0))), (mem_frag addr:$src3)))))), (!cast<Instruction>(Prefix#"213"#Suffix#"m_Int") VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)), addr:$src3)>; def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector (Op (EltVT (extractelt (VT VR128:$src1), (iPTR 0))), (mem_frag addr:$src3), RC:$src2))))), (!cast<Instruction>(Prefix#"132"#Suffix#"m_Int") VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)), addr:$src3)>; def : Pat<(VT (Move (VT VR128:$src1), (VT (scalar_to_vector (Op RC:$src2, (mem_frag addr:$src3), (EltVT (extractelt (VT VR128:$src1), (iPTR 0)))))))), (!cast<Instruction>(Prefix#"231"#Suffix#"m_Int") VR128:$src1, (VT (COPY_TO_REGCLASS RC:$src2, VR128)), addr:$src3)>; } } defm : scalar_fma_patterns<X86Fmadd, "VFMADD", "SS", X86Movss, v4f32, f32, FR32, loadf32>; defm : scalar_fma_patterns<X86Fmsub, "VFMSUB", "SS", X86Movss, v4f32, f32, FR32, loadf32>; defm : scalar_fma_patterns<X86Fnmadd, "VFNMADD", "SS", X86Movss, v4f32, f32, FR32, loadf32>; defm : scalar_fma_patterns<X86Fnmsub, "VFNMSUB", "SS", X86Movss, v4f32, f32, FR32, loadf32>; defm : scalar_fma_patterns<X86Fmadd, "VFMADD", "SD", X86Movsd, v2f64, f64, FR64, loadf64>; defm : scalar_fma_patterns<X86Fmsub, "VFMSUB", "SD", X86Movsd, v2f64, f64, FR64, loadf64>; defm : scalar_fma_patterns<X86Fnmadd, "VFNMADD", "SD", X86Movsd, v2f64, f64, FR64, loadf64>; defm : scalar_fma_patterns<X86Fnmsub, "VFNMSUB", "SD", X86Movsd, v2f64, f64, FR64, loadf64>; //===----------------------------------------------------------------------===// // FMA4 - AMD 4 operand Fused Multiply-Add instructions //===----------------------------------------------------------------------===// multiclass fma4s<bits<8> opc, string OpcodeStr, RegisterClass RC, X86MemOperand x86memop, ValueType OpVT, SDNode OpNode, PatFrag mem_frag, X86FoldableSchedWrite sched> { let isCommutable = 1 in def rr : FMA4S<opc, MRMSrcRegOp4, (outs RC:$dst), (ins RC:$src1, RC:$src2, RC:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2, RC:$src3)))]>, VEX_W, VEX_LIG, Sched<[sched]>; def rm : FMA4S<opc, MRMSrcMemOp4, (outs RC:$dst), (ins RC:$src1, RC:$src2, x86memop:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set RC:$dst, (OpNode RC:$src1, RC:$src2, (mem_frag addr:$src3)))]>, VEX_W, VEX_LIG, Sched<[sched.Folded, ReadAfterLd, ReadAfterLd]>; def mr : FMA4S<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2, RC:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set RC:$dst, (OpNode RC:$src1, (mem_frag addr:$src2), RC:$src3))]>, VEX_LIG, Sched<[sched.Folded, ReadAfterLd, // x86memop:$src2 ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault, // RC:$src3 ReadAfterLd]>; // For disassembler let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in def rr_REV : FMA4S<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, RC:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>, VEX_LIG, FoldGenData<NAME#rr>, Sched<[sched]>; } multiclass fma4s_int<bits<8> opc, string OpcodeStr, Operand memop, ValueType VT, X86FoldableSchedWrite sched> { let isCodeGenOnly = 1, hasSideEffects = 0 in { def rr_Int : FMA4S_Int<opc, MRMSrcRegOp4, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, VR128:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>, VEX_W, VEX_LIG, Sched<[sched]>; let mayLoad = 1 in def rm_Int : FMA4S_Int<opc, MRMSrcMemOp4, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, memop:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>, VEX_W, VEX_LIG, Sched<[sched.Folded, ReadAfterLd, ReadAfterLd]>; let mayLoad = 1 in def mr_Int : FMA4S_Int<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, memop:$src2, VR128:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>, VEX_LIG, Sched<[sched.Folded, ReadAfterLd, // memop:$src2 ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault, // VR128::$src3 ReadAfterLd]>; def rr_Int_REV : FMA4S_Int<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, VR128:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>, VEX_LIG, FoldGenData<NAME#rr_Int>, Sched<[sched]>; } // isCodeGenOnly = 1 } multiclass fma4p<bits<8> opc, string OpcodeStr, SDNode OpNode, ValueType OpVT128, ValueType OpVT256, PatFrag ld_frag128, PatFrag ld_frag256, X86SchedWriteWidths sched> { let isCommutable = 1 in def rr : FMA4<opc, MRMSrcRegOp4, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, VR128:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR128:$dst, (OpVT128 (OpNode VR128:$src1, VR128:$src2, VR128:$src3)))]>, VEX_W, Sched<[sched.XMM]>; def rm : FMA4<opc, MRMSrcMemOp4, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, f128mem:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR128:$dst, (OpNode VR128:$src1, VR128:$src2, (ld_frag128 addr:$src3)))]>, VEX_W, Sched<[sched.XMM.Folded, ReadAfterLd, ReadAfterLd]>; def mr : FMA4<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2, VR128:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR128:$dst, (OpNode VR128:$src1, (ld_frag128 addr:$src2), VR128:$src3))]>, Sched<[sched.XMM.Folded, ReadAfterLd, // f128mem:$src2 ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault, // VR128::$src3 ReadAfterLd]>; let isCommutable = 1 in def Yrr : FMA4<opc, MRMSrcRegOp4, (outs VR256:$dst), (ins VR256:$src1, VR256:$src2, VR256:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR256:$dst, (OpVT256 (OpNode VR256:$src1, VR256:$src2, VR256:$src3)))]>, VEX_W, VEX_L, Sched<[sched.YMM]>; def Yrm : FMA4<opc, MRMSrcMemOp4, (outs VR256:$dst), (ins VR256:$src1, VR256:$src2, f256mem:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR256:$dst, (OpNode VR256:$src1, VR256:$src2, (ld_frag256 addr:$src3)))]>, VEX_W, VEX_L, Sched<[sched.YMM.Folded, ReadAfterLd, ReadAfterLd]>; def Ymr : FMA4<opc, MRMSrcMem, (outs VR256:$dst), (ins VR256:$src1, f256mem:$src2, VR256:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR256:$dst, (OpNode VR256:$src1, (ld_frag256 addr:$src2), VR256:$src3))]>, VEX_L, Sched<[sched.YMM.Folded, ReadAfterLd, // f256mem:$src2 ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault, // VR256::$src3 ReadAfterLd]>; // For disassembler let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in { def rr_REV : FMA4<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, VR128:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>, Sched<[sched.XMM]>, FoldGenData<NAME#rr>; def Yrr_REV : FMA4<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src1, VR256:$src2, VR256:$src3), !strconcat(OpcodeStr, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>, VEX_L, Sched<[sched.YMM]>, FoldGenData<NAME#Yrr>; } // isCodeGenOnly = 1 } let ExeDomain = SSEPackedSingle in { // Scalar Instructions defm VFMADDSS4 : fma4s<0x6A, "vfmaddss", FR32, f32mem, f32, X86Fmadd, loadf32, SchedWriteFMA.Scl>, fma4s_int<0x6A, "vfmaddss", ssmem, v4f32, SchedWriteFMA.Scl>; defm VFMSUBSS4 : fma4s<0x6E, "vfmsubss", FR32, f32mem, f32, X86Fmsub, loadf32, SchedWriteFMA.Scl>, fma4s_int<0x6E, "vfmsubss", ssmem, v4f32, SchedWriteFMA.Scl>; defm VFNMADDSS4 : fma4s<0x7A, "vfnmaddss", FR32, f32mem, f32, X86Fnmadd, loadf32, SchedWriteFMA.Scl>, fma4s_int<0x7A, "vfnmaddss", ssmem, v4f32, SchedWriteFMA.Scl>; defm VFNMSUBSS4 : fma4s<0x7E, "vfnmsubss", FR32, f32mem, f32, X86Fnmsub, loadf32, SchedWriteFMA.Scl>, fma4s_int<0x7E, "vfnmsubss", ssmem, v4f32, SchedWriteFMA.Scl>; // Packed Instructions defm VFMADDPS4 : fma4p<0x68, "vfmaddps", X86Fmadd, v4f32, v8f32, loadv4f32, loadv8f32, SchedWriteFMA>; defm VFMSUBPS4 : fma4p<0x6C, "vfmsubps", X86Fmsub, v4f32, v8f32, loadv4f32, loadv8f32, SchedWriteFMA>; defm VFNMADDPS4 : fma4p<0x78, "vfnmaddps", X86Fnmadd, v4f32, v8f32, loadv4f32, loadv8f32, SchedWriteFMA>; defm VFNMSUBPS4 : fma4p<0x7C, "vfnmsubps", X86Fnmsub, v4f32, v8f32, loadv4f32, loadv8f32, SchedWriteFMA>; defm VFMADDSUBPS4 : fma4p<0x5C, "vfmaddsubps", X86Fmaddsub, v4f32, v8f32, loadv4f32, loadv8f32, SchedWriteFMA>; defm VFMSUBADDPS4 : fma4p<0x5E, "vfmsubaddps", X86Fmsubadd, v4f32, v8f32, loadv4f32, loadv8f32, SchedWriteFMA>; } let ExeDomain = SSEPackedDouble in { // Scalar Instructions defm VFMADDSD4 : fma4s<0x6B, "vfmaddsd", FR64, f64mem, f64, X86Fmadd, loadf64, SchedWriteFMA.Scl>, fma4s_int<0x6B, "vfmaddsd", sdmem, v2f64, SchedWriteFMA.Scl>; defm VFMSUBSD4 : fma4s<0x6F, "vfmsubsd", FR64, f64mem, f64, X86Fmsub, loadf64, SchedWriteFMA.Scl>, fma4s_int<0x6F, "vfmsubsd", sdmem, v2f64, SchedWriteFMA.Scl>; defm VFNMADDSD4 : fma4s<0x7B, "vfnmaddsd", FR64, f64mem, f64, X86Fnmadd, loadf64, SchedWriteFMA.Scl>, fma4s_int<0x7B, "vfnmaddsd", sdmem, v2f64, SchedWriteFMA.Scl>; defm VFNMSUBSD4 : fma4s<0x7F, "vfnmsubsd", FR64, f64mem, f64, X86Fnmsub, loadf64, SchedWriteFMA.Scl>, fma4s_int<0x7F, "vfnmsubsd", sdmem, v2f64, SchedWriteFMA.Scl>; // Packed Instructions defm VFMADDPD4 : fma4p<0x69, "vfmaddpd", X86Fmadd, v2f64, v4f64, loadv2f64, loadv4f64, SchedWriteFMA>; defm VFMSUBPD4 : fma4p<0x6D, "vfmsubpd", X86Fmsub, v2f64, v4f64, loadv2f64, loadv4f64, SchedWriteFMA>; defm VFNMADDPD4 : fma4p<0x79, "vfnmaddpd", X86Fnmadd, v2f64, v4f64, loadv2f64, loadv4f64, SchedWriteFMA>; defm VFNMSUBPD4 : fma4p<0x7D, "vfnmsubpd", X86Fnmsub, v2f64, v4f64, loadv2f64, loadv4f64, SchedWriteFMA>; defm VFMADDSUBPD4 : fma4p<0x5D, "vfmaddsubpd", X86Fmaddsub, v2f64, v4f64, loadv2f64, loadv4f64, SchedWriteFMA>; defm VFMSUBADDPD4 : fma4p<0x5F, "vfmsubaddpd", X86Fmsubadd, v2f64, v4f64, loadv2f64, loadv4f64, SchedWriteFMA>; } multiclass scalar_fma4_patterns<SDNode Op, string Name, ValueType VT, ValueType EltVT, RegisterClass RC, PatFrag mem_frag> { let Predicates = [HasFMA4] in { def : Pat<(VT (X86vzmovl (VT (scalar_to_vector (Op RC:$src1, RC:$src2, RC:$src3))))), (!cast<Instruction>(Name#"rr_Int") (VT (COPY_TO_REGCLASS RC:$src1, VR128)), (VT (COPY_TO_REGCLASS RC:$src2, VR128)), (VT (COPY_TO_REGCLASS RC:$src3, VR128)))>; def : Pat<(VT (X86vzmovl (VT (scalar_to_vector (Op RC:$src1, RC:$src2, (mem_frag addr:$src3)))))), (!cast<Instruction>(Name#"rm_Int") (VT (COPY_TO_REGCLASS RC:$src1, VR128)), (VT (COPY_TO_REGCLASS RC:$src2, VR128)), addr:$src3)>; def : Pat<(VT (X86vzmovl (VT (scalar_to_vector (Op RC:$src1, (mem_frag addr:$src2), RC:$src3))))), (!cast<Instruction>(Name#"mr_Int") (VT (COPY_TO_REGCLASS RC:$src1, VR128)), addr:$src2, (VT (COPY_TO_REGCLASS RC:$src3, VR128)))>; } } defm : scalar_fma4_patterns<X86Fmadd, "VFMADDSS4", v4f32, f32, FR32, loadf32>; defm : scalar_fma4_patterns<X86Fmsub, "VFMSUBSS4", v4f32, f32, FR32, loadf32>; defm : scalar_fma4_patterns<X86Fnmadd, "VFNMADDSS4", v4f32, f32, FR32, loadf32>; defm : scalar_fma4_patterns<X86Fnmsub, "VFNMSUBSS4", v4f32, f32, FR32, loadf32>; defm : scalar_fma4_patterns<X86Fmadd, "VFMADDSD4", v2f64, f64, FR64, loadf64>; defm : scalar_fma4_patterns<X86Fmsub, "VFMSUBSD4", v2f64, f64, FR64, loadf64>; defm : scalar_fma4_patterns<X86Fnmadd, "VFNMADDSD4", v2f64, f64, FR64, loadf64>; defm : scalar_fma4_patterns<X86Fnmsub, "VFNMSUBSD4", v2f64, f64, FR64, loadf64>;