//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the X86 implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "X86InstrInfo.h" #include "X86.h" #include "X86InstrBuilder.h" #include "X86InstrFoldTables.h" #include "X86MachineFunctionInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Sequence.h" #include "llvm/CodeGen/LivePhysRegs.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/StackMaps.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/LLVMContext.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; #define DEBUG_TYPE "x86-instr-info" #define GET_INSTRINFO_CTOR_DTOR #include "X86GenInstrInfo.inc" static cl::opt<bool> NoFusing("disable-spill-fusing", cl::desc("Disable fusing of spill code into instructions"), cl::Hidden); static cl::opt<bool> PrintFailedFusing("print-failed-fuse-candidates", cl::desc("Print instructions that the allocator wants to" " fuse, but the X86 backend currently can't"), cl::Hidden); static cl::opt<bool> ReMatPICStubLoad("remat-pic-stub-load", cl::desc("Re-materialize load from stub in PIC mode"), cl::init(false), cl::Hidden); static cl::opt<unsigned> PartialRegUpdateClearance("partial-reg-update-clearance", cl::desc("Clearance between two register writes " "for inserting XOR to avoid partial " "register update"), cl::init(64), cl::Hidden); static cl::opt<unsigned> UndefRegClearance("undef-reg-clearance", cl::desc("How many idle instructions we would like before " "certain undef register reads"), cl::init(128), cl::Hidden); // Pin the vtable to this file. void X86InstrInfo::anchor() {} X86InstrInfo::X86InstrInfo(X86Subtarget &STI) : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32), (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32), X86::CATCHRET, (STI.is64Bit() ? X86::RETQ : X86::RETL)), Subtarget(STI), RI(STI.getTargetTriple()) { } bool X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg, unsigned &DstReg, unsigned &SubIdx) const { switch (MI.getOpcode()) { default: break; case X86::MOVSX16rr8: case X86::MOVZX16rr8: case X86::MOVSX32rr8: case X86::MOVZX32rr8: case X86::MOVSX64rr8: if (!Subtarget.is64Bit()) // It's not always legal to reference the low 8-bit of the larger // register in 32-bit mode. return false; LLVM_FALLTHROUGH; case X86::MOVSX32rr16: case X86::MOVZX32rr16: case X86::MOVSX64rr16: case X86::MOVSX64rr32: { if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) // Be conservative. return false; SrcReg = MI.getOperand(1).getReg(); DstReg = MI.getOperand(0).getReg(); switch (MI.getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::MOVSX16rr8: case X86::MOVZX16rr8: case X86::MOVSX32rr8: case X86::MOVZX32rr8: case X86::MOVSX64rr8: SubIdx = X86::sub_8bit; break; case X86::MOVSX32rr16: case X86::MOVZX32rr16: case X86::MOVSX64rr16: SubIdx = X86::sub_16bit; break; case X86::MOVSX64rr32: SubIdx = X86::sub_32bit; break; } return true; } } return false; } int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const { const MachineFunction *MF = MI.getParent()->getParent(); const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); if (isFrameInstr(MI)) { unsigned StackAlign = TFI->getStackAlignment(); int SPAdj = alignTo(getFrameSize(MI), StackAlign); SPAdj -= getFrameAdjustment(MI); if (!isFrameSetup(MI)) SPAdj = -SPAdj; return SPAdj; } // To know whether a call adjusts the stack, we need information // that is bound to the following ADJCALLSTACKUP pseudo. // Look for the next ADJCALLSTACKUP that follows the call. if (MI.isCall()) { const MachineBasicBlock *MBB = MI.getParent(); auto I = ++MachineBasicBlock::const_iterator(MI); for (auto E = MBB->end(); I != E; ++I) { if (I->getOpcode() == getCallFrameDestroyOpcode() || I->isCall()) break; } // If we could not find a frame destroy opcode, then it has already // been simplified, so we don't care. if (I->getOpcode() != getCallFrameDestroyOpcode()) return 0; return -(I->getOperand(1).getImm()); } // Currently handle only PUSHes we can reasonably expect to see // in call sequences switch (MI.getOpcode()) { default: return 0; case X86::PUSH32i8: case X86::PUSH32r: case X86::PUSH32rmm: case X86::PUSH32rmr: case X86::PUSHi32: return 4; case X86::PUSH64i8: case X86::PUSH64r: case X86::PUSH64rmm: case X86::PUSH64rmr: case X86::PUSH64i32: return 8; } } /// Return true and the FrameIndex if the specified /// operand and follow operands form a reference to the stack frame. bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op, int &FrameIndex) const { if (MI.getOperand(Op + X86::AddrBaseReg).isFI() && MI.getOperand(Op + X86::AddrScaleAmt).isImm() && MI.getOperand(Op + X86::AddrIndexReg).isReg() && MI.getOperand(Op + X86::AddrDisp).isImm() && MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 && MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 && MI.getOperand(Op + X86::AddrDisp).getImm() == 0) { FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex(); return true; } return false; } static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) { switch (Opcode) { default: return false; case X86::MOV8rm: case X86::KMOVBkm: MemBytes = 1; return true; case X86::MOV16rm: case X86::KMOVWkm: MemBytes = 2; return true; case X86::MOV32rm: case X86::MOVSSrm: case X86::VMOVSSZrm: case X86::VMOVSSrm: case X86::KMOVDkm: MemBytes = 4; return true; case X86::MOV64rm: case X86::LD_Fp64m: case X86::MOVSDrm: case X86::VMOVSDrm: case X86::VMOVSDZrm: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: case X86::KMOVQkm: MemBytes = 8; return true; case X86::MOVAPSrm: case X86::MOVUPSrm: case X86::MOVAPDrm: case X86::MOVUPDrm: case X86::MOVDQArm: case X86::MOVDQUrm: case X86::VMOVAPSrm: case X86::VMOVUPSrm: case X86::VMOVAPDrm: case X86::VMOVUPDrm: case X86::VMOVDQArm: case X86::VMOVDQUrm: case X86::VMOVAPSZ128rm: case X86::VMOVUPSZ128rm: case X86::VMOVAPSZ128rm_NOVLX: case X86::VMOVUPSZ128rm_NOVLX: case X86::VMOVAPDZ128rm: case X86::VMOVUPDZ128rm: case X86::VMOVDQU8Z128rm: case X86::VMOVDQU16Z128rm: case X86::VMOVDQA32Z128rm: case X86::VMOVDQU32Z128rm: case X86::VMOVDQA64Z128rm: case X86::VMOVDQU64Z128rm: MemBytes = 16; return true; case X86::VMOVAPSYrm: case X86::VMOVUPSYrm: case X86::VMOVAPDYrm: case X86::VMOVUPDYrm: case X86::VMOVDQAYrm: case X86::VMOVDQUYrm: case X86::VMOVAPSZ256rm: case X86::VMOVUPSZ256rm: case X86::VMOVAPSZ256rm_NOVLX: case X86::VMOVUPSZ256rm_NOVLX: case X86::VMOVAPDZ256rm: case X86::VMOVUPDZ256rm: case X86::VMOVDQU8Z256rm: case X86::VMOVDQU16Z256rm: case X86::VMOVDQA32Z256rm: case X86::VMOVDQU32Z256rm: case X86::VMOVDQA64Z256rm: case X86::VMOVDQU64Z256rm: MemBytes = 32; return true; case X86::VMOVAPSZrm: case X86::VMOVUPSZrm: case X86::VMOVAPDZrm: case X86::VMOVUPDZrm: case X86::VMOVDQU8Zrm: case X86::VMOVDQU16Zrm: case X86::VMOVDQA32Zrm: case X86::VMOVDQU32Zrm: case X86::VMOVDQA64Zrm: case X86::VMOVDQU64Zrm: MemBytes = 64; return true; } } static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) { switch (Opcode) { default: return false; case X86::MOV8mr: case X86::KMOVBmk: MemBytes = 1; return true; case X86::MOV16mr: case X86::KMOVWmk: MemBytes = 2; return true; case X86::MOV32mr: case X86::MOVSSmr: case X86::VMOVSSmr: case X86::VMOVSSZmr: case X86::KMOVDmk: MemBytes = 4; return true; case X86::MOV64mr: case X86::ST_FpP64m: case X86::MOVSDmr: case X86::VMOVSDmr: case X86::VMOVSDZmr: case X86::MMX_MOVD64mr: case X86::MMX_MOVQ64mr: case X86::MMX_MOVNTQmr: case X86::KMOVQmk: MemBytes = 8; return true; case X86::MOVAPSmr: case X86::MOVUPSmr: case X86::MOVAPDmr: case X86::MOVUPDmr: case X86::MOVDQAmr: case X86::MOVDQUmr: case X86::VMOVAPSmr: case X86::VMOVUPSmr: case X86::VMOVAPDmr: case X86::VMOVUPDmr: case X86::VMOVDQAmr: case X86::VMOVDQUmr: case X86::VMOVUPSZ128mr: case X86::VMOVAPSZ128mr: case X86::VMOVUPSZ128mr_NOVLX: case X86::VMOVAPSZ128mr_NOVLX: case X86::VMOVUPDZ128mr: case X86::VMOVAPDZ128mr: case X86::VMOVDQA32Z128mr: case X86::VMOVDQU32Z128mr: case X86::VMOVDQA64Z128mr: case X86::VMOVDQU64Z128mr: case X86::VMOVDQU8Z128mr: case X86::VMOVDQU16Z128mr: MemBytes = 16; return true; case X86::VMOVUPSYmr: case X86::VMOVAPSYmr: case X86::VMOVUPDYmr: case X86::VMOVAPDYmr: case X86::VMOVDQUYmr: case X86::VMOVDQAYmr: case X86::VMOVUPSZ256mr: case X86::VMOVAPSZ256mr: case X86::VMOVUPSZ256mr_NOVLX: case X86::VMOVAPSZ256mr_NOVLX: case X86::VMOVUPDZ256mr: case X86::VMOVAPDZ256mr: case X86::VMOVDQU8Z256mr: case X86::VMOVDQU16Z256mr: case X86::VMOVDQA32Z256mr: case X86::VMOVDQU32Z256mr: case X86::VMOVDQA64Z256mr: case X86::VMOVDQU64Z256mr: MemBytes = 32; return true; case X86::VMOVUPSZmr: case X86::VMOVAPSZmr: case X86::VMOVUPDZmr: case X86::VMOVAPDZmr: case X86::VMOVDQU8Zmr: case X86::VMOVDQU16Zmr: case X86::VMOVDQA32Zmr: case X86::VMOVDQU32Zmr: case X86::VMOVDQA64Zmr: case X86::VMOVDQU64Zmr: MemBytes = 64; return true; } return false; } unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const { unsigned Dummy; return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy); } unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex, unsigned &MemBytes) const { if (isFrameLoadOpcode(MI.getOpcode(), MemBytes)) if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) return MI.getOperand(0).getReg(); return 0; } unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const { unsigned Dummy; if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) { unsigned Reg; if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) return Reg; // Check for post-frame index elimination operations const MachineMemOperand *Dummy; return hasLoadFromStackSlot(MI, Dummy, FrameIndex); } return 0; } unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const { unsigned Dummy; return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy); } unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex, unsigned &MemBytes) const { if (isFrameStoreOpcode(MI.getOpcode(), MemBytes)) if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 && isFrameOperand(MI, 0, FrameIndex)) return MI.getOperand(X86::AddrNumOperands).getReg(); return 0; } unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const { unsigned Dummy; if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) { unsigned Reg; if ((Reg = isStoreToStackSlot(MI, FrameIndex))) return Reg; // Check for post-frame index elimination operations const MachineMemOperand *Dummy; return hasStoreToStackSlot(MI, Dummy, FrameIndex); } return 0; } /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r. static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) { // Don't waste compile time scanning use-def chains of physregs. if (!TargetRegisterInfo::isVirtualRegister(BaseReg)) return false; bool isPICBase = false; for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg), E = MRI.def_instr_end(); I != E; ++I) { MachineInstr *DefMI = &*I; if (DefMI->getOpcode() != X86::MOVPC32r) return false; assert(!isPICBase && "More than one PIC base?"); isPICBase = true; } return isPICBase; } bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, AliasAnalysis *AA) const { switch (MI.getOpcode()) { default: break; case X86::MOV8rm: case X86::MOV8rm_NOREX: case X86::MOV16rm: case X86::MOV32rm: case X86::MOV64rm: case X86::LD_Fp64m: case X86::MOVSSrm: case X86::MOVSDrm: case X86::MOVAPSrm: case X86::MOVUPSrm: case X86::MOVAPDrm: case X86::MOVUPDrm: case X86::MOVDQArm: case X86::MOVDQUrm: case X86::VMOVSSrm: case X86::VMOVSDrm: case X86::VMOVAPSrm: case X86::VMOVUPSrm: case X86::VMOVAPDrm: case X86::VMOVUPDrm: case X86::VMOVDQArm: case X86::VMOVDQUrm: case X86::VMOVAPSYrm: case X86::VMOVUPSYrm: case X86::VMOVAPDYrm: case X86::VMOVUPDYrm: case X86::VMOVDQAYrm: case X86::VMOVDQUYrm: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: // AVX-512 case X86::VMOVSSZrm: case X86::VMOVSDZrm: case X86::VMOVAPDZ128rm: case X86::VMOVAPDZ256rm: case X86::VMOVAPDZrm: case X86::VMOVAPSZ128rm: case X86::VMOVAPSZ256rm: case X86::VMOVAPSZ128rm_NOVLX: case X86::VMOVAPSZ256rm_NOVLX: case X86::VMOVAPSZrm: case X86::VMOVDQA32Z128rm: case X86::VMOVDQA32Z256rm: case X86::VMOVDQA32Zrm: case X86::VMOVDQA64Z128rm: case X86::VMOVDQA64Z256rm: case X86::VMOVDQA64Zrm: case X86::VMOVDQU16Z128rm: case X86::VMOVDQU16Z256rm: case X86::VMOVDQU16Zrm: case X86::VMOVDQU32Z128rm: case X86::VMOVDQU32Z256rm: case X86::VMOVDQU32Zrm: case X86::VMOVDQU64Z128rm: case X86::VMOVDQU64Z256rm: case X86::VMOVDQU64Zrm: case X86::VMOVDQU8Z128rm: case X86::VMOVDQU8Z256rm: case X86::VMOVDQU8Zrm: case X86::VMOVUPDZ128rm: case X86::VMOVUPDZ256rm: case X86::VMOVUPDZrm: case X86::VMOVUPSZ128rm: case X86::VMOVUPSZ256rm: case X86::VMOVUPSZ128rm_NOVLX: case X86::VMOVUPSZ256rm_NOVLX: case X86::VMOVUPSZrm: { // Loads from constant pools are trivially rematerializable. if (MI.getOperand(1 + X86::AddrBaseReg).isReg() && MI.getOperand(1 + X86::AddrScaleAmt).isImm() && MI.getOperand(1 + X86::AddrIndexReg).isReg() && MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && MI.isDereferenceableInvariantLoad(AA)) { unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); if (BaseReg == 0 || BaseReg == X86::RIP) return true; // Allow re-materialization of PIC load. if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal()) return false; const MachineFunction &MF = *MI.getParent()->getParent(); const MachineRegisterInfo &MRI = MF.getRegInfo(); return regIsPICBase(BaseReg, MRI); } return false; } case X86::LEA32r: case X86::LEA64r: { if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() && MI.getOperand(1 + X86::AddrIndexReg).isReg() && MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && !MI.getOperand(1 + X86::AddrDisp).isReg()) { // lea fi#, lea GV, etc. are all rematerializable. if (!MI.getOperand(1 + X86::AddrBaseReg).isReg()) return true; unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); if (BaseReg == 0) return true; // Allow re-materialization of lea PICBase + x. const MachineFunction &MF = *MI.getParent()->getParent(); const MachineRegisterInfo &MRI = MF.getRegInfo(); return regIsPICBase(BaseReg, MRI); } return false; } } // All other instructions marked M_REMATERIALIZABLE are always trivially // rematerializable. return true; } bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { MachineBasicBlock::iterator E = MBB.end(); // For compile time consideration, if we are not able to determine the // safety after visiting 4 instructions in each direction, we will assume // it's not safe. MachineBasicBlock::iterator Iter = I; for (unsigned i = 0; Iter != E && i < 4; ++i) { bool SeenDef = false; for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { MachineOperand &MO = Iter->getOperand(j); if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS)) SeenDef = true; if (!MO.isReg()) continue; if (MO.getReg() == X86::EFLAGS) { if (MO.isUse()) return false; SeenDef = true; } } if (SeenDef) // This instruction defines EFLAGS, no need to look any further. return true; ++Iter; // Skip over debug instructions. while (Iter != E && Iter->isDebugInstr()) ++Iter; } // It is safe to clobber EFLAGS at the end of a block of no successor has it // live in. if (Iter == E) { for (MachineBasicBlock *S : MBB.successors()) if (S->isLiveIn(X86::EFLAGS)) return false; return true; } MachineBasicBlock::iterator B = MBB.begin(); Iter = I; for (unsigned i = 0; i < 4; ++i) { // If we make it to the beginning of the block, it's safe to clobber // EFLAGS iff EFLAGS is not live-in. if (Iter == B) return !MBB.isLiveIn(X86::EFLAGS); --Iter; // Skip over debug instructions. while (Iter != B && Iter->isDebugInstr()) --Iter; bool SawKill = false; for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { MachineOperand &MO = Iter->getOperand(j); // A register mask may clobber EFLAGS, but we should still look for a // live EFLAGS def. if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS)) SawKill = true; if (MO.isReg() && MO.getReg() == X86::EFLAGS) { if (MO.isDef()) return MO.isDead(); if (MO.isKill()) SawKill = true; } } if (SawKill) // This instruction kills EFLAGS and doesn't redefine it, so // there's no need to look further. return true; } // Conservative answer. return false; } void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, unsigned SubIdx, const MachineInstr &Orig, const TargetRegisterInfo &TRI) const { bool ClobbersEFLAGS = false; for (const MachineOperand &MO : Orig.operands()) { if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) { ClobbersEFLAGS = true; break; } } if (ClobbersEFLAGS && !isSafeToClobberEFLAGS(MBB, I)) { // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side // effects. int Value; switch (Orig.getOpcode()) { case X86::MOV32r0: Value = 0; break; case X86::MOV32r1: Value = 1; break; case X86::MOV32r_1: Value = -1; break; default: llvm_unreachable("Unexpected instruction!"); } const DebugLoc &DL = Orig.getDebugLoc(); BuildMI(MBB, I, DL, get(X86::MOV32ri)) .add(Orig.getOperand(0)) .addImm(Value); } else { MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); MBB.insert(I, MI); } MachineInstr &NewMI = *std::prev(I); NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); } /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead. bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const { for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS && !MO.isDead()) { return true; } } return false; } /// Check whether the shift count for a machine operand is non-zero. inline static unsigned getTruncatedShiftCount(MachineInstr &MI, unsigned ShiftAmtOperandIdx) { // The shift count is six bits with the REX.W prefix and five bits without. unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31; unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm(); return Imm & ShiftCountMask; } /// Check whether the given shift count is appropriate /// can be represented by a LEA instruction. inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) { // Left shift instructions can be transformed into load-effective-address // instructions if we can encode them appropriately. // A LEA instruction utilizes a SIB byte to encode its scale factor. // The SIB.scale field is two bits wide which means that we can encode any // shift amount less than 4. return ShAmt < 4 && ShAmt > 0; } bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src, unsigned Opc, bool AllowSP, unsigned &NewSrc, bool &isKill, bool &isUndef, MachineOperand &ImplicitOp, LiveVariables *LV) const { MachineFunction &MF = *MI.getParent()->getParent(); const TargetRegisterClass *RC; if (AllowSP) { RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass; } else { RC = Opc != X86::LEA32r ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass; } unsigned SrcReg = Src.getReg(); // For both LEA64 and LEA32 the register already has essentially the right // type (32-bit or 64-bit) we may just need to forbid SP. if (Opc != X86::LEA64_32r) { NewSrc = SrcReg; isKill = Src.isKill(); isUndef = Src.isUndef(); if (TargetRegisterInfo::isVirtualRegister(NewSrc) && !MF.getRegInfo().constrainRegClass(NewSrc, RC)) return false; return true; } // This is for an LEA64_32r and incoming registers are 32-bit. One way or // another we need to add 64-bit registers to the final MI. if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) { ImplicitOp = Src; ImplicitOp.setImplicit(); NewSrc = getX86SubSuperRegister(Src.getReg(), 64); isKill = Src.isKill(); isUndef = Src.isUndef(); } else { // Virtual register of the wrong class, we have to create a temporary 64-bit // vreg to feed into the LEA. NewSrc = MF.getRegInfo().createVirtualRegister(RC); MachineInstr *Copy = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY)) .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit) .add(Src); // Which is obviously going to be dead after we're done with it. isKill = true; isUndef = false; if (LV) LV->replaceKillInstruction(SrcReg, MI, *Copy); } // We've set all the parameters without issue. return true; } /// Helper for convertToThreeAddress when 16-bit LEA is disabled, use 32-bit /// LEA to form 3-address code by promoting to a 32-bit superregister and then /// truncating back down to a 16-bit subregister. MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA( unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { MachineBasicBlock::iterator MBBI = MI.getIterator(); unsigned Dest = MI.getOperand(0).getReg(); unsigned Src = MI.getOperand(1).getReg(); bool isDead = MI.getOperand(0).isDead(); bool isKill = MI.getOperand(1).isKill(); MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo(); unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass); unsigned Opc, leaInReg; if (Subtarget.is64Bit()) { Opc = X86::LEA64_32r; leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); } else { Opc = X86::LEA32r; leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); } // Build and insert into an implicit UNDEF value. This is OK because // well be shifting and then extracting the lower 16-bits. // This has the potential to cause partial register stall. e.g. // movw (%rbp,%rcx,2), %dx // leal -65(%rdx), %esi // But testing has shown this *does* help performance in 64-bit mode (at // least on modern x86 machines). BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg); MachineInstr *InsMI = BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) .addReg(leaInReg, RegState::Define, X86::sub_16bit) .addReg(Src, getKillRegState(isKill)); MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opc), leaOutReg); switch (MIOpc) { default: llvm_unreachable("Unreachable!"); case X86::SHL16ri: { unsigned ShAmt = MI.getOperand(2).getImm(); MIB.addReg(0).addImm(1ULL << ShAmt) .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0); break; } case X86::INC16r: addRegOffset(MIB, leaInReg, true, 1); break; case X86::DEC16r: addRegOffset(MIB, leaInReg, true, -1); break; case X86::ADD16ri: case X86::ADD16ri8: case X86::ADD16ri_DB: case X86::ADD16ri8_DB: addRegOffset(MIB, leaInReg, true, MI.getOperand(2).getImm()); break; case X86::ADD16rr: case X86::ADD16rr_DB: { unsigned Src2 = MI.getOperand(2).getReg(); bool isKill2 = MI.getOperand(2).isKill(); unsigned leaInReg2 = 0; MachineInstr *InsMI2 = nullptr; if (Src == Src2) { // ADD16rr killed %reg1028, %reg1028 // just a single insert_subreg. addRegReg(MIB, leaInReg, true, leaInReg, false); } else { if (Subtarget.is64Bit()) leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); else leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); // Build and insert into an implicit UNDEF value. This is OK because // well be shifting and then extracting the lower 16-bits. BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2); InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY)) .addReg(leaInReg2, RegState::Define, X86::sub_16bit) .addReg(Src2, getKillRegState(isKill2)); addRegReg(MIB, leaInReg, true, leaInReg2, true); } if (LV && isKill2 && InsMI2) LV->replaceKillInstruction(Src2, MI, *InsMI2); break; } } MachineInstr *NewMI = MIB; MachineInstr *ExtMI = BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) .addReg(Dest, RegState::Define | getDeadRegState(isDead)) .addReg(leaOutReg, RegState::Kill, X86::sub_16bit); if (LV) { // Update live variables LV->getVarInfo(leaInReg).Kills.push_back(NewMI); LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI); if (isKill) LV->replaceKillInstruction(Src, MI, *InsMI); if (isDead) LV->replaceKillInstruction(Dest, MI, *ExtMI); } return ExtMI; } /// This method must be implemented by targets that /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target /// may be able to convert a two-address instruction into a true /// three-address instruction on demand. This allows the X86 target (for /// example) to convert ADD and SHL instructions into LEA instructions if they /// would require register copies due to two-addressness. /// /// This method returns a null pointer if the transformation cannot be /// performed, otherwise it returns the new instruction. /// MachineInstr * X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { // The following opcodes also sets the condition code register(s). Only // convert them to equivalent lea if the condition code register def's // are dead! if (hasLiveCondCodeDef(MI)) return nullptr; MachineFunction &MF = *MI.getParent()->getParent(); // All instructions input are two-addr instructions. Get the known operands. const MachineOperand &Dest = MI.getOperand(0); const MachineOperand &Src = MI.getOperand(1); MachineInstr *NewMI = nullptr; // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When // we have better subtarget support, enable the 16-bit LEA generation here. // 16-bit LEA is also slow on Core2. bool DisableLEA16 = true; bool is64Bit = Subtarget.is64Bit(); unsigned MIOpc = MI.getOpcode(); switch (MIOpc) { default: return nullptr; case X86::SHL64ri: { assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); unsigned ShAmt = getTruncatedShiftCount(MI, 2); if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; // LEA can't handle RSP. if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) && !MF.getRegInfo().constrainRegClass(Src.getReg(), &X86::GR64_NOSPRegClass)) return nullptr; NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)) .add(Dest) .addReg(0) .addImm(1ULL << ShAmt) .add(Src) .addImm(0) .addReg(0); break; } case X86::SHL32ri: { assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); unsigned ShAmt = getTruncatedShiftCount(MI, 2); if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; // LEA can't handle ESP. bool isKill, isUndef; unsigned SrcReg; MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill, isUndef, ImplicitOp, LV)) return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) .add(Dest) .addReg(0) .addImm(1ULL << ShAmt) .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef)) .addImm(0) .addReg(0); if (ImplicitOp.getReg() != 0) MIB.add(ImplicitOp); NewMI = MIB; break; } case X86::SHL16ri: { assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); unsigned ShAmt = getTruncatedShiftCount(MI, 2); if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; if (DisableLEA16) return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) : nullptr; NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)) .add(Dest) .addReg(0) .addImm(1ULL << ShAmt) .add(Src) .addImm(0) .addReg(0); break; } case X86::INC64r: case X86::INC32r: { assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!"); unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r : (is64Bit ? X86::LEA64_32r : X86::LEA32r); bool isKill, isUndef; unsigned SrcReg; MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill, isUndef, ImplicitOp, LV)) return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) .add(Dest) .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef)); if (ImplicitOp.getReg() != 0) MIB.add(ImplicitOp); NewMI = addOffset(MIB, 1); break; } case X86::INC16r: if (DisableLEA16) return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) : nullptr; assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!"); NewMI = addOffset( BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src), 1); break; case X86::DEC64r: case X86::DEC32r: { assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!"); unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r : (is64Bit ? X86::LEA64_32r : X86::LEA32r); bool isKill, isUndef; unsigned SrcReg; MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill, isUndef, ImplicitOp, LV)) return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) .add(Dest) .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill)); if (ImplicitOp.getReg() != 0) MIB.add(ImplicitOp); NewMI = addOffset(MIB, -1); break; } case X86::DEC16r: if (DisableLEA16) return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) : nullptr; assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!"); NewMI = addOffset( BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src), -1); break; case X86::ADD64rr: case X86::ADD64rr_DB: case X86::ADD32rr: case X86::ADD32rr_DB: { assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); unsigned Opc; if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) Opc = X86::LEA64r; else Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; bool isKill, isUndef; unsigned SrcReg; MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, SrcReg, isKill, isUndef, ImplicitOp, LV)) return nullptr; const MachineOperand &Src2 = MI.getOperand(2); bool isKill2, isUndef2; unsigned SrcReg2; MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false, SrcReg2, isKill2, isUndef2, ImplicitOp2, LV)) return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest); if (ImplicitOp.getReg() != 0) MIB.add(ImplicitOp); if (ImplicitOp2.getReg() != 0) MIB.add(ImplicitOp2); NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2); // Preserve undefness of the operands. NewMI->getOperand(1).setIsUndef(isUndef); NewMI->getOperand(3).setIsUndef(isUndef2); if (LV && Src2.isKill()) LV->replaceKillInstruction(SrcReg2, MI, *NewMI); break; } case X86::ADD16rr: case X86::ADD16rr_DB: { if (DisableLEA16) return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) : nullptr; assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); unsigned Src2 = MI.getOperand(2).getReg(); bool isKill2 = MI.getOperand(2).isKill(); NewMI = addRegReg(BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest), Src.getReg(), Src.isKill(), Src2, isKill2); // Preserve undefness of the operands. bool isUndef = MI.getOperand(1).isUndef(); bool isUndef2 = MI.getOperand(2).isUndef(); NewMI->getOperand(1).setIsUndef(isUndef); NewMI->getOperand(3).setIsUndef(isUndef2); if (LV && isKill2) LV->replaceKillInstruction(Src2, MI, *NewMI); break; } case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD64ri32_DB: case X86::ADD64ri8_DB: assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); NewMI = addOffset( BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src), MI.getOperand(2)); break; case X86::ADD32ri: case X86::ADD32ri8: case X86::ADD32ri_DB: case X86::ADD32ri8_DB: { assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; bool isKill, isUndef; unsigned SrcReg; MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, SrcReg, isKill, isUndef, ImplicitOp, LV)) return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) .add(Dest) .addReg(SrcReg, getUndefRegState(isUndef) | getKillRegState(isKill)); if (ImplicitOp.getReg() != 0) MIB.add(ImplicitOp); NewMI = addOffset(MIB, MI.getOperand(2)); break; } case X86::ADD16ri: case X86::ADD16ri8: case X86::ADD16ri_DB: case X86::ADD16ri8_DB: if (DisableLEA16) return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) : nullptr; assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); NewMI = addOffset( BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src), MI.getOperand(2)); break; case X86::VMOVDQU8Z128rmk: case X86::VMOVDQU8Z256rmk: case X86::VMOVDQU8Zrmk: case X86::VMOVDQU16Z128rmk: case X86::VMOVDQU16Z256rmk: case X86::VMOVDQU16Zrmk: case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk: case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk: case X86::VMOVDQU32Zrmk: case X86::VMOVDQA32Zrmk: case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk: case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk: case X86::VMOVDQU64Zrmk: case X86::VMOVDQA64Zrmk: case X86::VMOVUPDZ128rmk: case X86::VMOVAPDZ128rmk: case X86::VMOVUPDZ256rmk: case X86::VMOVAPDZ256rmk: case X86::VMOVUPDZrmk: case X86::VMOVAPDZrmk: case X86::VMOVUPSZ128rmk: case X86::VMOVAPSZ128rmk: case X86::VMOVUPSZ256rmk: case X86::VMOVAPSZ256rmk: case X86::VMOVUPSZrmk: case X86::VMOVAPSZrmk: { unsigned Opc; switch (MIOpc) { default: llvm_unreachable("Unreachable!"); case X86::VMOVDQU8Z128rmk: Opc = X86::VPBLENDMBZ128rmk; break; case X86::VMOVDQU8Z256rmk: Opc = X86::VPBLENDMBZ256rmk; break; case X86::VMOVDQU8Zrmk: Opc = X86::VPBLENDMBZrmk; break; case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break; case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break; case X86::VMOVDQU16Zrmk: Opc = X86::VPBLENDMWZrmk; break; case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break; case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break; case X86::VMOVDQU32Zrmk: Opc = X86::VPBLENDMDZrmk; break; case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break; case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break; case X86::VMOVDQU64Zrmk: Opc = X86::VPBLENDMQZrmk; break; case X86::VMOVUPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break; case X86::VMOVUPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break; case X86::VMOVUPDZrmk: Opc = X86::VBLENDMPDZrmk; break; case X86::VMOVUPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break; case X86::VMOVUPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break; case X86::VMOVUPSZrmk: Opc = X86::VBLENDMPSZrmk; break; case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break; case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break; case X86::VMOVDQA32Zrmk: Opc = X86::VPBLENDMDZrmk; break; case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break; case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break; case X86::VMOVDQA64Zrmk: Opc = X86::VPBLENDMQZrmk; break; case X86::VMOVAPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break; case X86::VMOVAPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break; case X86::VMOVAPDZrmk: Opc = X86::VBLENDMPDZrmk; break; case X86::VMOVAPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break; case X86::VMOVAPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break; case X86::VMOVAPSZrmk: Opc = X86::VBLENDMPSZrmk; break; } NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) .add(Dest) .add(MI.getOperand(2)) .add(Src) .add(MI.getOperand(3)) .add(MI.getOperand(4)) .add(MI.getOperand(5)) .add(MI.getOperand(6)) .add(MI.getOperand(7)); break; } case X86::VMOVDQU8Z128rrk: case X86::VMOVDQU8Z256rrk: case X86::VMOVDQU8Zrrk: case X86::VMOVDQU16Z128rrk: case X86::VMOVDQU16Z256rrk: case X86::VMOVDQU16Zrrk: case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk: case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk: case X86::VMOVDQU32Zrrk: case X86::VMOVDQA32Zrrk: case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk: case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk: case X86::VMOVDQU64Zrrk: case X86::VMOVDQA64Zrrk: case X86::VMOVUPDZ128rrk: case X86::VMOVAPDZ128rrk: case X86::VMOVUPDZ256rrk: case X86::VMOVAPDZ256rrk: case X86::VMOVUPDZrrk: case X86::VMOVAPDZrrk: case X86::VMOVUPSZ128rrk: case X86::VMOVAPSZ128rrk: case X86::VMOVUPSZ256rrk: case X86::VMOVAPSZ256rrk: case X86::VMOVUPSZrrk: case X86::VMOVAPSZrrk: { unsigned Opc; switch (MIOpc) { default: llvm_unreachable("Unreachable!"); case X86::VMOVDQU8Z128rrk: Opc = X86::VPBLENDMBZ128rrk; break; case X86::VMOVDQU8Z256rrk: Opc = X86::VPBLENDMBZ256rrk; break; case X86::VMOVDQU8Zrrk: Opc = X86::VPBLENDMBZrrk; break; case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break; case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break; case X86::VMOVDQU16Zrrk: Opc = X86::VPBLENDMWZrrk; break; case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break; case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break; case X86::VMOVDQU32Zrrk: Opc = X86::VPBLENDMDZrrk; break; case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break; case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break; case X86::VMOVDQU64Zrrk: Opc = X86::VPBLENDMQZrrk; break; case X86::VMOVUPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break; case X86::VMOVUPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break; case X86::VMOVUPDZrrk: Opc = X86::VBLENDMPDZrrk; break; case X86::VMOVUPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break; case X86::VMOVUPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break; case X86::VMOVUPSZrrk: Opc = X86::VBLENDMPSZrrk; break; case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break; case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break; case X86::VMOVDQA32Zrrk: Opc = X86::VPBLENDMDZrrk; break; case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break; case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break; case X86::VMOVDQA64Zrrk: Opc = X86::VPBLENDMQZrrk; break; case X86::VMOVAPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break; case X86::VMOVAPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break; case X86::VMOVAPDZrrk: Opc = X86::VBLENDMPDZrrk; break; case X86::VMOVAPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break; case X86::VMOVAPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break; case X86::VMOVAPSZrrk: Opc = X86::VBLENDMPSZrrk; break; } NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) .add(Dest) .add(MI.getOperand(2)) .add(Src) .add(MI.getOperand(3)); break; } } if (!NewMI) return nullptr; if (LV) { // Update live variables if (Src.isKill()) LV->replaceKillInstruction(Src.getReg(), MI, *NewMI); if (Dest.isDead()) LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI); } MFI->insert(MI.getIterator(), NewMI); // Insert the new inst return NewMI; } /// This determines which of three possible cases of a three source commute /// the source indexes correspond to taking into account any mask operands. /// All prevents commuting a passthru operand. Returns -1 if the commute isn't /// possible. /// Case 0 - Possible to commute the first and second operands. /// Case 1 - Possible to commute the first and third operands. /// Case 2 - Possible to commute the second and third operands. static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1, unsigned SrcOpIdx2) { // Put the lowest index to SrcOpIdx1 to simplify the checks below. if (SrcOpIdx1 > SrcOpIdx2) std::swap(SrcOpIdx1, SrcOpIdx2); unsigned Op1 = 1, Op2 = 2, Op3 = 3; if (X86II::isKMasked(TSFlags)) { Op2++; Op3++; } if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2) return 0; if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3) return 1; if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3) return 2; llvm_unreachable("Unknown three src commute case."); } unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands( const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2, const X86InstrFMA3Group &FMA3Group) const { unsigned Opc = MI.getOpcode(); // TODO: Commuting the 1st operand of FMA*_Int requires some additional // analysis. The commute optimization is legal only if all users of FMA*_Int // use only the lowest element of the FMA*_Int instruction. Such analysis are // not implemented yet. So, just return 0 in that case. // When such analysis are available this place will be the right place for // calling it. assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) && "Intrinsic instructions can't commute operand 1"); // Determine which case this commute is or if it can't be done. unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, SrcOpIdx2); assert(Case < 3 && "Unexpected case number!"); // Define the FMA forms mapping array that helps to map input FMA form // to output FMA form to preserve the operation semantics after // commuting the operands. const unsigned Form132Index = 0; const unsigned Form213Index = 1; const unsigned Form231Index = 2; static const unsigned FormMapping[][3] = { // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2; // FMA132 A, C, b; ==> FMA231 C, A, b; // FMA213 B, A, c; ==> FMA213 A, B, c; // FMA231 C, A, b; ==> FMA132 A, C, b; { Form231Index, Form213Index, Form132Index }, // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3; // FMA132 A, c, B; ==> FMA132 B, c, A; // FMA213 B, a, C; ==> FMA231 C, a, B; // FMA231 C, a, B; ==> FMA213 B, a, C; { Form132Index, Form231Index, Form213Index }, // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3; // FMA132 a, C, B; ==> FMA213 a, B, C; // FMA213 b, A, C; ==> FMA132 b, C, A; // FMA231 c, A, B; ==> FMA231 c, B, A; { Form213Index, Form132Index, Form231Index } }; unsigned FMAForms[3]; FMAForms[0] = FMA3Group.get132Opcode(); FMAForms[1] = FMA3Group.get213Opcode(); FMAForms[2] = FMA3Group.get231Opcode(); unsigned FormIndex; for (FormIndex = 0; FormIndex < 3; FormIndex++) if (Opc == FMAForms[FormIndex]) break; // Everything is ready, just adjust the FMA opcode and return it. FormIndex = FormMapping[Case][FormIndex]; return FMAForms[FormIndex]; } static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2) { // Determine which case this commute is or if it can't be done. unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, SrcOpIdx2); assert(Case < 3 && "Unexpected case value!"); // For each case we need to swap two pairs of bits in the final immediate. static const uint8_t SwapMasks[3][4] = { { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5. { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6. { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6. }; uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm(); // Clear out the bits we are swapping. uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] | SwapMasks[Case][2] | SwapMasks[Case][3]); // If the immediate had a bit of the pair set, then set the opposite bit. if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1]; if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0]; if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3]; if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2]; MI.getOperand(MI.getNumOperands()-1).setImm(NewImm); } // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be // commuted. static bool isCommutableVPERMV3Instruction(unsigned Opcode) { #define VPERM_CASES(Suffix) \ case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \ case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \ case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \ case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \ case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \ case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \ case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \ case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \ case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \ case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \ case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \ case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz: #define VPERM_CASES_BROADCAST(Suffix) \ VPERM_CASES(Suffix) \ case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \ case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \ case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \ case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \ case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \ case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz: switch (Opcode) { default: return false; VPERM_CASES(B) VPERM_CASES_BROADCAST(D) VPERM_CASES_BROADCAST(PD) VPERM_CASES_BROADCAST(PS) VPERM_CASES_BROADCAST(Q) VPERM_CASES(W) return true; } #undef VPERM_CASES_BROADCAST #undef VPERM_CASES } // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching // from the I opcode to the T opcode and vice versa. static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) { #define VPERM_CASES(Orig, New) \ case X86::Orig##128rr: return X86::New##128rr; \ case X86::Orig##128rrkz: return X86::New##128rrkz; \ case X86::Orig##128rm: return X86::New##128rm; \ case X86::Orig##128rmkz: return X86::New##128rmkz; \ case X86::Orig##256rr: return X86::New##256rr; \ case X86::Orig##256rrkz: return X86::New##256rrkz; \ case X86::Orig##256rm: return X86::New##256rm; \ case X86::Orig##256rmkz: return X86::New##256rmkz; \ case X86::Orig##rr: return X86::New##rr; \ case X86::Orig##rrkz: return X86::New##rrkz; \ case X86::Orig##rm: return X86::New##rm; \ case X86::Orig##rmkz: return X86::New##rmkz; #define VPERM_CASES_BROADCAST(Orig, New) \ VPERM_CASES(Orig, New) \ case X86::Orig##128rmb: return X86::New##128rmb; \ case X86::Orig##128rmbkz: return X86::New##128rmbkz; \ case X86::Orig##256rmb: return X86::New##256rmb; \ case X86::Orig##256rmbkz: return X86::New##256rmbkz; \ case X86::Orig##rmb: return X86::New##rmb; \ case X86::Orig##rmbkz: return X86::New##rmbkz; switch (Opcode) { VPERM_CASES(VPERMI2B, VPERMT2B) VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D) VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD) VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS) VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q) VPERM_CASES(VPERMI2W, VPERMT2W) VPERM_CASES(VPERMT2B, VPERMI2B) VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D) VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD) VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS) VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q) VPERM_CASES(VPERMT2W, VPERMI2W) } llvm_unreachable("Unreachable!"); #undef VPERM_CASES_BROADCAST #undef VPERM_CASES } MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned OpIdx1, unsigned OpIdx2) const { auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & { if (NewMI) return *MI.getParent()->getParent()->CloneMachineInstr(&MI); return MI; }; switch (MI.getOpcode()) { case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I) case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I) unsigned Opc; unsigned Size; switch (MI.getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break; case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break; } unsigned Amt = MI.getOperand(3).getImm(); auto &WorkingMI = cloneIfNew(MI); WorkingMI.setDesc(get(Opc)); WorkingMI.getOperand(3).setImm(Size - Amt); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::PFSUBrr: case X86::PFSUBRrr: { // PFSUB x, y: x = x - y // PFSUBR x, y: x = y - x unsigned Opc = (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr); auto &WorkingMI = cloneIfNew(MI); WorkingMI.setDesc(get(Opc)); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::BLENDPDrri: case X86::BLENDPSrri: case X86::VBLENDPDrri: case X86::VBLENDPSrri: // If we're optimizing for size, try to use MOVSD/MOVSS. if (MI.getParent()->getParent()->getFunction().optForSize()) { unsigned Mask, Opc; switch (MI.getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::BLENDPDrri: Opc = X86::MOVSDrr; Mask = 0x03; break; case X86::BLENDPSrri: Opc = X86::MOVSSrr; Mask = 0x0F; break; case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break; case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break; } if ((MI.getOperand(3).getImm() ^ Mask) == 1) { auto &WorkingMI = cloneIfNew(MI); WorkingMI.setDesc(get(Opc)); WorkingMI.RemoveOperand(3); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } } LLVM_FALLTHROUGH; case X86::PBLENDWrri: case X86::VBLENDPDYrri: case X86::VBLENDPSYrri: case X86::VPBLENDDrri: case X86::VPBLENDWrri: case X86::VPBLENDDYrri: case X86::VPBLENDWYrri:{ unsigned Mask; switch (MI.getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::BLENDPDrri: Mask = 0x03; break; case X86::BLENDPSrri: Mask = 0x0F; break; case X86::PBLENDWrri: Mask = 0xFF; break; case X86::VBLENDPDrri: Mask = 0x03; break; case X86::VBLENDPSrri: Mask = 0x0F; break; case X86::VBLENDPDYrri: Mask = 0x0F; break; case X86::VBLENDPSYrri: Mask = 0xFF; break; case X86::VPBLENDDrri: Mask = 0x0F; break; case X86::VPBLENDWrri: Mask = 0xFF; break; case X86::VPBLENDDYrri: Mask = 0xFF; break; case X86::VPBLENDWYrri: Mask = 0xFF; break; } // Only the least significant bits of Imm are used. unsigned Imm = MI.getOperand(3).getImm() & Mask; auto &WorkingMI = cloneIfNew(MI); WorkingMI.getOperand(3).setImm(Mask ^ Imm); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::MOVSDrr: case X86::MOVSSrr: case X86::VMOVSDrr: case X86::VMOVSSrr:{ // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD. assert(Subtarget.hasSSE41() && "Commuting MOVSD/MOVSS requires SSE41!"); unsigned Mask, Opc; switch (MI.getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::MOVSDrr: Opc = X86::BLENDPDrri; Mask = 0x02; break; case X86::MOVSSrr: Opc = X86::BLENDPSrri; Mask = 0x0E; break; case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break; case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break; } auto &WorkingMI = cloneIfNew(MI); WorkingMI.setDesc(get(Opc)); WorkingMI.addOperand(MachineOperand::CreateImm(Mask)); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::PCLMULQDQrr: case X86::VPCLMULQDQrr: case X86::VPCLMULQDQYrr: case X86::VPCLMULQDQZrr: case X86::VPCLMULQDQZ128rr: case X86::VPCLMULQDQZ256rr: { // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0] // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0] unsigned Imm = MI.getOperand(3).getImm(); unsigned Src1Hi = Imm & 0x01; unsigned Src2Hi = Imm & 0x10; auto &WorkingMI = cloneIfNew(MI); WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4)); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::VPCMPBZ128rri: case X86::VPCMPUBZ128rri: case X86::VPCMPBZ256rri: case X86::VPCMPUBZ256rri: case X86::VPCMPBZrri: case X86::VPCMPUBZrri: case X86::VPCMPDZ128rri: case X86::VPCMPUDZ128rri: case X86::VPCMPDZ256rri: case X86::VPCMPUDZ256rri: case X86::VPCMPDZrri: case X86::VPCMPUDZrri: case X86::VPCMPQZ128rri: case X86::VPCMPUQZ128rri: case X86::VPCMPQZ256rri: case X86::VPCMPUQZ256rri: case X86::VPCMPQZrri: case X86::VPCMPUQZrri: case X86::VPCMPWZ128rri: case X86::VPCMPUWZ128rri: case X86::VPCMPWZ256rri: case X86::VPCMPUWZ256rri: case X86::VPCMPWZrri: case X86::VPCMPUWZrri: case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik: case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik: case X86::VPCMPBZrrik: case X86::VPCMPUBZrrik: case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik: case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik: case X86::VPCMPDZrrik: case X86::VPCMPUDZrrik: case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik: case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik: case X86::VPCMPQZrrik: case X86::VPCMPUQZrrik: case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik: case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik: case X86::VPCMPWZrrik: case X86::VPCMPUWZrrik: { // Flip comparison mode immediate (if necessary). unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7; Imm = X86::getSwappedVPCMPImm(Imm); auto &WorkingMI = cloneIfNew(MI); WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::VPCOMBri: case X86::VPCOMUBri: case X86::VPCOMDri: case X86::VPCOMUDri: case X86::VPCOMQri: case X86::VPCOMUQri: case X86::VPCOMWri: case X86::VPCOMUWri: { // Flip comparison mode immediate (if necessary). unsigned Imm = MI.getOperand(3).getImm() & 0x7; Imm = X86::getSwappedVPCOMImm(Imm); auto &WorkingMI = cloneIfNew(MI); WorkingMI.getOperand(3).setImm(Imm); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::VPERM2F128rr: case X86::VPERM2I128rr: { // Flip permute source immediate. // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi. // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi. unsigned Imm = MI.getOperand(3).getImm() & 0xFF; auto &WorkingMI = cloneIfNew(MI); WorkingMI.getOperand(3).setImm(Imm ^ 0x22); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::MOVHLPSrr: case X86::UNPCKHPDrr: case X86::VMOVHLPSrr: case X86::VUNPCKHPDrr: case X86::VMOVHLPSZrr: case X86::VUNPCKHPDZ128rr: { assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!"); unsigned Opc = MI.getOpcode(); switch (Opc) { default: llvm_unreachable("Unreachable!"); case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break; case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break; case X86::VMOVHLPSrr: Opc = X86::VUNPCKHPDrr; break; case X86::VUNPCKHPDrr: Opc = X86::VMOVHLPSrr; break; case X86::VMOVHLPSZrr: Opc = X86::VUNPCKHPDZ128rr; break; case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr; break; } auto &WorkingMI = cloneIfNew(MI); WorkingMI.setDesc(get(Opc)); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr: case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr: case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr: case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr: case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr: case X86::CMOVA16rr: case X86::CMOVA32rr: case X86::CMOVA64rr: case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr: case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr: case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr: case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr: case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr: case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr: case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr: case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr: case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr: case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: { unsigned Opc; switch (MI.getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break; case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break; case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break; case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break; case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break; case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break; case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break; case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break; case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break; case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break; case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break; case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break; case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break; case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break; case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break; case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break; case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break; case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break; case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break; case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break; case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break; case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break; case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break; case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break; case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break; case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break; case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break; case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break; case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break; case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break; case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break; case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break; case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break; case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break; case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break; case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break; case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break; case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break; case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break; case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break; case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break; case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break; case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break; case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break; case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break; case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break; case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break; case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break; } auto &WorkingMI = cloneIfNew(MI); WorkingMI.setDesc(get(Opc)); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi: case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi: case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi: case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi: case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi: case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi: case X86::VPTERNLOGDZrrik: case X86::VPTERNLOGDZ128rrik: case X86::VPTERNLOGDZ256rrik: case X86::VPTERNLOGQZrrik: case X86::VPTERNLOGQZ128rrik: case X86::VPTERNLOGQZ256rrik: case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz: case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz: case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz: case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz: case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz: case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz: case X86::VPTERNLOGDZ128rmbi: case X86::VPTERNLOGDZ256rmbi: case X86::VPTERNLOGDZrmbi: case X86::VPTERNLOGQZ128rmbi: case X86::VPTERNLOGQZ256rmbi: case X86::VPTERNLOGQZrmbi: case X86::VPTERNLOGDZ128rmbikz: case X86::VPTERNLOGDZ256rmbikz: case X86::VPTERNLOGDZrmbikz: case X86::VPTERNLOGQZ128rmbikz: case X86::VPTERNLOGQZ256rmbikz: case X86::VPTERNLOGQZrmbikz: { auto &WorkingMI = cloneIfNew(MI); commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } default: { if (isCommutableVPERMV3Instruction(MI.getOpcode())) { unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode()); auto &WorkingMI = cloneIfNew(MI); WorkingMI.setDesc(get(Opc)); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(), MI.getDesc().TSFlags); if (FMA3Group) { unsigned Opc = getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group); auto &WorkingMI = cloneIfNew(MI); WorkingMI.setDesc(get(Opc)); return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, OpIdx1, OpIdx2); } return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); } } } bool X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2, bool IsIntrinsic) const { uint64_t TSFlags = MI.getDesc().TSFlags; unsigned FirstCommutableVecOp = 1; unsigned LastCommutableVecOp = 3; unsigned KMaskOp = -1U; if (X86II::isKMasked(TSFlags)) { // For k-zero-masked operations it is Ok to commute the first vector // operand. // For regular k-masked operations a conservative choice is done as the // elements of the first vector operand, for which the corresponding bit // in the k-mask operand is set to 0, are copied to the result of the // instruction. // TODO/FIXME: The commute still may be legal if it is known that the // k-mask operand is set to either all ones or all zeroes. // It is also Ok to commute the 1st operand if all users of MI use only // the elements enabled by the k-mask operand. For example, // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i] // : v1[i]; // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 -> // // Ok, to commute v1 in FMADD213PSZrk. // The k-mask operand has index = 2 for masked and zero-masked operations. KMaskOp = 2; // The operand with index = 1 is used as a source for those elements for // which the corresponding bit in the k-mask is set to 0. if (X86II::isKMergeMasked(TSFlags)) FirstCommutableVecOp = 3; LastCommutableVecOp++; } else if (IsIntrinsic) { // Commuting the first operand of an intrinsic instruction isn't possible // unless we can prove that only the lowest element of the result is used. FirstCommutableVecOp = 2; } if (isMem(MI, LastCommutableVecOp)) LastCommutableVecOp--; // Only the first RegOpsNum operands are commutable. // Also, the value 'CommuteAnyOperandIndex' is valid here as it means // that the operand is not specified/fixed. if (SrcOpIdx1 != CommuteAnyOperandIndex && (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp || SrcOpIdx1 == KMaskOp)) return false; if (SrcOpIdx2 != CommuteAnyOperandIndex && (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp || SrcOpIdx2 == KMaskOp)) return false; // Look for two different register operands assumed to be commutable // regardless of the FMA opcode. The FMA opcode is adjusted later. if (SrcOpIdx1 == CommuteAnyOperandIndex || SrcOpIdx2 == CommuteAnyOperandIndex) { unsigned CommutableOpIdx1 = SrcOpIdx1; unsigned CommutableOpIdx2 = SrcOpIdx2; // At least one of operands to be commuted is not specified and // this method is free to choose appropriate commutable operands. if (SrcOpIdx1 == SrcOpIdx2) // Both of operands are not fixed. By default set one of commutable // operands to the last register operand of the instruction. CommutableOpIdx2 = LastCommutableVecOp; else if (SrcOpIdx2 == CommuteAnyOperandIndex) // Only one of operands is not fixed. CommutableOpIdx2 = SrcOpIdx1; // CommutableOpIdx2 is well defined now. Let's choose another commutable // operand and assign its index to CommutableOpIdx1. unsigned Op2Reg = MI.getOperand(CommutableOpIdx2).getReg(); for (CommutableOpIdx1 = LastCommutableVecOp; CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) { // Just ignore and skip the k-mask operand. if (CommutableOpIdx1 == KMaskOp) continue; // The commuted operands must have different registers. // Otherwise, the commute transformation does not change anything and // is useless then. if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg()) break; } // No appropriate commutable operands were found. if (CommutableOpIdx1 < FirstCommutableVecOp) return false; // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2 // to return those values. if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1, CommutableOpIdx2)) return false; } return true; } bool X86InstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const { const MCInstrDesc &Desc = MI.getDesc(); if (!Desc.isCommutable()) return false; switch (MI.getOpcode()) { case X86::CMPSDrr: case X86::CMPSSrr: case X86::CMPPDrri: case X86::CMPPSrri: case X86::VCMPSDrr: case X86::VCMPSSrr: case X86::VCMPPDrri: case X86::VCMPPSrri: case X86::VCMPPDYrri: case X86::VCMPPSYrri: case X86::VCMPSDZrr: case X86::VCMPSSZrr: case X86::VCMPPDZrri: case X86::VCMPPSZrri: case X86::VCMPPDZ128rri: case X86::VCMPPSZ128rri: case X86::VCMPPDZ256rri: case X86::VCMPPSZ256rri: { // Float comparison can be safely commuted for // Ordered/Unordered/Equal/NotEqual tests unsigned Imm = MI.getOperand(3).getImm() & 0x7; switch (Imm) { case 0x00: // EQUAL case 0x03: // UNORDERED case 0x04: // NOT EQUAL case 0x07: // ORDERED // The indices of the commutable operands are 1 and 2. // Assign them to the returned operand indices here. return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1, 2); } return false; } case X86::MOVSDrr: case X86::MOVSSrr: case X86::VMOVSDrr: case X86::VMOVSSrr: if (Subtarget.hasSSE41()) return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); return false; case X86::MOVHLPSrr: case X86::UNPCKHPDrr: case X86::VMOVHLPSrr: case X86::VUNPCKHPDrr: case X86::VMOVHLPSZrr: case X86::VUNPCKHPDZ128rr: if (Subtarget.hasSSE2()) return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); return false; case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi: case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi: case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi: case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi: case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi: case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi: case X86::VPTERNLOGDZrrik: case X86::VPTERNLOGDZ128rrik: case X86::VPTERNLOGDZ256rrik: case X86::VPTERNLOGQZrrik: case X86::VPTERNLOGQZ128rrik: case X86::VPTERNLOGQZ256rrik: case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz: case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz: case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz: case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz: case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz: case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz: case X86::VPTERNLOGDZ128rmbi: case X86::VPTERNLOGDZ256rmbi: case X86::VPTERNLOGDZrmbi: case X86::VPTERNLOGQZ128rmbi: case X86::VPTERNLOGQZ256rmbi: case X86::VPTERNLOGQZrmbi: case X86::VPTERNLOGDZ128rmbikz: case X86::VPTERNLOGDZ256rmbikz: case X86::VPTERNLOGDZrmbikz: case X86::VPTERNLOGQZ128rmbikz: case X86::VPTERNLOGQZ256rmbikz: case X86::VPTERNLOGQZrmbikz: return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); case X86::VPMADD52HUQZ128r: case X86::VPMADD52HUQZ128rk: case X86::VPMADD52HUQZ128rkz: case X86::VPMADD52HUQZ256r: case X86::VPMADD52HUQZ256rk: case X86::VPMADD52HUQZ256rkz: case X86::VPMADD52HUQZr: case X86::VPMADD52HUQZrk: case X86::VPMADD52HUQZrkz: case X86::VPMADD52LUQZ128r: case X86::VPMADD52LUQZ128rk: case X86::VPMADD52LUQZ128rkz: case X86::VPMADD52LUQZ256r: case X86::VPMADD52LUQZ256rk: case X86::VPMADD52LUQZ256rkz: case X86::VPMADD52LUQZr: case X86::VPMADD52LUQZrk: case X86::VPMADD52LUQZrkz: { unsigned CommutableOpIdx1 = 2; unsigned CommutableOpIdx2 = 3; if (X86II::isKMasked(Desc.TSFlags)) { // Skip the mask register. ++CommutableOpIdx1; ++CommutableOpIdx2; } if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1, CommutableOpIdx2)) return false; if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) // No idea. return false; return true; } default: const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(), MI.getDesc().TSFlags); if (FMA3Group) return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2, FMA3Group->isIntrinsic()); // Handled masked instructions since we need to skip over the mask input // and the preserved input. if (X86II::isKMasked(Desc.TSFlags)) { // First assume that the first input is the mask operand and skip past it. unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1; unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2; // Check if the first input is tied. If there isn't one then we only // need to skip the mask operand which we did above. if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(), MCOI::TIED_TO) != -1)) { // If this is zero masking instruction with a tied operand, we need to // move the first index back to the first input since this must // be a 3 input instruction and we want the first two non-mask inputs. // Otherwise this is a 2 input instruction with a preserved input and // mask, so we need to move the indices to skip one more input. if (X86II::isKMergeMasked(Desc.TSFlags)) { ++CommutableOpIdx1; ++CommutableOpIdx2; } else { --CommutableOpIdx1; } } if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1, CommutableOpIdx2)) return false; if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) // No idea. return false; return true; } return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); } return false; } X86::CondCode X86::getCondFromBranchOpc(unsigned BrOpc) { switch (BrOpc) { default: return X86::COND_INVALID; case X86::JE_1: return X86::COND_E; case X86::JNE_1: return X86::COND_NE; case X86::JL_1: return X86::COND_L; case X86::JLE_1: return X86::COND_LE; case X86::JG_1: return X86::COND_G; case X86::JGE_1: return X86::COND_GE; case X86::JB_1: return X86::COND_B; case X86::JBE_1: return X86::COND_BE; case X86::JA_1: return X86::COND_A; case X86::JAE_1: return X86::COND_AE; case X86::JS_1: return X86::COND_S; case X86::JNS_1: return X86::COND_NS; case X86::JP_1: return X86::COND_P; case X86::JNP_1: return X86::COND_NP; case X86::JO_1: return X86::COND_O; case X86::JNO_1: return X86::COND_NO; } } /// Return condition code of a SET opcode. X86::CondCode X86::getCondFromSETOpc(unsigned Opc) { switch (Opc) { default: return X86::COND_INVALID; case X86::SETAr: case X86::SETAm: return X86::COND_A; case X86::SETAEr: case X86::SETAEm: return X86::COND_AE; case X86::SETBr: case X86::SETBm: return X86::COND_B; case X86::SETBEr: case X86::SETBEm: return X86::COND_BE; case X86::SETEr: case X86::SETEm: return X86::COND_E; case X86::SETGr: case X86::SETGm: return X86::COND_G; case X86::SETGEr: case X86::SETGEm: return X86::COND_GE; case X86::SETLr: case X86::SETLm: return X86::COND_L; case X86::SETLEr: case X86::SETLEm: return X86::COND_LE; case X86::SETNEr: case X86::SETNEm: return X86::COND_NE; case X86::SETNOr: case X86::SETNOm: return X86::COND_NO; case X86::SETNPr: case X86::SETNPm: return X86::COND_NP; case X86::SETNSr: case X86::SETNSm: return X86::COND_NS; case X86::SETOr: case X86::SETOm: return X86::COND_O; case X86::SETPr: case X86::SETPm: return X86::COND_P; case X86::SETSr: case X86::SETSm: return X86::COND_S; } } /// Return condition code of a CMov opcode. X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) { switch (Opc) { default: return X86::COND_INVALID; case X86::CMOVA16rm: case X86::CMOVA16rr: case X86::CMOVA32rm: case X86::CMOVA32rr: case X86::CMOVA64rm: case X86::CMOVA64rr: return X86::COND_A; case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm: case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr: return X86::COND_AE; case X86::CMOVB16rm: case X86::CMOVB16rr: case X86::CMOVB32rm: case X86::CMOVB32rr: case X86::CMOVB64rm: case X86::CMOVB64rr: return X86::COND_B; case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm: case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr: return X86::COND_BE; case X86::CMOVE16rm: case X86::CMOVE16rr: case X86::CMOVE32rm: case X86::CMOVE32rr: case X86::CMOVE64rm: case X86::CMOVE64rr: return X86::COND_E; case X86::CMOVG16rm: case X86::CMOVG16rr: case X86::CMOVG32rm: case X86::CMOVG32rr: case X86::CMOVG64rm: case X86::CMOVG64rr: return X86::COND_G; case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm: case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr: return X86::COND_GE; case X86::CMOVL16rm: case X86::CMOVL16rr: case X86::CMOVL32rm: case X86::CMOVL32rr: case X86::CMOVL64rm: case X86::CMOVL64rr: return X86::COND_L; case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm: case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr: return X86::COND_LE; case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm: case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr: return X86::COND_NE; case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm: case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr: return X86::COND_NO; case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm: case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr: return X86::COND_NP; case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm: case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr: return X86::COND_NS; case X86::CMOVO16rm: case X86::CMOVO16rr: case X86::CMOVO32rm: case X86::CMOVO32rr: case X86::CMOVO64rm: case X86::CMOVO64rr: return X86::COND_O; case X86::CMOVP16rm: case X86::CMOVP16rr: case X86::CMOVP32rm: case X86::CMOVP32rr: case X86::CMOVP64rm: case X86::CMOVP64rr: return X86::COND_P; case X86::CMOVS16rm: case X86::CMOVS16rr: case X86::CMOVS32rm: case X86::CMOVS32rr: case X86::CMOVS64rm: case X86::CMOVS64rr: return X86::COND_S; } } unsigned X86::GetCondBranchFromCond(X86::CondCode CC) { switch (CC) { default: llvm_unreachable("Illegal condition code!"); case X86::COND_E: return X86::JE_1; case X86::COND_NE: return X86::JNE_1; case X86::COND_L: return X86::JL_1; case X86::COND_LE: return X86::JLE_1; case X86::COND_G: return X86::JG_1; case X86::COND_GE: return X86::JGE_1; case X86::COND_B: return X86::JB_1; case X86::COND_BE: return X86::JBE_1; case X86::COND_A: return X86::JA_1; case X86::COND_AE: return X86::JAE_1; case X86::COND_S: return X86::JS_1; case X86::COND_NS: return X86::JNS_1; case X86::COND_P: return X86::JP_1; case X86::COND_NP: return X86::JNP_1; case X86::COND_O: return X86::JO_1; case X86::COND_NO: return X86::JNO_1; } } /// Return the inverse of the specified condition, /// e.g. turning COND_E to COND_NE. X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { switch (CC) { default: llvm_unreachable("Illegal condition code!"); case X86::COND_E: return X86::COND_NE; case X86::COND_NE: return X86::COND_E; case X86::COND_L: return X86::COND_GE; case X86::COND_LE: return X86::COND_G; case X86::COND_G: return X86::COND_LE; case X86::COND_GE: return X86::COND_L; case X86::COND_B: return X86::COND_AE; case X86::COND_BE: return X86::COND_A; case X86::COND_A: return X86::COND_BE; case X86::COND_AE: return X86::COND_B; case X86::COND_S: return X86::COND_NS; case X86::COND_NS: return X86::COND_S; case X86::COND_P: return X86::COND_NP; case X86::COND_NP: return X86::COND_P; case X86::COND_O: return X86::COND_NO; case X86::COND_NO: return X86::COND_O; case X86::COND_NE_OR_P: return X86::COND_E_AND_NP; case X86::COND_E_AND_NP: return X86::COND_NE_OR_P; } } /// Assuming the flags are set by MI(a,b), return the condition code if we /// modify the instructions such that flags are set by MI(b,a). static X86::CondCode getSwappedCondition(X86::CondCode CC) { switch (CC) { default: return X86::COND_INVALID; case X86::COND_E: return X86::COND_E; case X86::COND_NE: return X86::COND_NE; case X86::COND_L: return X86::COND_G; case X86::COND_LE: return X86::COND_GE; case X86::COND_G: return X86::COND_L; case X86::COND_GE: return X86::COND_LE; case X86::COND_B: return X86::COND_A; case X86::COND_BE: return X86::COND_AE; case X86::COND_A: return X86::COND_B; case X86::COND_AE: return X86::COND_BE; } } std::pair<X86::CondCode, bool> X86::getX86ConditionCode(CmpInst::Predicate Predicate) { X86::CondCode CC = X86::COND_INVALID; bool NeedSwap = false; switch (Predicate) { default: break; // Floating-point Predicates case CmpInst::FCMP_UEQ: CC = X86::COND_E; break; case CmpInst::FCMP_OLT: NeedSwap = true; LLVM_FALLTHROUGH; case CmpInst::FCMP_OGT: CC = X86::COND_A; break; case CmpInst::FCMP_OLE: NeedSwap = true; LLVM_FALLTHROUGH; case CmpInst::FCMP_OGE: CC = X86::COND_AE; break; case CmpInst::FCMP_UGT: NeedSwap = true; LLVM_FALLTHROUGH; case CmpInst::FCMP_ULT: CC = X86::COND_B; break; case CmpInst::FCMP_UGE: NeedSwap = true; LLVM_FALLTHROUGH; case CmpInst::FCMP_ULE: CC = X86::COND_BE; break; case CmpInst::FCMP_ONE: CC = X86::COND_NE; break; case CmpInst::FCMP_UNO: CC = X86::COND_P; break; case CmpInst::FCMP_ORD: CC = X86::COND_NP; break; case CmpInst::FCMP_OEQ: LLVM_FALLTHROUGH; case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break; // Integer Predicates case CmpInst::ICMP_EQ: CC = X86::COND_E; break; case CmpInst::ICMP_NE: CC = X86::COND_NE; break; case CmpInst::ICMP_UGT: CC = X86::COND_A; break; case CmpInst::ICMP_UGE: CC = X86::COND_AE; break; case CmpInst::ICMP_ULT: CC = X86::COND_B; break; case CmpInst::ICMP_ULE: CC = X86::COND_BE; break; case CmpInst::ICMP_SGT: CC = X86::COND_G; break; case CmpInst::ICMP_SGE: CC = X86::COND_GE; break; case CmpInst::ICMP_SLT: CC = X86::COND_L; break; case CmpInst::ICMP_SLE: CC = X86::COND_LE; break; } return std::make_pair(CC, NeedSwap); } /// Return a set opcode for the given condition and /// whether it has memory operand. unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) { static const uint16_t Opc[16][2] = { { X86::SETAr, X86::SETAm }, { X86::SETAEr, X86::SETAEm }, { X86::SETBr, X86::SETBm }, { X86::SETBEr, X86::SETBEm }, { X86::SETEr, X86::SETEm }, { X86::SETGr, X86::SETGm }, { X86::SETGEr, X86::SETGEm }, { X86::SETLr, X86::SETLm }, { X86::SETLEr, X86::SETLEm }, { X86::SETNEr, X86::SETNEm }, { X86::SETNOr, X86::SETNOm }, { X86::SETNPr, X86::SETNPm }, { X86::SETNSr, X86::SETNSm }, { X86::SETOr, X86::SETOm }, { X86::SETPr, X86::SETPm }, { X86::SETSr, X86::SETSm } }; assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes"); return Opc[CC][HasMemoryOperand ? 1 : 0]; } /// Return a cmov opcode for the given condition, /// register size in bytes, and operand type. unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes, bool HasMemoryOperand) { static const uint16_t Opc[32][3] = { { X86::CMOVA16rr, X86::CMOVA32rr, X86::CMOVA64rr }, { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr }, { X86::CMOVB16rr, X86::CMOVB32rr, X86::CMOVB64rr }, { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr }, { X86::CMOVE16rr, X86::CMOVE32rr, X86::CMOVE64rr }, { X86::CMOVG16rr, X86::CMOVG32rr, X86::CMOVG64rr }, { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr }, { X86::CMOVL16rr, X86::CMOVL32rr, X86::CMOVL64rr }, { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr }, { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr }, { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr }, { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr }, { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr }, { X86::CMOVO16rr, X86::CMOVO32rr, X86::CMOVO64rr }, { X86::CMOVP16rr, X86::CMOVP32rr, X86::CMOVP64rr }, { X86::CMOVS16rr, X86::CMOVS32rr, X86::CMOVS64rr }, { X86::CMOVA16rm, X86::CMOVA32rm, X86::CMOVA64rm }, { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm }, { X86::CMOVB16rm, X86::CMOVB32rm, X86::CMOVB64rm }, { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm }, { X86::CMOVE16rm, X86::CMOVE32rm, X86::CMOVE64rm }, { X86::CMOVG16rm, X86::CMOVG32rm, X86::CMOVG64rm }, { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm }, { X86::CMOVL16rm, X86::CMOVL32rm, X86::CMOVL64rm }, { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm }, { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm }, { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm }, { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm }, { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm }, { X86::CMOVO16rm, X86::CMOVO32rm, X86::CMOVO64rm }, { X86::CMOVP16rm, X86::CMOVP32rm, X86::CMOVP64rm }, { X86::CMOVS16rm, X86::CMOVS32rm, X86::CMOVS64rm } }; assert(CC < 16 && "Can only handle standard cond codes"); unsigned Idx = HasMemoryOperand ? 16+CC : CC; switch(RegBytes) { default: llvm_unreachable("Illegal register size!"); case 2: return Opc[Idx][0]; case 4: return Opc[Idx][1]; case 8: return Opc[Idx][2]; } } /// Get the VPCMP immediate for the given condition. unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) { switch (CC) { default: llvm_unreachable("Unexpected SETCC condition"); case ISD::SETNE: return 4; case ISD::SETEQ: return 0; case ISD::SETULT: case ISD::SETLT: return 1; case ISD::SETUGT: case ISD::SETGT: return 6; case ISD::SETUGE: case ISD::SETGE: return 5; case ISD::SETULE: case ISD::SETLE: return 2; } } /// Get the VPCMP immediate if the opcodes are swapped. unsigned X86::getSwappedVPCMPImm(unsigned Imm) { switch (Imm) { default: llvm_unreachable("Unreachable!"); case 0x01: Imm = 0x06; break; // LT -> NLE case 0x02: Imm = 0x05; break; // LE -> NLT case 0x05: Imm = 0x02; break; // NLT -> LE case 0x06: Imm = 0x01; break; // NLE -> LT case 0x00: // EQ case 0x03: // FALSE case 0x04: // NE case 0x07: // TRUE break; } return Imm; } /// Get the VPCOM immediate if the opcodes are swapped. unsigned X86::getSwappedVPCOMImm(unsigned Imm) { switch (Imm) { default: llvm_unreachable("Unreachable!"); case 0x00: Imm = 0x02; break; // LT -> GT case 0x01: Imm = 0x03; break; // LE -> GE case 0x02: Imm = 0x00; break; // GT -> LT case 0x03: Imm = 0x01; break; // GE -> LE case 0x04: // EQ case 0x05: // NE case 0x06: // FALSE case 0x07: // TRUE break; } return Imm; } bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { if (!MI.isTerminator()) return false; // Conditional branch is a special case. if (MI.isBranch() && !MI.isBarrier()) return true; if (!MI.isPredicable()) return true; return !isPredicated(MI); } bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const { switch (MI.getOpcode()) { case X86::TCRETURNdi: case X86::TCRETURNri: case X86::TCRETURNmi: case X86::TCRETURNdi64: case X86::TCRETURNri64: case X86::TCRETURNmi64: return true; default: return false; } } bool X86InstrInfo::canMakeTailCallConditional( SmallVectorImpl<MachineOperand> &BranchCond, const MachineInstr &TailCall) const { if (TailCall.getOpcode() != X86::TCRETURNdi && TailCall.getOpcode() != X86::TCRETURNdi64) { // Only direct calls can be done with a conditional branch. return false; } const MachineFunction *MF = TailCall.getParent()->getParent(); if (Subtarget.isTargetWin64() && MF->hasWinCFI()) { // Conditional tail calls confuse the Win64 unwinder. return false; } assert(BranchCond.size() == 1); if (BranchCond[0].getImm() > X86::LAST_VALID_COND) { // Can't make a conditional tail call with this condition. return false; } const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); if (X86FI->getTCReturnAddrDelta() != 0 || TailCall.getOperand(1).getImm() != 0) { // A conditional tail call cannot do any stack adjustment. return false; } return true; } void X86InstrInfo::replaceBranchWithTailCall( MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond, const MachineInstr &TailCall) const { assert(canMakeTailCallConditional(BranchCond, TailCall)); MachineBasicBlock::iterator I = MBB.end(); while (I != MBB.begin()) { --I; if (I->isDebugInstr()) continue; if (!I->isBranch()) assert(0 && "Can't find the branch to replace!"); X86::CondCode CC = X86::getCondFromBranchOpc(I->getOpcode()); assert(BranchCond.size() == 1); if (CC != BranchCond[0].getImm()) continue; break; } unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc : X86::TCRETURNdi64cc; auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc)); MIB->addOperand(TailCall.getOperand(0)); // Destination. MIB.addImm(0); // Stack offset (not used). MIB->addOperand(BranchCond[0]); // Condition. MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters. // Add implicit uses and defs of all live regs potentially clobbered by the // call. This way they still appear live across the call. LivePhysRegs LiveRegs(getRegisterInfo()); LiveRegs.addLiveOuts(MBB); SmallVector<std::pair<unsigned, const MachineOperand *>, 8> Clobbers; LiveRegs.stepForward(*MIB, Clobbers); for (const auto &C : Clobbers) { MIB.addReg(C.first, RegState::Implicit); MIB.addReg(C.first, RegState::Implicit | RegState::Define); } I->eraseFromParent(); } // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may // not be a fallthrough MBB now due to layout changes). Return nullptr if the // fallthrough MBB cannot be identified. static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB, MachineBasicBlock *TBB) { // Look for non-EHPad successors other than TBB. If we find exactly one, it // is the fallthrough MBB. If we find zero, then TBB is both the target MBB // and fallthrough MBB. If we find more than one, we cannot identify the // fallthrough MBB and should return nullptr. MachineBasicBlock *FallthroughBB = nullptr; for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) { if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB)) continue; // Return a nullptr if we found more than one fallthrough successor. if (FallthroughBB && FallthroughBB != TBB) return nullptr; FallthroughBB = *SI; } return FallthroughBB; } bool X86InstrInfo::AnalyzeBranchImpl( MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl<MachineOperand> &Cond, SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const { // Start from the bottom of the block and work up, examining the // terminator instructions. MachineBasicBlock::iterator I = MBB.end(); MachineBasicBlock::iterator UnCondBrIter = MBB.end(); while (I != MBB.begin()) { --I; if (I->isDebugInstr()) continue; // Working from the bottom, when we see a non-terminator instruction, we're // done. if (!isUnpredicatedTerminator(*I)) break; // A terminator that isn't a branch can't easily be handled by this // analysis. if (!I->isBranch()) return true; // Handle unconditional branches. if (I->getOpcode() == X86::JMP_1) { UnCondBrIter = I; if (!AllowModify) { TBB = I->getOperand(0).getMBB(); continue; } // If the block has any instructions after a JMP, delete them. while (std::next(I) != MBB.end()) std::next(I)->eraseFromParent(); Cond.clear(); FBB = nullptr; // Delete the JMP if it's equivalent to a fall-through. if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { TBB = nullptr; I->eraseFromParent(); I = MBB.end(); UnCondBrIter = MBB.end(); continue; } // TBB is used to indicate the unconditional destination. TBB = I->getOperand(0).getMBB(); continue; } // Handle conditional branches. X86::CondCode BranchCode = X86::getCondFromBranchOpc(I->getOpcode()); if (BranchCode == X86::COND_INVALID) return true; // Can't handle indirect branch. // Working from the bottom, handle the first conditional branch. if (Cond.empty()) { MachineBasicBlock *TargetBB = I->getOperand(0).getMBB(); if (AllowModify && UnCondBrIter != MBB.end() && MBB.isLayoutSuccessor(TargetBB)) { // If we can modify the code and it ends in something like: // // jCC L1 // jmp L2 // L1: // ... // L2: // // Then we can change this to: // // jnCC L2 // L1: // ... // L2: // // Which is a bit more efficient. // We conditionally jump to the fall-through block. BranchCode = GetOppositeBranchCondition(BranchCode); unsigned JNCC = GetCondBranchFromCond(BranchCode); MachineBasicBlock::iterator OldInst = I; BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC)) .addMBB(UnCondBrIter->getOperand(0).getMBB()); BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1)) .addMBB(TargetBB); OldInst->eraseFromParent(); UnCondBrIter->eraseFromParent(); // Restart the analysis. UnCondBrIter = MBB.end(); I = MBB.end(); continue; } FBB = TBB; TBB = I->getOperand(0).getMBB(); Cond.push_back(MachineOperand::CreateImm(BranchCode)); CondBranches.push_back(&*I); continue; } // Handle subsequent conditional branches. Only handle the case where all // conditional branches branch to the same destination and their condition // opcodes fit one of the special multi-branch idioms. assert(Cond.size() == 1); assert(TBB); // If the conditions are the same, we can leave them alone. X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); auto NewTBB = I->getOperand(0).getMBB(); if (OldBranchCode == BranchCode && TBB == NewTBB) continue; // If they differ, see if they fit one of the known patterns. Theoretically, // we could handle more patterns here, but we shouldn't expect to see them // if instruction selection has done a reasonable job. if (TBB == NewTBB && ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) || (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) { BranchCode = X86::COND_NE_OR_P; } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) || (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) { if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB))) return true; // X86::COND_E_AND_NP usually has two different branch destinations. // // JP B1 // JE B2 // JMP B1 // B1: // B2: // // Here this condition branches to B2 only if NP && E. It has another // equivalent form: // // JNE B1 // JNP B2 // JMP B1 // B1: // B2: // // Similarly it branches to B2 only if E && NP. That is why this condition // is named with COND_E_AND_NP. BranchCode = X86::COND_E_AND_NP; } else return true; // Update the MachineOperand. Cond[0].setImm(BranchCode); CondBranches.push_back(&*I); } return false; } bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl<MachineOperand> &Cond, bool AllowModify) const { SmallVector<MachineInstr *, 4> CondBranches; return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify); } bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB, MachineBranchPredicate &MBP, bool AllowModify) const { using namespace std::placeholders; SmallVector<MachineOperand, 4> Cond; SmallVector<MachineInstr *, 4> CondBranches; if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches, AllowModify)) return true; if (Cond.size() != 1) return true; assert(MBP.TrueDest && "expected!"); if (!MBP.FalseDest) MBP.FalseDest = MBB.getNextNode(); const TargetRegisterInfo *TRI = &getRegisterInfo(); MachineInstr *ConditionDef = nullptr; bool SingleUseCondition = true; for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) { if (I->modifiesRegister(X86::EFLAGS, TRI)) { ConditionDef = &*I; break; } if (I->readsRegister(X86::EFLAGS, TRI)) SingleUseCondition = false; } if (!ConditionDef) return true; if (SingleUseCondition) { for (auto *Succ : MBB.successors()) if (Succ->isLiveIn(X86::EFLAGS)) SingleUseCondition = false; } MBP.ConditionDef = ConditionDef; MBP.SingleUseCondition = SingleUseCondition; // Currently we only recognize the simple pattern: // // test %reg, %reg // je %label // const unsigned TestOpcode = Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr; if (ConditionDef->getOpcode() == TestOpcode && ConditionDef->getNumOperands() == 3 && ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) && (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) { MBP.LHS = ConditionDef->getOperand(0); MBP.RHS = MachineOperand::CreateImm(0); MBP.Predicate = Cond[0].getImm() == X86::COND_NE ? MachineBranchPredicate::PRED_NE : MachineBranchPredicate::PRED_EQ; return false; } return true; } unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB, int *BytesRemoved) const { assert(!BytesRemoved && "code size not handled"); MachineBasicBlock::iterator I = MBB.end(); unsigned Count = 0; while (I != MBB.begin()) { --I; if (I->isDebugInstr()) continue; if (I->getOpcode() != X86::JMP_1 && X86::getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID) break; // Remove the branch. I->eraseFromParent(); I = MBB.end(); ++Count; } return Count; } unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const { // Shouldn't be a fall through. assert(TBB && "insertBranch must not be told to insert a fallthrough"); assert((Cond.size() == 1 || Cond.size() == 0) && "X86 branch conditions have one component!"); assert(!BytesAdded && "code size not handled"); if (Cond.empty()) { // Unconditional branch? assert(!FBB && "Unconditional branch with multiple successors!"); BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB); return 1; } // If FBB is null, it is implied to be a fall-through block. bool FallThru = FBB == nullptr; // Conditional branch. unsigned Count = 0; X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); switch (CC) { case X86::COND_NE_OR_P: // Synthesize NE_OR_P with two branches. BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(TBB); ++Count; BuildMI(&MBB, DL, get(X86::JP_1)).addMBB(TBB); ++Count; break; case X86::COND_E_AND_NP: // Use the next block of MBB as FBB if it is null. if (FBB == nullptr) { FBB = getFallThroughMBB(&MBB, TBB); assert(FBB && "MBB cannot be the last block in function when the false " "body is a fall-through."); } // Synthesize COND_E_AND_NP with two branches. BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(FBB); ++Count; BuildMI(&MBB, DL, get(X86::JNP_1)).addMBB(TBB); ++Count; break; default: { unsigned Opc = GetCondBranchFromCond(CC); BuildMI(&MBB, DL, get(Opc)).addMBB(TBB); ++Count; } } if (!FallThru) { // Two-way Conditional branch. Insert the second branch. BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB); ++Count; } return Count; } bool X86InstrInfo:: canInsertSelect(const MachineBasicBlock &MBB, ArrayRef<MachineOperand> Cond, unsigned TrueReg, unsigned FalseReg, int &CondCycles, int &TrueCycles, int &FalseCycles) const { // Not all subtargets have cmov instructions. if (!Subtarget.hasCMov()) return false; if (Cond.size() != 1) return false; // We cannot do the composite conditions, at least not in SSA form. if ((X86::CondCode)Cond[0].getImm() > X86::COND_S) return false; // Check register classes. const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); const TargetRegisterClass *RC = RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); if (!RC) return false; // We have cmov instructions for 16, 32, and 64 bit general purpose registers. if (X86::GR16RegClass.hasSubClassEq(RC) || X86::GR32RegClass.hasSubClassEq(RC) || X86::GR64RegClass.hasSubClassEq(RC)) { // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy // Bridge. Probably Ivy Bridge as well. CondCycles = 2; TrueCycles = 2; FalseCycles = 2; return true; } // Can't do vectors. return false; } void X86InstrInfo::insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, unsigned DstReg, ArrayRef<MachineOperand> Cond, unsigned TrueReg, unsigned FalseReg) const { MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); const TargetRegisterClass &RC = *MRI.getRegClass(DstReg); assert(Cond.size() == 1 && "Invalid Cond array"); unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(), TRI.getRegSizeInBits(RC) / 8, false /*HasMemoryOperand*/); BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg); } /// Test if the given register is a physical h register. static bool isHReg(unsigned Reg) { return X86::GR8_ABCD_HRegClass.contains(Reg); } // Try and copy between VR128/VR64 and GR64 registers. static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg, const X86Subtarget &Subtarget) { bool HasAVX = Subtarget.hasAVX(); bool HasAVX512 = Subtarget.hasAVX512(); // SrcReg(MaskReg) -> DestReg(GR64) // SrcReg(MaskReg) -> DestReg(GR32) // All KMASK RegClasses hold the same k registers, can be tested against anyone. if (X86::VK16RegClass.contains(SrcReg)) { if (X86::GR64RegClass.contains(DestReg)) { assert(Subtarget.hasBWI()); return X86::KMOVQrk; } if (X86::GR32RegClass.contains(DestReg)) return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk; } // SrcReg(GR64) -> DestReg(MaskReg) // SrcReg(GR32) -> DestReg(MaskReg) // All KMASK RegClasses hold the same k registers, can be tested against anyone. if (X86::VK16RegClass.contains(DestReg)) { if (X86::GR64RegClass.contains(SrcReg)) { assert(Subtarget.hasBWI()); return X86::KMOVQkr; } if (X86::GR32RegClass.contains(SrcReg)) return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr; } // SrcReg(VR128) -> DestReg(GR64) // SrcReg(VR64) -> DestReg(GR64) // SrcReg(GR64) -> DestReg(VR128) // SrcReg(GR64) -> DestReg(VR64) if (X86::GR64RegClass.contains(DestReg)) { if (X86::VR128XRegClass.contains(SrcReg)) // Copy from a VR128 register to a GR64 register. return HasAVX512 ? X86::VMOVPQIto64Zrr : HasAVX ? X86::VMOVPQIto64rr : X86::MOVPQIto64rr; if (X86::VR64RegClass.contains(SrcReg)) // Copy from a VR64 register to a GR64 register. return X86::MMX_MOVD64from64rr; } else if (X86::GR64RegClass.contains(SrcReg)) { // Copy from a GR64 register to a VR128 register. if (X86::VR128XRegClass.contains(DestReg)) return HasAVX512 ? X86::VMOV64toPQIZrr : HasAVX ? X86::VMOV64toPQIrr : X86::MOV64toPQIrr; // Copy from a GR64 register to a VR64 register. if (X86::VR64RegClass.contains(DestReg)) return X86::MMX_MOVD64to64rr; } // SrcReg(FR32) -> DestReg(GR32) // SrcReg(GR32) -> DestReg(FR32) if (X86::GR32RegClass.contains(DestReg) && X86::FR32XRegClass.contains(SrcReg)) // Copy from a FR32 register to a GR32 register. return HasAVX512 ? X86::VMOVSS2DIZrr : HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr; if (X86::FR32XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg)) // Copy from a GR32 register to a FR32 register. return HasAVX512 ? X86::VMOVDI2SSZrr : HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr; return 0; } void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { // First deal with the normal symmetric copies. bool HasAVX = Subtarget.hasAVX(); bool HasVLX = Subtarget.hasVLX(); unsigned Opc = 0; if (X86::GR64RegClass.contains(DestReg, SrcReg)) Opc = X86::MOV64rr; else if (X86::GR32RegClass.contains(DestReg, SrcReg)) Opc = X86::MOV32rr; else if (X86::GR16RegClass.contains(DestReg, SrcReg)) Opc = X86::MOV16rr; else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { // Copying to or from a physical H register on x86-64 requires a NOREX // move. Otherwise use a normal move. if ((isHReg(DestReg) || isHReg(SrcReg)) && Subtarget.is64Bit()) { Opc = X86::MOV8rr_NOREX; // Both operands must be encodable without an REX prefix. assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && "8-bit H register can not be copied outside GR8_NOREX"); } else Opc = X86::MOV8rr; } else if (X86::VR64RegClass.contains(DestReg, SrcReg)) Opc = X86::MMX_MOVQ64rr; else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) { if (HasVLX) Opc = X86::VMOVAPSZ128rr; else if (X86::VR128RegClass.contains(DestReg, SrcReg)) Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr; else { // If this an extended register and we don't have VLX we need to use a // 512-bit move. Opc = X86::VMOVAPSZrr; const TargetRegisterInfo *TRI = &getRegisterInfo(); DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm, &X86::VR512RegClass); SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass); } } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) { if (HasVLX) Opc = X86::VMOVAPSZ256rr; else if (X86::VR256RegClass.contains(DestReg, SrcReg)) Opc = X86::VMOVAPSYrr; else { // If this an extended register and we don't have VLX we need to use a // 512-bit move. Opc = X86::VMOVAPSZrr; const TargetRegisterInfo *TRI = &getRegisterInfo(); DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm, &X86::VR512RegClass); SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass); } } else if (X86::VR512RegClass.contains(DestReg, SrcReg)) Opc = X86::VMOVAPSZrr; // All KMASK RegClasses hold the same k registers, can be tested against anyone. else if (X86::VK16RegClass.contains(DestReg, SrcReg)) Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk; if (!Opc) Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget); if (Opc) { BuildMI(MBB, MI, DL, get(Opc), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) { // FIXME: We use a fatal error here because historically LLVM has tried // lower some of these physreg copies and we want to ensure we get // reasonable bug reports if someone encounters a case no other testing // found. This path should be removed after the LLVM 7 release. report_fatal_error("Unable to copy EFLAGS physical register!"); } LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to " << RI.getName(DestReg) << '\n'); report_fatal_error("Cannot emit physreg copy instruction"); } bool X86InstrInfo::isCopyInstr(const MachineInstr &MI, const MachineOperand *&Src, const MachineOperand *&Dest) const { if (MI.isMoveReg()) { Dest = &MI.getOperand(0); Src = &MI.getOperand(1); return true; } return false; } static unsigned getLoadStoreRegOpcode(unsigned Reg, const TargetRegisterClass *RC, bool isStackAligned, const X86Subtarget &STI, bool load) { bool HasAVX = STI.hasAVX(); bool HasAVX512 = STI.hasAVX512(); bool HasVLX = STI.hasVLX(); switch (STI.getRegisterInfo()->getSpillSize(*RC)) { default: llvm_unreachable("Unknown spill size"); case 1: assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); if (STI.is64Bit()) // Copying to or from a physical H register on x86-64 requires a NOREX // move. Otherwise use a normal move. if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; return load ? X86::MOV8rm : X86::MOV8mr; case 2: if (X86::VK16RegClass.hasSubClassEq(RC)) return load ? X86::KMOVWkm : X86::KMOVWmk; assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); return load ? X86::MOV16rm : X86::MOV16mr; case 4: if (X86::GR32RegClass.hasSubClassEq(RC)) return load ? X86::MOV32rm : X86::MOV32mr; if (X86::FR32XRegClass.hasSubClassEq(RC)) return load ? (HasAVX512 ? X86::VMOVSSZrm : HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) : (HasAVX512 ? X86::VMOVSSZmr : HasAVX ? X86::VMOVSSmr : X86::MOVSSmr); if (X86::RFP32RegClass.hasSubClassEq(RC)) return load ? X86::LD_Fp32m : X86::ST_Fp32m; if (X86::VK32RegClass.hasSubClassEq(RC)) { assert(STI.hasBWI() && "KMOVD requires BWI"); return load ? X86::KMOVDkm : X86::KMOVDmk; } llvm_unreachable("Unknown 4-byte regclass"); case 8: if (X86::GR64RegClass.hasSubClassEq(RC)) return load ? X86::MOV64rm : X86::MOV64mr; if (X86::FR64XRegClass.hasSubClassEq(RC)) return load ? (HasAVX512 ? X86::VMOVSDZrm : HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) : (HasAVX512 ? X86::VMOVSDZmr : HasAVX ? X86::VMOVSDmr : X86::MOVSDmr); if (X86::VR64RegClass.hasSubClassEq(RC)) return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; if (X86::RFP64RegClass.hasSubClassEq(RC)) return load ? X86::LD_Fp64m : X86::ST_Fp64m; if (X86::VK64RegClass.hasSubClassEq(RC)) { assert(STI.hasBWI() && "KMOVQ requires BWI"); return load ? X86::KMOVQkm : X86::KMOVQmk; } llvm_unreachable("Unknown 8-byte regclass"); case 10: assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); return load ? X86::LD_Fp80m : X86::ST_FpP80m; case 16: { if (X86::VR128XRegClass.hasSubClassEq(RC)) { // If stack is realigned we can use aligned stores. if (isStackAligned) return load ? (HasVLX ? X86::VMOVAPSZ128rm : HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX : HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm): (HasVLX ? X86::VMOVAPSZ128mr : HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX : HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr); else return load ? (HasVLX ? X86::VMOVUPSZ128rm : HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX : HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm): (HasVLX ? X86::VMOVUPSZ128mr : HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX : HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr); } if (X86::BNDRRegClass.hasSubClassEq(RC)) { if (STI.is64Bit()) return load ? X86::BNDMOV64rm : X86::BNDMOV64mr; else return load ? X86::BNDMOV32rm : X86::BNDMOV32mr; } llvm_unreachable("Unknown 16-byte regclass"); } case 32: assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass"); // If stack is realigned we can use aligned stores. if (isStackAligned) return load ? (HasVLX ? X86::VMOVAPSZ256rm : HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX : X86::VMOVAPSYrm) : (HasVLX ? X86::VMOVAPSZ256mr : HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX : X86::VMOVAPSYmr); else return load ? (HasVLX ? X86::VMOVUPSZ256rm : HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX : X86::VMOVUPSYrm) : (HasVLX ? X86::VMOVUPSZ256mr : HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX : X86::VMOVUPSYmr); case 64: assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass"); assert(STI.hasAVX512() && "Using 512-bit register requires AVX512"); if (isStackAligned) return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr; else return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; } } bool X86InstrInfo::getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg, int64_t &Offset, const TargetRegisterInfo *TRI) const { const MCInstrDesc &Desc = MemOp.getDesc(); int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags); if (MemRefBegin < 0) return false; MemRefBegin += X86II::getOperandBias(Desc); MachineOperand &BaseMO = MemOp.getOperand(MemRefBegin + X86::AddrBaseReg); if (!BaseMO.isReg()) // Can be an MO_FrameIndex return false; BaseReg = BaseMO.getReg(); if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1) return false; if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() != X86::NoRegister) return false; const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp); // Displacement can be symbolic if (!DispMO.isImm()) return false; Offset = DispMO.getImm(); return true; } static unsigned getStoreRegOpcode(unsigned SrcReg, const TargetRegisterClass *RC, bool isStackAligned, const X86Subtarget &STI) { return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false); } static unsigned getLoadRegOpcode(unsigned DestReg, const TargetRegisterClass *RC, bool isStackAligned, const X86Subtarget &STI) { return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true); } void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, bool isKill, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { const MachineFunction &MF = *MBB.getParent(); assert(MF.getFrameInfo().getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && "Stack slot too small for store"); unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16); bool isAligned = (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) || RI.canRealignStack(MF); unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); DebugLoc DL = MBB.findDebugLoc(MI); addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx) .addReg(SrcReg, getKillRegState(isKill)); } void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill, SmallVectorImpl<MachineOperand> &Addr, const TargetRegisterClass *RC, MachineInstr::mmo_iterator MMOBegin, MachineInstr::mmo_iterator MMOEnd, SmallVectorImpl<MachineInstr*> &NewMIs) const { const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= Alignment; unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); DebugLoc DL; MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); for (unsigned i = 0, e = Addr.size(); i != e; ++i) MIB.add(Addr[i]); MIB.addReg(SrcReg, getKillRegState(isKill)); (*MIB).setMemRefs(MMOBegin, MMOEnd); NewMIs.push_back(MIB); } void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { const MachineFunction &MF = *MBB.getParent(); unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16); bool isAligned = (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) || RI.canRealignStack(MF); unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); DebugLoc DL = MBB.findDebugLoc(MI); addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx); } void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, SmallVectorImpl<MachineOperand> &Addr, const TargetRegisterClass *RC, MachineInstr::mmo_iterator MMOBegin, MachineInstr::mmo_iterator MMOEnd, SmallVectorImpl<MachineInstr*> &NewMIs) const { const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= Alignment; unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); DebugLoc DL; MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg); for (unsigned i = 0, e = Addr.size(); i != e; ++i) MIB.add(Addr[i]); (*MIB).setMemRefs(MMOBegin, MMOEnd); NewMIs.push_back(MIB); } bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, unsigned &SrcReg2, int &CmpMask, int &CmpValue) const { switch (MI.getOpcode()) { default: break; case X86::CMP64ri32: case X86::CMP64ri8: case X86::CMP32ri: case X86::CMP32ri8: case X86::CMP16ri: case X86::CMP16ri8: case X86::CMP8ri: SrcReg = MI.getOperand(0).getReg(); SrcReg2 = 0; if (MI.getOperand(1).isImm()) { CmpMask = ~0; CmpValue = MI.getOperand(1).getImm(); } else { CmpMask = CmpValue = 0; } return true; // A SUB can be used to perform comparison. case X86::SUB64rm: case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm: SrcReg = MI.getOperand(1).getReg(); SrcReg2 = 0; CmpMask = 0; CmpValue = 0; return true; case X86::SUB64rr: case X86::SUB32rr: case X86::SUB16rr: case X86::SUB8rr: SrcReg = MI.getOperand(1).getReg(); SrcReg2 = MI.getOperand(2).getReg(); CmpMask = 0; CmpValue = 0; return true; case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri: case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8: case X86::SUB8ri: SrcReg = MI.getOperand(1).getReg(); SrcReg2 = 0; if (MI.getOperand(2).isImm()) { CmpMask = ~0; CmpValue = MI.getOperand(2).getImm(); } else { CmpMask = CmpValue = 0; } return true; case X86::CMP64rr: case X86::CMP32rr: case X86::CMP16rr: case X86::CMP8rr: SrcReg = MI.getOperand(0).getReg(); SrcReg2 = MI.getOperand(1).getReg(); CmpMask = 0; CmpValue = 0; return true; case X86::TEST8rr: case X86::TEST16rr: case X86::TEST32rr: case X86::TEST64rr: SrcReg = MI.getOperand(0).getReg(); if (MI.getOperand(1).getReg() != SrcReg) return false; // Compare against zero. SrcReg2 = 0; CmpMask = ~0; CmpValue = 0; return true; } return false; } /// Check whether the first instruction, whose only /// purpose is to update flags, can be made redundant. /// CMPrr can be made redundant by SUBrr if the operands are the same. /// This function can be extended later on. /// SrcReg, SrcRegs: register operands for FlagI. /// ImmValue: immediate for FlagI if it takes an immediate. inline static bool isRedundantFlagInstr(MachineInstr &FlagI, unsigned SrcReg, unsigned SrcReg2, int ImmMask, int ImmValue, MachineInstr &OI) { if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) || (FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) || (FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) || (FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) && ((OI.getOperand(1).getReg() == SrcReg && OI.getOperand(2).getReg() == SrcReg2) || (OI.getOperand(1).getReg() == SrcReg2 && OI.getOperand(2).getReg() == SrcReg))) return true; if (ImmMask != 0 && ((FlagI.getOpcode() == X86::CMP64ri32 && OI.getOpcode() == X86::SUB64ri32) || (FlagI.getOpcode() == X86::CMP64ri8 && OI.getOpcode() == X86::SUB64ri8) || (FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) || (FlagI.getOpcode() == X86::CMP32ri8 && OI.getOpcode() == X86::SUB32ri8) || (FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) || (FlagI.getOpcode() == X86::CMP16ri8 && OI.getOpcode() == X86::SUB16ri8) || (FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) && OI.getOperand(1).getReg() == SrcReg && OI.getOperand(2).getImm() == ImmValue) return true; return false; } /// Check whether the definition can be converted /// to remove a comparison against zero. inline static bool isDefConvertible(MachineInstr &MI) { switch (MI.getOpcode()) { default: return false; // The shift instructions only modify ZF if their shift count is non-zero. // N.B.: The processor truncates the shift count depending on the encoding. case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri: case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri: return getTruncatedShiftCount(MI, 2) != 0; // Some left shift instructions can be turned into LEA instructions but only // if their flags aren't used. Avoid transforming such instructions. case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{ unsigned ShAmt = getTruncatedShiftCount(MI, 2); if (isTruncatedShiftCountForLEA(ShAmt)) return false; return ShAmt != 0; } case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8: case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8: return getTruncatedShiftCount(MI, 3) != 0; case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri: case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8: case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr: case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm: case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm: case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r: case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri: case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8: case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr: case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm: case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm: case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r: case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri: case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8: case X86::AND8ri: case X86::AND64rr: case X86::AND32rr: case X86::AND16rr: case X86::AND8rr: case X86::AND64rm: case X86::AND32rm: case X86::AND16rm: case X86::AND8rm: case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri: case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8: case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr: case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm: case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm: case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri: case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8: case X86::OR8ri: case X86::OR64rr: case X86::OR32rr: case X86::OR16rr: case X86::OR8rr: case X86::OR64rm: case X86::OR32rm: case X86::OR16rm: case X86::OR8rm: case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri: case X86::ADC32ri8: case X86::ADC16ri: case X86::ADC16ri8: case X86::ADC8ri: case X86::ADC64rr: case X86::ADC32rr: case X86::ADC16rr: case X86::ADC8rr: case X86::ADC64rm: case X86::ADC32rm: case X86::ADC16rm: case X86::ADC8rm: case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri: case X86::SBB32ri8: case X86::SBB16ri: case X86::SBB16ri8: case X86::SBB8ri: case X86::SBB64rr: case X86::SBB32rr: case X86::SBB16rr: case X86::SBB8rr: case X86::SBB64rm: case X86::SBB32rm: case X86::SBB16rm: case X86::SBB8rm: case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r: case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1: case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1: case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1: case X86::ANDN32rr: case X86::ANDN32rm: case X86::ANDN64rr: case X86::ANDN64rm: case X86::BEXTR32rr: case X86::BEXTR64rr: case X86::BEXTR32rm: case X86::BEXTR64rm: case X86::BLSI32rr: case X86::BLSI32rm: case X86::BLSI64rr: case X86::BLSI64rm: case X86::BLSMSK32rr:case X86::BLSMSK32rm: case X86::BLSMSK64rr:case X86::BLSMSK64rm: case X86::BLSR32rr: case X86::BLSR32rm: case X86::BLSR64rr: case X86::BLSR64rm: case X86::BZHI32rr: case X86::BZHI32rm: case X86::BZHI64rr: case X86::BZHI64rm: case X86::LZCNT16rr: case X86::LZCNT16rm: case X86::LZCNT32rr: case X86::LZCNT32rm: case X86::LZCNT64rr: case X86::LZCNT64rm: case X86::POPCNT16rr:case X86::POPCNT16rm: case X86::POPCNT32rr:case X86::POPCNT32rm: case X86::POPCNT64rr:case X86::POPCNT64rm: case X86::TZCNT16rr: case X86::TZCNT16rm: case X86::TZCNT32rr: case X86::TZCNT32rm: case X86::TZCNT64rr: case X86::TZCNT64rm: case X86::BEXTRI32ri: case X86::BEXTRI32mi: case X86::BEXTRI64ri: case X86::BEXTRI64mi: case X86::BLCFILL32rr: case X86::BLCFILL32rm: case X86::BLCFILL64rr: case X86::BLCFILL64rm: case X86::BLCI32rr: case X86::BLCI32rm: case X86::BLCI64rr: case X86::BLCI64rm: case X86::BLCIC32rr: case X86::BLCIC32rm: case X86::BLCIC64rr: case X86::BLCIC64rm: case X86::BLCMSK32rr: case X86::BLCMSK32rm: case X86::BLCMSK64rr: case X86::BLCMSK64rm: case X86::BLCS32rr: case X86::BLCS32rm: case X86::BLCS64rr: case X86::BLCS64rm: case X86::BLSFILL32rr: case X86::BLSFILL32rm: case X86::BLSFILL64rr: case X86::BLSFILL64rm: case X86::BLSIC32rr: case X86::BLSIC32rm: case X86::BLSIC64rr: case X86::BLSIC64rm: return true; } } /// Check whether the use can be converted to remove a comparison against zero. static X86::CondCode isUseDefConvertible(MachineInstr &MI) { switch (MI.getOpcode()) { default: return X86::COND_INVALID; case X86::LZCNT16rr: case X86::LZCNT16rm: case X86::LZCNT32rr: case X86::LZCNT32rm: case X86::LZCNT64rr: case X86::LZCNT64rm: return X86::COND_B; case X86::POPCNT16rr:case X86::POPCNT16rm: case X86::POPCNT32rr:case X86::POPCNT32rm: case X86::POPCNT64rr:case X86::POPCNT64rm: return X86::COND_E; case X86::TZCNT16rr: case X86::TZCNT16rm: case X86::TZCNT32rr: case X86::TZCNT32rm: case X86::TZCNT64rr: case X86::TZCNT64rm: return X86::COND_B; case X86::BSF16rr: case X86::BSF16rm: case X86::BSF32rr: case X86::BSF32rm: case X86::BSF64rr: case X86::BSF64rm: return X86::COND_E; } } /// Check if there exists an earlier instruction that /// operates on the same source operands and sets flags in the same way as /// Compare; remove Compare if possible. bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask, int CmpValue, const MachineRegisterInfo *MRI) const { // Check whether we can replace SUB with CMP. unsigned NewOpcode = 0; switch (CmpInstr.getOpcode()) { default: break; case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri: case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8: case X86::SUB8ri: case X86::SUB64rm: case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm: case X86::SUB64rr: case X86::SUB32rr: case X86::SUB16rr: case X86::SUB8rr: { if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg())) return false; // There is no use of the destination register, we can replace SUB with CMP. switch (CmpInstr.getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::SUB64rm: NewOpcode = X86::CMP64rm; break; case X86::SUB32rm: NewOpcode = X86::CMP32rm; break; case X86::SUB16rm: NewOpcode = X86::CMP16rm; break; case X86::SUB8rm: NewOpcode = X86::CMP8rm; break; case X86::SUB64rr: NewOpcode = X86::CMP64rr; break; case X86::SUB32rr: NewOpcode = X86::CMP32rr; break; case X86::SUB16rr: NewOpcode = X86::CMP16rr; break; case X86::SUB8rr: NewOpcode = X86::CMP8rr; break; case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break; case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break; case X86::SUB32ri: NewOpcode = X86::CMP32ri; break; case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break; case X86::SUB16ri: NewOpcode = X86::CMP16ri; break; case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break; case X86::SUB8ri: NewOpcode = X86::CMP8ri; break; } CmpInstr.setDesc(get(NewOpcode)); CmpInstr.RemoveOperand(0); // Fall through to optimize Cmp if Cmp is CMPrr or CMPri. if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm || NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm) return false; } } // Get the unique definition of SrcReg. MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); if (!MI) return false; // CmpInstr is the first instruction of the BB. MachineBasicBlock::iterator I = CmpInstr, Def = MI; // If we are comparing against zero, check whether we can use MI to update // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize. bool IsCmpZero = (CmpMask != 0 && CmpValue == 0); if (IsCmpZero && MI->getParent() != CmpInstr.getParent()) return false; // If we have a use of the source register between the def and our compare // instruction we can eliminate the compare iff the use sets EFLAGS in the // right way. bool ShouldUpdateCC = false; X86::CondCode NewCC = X86::COND_INVALID; if (IsCmpZero && !isDefConvertible(*MI)) { // Scan forward from the use until we hit the use we're looking for or the // compare instruction. for (MachineBasicBlock::iterator J = MI;; ++J) { // Do we have a convertible instruction? NewCC = isUseDefConvertible(*J); if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() && J->getOperand(1).getReg() == SrcReg) { assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!"); ShouldUpdateCC = true; // Update CC later on. // This is not a def of SrcReg, but still a def of EFLAGS. Keep going // with the new def. Def = J; MI = &*Def; break; } if (J == I) return false; } } // We are searching for an earlier instruction that can make CmpInstr // redundant and that instruction will be saved in Sub. MachineInstr *Sub = nullptr; const TargetRegisterInfo *TRI = &getRegisterInfo(); // We iterate backward, starting from the instruction before CmpInstr and // stop when reaching the definition of a source register or done with the BB. // RI points to the instruction before CmpInstr. // If the definition is in this basic block, RE points to the definition; // otherwise, RE is the rend of the basic block. MachineBasicBlock::reverse_iterator RI = ++I.getReverse(), RE = CmpInstr.getParent() == MI->getParent() ? Def.getReverse() /* points to MI */ : CmpInstr.getParent()->rend(); MachineInstr *Movr0Inst = nullptr; for (; RI != RE; ++RI) { MachineInstr &Instr = *RI; // Check whether CmpInstr can be made redundant by the current instruction. if (!IsCmpZero && isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, CmpValue, Instr)) { Sub = &Instr; break; } if (Instr.modifiesRegister(X86::EFLAGS, TRI) || Instr.readsRegister(X86::EFLAGS, TRI)) { // This instruction modifies or uses EFLAGS. // MOV32r0 etc. are implemented with xor which clobbers condition code. // They are safe to move up, if the definition to EFLAGS is dead and // earlier instructions do not read or write EFLAGS. if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 && Instr.registerDefIsDead(X86::EFLAGS, TRI)) { Movr0Inst = &Instr; continue; } // We can't remove CmpInstr. return false; } } // Return false if no candidates exist. if (!IsCmpZero && !Sub) return false; bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && Sub->getOperand(2).getReg() == SrcReg); // Scan forward from the instruction after CmpInstr for uses of EFLAGS. // It is safe to remove CmpInstr if EFLAGS is redefined or killed. // If we are done with the basic block, we need to check whether EFLAGS is // live-out. bool IsSafe = false; SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate; MachineBasicBlock::iterator E = CmpInstr.getParent()->end(); for (++I; I != E; ++I) { const MachineInstr &Instr = *I; bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI); bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI); // We should check the usage if this instruction uses and updates EFLAGS. if (!UseEFLAGS && ModifyEFLAGS) { // It is safe to remove CmpInstr if EFLAGS is updated again. IsSafe = true; break; } if (!UseEFLAGS && !ModifyEFLAGS) continue; // EFLAGS is used by this instruction. X86::CondCode OldCC = X86::COND_INVALID; bool OpcIsSET = false; if (IsCmpZero || IsSwapped) { // We decode the condition code from opcode. if (Instr.isBranch()) OldCC = X86::getCondFromBranchOpc(Instr.getOpcode()); else { OldCC = X86::getCondFromSETOpc(Instr.getOpcode()); if (OldCC != X86::COND_INVALID) OpcIsSET = true; else OldCC = X86::getCondFromCMovOpc(Instr.getOpcode()); } if (OldCC == X86::COND_INVALID) return false; } X86::CondCode ReplacementCC = X86::COND_INVALID; if (IsCmpZero) { switch (OldCC) { default: break; case X86::COND_A: case X86::COND_AE: case X86::COND_B: case X86::COND_BE: case X86::COND_G: case X86::COND_GE: case X86::COND_L: case X86::COND_LE: case X86::COND_O: case X86::COND_NO: // CF and OF are used, we can't perform this optimization. return false; } // If we're updating the condition code check if we have to reverse the // condition. if (ShouldUpdateCC) switch (OldCC) { default: return false; case X86::COND_E: ReplacementCC = NewCC; break; case X86::COND_NE: ReplacementCC = GetOppositeBranchCondition(NewCC); break; } } else if (IsSwapped) { // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. // We swap the condition code and synthesize the new opcode. ReplacementCC = getSwappedCondition(OldCC); if (ReplacementCC == X86::COND_INVALID) return false; } if ((ShouldUpdateCC || IsSwapped) && ReplacementCC != OldCC) { // Synthesize the new opcode. bool HasMemoryOperand = Instr.hasOneMemOperand(); unsigned NewOpc; if (Instr.isBranch()) NewOpc = GetCondBranchFromCond(ReplacementCC); else if(OpcIsSET) NewOpc = getSETFromCond(ReplacementCC, HasMemoryOperand); else { unsigned DstReg = Instr.getOperand(0).getReg(); const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); NewOpc = getCMovFromCond(ReplacementCC, TRI->getRegSizeInBits(*DstRC)/8, HasMemoryOperand); } // Push the MachineInstr to OpsToUpdate. // If it is safe to remove CmpInstr, the condition code of these // instructions will be modified. OpsToUpdate.push_back(std::make_pair(&*I, NewOpc)); } if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) { // It is safe to remove CmpInstr if EFLAGS is updated again or killed. IsSafe = true; break; } } // If EFLAGS is not killed nor re-defined, we should check whether it is // live-out. If it is live-out, do not optimize. if ((IsCmpZero || IsSwapped) && !IsSafe) { MachineBasicBlock *MBB = CmpInstr.getParent(); for (MachineBasicBlock *Successor : MBB->successors()) if (Successor->isLiveIn(X86::EFLAGS)) return false; } // The instruction to be updated is either Sub or MI. Sub = IsCmpZero ? MI : Sub; // Move Movr0Inst to the appropriate place before Sub. if (Movr0Inst) { // Look backwards until we find a def that doesn't use the current EFLAGS. Def = Sub; MachineBasicBlock::reverse_iterator InsertI = Def.getReverse(), InsertE = Sub->getParent()->rend(); for (; InsertI != InsertE; ++InsertI) { MachineInstr *Instr = &*InsertI; if (!Instr->readsRegister(X86::EFLAGS, TRI) && Instr->modifiesRegister(X86::EFLAGS, TRI)) { Sub->getParent()->remove(Movr0Inst); Instr->getParent()->insert(MachineBasicBlock::iterator(Instr), Movr0Inst); break; } } if (InsertI == InsertE) return false; } // Make sure Sub instruction defines EFLAGS and mark the def live. unsigned i = 0, e = Sub->getNumOperands(); for (; i != e; ++i) { MachineOperand &MO = Sub->getOperand(i); if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) { MO.setIsDead(false); break; } } assert(i != e && "Unable to locate a def EFLAGS operand"); CmpInstr.eraseFromParent(); // Modify the condition code of instructions in OpsToUpdate. for (auto &Op : OpsToUpdate) Op.first->setDesc(get(Op.second)); return true; } /// Try to remove the load by folding it to a register /// operand at the use. We fold the load instructions if load defines a virtual /// register, the virtual register is used once in the same BB, and the /// instructions in-between do not load or store, and have no side effects. MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI, const MachineRegisterInfo *MRI, unsigned &FoldAsLoadDefReg, MachineInstr *&DefMI) const { // Check whether we can move DefMI here. DefMI = MRI->getVRegDef(FoldAsLoadDefReg); assert(DefMI); bool SawStore = false; if (!DefMI->isSafeToMove(nullptr, SawStore)) return nullptr; // Collect information about virtual register operands of MI. SmallVector<unsigned, 1> SrcOperandIds; for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg != FoldAsLoadDefReg) continue; // Do not fold if we have a subreg use or a def. if (MO.getSubReg() || MO.isDef()) return nullptr; SrcOperandIds.push_back(i); } if (SrcOperandIds.empty()) return nullptr; // Check whether we can fold the def into SrcOperandId. if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) { FoldAsLoadDefReg = 0; return FoldMI; } return nullptr; } /// Expand a single-def pseudo instruction to a two-addr /// instruction with two undef reads of the register being defined. /// This is used for mapping: /// %xmm4 = V_SET0 /// to: /// %xmm4 = PXORrr undef %xmm4, undef %xmm4 /// static bool Expand2AddrUndef(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) { assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); unsigned Reg = MIB->getOperand(0).getReg(); MIB->setDesc(Desc); // MachineInstr::addOperand() will insert explicit operands before any // implicit operands. MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); // But we don't trust that. assert(MIB->getOperand(1).getReg() == Reg && MIB->getOperand(2).getReg() == Reg && "Misplaced operand"); return true; } /// Expand a single-def pseudo instruction to a two-addr /// instruction with two %k0 reads. /// This is used for mapping: /// %k4 = K_SET1 /// to: /// %k4 = KXNORrr %k0, %k0 static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc, unsigned Reg) { assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); MIB->setDesc(Desc); MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); return true; } static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, bool MinusOne) { MachineBasicBlock &MBB = *MIB->getParent(); DebugLoc DL = MIB->getDebugLoc(); unsigned Reg = MIB->getOperand(0).getReg(); // Insert the XOR. BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg) .addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef); // Turn the pseudo into an INC or DEC. MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r)); MIB.addReg(Reg); return true; } static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, const X86Subtarget &Subtarget) { MachineBasicBlock &MBB = *MIB->getParent(); DebugLoc DL = MIB->getDebugLoc(); int64_t Imm = MIB->getOperand(1).getImm(); assert(Imm != 0 && "Using push/pop for 0 is not efficient."); MachineBasicBlock::iterator I = MIB.getInstr(); int StackAdjustment; if (Subtarget.is64Bit()) { assert(MIB->getOpcode() == X86::MOV64ImmSExti8 || MIB->getOpcode() == X86::MOV32ImmSExti8); // Can't use push/pop lowering if the function might write to the red zone. X86MachineFunctionInfo *X86FI = MBB.getParent()->getInfo<X86MachineFunctionInfo>(); if (X86FI->getUsesRedZone()) { MIB->setDesc(TII.get(MIB->getOpcode() == X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri)); return true; } // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and // widen the register if necessary. StackAdjustment = 8; BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm); MIB->setDesc(TII.get(X86::POP64r)); MIB->getOperand(0) .setReg(getX86SubSuperRegister(MIB->getOperand(0).getReg(), 64)); } else { assert(MIB->getOpcode() == X86::MOV32ImmSExti8); StackAdjustment = 4; BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm); MIB->setDesc(TII.get(X86::POP32r)); } // Build CFI if necessary. MachineFunction &MF = *MBB.getParent(); const X86FrameLowering *TFL = Subtarget.getFrameLowering(); bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); bool NeedsDwarfCFI = !IsWin64Prologue && (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry()); bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI; if (EmitCFI) { TFL->BuildCFI(MBB, I, DL, MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment)); TFL->BuildCFI(MBB, std::next(I), DL, MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment)); } return true; } // LoadStackGuard has so far only been implemented for 64-bit MachO. Different // code sequence is needed for other targets. static void expandLoadStackGuard(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) { MachineBasicBlock &MBB = *MIB->getParent(); DebugLoc DL = MIB->getDebugLoc(); unsigned Reg = MIB->getOperand(0).getReg(); const GlobalValue *GV = cast<GlobalValue>((*MIB->memoperands_begin())->getValue()); auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant; MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, 8); MachineBasicBlock::iterator I = MIB.getInstr(); BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1) .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0) .addMemOperand(MMO); MIB->setDebugLoc(DL); MIB->setDesc(TII.get(X86::MOV64rm)); MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0); } static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) { MachineBasicBlock &MBB = *MIB->getParent(); MachineFunction &MF = *MBB.getParent(); const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>(); const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); unsigned XorOp = MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr; MIB->setDesc(TII.get(XorOp)); MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef); return true; } // This is used to handle spills for 128/256-bit registers when we have AVX512, // but not VLX. If it uses an extended register we need to use an instruction // that loads the lower 128/256-bit, but is available with only AVX512F. static bool expandNOVLXLoad(MachineInstrBuilder &MIB, const TargetRegisterInfo *TRI, const MCInstrDesc &LoadDesc, const MCInstrDesc &BroadcastDesc, unsigned SubIdx) { unsigned DestReg = MIB->getOperand(0).getReg(); // Check if DestReg is XMM16-31 or YMM16-31. if (TRI->getEncodingValue(DestReg) < 16) { // We can use a normal VEX encoded load. MIB->setDesc(LoadDesc); } else { // Use a 128/256-bit VBROADCAST instruction. MIB->setDesc(BroadcastDesc); // Change the destination to a 512-bit register. DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass); MIB->getOperand(0).setReg(DestReg); } return true; } // This is used to handle spills for 128/256-bit registers when we have AVX512, // but not VLX. If it uses an extended register we need to use an instruction // that stores the lower 128/256-bit, but is available with only AVX512F. static bool expandNOVLXStore(MachineInstrBuilder &MIB, const TargetRegisterInfo *TRI, const MCInstrDesc &StoreDesc, const MCInstrDesc &ExtractDesc, unsigned SubIdx) { unsigned SrcReg = MIB->getOperand(X86::AddrNumOperands).getReg(); // Check if DestReg is XMM16-31 or YMM16-31. if (TRI->getEncodingValue(SrcReg) < 16) { // We can use a normal VEX encoded store. MIB->setDesc(StoreDesc); } else { // Use a VEXTRACTF instruction. MIB->setDesc(ExtractDesc); // Change the destination to a 512-bit register. SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass); MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg); MIB.addImm(0x0); // Append immediate to extract from the lower bits. } return true; } bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const { bool HasAVX = Subtarget.hasAVX(); MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); switch (MI.getOpcode()) { case X86::MOV32r0: return Expand2AddrUndef(MIB, get(X86::XOR32rr)); case X86::MOV32r1: return expandMOV32r1(MIB, *this, /*MinusOne=*/ false); case X86::MOV32r_1: return expandMOV32r1(MIB, *this, /*MinusOne=*/ true); case X86::MOV32ImmSExti8: case X86::MOV64ImmSExti8: return ExpandMOVImmSExti8(MIB, *this, Subtarget); case X86::SETB_C8r: return Expand2AddrUndef(MIB, get(X86::SBB8rr)); case X86::SETB_C16r: return Expand2AddrUndef(MIB, get(X86::SBB16rr)); case X86::SETB_C32r: return Expand2AddrUndef(MIB, get(X86::SBB32rr)); case X86::SETB_C64r: return Expand2AddrUndef(MIB, get(X86::SBB64rr)); case X86::MMX_SET0: return Expand2AddrUndef(MIB, get(X86::MMX_PXORirr)); case X86::V_SET0: case X86::FsFLD0SS: case X86::FsFLD0SD: return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr)); case X86::AVX_SET0: { assert(HasAVX && "AVX not supported"); const TargetRegisterInfo *TRI = &getRegisterInfo(); unsigned SrcReg = MIB->getOperand(0).getReg(); unsigned XReg = TRI->getSubReg(SrcReg, X86::sub_xmm); MIB->getOperand(0).setReg(XReg); Expand2AddrUndef(MIB, get(X86::VXORPSrr)); MIB.addReg(SrcReg, RegState::ImplicitDefine); return true; } case X86::AVX512_128_SET0: case X86::AVX512_FsFLD0SS: case X86::AVX512_FsFLD0SD: { bool HasVLX = Subtarget.hasVLX(); unsigned SrcReg = MIB->getOperand(0).getReg(); const TargetRegisterInfo *TRI = &getRegisterInfo(); if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) return Expand2AddrUndef(MIB, get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); // Extended register without VLX. Use a larger XOR. SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass); MIB->getOperand(0).setReg(SrcReg); return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); } case X86::AVX512_256_SET0: case X86::AVX512_512_SET0: { bool HasVLX = Subtarget.hasVLX(); unsigned SrcReg = MIB->getOperand(0).getReg(); const TargetRegisterInfo *TRI = &getRegisterInfo(); if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) { unsigned XReg = TRI->getSubReg(SrcReg, X86::sub_xmm); MIB->getOperand(0).setReg(XReg); Expand2AddrUndef(MIB, get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); MIB.addReg(SrcReg, RegState::ImplicitDefine); return true; } return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); } case X86::V_SETALLONES: return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr)); case X86::AVX2_SETALLONES: return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr)); case X86::AVX1_SETALLONES: { unsigned Reg = MIB->getOperand(0).getReg(); // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS. MIB->setDesc(get(X86::VCMPPSYrri)); MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf); return true; } case X86::AVX512_512_SETALLONES: { unsigned Reg = MIB->getOperand(0).getReg(); MIB->setDesc(get(X86::VPTERNLOGDZrri)); // VPTERNLOGD needs 3 register inputs and an immediate. // 0xff will return 1s for any input. MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef).addImm(0xff); return true; } case X86::AVX512_512_SEXT_MASK_32: case X86::AVX512_512_SEXT_MASK_64: { unsigned Reg = MIB->getOperand(0).getReg(); unsigned MaskReg = MIB->getOperand(1).getReg(); unsigned MaskState = getRegState(MIB->getOperand(1)); unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ? X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz; MI.RemoveOperand(1); MIB->setDesc(get(Opc)); // VPTERNLOG needs 3 register inputs and an immediate. // 0xff will return 1s for any input. MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState) .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff); return true; } case X86::VMOVAPSZ128rm_NOVLX: return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm), get(X86::VBROADCASTF32X4rm), X86::sub_xmm); case X86::VMOVUPSZ128rm_NOVLX: return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm), get(X86::VBROADCASTF32X4rm), X86::sub_xmm); case X86::VMOVAPSZ256rm_NOVLX: return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm), get(X86::VBROADCASTF64X4rm), X86::sub_ymm); case X86::VMOVUPSZ256rm_NOVLX: return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm), get(X86::VBROADCASTF64X4rm), X86::sub_ymm); case X86::VMOVAPSZ128mr_NOVLX: return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr), get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm); case X86::VMOVUPSZ128mr_NOVLX: return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr), get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm); case X86::VMOVAPSZ256mr_NOVLX: return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr), get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm); case X86::VMOVUPSZ256mr_NOVLX: return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr), get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm); case X86::MOV32ri64: MI.setDesc(get(X86::MOV32ri)); return true; // KNL does not recognize dependency-breaking idioms for mask registers, // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1. // Using %k0 as the undef input register is a performance heuristic based // on the assumption that %k0 is used less frequently than the other mask // registers, since it is not usable as a write mask. // FIXME: A more advanced approach would be to choose the best input mask // register based on context. case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0); case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0); case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0); case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0); case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0); case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0); case TargetOpcode::LOAD_STACK_GUARD: expandLoadStackGuard(MIB, *this); return true; case X86::XOR64_FP: case X86::XOR32_FP: return expandXorFP(MIB, *this); } return false; } /// Return true for all instructions that only update /// the first 32 or 64-bits of the destination register and leave the rest /// unmodified. This can be used to avoid folding loads if the instructions /// only update part of the destination register, and the non-updated part is /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these /// instructions breaks the partial register dependency and it can improve /// performance. e.g.: /// /// movss (%rdi), %xmm0 /// cvtss2sd %xmm0, %xmm0 /// /// Instead of /// cvtss2sd (%rdi), %xmm0 /// /// FIXME: This should be turned into a TSFlags. /// static bool hasPartialRegUpdate(unsigned Opcode, const X86Subtarget &Subtarget) { switch (Opcode) { case X86::CVTSI2SSrr: case X86::CVTSI2SSrm: case X86::CVTSI642SSrr: case X86::CVTSI642SSrm: case X86::CVTSI2SDrr: case X86::CVTSI2SDrm: case X86::CVTSI642SDrr: case X86::CVTSI642SDrm: case X86::CVTSD2SSrr: case X86::CVTSD2SSrm: case X86::CVTSS2SDrr: case X86::CVTSS2SDrm: case X86::MOVHPDrm: case X86::MOVHPSrm: case X86::MOVLPDrm: case X86::MOVLPSrm: case X86::RCPSSr: case X86::RCPSSm: case X86::RCPSSr_Int: case X86::RCPSSm_Int: case X86::ROUNDSDr: case X86::ROUNDSDm: case X86::ROUNDSSr: case X86::ROUNDSSm: case X86::RSQRTSSr: case X86::RSQRTSSm: case X86::RSQRTSSr_Int: case X86::RSQRTSSm_Int: case X86::SQRTSSr: case X86::SQRTSSm: case X86::SQRTSSr_Int: case X86::SQRTSSm_Int: case X86::SQRTSDr: case X86::SQRTSDm: case X86::SQRTSDr_Int: case X86::SQRTSDm_Int: return true; // GPR case X86::POPCNT32rm: case X86::POPCNT32rr: case X86::POPCNT64rm: case X86::POPCNT64rr: return Subtarget.hasPOPCNTFalseDeps(); case X86::LZCNT32rm: case X86::LZCNT32rr: case X86::LZCNT64rm: case X86::LZCNT64rr: case X86::TZCNT32rm: case X86::TZCNT32rr: case X86::TZCNT64rm: case X86::TZCNT64rr: return Subtarget.hasLZCNTFalseDeps(); } return false; } /// Inform the BreakFalseDeps pass how many idle /// instructions we would like before a partial register update. unsigned X86InstrInfo::getPartialRegUpdateClearance( const MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget)) return 0; // If MI is marked as reading Reg, the partial register update is wanted. const MachineOperand &MO = MI.getOperand(0); unsigned Reg = MO.getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) { if (MO.readsReg() || MI.readsVirtualRegister(Reg)) return 0; } else { if (MI.readsRegister(Reg, TRI)) return 0; } // If any instructions in the clearance range are reading Reg, insert a // dependency breaking instruction, which is inexpensive and is likely to // be hidden in other instruction's cycles. return PartialRegUpdateClearance; } // Return true for any instruction the copies the high bits of the first source // operand into the unused high bits of the destination operand. static bool hasUndefRegUpdate(unsigned Opcode) { switch (Opcode) { case X86::VCVTSI2SSrr: case X86::VCVTSI2SSrm: case X86::VCVTSI2SSrr_Int: case X86::VCVTSI2SSrm_Int: case X86::VCVTSI642SSrr: case X86::VCVTSI642SSrm: case X86::VCVTSI642SSrr_Int: case X86::VCVTSI642SSrm_Int: case X86::VCVTSI2SDrr: case X86::VCVTSI2SDrm: case X86::VCVTSI2SDrr_Int: case X86::VCVTSI2SDrm_Int: case X86::VCVTSI642SDrr: case X86::VCVTSI642SDrm: case X86::VCVTSI642SDrr_Int: case X86::VCVTSI642SDrm_Int: case X86::VCVTSD2SSrr: case X86::VCVTSD2SSrm: case X86::VCVTSD2SSrr_Int: case X86::VCVTSD2SSrm_Int: case X86::VCVTSS2SDrr: case X86::VCVTSS2SDrm: case X86::VCVTSS2SDrr_Int: case X86::VCVTSS2SDrm_Int: case X86::VRCPSSr: case X86::VRCPSSr_Int: case X86::VRCPSSm: case X86::VRCPSSm_Int: case X86::VROUNDSDr: case X86::VROUNDSDm: case X86::VROUNDSDr_Int: case X86::VROUNDSDm_Int: case X86::VROUNDSSr: case X86::VROUNDSSm: case X86::VROUNDSSr_Int: case X86::VROUNDSSm_Int: case X86::VRSQRTSSr: case X86::VRSQRTSSr_Int: case X86::VRSQRTSSm: case X86::VRSQRTSSm_Int: case X86::VSQRTSSr: case X86::VSQRTSSr_Int: case X86::VSQRTSSm: case X86::VSQRTSSm_Int: case X86::VSQRTSDr: case X86::VSQRTSDr_Int: case X86::VSQRTSDm: case X86::VSQRTSDm_Int: // AVX-512 case X86::VCVTSI2SSZrr: case X86::VCVTSI2SSZrm: case X86::VCVTSI2SSZrr_Int: case X86::VCVTSI2SSZrrb_Int: case X86::VCVTSI2SSZrm_Int: case X86::VCVTSI642SSZrr: case X86::VCVTSI642SSZrm: case X86::VCVTSI642SSZrr_Int: case X86::VCVTSI642SSZrrb_Int: case X86::VCVTSI642SSZrm_Int: case X86::VCVTSI2SDZrr: case X86::VCVTSI2SDZrm: case X86::VCVTSI2SDZrr_Int: case X86::VCVTSI2SDZrrb_Int: case X86::VCVTSI2SDZrm_Int: case X86::VCVTSI642SDZrr: case X86::VCVTSI642SDZrm: case X86::VCVTSI642SDZrr_Int: case X86::VCVTSI642SDZrrb_Int: case X86::VCVTSI642SDZrm_Int: case X86::VCVTUSI2SSZrr: case X86::VCVTUSI2SSZrm: case X86::VCVTUSI2SSZrr_Int: case X86::VCVTUSI2SSZrrb_Int: case X86::VCVTUSI2SSZrm_Int: case X86::VCVTUSI642SSZrr: case X86::VCVTUSI642SSZrm: case X86::VCVTUSI642SSZrr_Int: case X86::VCVTUSI642SSZrrb_Int: case X86::VCVTUSI642SSZrm_Int: case X86::VCVTUSI2SDZrr: case X86::VCVTUSI2SDZrm: case X86::VCVTUSI2SDZrr_Int: case X86::VCVTUSI2SDZrm_Int: case X86::VCVTUSI642SDZrr: case X86::VCVTUSI642SDZrm: case X86::VCVTUSI642SDZrr_Int: case X86::VCVTUSI642SDZrrb_Int: case X86::VCVTUSI642SDZrm_Int: case X86::VCVTSD2SSZrr: case X86::VCVTSD2SSZrr_Int: case X86::VCVTSD2SSZrrb_Int: case X86::VCVTSD2SSZrm: case X86::VCVTSD2SSZrm_Int: case X86::VCVTSS2SDZrr: case X86::VCVTSS2SDZrr_Int: case X86::VCVTSS2SDZrrb_Int: case X86::VCVTSS2SDZrm: case X86::VCVTSS2SDZrm_Int: case X86::VGETEXPSDZr: case X86::VGETEXPSDZrb: case X86::VGETEXPSDZm: case X86::VGETEXPSSZr: case X86::VGETEXPSSZrb: case X86::VGETEXPSSZm: case X86::VGETMANTSDZrri: case X86::VGETMANTSDZrrib: case X86::VGETMANTSDZrmi: case X86::VGETMANTSSZrri: case X86::VGETMANTSSZrrib: case X86::VGETMANTSSZrmi: case X86::VRNDSCALESDZr: case X86::VRNDSCALESDZr_Int: case X86::VRNDSCALESDZrb_Int: case X86::VRNDSCALESDZm: case X86::VRNDSCALESDZm_Int: case X86::VRNDSCALESSZr: case X86::VRNDSCALESSZr_Int: case X86::VRNDSCALESSZrb_Int: case X86::VRNDSCALESSZm: case X86::VRNDSCALESSZm_Int: case X86::VRCP14SDZrr: case X86::VRCP14SDZrm: case X86::VRCP14SSZrr: case X86::VRCP14SSZrm: case X86::VRCP28SDZr: case X86::VRCP28SDZrb: case X86::VRCP28SDZm: case X86::VRCP28SSZr: case X86::VRCP28SSZrb: case X86::VRCP28SSZm: case X86::VREDUCESSZrmi: case X86::VREDUCESSZrri: case X86::VREDUCESSZrrib: case X86::VRSQRT14SDZrr: case X86::VRSQRT14SDZrm: case X86::VRSQRT14SSZrr: case X86::VRSQRT14SSZrm: case X86::VRSQRT28SDZr: case X86::VRSQRT28SDZrb: case X86::VRSQRT28SDZm: case X86::VRSQRT28SSZr: case X86::VRSQRT28SSZrb: case X86::VRSQRT28SSZm: case X86::VSQRTSSZr: case X86::VSQRTSSZr_Int: case X86::VSQRTSSZrb_Int: case X86::VSQRTSSZm: case X86::VSQRTSSZm_Int: case X86::VSQRTSDZr: case X86::VSQRTSDZr_Int: case X86::VSQRTSDZrb_Int: case X86::VSQRTSDZm: case X86::VSQRTSDZm_Int: return true; } return false; } /// Inform the BreakFalseDeps pass how many idle instructions we would like /// before certain undef register reads. /// /// This catches the VCVTSI2SD family of instructions: /// /// vcvtsi2sdq %rax, undef %xmm0, %xmm14 /// /// We should to be careful *not* to catch VXOR idioms which are presumably /// handled specially in the pipeline: /// /// vxorps undef %xmm1, undef %xmm1, %xmm1 /// /// Like getPartialRegUpdateClearance, this makes a strong assumption that the /// high bits that are passed-through are not live. unsigned X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum, const TargetRegisterInfo *TRI) const { if (!hasUndefRegUpdate(MI.getOpcode())) return 0; // Set the OpNum parameter to the first source operand. OpNum = 1; const MachineOperand &MO = MI.getOperand(OpNum); if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { return UndefRegClearance; } return 0; } void X86InstrInfo::breakPartialRegDependency( MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { unsigned Reg = MI.getOperand(OpNum).getReg(); // If MI kills this register, the false dependence is already broken. if (MI.killsRegister(Reg, TRI)) return; if (X86::VR128RegClass.contains(Reg)) { // These instructions are all floating point domain, so xorps is the best // choice. unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr; BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg) .addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef); MI.addRegisterKilled(Reg, TRI, true); } else if (X86::VR256RegClass.contains(Reg)) { // Use vxorps to clear the full ymm register. // It wants to read and write the xmm sub-register. unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm); BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg) .addReg(XReg, RegState::Undef) .addReg(XReg, RegState::Undef) .addReg(Reg, RegState::ImplicitDefine); MI.addRegisterKilled(Reg, TRI, true); } else if (X86::GR64RegClass.contains(Reg)) { // Using XOR32rr because it has shorter encoding and zeros up the upper bits // as well. unsigned XReg = TRI->getSubReg(Reg, X86::sub_32bit); BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg) .addReg(XReg, RegState::Undef) .addReg(XReg, RegState::Undef) .addReg(Reg, RegState::ImplicitDefine); MI.addRegisterKilled(Reg, TRI, true); } else if (X86::GR32RegClass.contains(Reg)) { BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg) .addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef); MI.addRegisterKilled(Reg, TRI, true); } } static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs, int PtrOffset = 0) { unsigned NumAddrOps = MOs.size(); if (NumAddrOps < 4) { // FrameIndex only - add an immediate offset (whether its zero or not). for (unsigned i = 0; i != NumAddrOps; ++i) MIB.add(MOs[i]); addOffset(MIB, PtrOffset); } else { // General Memory Addressing - we need to add any offset to an existing // offset. assert(MOs.size() == 5 && "Unexpected memory operand list length"); for (unsigned i = 0; i != NumAddrOps; ++i) { const MachineOperand &MO = MOs[i]; if (i == 3 && PtrOffset != 0) { MIB.addDisp(MO, PtrOffset); } else { MIB.add(MO); } } } } static void updateOperandRegConstraints(MachineFunction &MF, MachineInstr &NewMI, const TargetInstrInfo &TII) { MachineRegisterInfo &MRI = MF.getRegInfo(); const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) { MachineOperand &MO = NewMI.getOperand(Idx); // We only need to update constraints on virtual register operands. if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!TRI.isVirtualRegister(Reg)) continue; auto *NewRC = MRI.constrainRegClass( Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF)); if (!NewRC) { LLVM_DEBUG( dbgs() << "WARNING: Unable to update register constraint for operand " << Idx << " of instruction:\n"; NewMI.dump(); dbgs() << "\n"); } } } static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, MachineInstr &MI, const TargetInstrInfo &TII) { // Create the base instruction with the memory operand as the first part. // Omit the implicit operands, something BuildMI can't do. MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); MachineInstrBuilder MIB(MF, NewMI); addOperands(MIB, MOs); // Loop over the rest of the ri operands, converting them over. unsigned NumOps = MI.getDesc().getNumOperands() - 2; for (unsigned i = 0; i != NumOps; ++i) { MachineOperand &MO = MI.getOperand(i + 2); MIB.add(MO); } for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); MIB.add(MO); } updateOperandRegConstraints(MF, *NewMI, TII); MachineBasicBlock *MBB = InsertPt->getParent(); MBB->insert(InsertPt, NewMI); return MIB; } static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode, unsigned OpNo, ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, MachineInstr &MI, const TargetInstrInfo &TII, int PtrOffset = 0) { // Omit the implicit operands, something BuildMI can't do. MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); MachineInstrBuilder MIB(MF, NewMI); for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (i == OpNo) { assert(MO.isReg() && "Expected to fold into reg operand!"); addOperands(MIB, MOs, PtrOffset); } else { MIB.add(MO); } } updateOperandRegConstraints(MF, *NewMI, TII); MachineBasicBlock *MBB = InsertPt->getParent(); MBB->insert(InsertPt, NewMI); return MIB; } static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, MachineInstr &MI) { MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), TII.get(Opcode)); addOperands(MIB, MOs); return MIB.addImm(0); } MachineInstr *X86InstrInfo::foldMemoryOperandCustom( MachineFunction &MF, MachineInstr &MI, unsigned OpNum, ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, unsigned Size, unsigned Align) const { switch (MI.getOpcode()) { case X86::INSERTPSrr: case X86::VINSERTPSrr: case X86::VINSERTPSZrr: // Attempt to convert the load of inserted vector into a fold load // of a single float. if (OpNum == 2) { unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); unsigned ZMask = Imm & 15; unsigned DstIdx = (Imm >> 4) & 3; unsigned SrcIdx = (Imm >> 6) & 3; const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; if (Size <= RCSize && 4 <= Align) { int PtrOffset = SrcIdx * 4; unsigned NewImm = (DstIdx << 4) | ZMask; unsigned NewOpCode = (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm : (MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm : X86::INSERTPSrm; MachineInstr *NewMI = FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset); NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm); return NewMI; } } break; case X86::MOVHLPSrr: case X86::VMOVHLPSrr: case X86::VMOVHLPSZrr: // Move the upper 64-bits of the second operand to the lower 64-bits. // To fold the load, adjust the pointer to the upper and use (V)MOVLPS. // TODO: In most cases AVX doesn't have a 8-byte alignment requirement. if (OpNum == 2) { const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; if (Size <= RCSize && 8 <= Align) { unsigned NewOpCode = (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm : (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm : X86::MOVLPSrm; MachineInstr *NewMI = FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8); return NewMI; } } break; }; return nullptr; } static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF, MachineInstr &MI) { if (MF.getFunction().optForSize() || !hasUndefRegUpdate(MI.getOpcode()) || !MI.getOperand(1).isReg()) return false; // The are two cases we need to handle depending on where in the pipeline // the folding attempt is being made. // -Register has the undef flag set. // -Register is produced by the IMPLICIT_DEF instruction. if (MI.getOperand(1).isUndef()) return true; MachineRegisterInfo &RegInfo = MF.getRegInfo(); MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg()); return VRegDef && VRegDef->isImplicitDef(); } MachineInstr *X86InstrInfo::foldMemoryOperandImpl( MachineFunction &MF, MachineInstr &MI, unsigned OpNum, ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, unsigned Size, unsigned Align, bool AllowCommute) const { bool isSlowTwoMemOps = Subtarget.slowTwoMemOps(); bool isTwoAddrFold = false; // For CPUs that favor the register form of a call or push, // do not fold loads into calls or pushes, unless optimizing for size // aggressively. if (isSlowTwoMemOps && !MF.getFunction().optForMinSize() && (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r || MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r || MI.getOpcode() == X86::PUSH64r)) return nullptr; // Avoid partial and undef register update stalls unless optimizing for size. if (!MF.getFunction().optForSize() && (hasPartialRegUpdate(MI.getOpcode(), Subtarget) || shouldPreventUndefRegUpdateMemFold(MF, MI))) return nullptr; unsigned NumOps = MI.getDesc().getNumOperands(); bool isTwoAddr = NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; // FIXME: AsmPrinter doesn't know how to handle // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. if (MI.getOpcode() == X86::ADD32ri && MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) return nullptr; // GOTTPOFF relocation loads can only be folded into add instructions. // FIXME: Need to exclude other relocations that only support specific // instructions. if (MOs.size() == X86::AddrNumOperands && MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF && MI.getOpcode() != X86::ADD64rr) return nullptr; MachineInstr *NewMI = nullptr; // Attempt to fold any custom cases we have. if (MachineInstr *CustomMI = foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, Size, Align)) return CustomMI; const X86MemoryFoldTableEntry *I = nullptr; // Folding a memory location into the two-address part of a two-address // instruction is different than folding it other places. It requires // replacing the *two* registers with the memory location. if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() && MI.getOperand(1).isReg() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) { I = lookupTwoAddrFoldTable(MI.getOpcode()); isTwoAddrFold = true; } else { if (OpNum == 0) { if (MI.getOpcode() == X86::MOV32r0) { NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI); if (NewMI) return NewMI; } } I = lookupFoldTable(MI.getOpcode(), OpNum); } if (I != nullptr) { unsigned Opcode = I->DstOp; unsigned MinAlign = (I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT; if (Align < MinAlign) return nullptr; bool NarrowToMOV32rm = false; if (Size) { const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; if (Size < RCSize) { // Check if it's safe to fold the load. If the size of the object is // narrower than the load width, then it's not. if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) return nullptr; // If this is a 64-bit load, but the spill slot is 32, then we can do // a 32-bit load which is implicitly zero-extended. This likely is // due to live interval analysis remat'ing a load from stack slot. if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) return nullptr; Opcode = X86::MOV32rm; NarrowToMOV32rm = true; } } if (isTwoAddrFold) NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this); else NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this); if (NarrowToMOV32rm) { // If this is the special case where we use a MOV32rm to load a 32-bit // value and zero-extend the top bits. Change the destination register // to a 32-bit one. unsigned DstReg = NewMI->getOperand(0).getReg(); if (TargetRegisterInfo::isPhysicalRegister(DstReg)) NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit)); else NewMI->getOperand(0).setSubReg(X86::sub_32bit); } return NewMI; } // If the instruction and target operand are commutable, commute the // instruction and try again. if (AllowCommute) { unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex; if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) { bool HasDef = MI.getDesc().getNumDefs(); unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0; unsigned Reg1 = MI.getOperand(CommuteOpIdx1).getReg(); unsigned Reg2 = MI.getOperand(CommuteOpIdx2).getReg(); bool Tied1 = 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO); bool Tied2 = 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO); // If either of the commutable operands are tied to the destination // then we can not commute + fold. if ((HasDef && Reg0 == Reg1 && Tied1) || (HasDef && Reg0 == Reg2 && Tied2)) return nullptr; MachineInstr *CommutedMI = commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); if (!CommutedMI) { // Unable to commute. return nullptr; } if (CommutedMI != &MI) { // New instruction. We can't fold from this. CommutedMI->eraseFromParent(); return nullptr; } // Attempt to fold with the commuted version of the instruction. NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size, Align, /*AllowCommute=*/false); if (NewMI) return NewMI; // Folding failed again - undo the commute before returning. MachineInstr *UncommutedMI = commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); if (!UncommutedMI) { // Unable to commute. return nullptr; } if (UncommutedMI != &MI) { // New instruction. It doesn't need to be kept. UncommutedMI->eraseFromParent(); return nullptr; } // Return here to prevent duplicate fuse failure report. return nullptr; } } // No fusion if (PrintFailedFusing && !MI.isCopy()) dbgs() << "We failed to fuse operand " << OpNum << " in " << MI; return nullptr; } MachineInstr * X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS) const { // Check switch flag if (NoFusing) return nullptr; // Avoid partial and undef register update stalls unless optimizing for size. if (!MF.getFunction().optForSize() && (hasPartialRegUpdate(MI.getOpcode(), Subtarget) || shouldPreventUndefRegUpdateMemFold(MF, MI))) return nullptr; // Don't fold subreg spills, or reloads that use a high subreg. for (auto Op : Ops) { MachineOperand &MO = MI.getOperand(Op); auto SubReg = MO.getSubReg(); if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi)) return nullptr; } const MachineFrameInfo &MFI = MF.getFrameInfo(); unsigned Size = MFI.getObjectSize(FrameIndex); unsigned Alignment = MFI.getObjectAlignment(FrameIndex); // If the function stack isn't realigned we don't want to fold instructions // that need increased alignment. if (!RI.needsStackRealignment(MF)) Alignment = std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment()); if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { unsigned NewOpc = 0; unsigned RCSize = 0; switch (MI.getOpcode()) { default: return nullptr; case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break; case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break; case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break; case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break; } // Check if it's safe to fold the load. If the size of the object is // narrower than the load width, then it's not. if (Size < RCSize) return nullptr; // Change to CMPXXri r, 0 first. MI.setDesc(get(NewOpc)); MI.getOperand(1).ChangeToImmediate(0); } else if (Ops.size() != 1) return nullptr; return foldMemoryOperandImpl(MF, MI, Ops[0], MachineOperand::CreateFI(FrameIndex), InsertPt, Size, Alignment, /*AllowCommute=*/true); } /// Check if \p LoadMI is a partial register load that we can't fold into \p MI /// because the latter uses contents that wouldn't be defined in the folded /// version. For instance, this transformation isn't legal: /// movss (%rdi), %xmm0 /// addps %xmm0, %xmm0 /// -> /// addps (%rdi), %xmm0 /// /// But this one is: /// movss (%rdi), %xmm0 /// addss %xmm0, %xmm0 /// -> /// addss (%rdi), %xmm0 /// static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI, const MachineInstr &UserMI, const MachineFunction &MF) { unsigned Opc = LoadMI.getOpcode(); unsigned UserOpc = UserMI.getOpcode(); const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg()); unsigned RegSize = TRI.getRegSizeInBits(*RC); if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm) && RegSize > 32) { // These instructions only load 32 bits, we can't fold them if the // destination register is wider than 32 bits (4 bytes), and its user // instruction isn't scalar (SS). switch (UserOpc) { case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int: case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int: case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int: case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int: case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int: case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int: case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int: case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz: case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz: case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz: case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz: case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz: case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz: case X86::VFMADDSS4rr_Int: case X86::VFNMADDSS4rr_Int: case X86::VFMSUBSS4rr_Int: case X86::VFNMSUBSS4rr_Int: case X86::VFMADD132SSr_Int: case X86::VFNMADD132SSr_Int: case X86::VFMADD213SSr_Int: case X86::VFNMADD213SSr_Int: case X86::VFMADD231SSr_Int: case X86::VFNMADD231SSr_Int: case X86::VFMSUB132SSr_Int: case X86::VFNMSUB132SSr_Int: case X86::VFMSUB213SSr_Int: case X86::VFNMSUB213SSr_Int: case X86::VFMSUB231SSr_Int: case X86::VFNMSUB231SSr_Int: case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int: case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int: case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int: case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int: case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int: case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int: case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk: case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk: case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk: case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk: case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk: case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk: case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz: case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz: case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz: case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz: case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz: case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz: return false; default: return true; } } if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm) && RegSize > 64) { // These instructions only load 64 bits, we can't fold them if the // destination register is wider than 64 bits (8 bytes), and its user // instruction isn't scalar (SD). switch (UserOpc) { case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int: case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int: case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int: case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int: case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int: case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int: case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int: case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz: case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz: case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz: case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz: case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz: case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz: case X86::VFMADDSD4rr_Int: case X86::VFNMADDSD4rr_Int: case X86::VFMSUBSD4rr_Int: case X86::VFNMSUBSD4rr_Int: case X86::VFMADD132SDr_Int: case X86::VFNMADD132SDr_Int: case X86::VFMADD213SDr_Int: case X86::VFNMADD213SDr_Int: case X86::VFMADD231SDr_Int: case X86::VFNMADD231SDr_Int: case X86::VFMSUB132SDr_Int: case X86::VFNMSUB132SDr_Int: case X86::VFMSUB213SDr_Int: case X86::VFNMSUB213SDr_Int: case X86::VFMSUB231SDr_Int: case X86::VFNMSUB231SDr_Int: case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int: case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int: case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int: case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int: case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int: case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int: case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk: case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk: case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk: case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk: case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk: case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk: case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz: case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz: case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz: case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz: case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz: case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz: return false; default: return true; } } return false; } MachineInstr *X86InstrInfo::foldMemoryOperandImpl( MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, LiveIntervals *LIS) const { // TODO: Support the case where LoadMI loads a wide register, but MI // only uses a subreg. for (auto Op : Ops) { if (MI.getOperand(Op).getSubReg()) return nullptr; } // If loading from a FrameIndex, fold directly from the FrameIndex. unsigned NumOps = LoadMI.getDesc().getNumOperands(); int FrameIndex; if (isLoadFromStackSlot(LoadMI, FrameIndex)) { if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) return nullptr; return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS); } // Check switch flag if (NoFusing) return nullptr; // Avoid partial and undef register update stalls unless optimizing for size. if (!MF.getFunction().optForSize() && (hasPartialRegUpdate(MI.getOpcode(), Subtarget) || shouldPreventUndefRegUpdateMemFold(MF, MI))) return nullptr; // Determine the alignment of the load. unsigned Alignment = 0; if (LoadMI.hasOneMemOperand()) Alignment = (*LoadMI.memoperands_begin())->getAlignment(); else switch (LoadMI.getOpcode()) { case X86::AVX512_512_SET0: case X86::AVX512_512_SETALLONES: Alignment = 64; break; case X86::AVX2_SETALLONES: case X86::AVX1_SETALLONES: case X86::AVX_SET0: case X86::AVX512_256_SET0: Alignment = 32; break; case X86::V_SET0: case X86::V_SETALLONES: case X86::AVX512_128_SET0: Alignment = 16; break; case X86::MMX_SET0: case X86::FsFLD0SD: case X86::AVX512_FsFLD0SD: Alignment = 8; break; case X86::FsFLD0SS: case X86::AVX512_FsFLD0SS: Alignment = 4; break; default: return nullptr; } if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { unsigned NewOpc = 0; switch (MI.getOpcode()) { default: return nullptr; case X86::TEST8rr: NewOpc = X86::CMP8ri; break; case X86::TEST16rr: NewOpc = X86::CMP16ri8; break; case X86::TEST32rr: NewOpc = X86::CMP32ri8; break; case X86::TEST64rr: NewOpc = X86::CMP64ri8; break; } // Change to CMPXXri r, 0 first. MI.setDesc(get(NewOpc)); MI.getOperand(1).ChangeToImmediate(0); } else if (Ops.size() != 1) return nullptr; // Make sure the subregisters match. // Otherwise we risk changing the size of the load. if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg()) return nullptr; SmallVector<MachineOperand,X86::AddrNumOperands> MOs; switch (LoadMI.getOpcode()) { case X86::MMX_SET0: case X86::V_SET0: case X86::V_SETALLONES: case X86::AVX2_SETALLONES: case X86::AVX1_SETALLONES: case X86::AVX_SET0: case X86::AVX512_128_SET0: case X86::AVX512_256_SET0: case X86::AVX512_512_SET0: case X86::AVX512_512_SETALLONES: case X86::FsFLD0SD: case X86::AVX512_FsFLD0SD: case X86::FsFLD0SS: case X86::AVX512_FsFLD0SS: { // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure. // Create a constant-pool entry and operands to load from it. // Medium and large mode can't fold loads this way. if (MF.getTarget().getCodeModel() != CodeModel::Small && MF.getTarget().getCodeModel() != CodeModel::Kernel) return nullptr; // x86-32 PIC requires a PIC base register for constant pools. unsigned PICBase = 0; if (MF.getTarget().isPositionIndependent()) { if (Subtarget.is64Bit()) PICBase = X86::RIP; else // FIXME: PICBase = getGlobalBaseReg(&MF); // This doesn't work for several reasons. // 1. GlobalBaseReg may have been spilled. // 2. It may not be live at MI. return nullptr; } // Create a constant-pool entry. MachineConstantPool &MCP = *MF.getConstantPool(); Type *Ty; unsigned Opc = LoadMI.getOpcode(); if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS) Ty = Type::getFloatTy(MF.getFunction().getContext()); else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD) Ty = Type::getDoubleTy(MF.getFunction().getContext()); else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES) Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),16); else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 || Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES) Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 8); else if (Opc == X86::MMX_SET0) Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 2); else Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 4); bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES || Opc == X86::AVX512_512_SETALLONES || Opc == X86::AVX1_SETALLONES); const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) : Constant::getNullValue(Ty); unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); // Create operands to load from the constant pool entry. MOs.push_back(MachineOperand::CreateReg(PICBase, false)); MOs.push_back(MachineOperand::CreateImm(1)); MOs.push_back(MachineOperand::CreateReg(0, false)); MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); MOs.push_back(MachineOperand::CreateReg(0, false)); break; } default: { if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) return nullptr; // Folding a normal load. Just copy the load's address operands. MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands, LoadMI.operands_begin() + NumOps); break; } } return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt, /*Size=*/0, Alignment, /*AllowCommute=*/true); } bool X86InstrInfo::unfoldMemoryOperand( MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad, bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const { const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode()); if (I == nullptr) return false; unsigned Opc = I->DstOp; unsigned Index = I->Flags & TB_INDEX_MASK; bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; bool FoldedStore = I->Flags & TB_FOLDED_STORE; if (UnfoldLoad && !FoldedLoad) return false; UnfoldLoad &= FoldedLoad; if (UnfoldStore && !FoldedStore) return false; UnfoldStore &= FoldedStore; const MCInstrDesc &MCID = get(Opc); const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); // TODO: Check if 32-byte or greater accesses are slow too? if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass && Subtarget.isUnalignedMem16Slow()) // Without memoperands, loadRegFromAddr and storeRegToStackSlot will // conservatively assume the address is unaligned. That's bad for // performance. return false; SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps; SmallVector<MachineOperand,2> BeforeOps; SmallVector<MachineOperand,2> AfterOps; SmallVector<MachineOperand,4> ImpOps; for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &Op = MI.getOperand(i); if (i >= Index && i < Index + X86::AddrNumOperands) AddrOps.push_back(Op); else if (Op.isReg() && Op.isImplicit()) ImpOps.push_back(Op); else if (i < Index) BeforeOps.push_back(Op); else if (i > Index) AfterOps.push_back(Op); } // Emit the load instruction. if (UnfoldLoad) { std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> MMOs = MF.extractLoadMemRefs(MI.memoperands_begin(), MI.memoperands_end()); loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs); if (UnfoldStore) { // Address operands cannot be marked isKill. for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { MachineOperand &MO = NewMIs[0]->getOperand(i); if (MO.isReg()) MO.setIsKill(false); } } } // Emit the data processing instruction. MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true); MachineInstrBuilder MIB(MF, DataMI); if (FoldedStore) MIB.addReg(Reg, RegState::Define); for (MachineOperand &BeforeOp : BeforeOps) MIB.add(BeforeOp); if (FoldedLoad) MIB.addReg(Reg); for (MachineOperand &AfterOp : AfterOps) MIB.add(AfterOp); for (MachineOperand &ImpOp : ImpOps) { MIB.addReg(ImpOp.getReg(), getDefRegState(ImpOp.isDef()) | RegState::Implicit | getKillRegState(ImpOp.isKill()) | getDeadRegState(ImpOp.isDead()) | getUndefRegState(ImpOp.isUndef())); } // Change CMP32ri r, 0 back to TEST32rr r, r, etc. switch (DataMI->getOpcode()) { default: break; case X86::CMP64ri32: case X86::CMP64ri8: case X86::CMP32ri: case X86::CMP32ri8: case X86::CMP16ri: case X86::CMP16ri8: case X86::CMP8ri: { MachineOperand &MO0 = DataMI->getOperand(0); MachineOperand &MO1 = DataMI->getOperand(1); if (MO1.getImm() == 0) { unsigned NewOpc; switch (DataMI->getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::CMP64ri8: case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; case X86::CMP32ri8: case X86::CMP32ri: NewOpc = X86::TEST32rr; break; case X86::CMP16ri8: case X86::CMP16ri: NewOpc = X86::TEST16rr; break; case X86::CMP8ri: NewOpc = X86::TEST8rr; break; } DataMI->setDesc(get(NewOpc)); MO1.ChangeToRegister(MO0.getReg(), false); } } } NewMIs.push_back(DataMI); // Emit the store instruction. if (UnfoldStore) { const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF); std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> MMOs = MF.extractStoreMemRefs(MI.memoperands_begin(), MI.memoperands_end()); storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs); } return true; } bool X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, SmallVectorImpl<SDNode*> &NewNodes) const { if (!N->isMachineOpcode()) return false; const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode()); if (I == nullptr) return false; unsigned Opc = I->DstOp; unsigned Index = I->Flags & TB_INDEX_MASK; bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; bool FoldedStore = I->Flags & TB_FOLDED_STORE; const MCInstrDesc &MCID = get(Opc); MachineFunction &MF = DAG.getMachineFunction(); const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); unsigned NumDefs = MCID.NumDefs; std::vector<SDValue> AddrOps; std::vector<SDValue> BeforeOps; std::vector<SDValue> AfterOps; SDLoc dl(N); unsigned NumOps = N->getNumOperands(); for (unsigned i = 0; i != NumOps-1; ++i) { SDValue Op = N->getOperand(i); if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands) AddrOps.push_back(Op); else if (i < Index-NumDefs) BeforeOps.push_back(Op); else if (i > Index-NumDefs) AfterOps.push_back(Op); } SDValue Chain = N->getOperand(NumOps-1); AddrOps.push_back(Chain); // Emit the load instruction. SDNode *Load = nullptr; if (FoldedLoad) { EVT VT = *TRI.legalclasstypes_begin(*RC); std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> MMOs = MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), cast<MachineSDNode>(N)->memoperands_end()); if (!(*MMOs.first) && RC == &X86::VR128RegClass && Subtarget.isUnalignedMem16Slow()) // Do not introduce a slow unaligned load. return false; // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte // memory access is slow above. unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= Alignment; Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl, VT, MVT::Other, AddrOps); NewNodes.push_back(Load); // Preserve memory reference information. cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second); } // Emit the data processing instruction. std::vector<EVT> VTs; const TargetRegisterClass *DstRC = nullptr; if (MCID.getNumDefs() > 0) { DstRC = getRegClass(MCID, 0, &RI, MF); VTs.push_back(*TRI.legalclasstypes_begin(*DstRC)); } for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { EVT VT = N->getValueType(i); if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) VTs.push_back(VT); } if (Load) BeforeOps.push_back(SDValue(Load, 0)); BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end()); // Change CMP32ri r, 0 back to TEST32rr r, r, etc. switch (Opc) { default: break; case X86::CMP64ri32: case X86::CMP64ri8: case X86::CMP32ri: case X86::CMP32ri8: case X86::CMP16ri: case X86::CMP16ri8: case X86::CMP8ri: if (isNullConstant(BeforeOps[1])) { switch (Opc) { default: llvm_unreachable("Unreachable!"); case X86::CMP64ri8: case X86::CMP64ri32: Opc = X86::TEST64rr; break; case X86::CMP32ri8: case X86::CMP32ri: Opc = X86::TEST32rr; break; case X86::CMP16ri8: case X86::CMP16ri: Opc = X86::TEST16rr; break; case X86::CMP8ri: Opc = X86::TEST8rr; break; } BeforeOps[1] = BeforeOps[0]; } } SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps); NewNodes.push_back(NewNode); // Emit the store instruction. if (FoldedStore) { AddrOps.pop_back(); AddrOps.push_back(SDValue(NewNode, 0)); AddrOps.push_back(Chain); std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> MMOs = MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), cast<MachineSDNode>(N)->memoperands_end()); if (!(*MMOs.first) && RC == &X86::VR128RegClass && Subtarget.isUnalignedMem16Slow()) // Do not introduce a slow unaligned store. return false; // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte // memory access is slow above. unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= Alignment; SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget), dl, MVT::Other, AddrOps); NewNodes.push_back(Store); // Preserve memory reference information. cast<MachineSDNode>(Store)->setMemRefs(MMOs.first, MMOs.second); } return true; } unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, unsigned *LoadRegIndex) const { const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc); if (I == nullptr) return 0; bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; bool FoldedStore = I->Flags & TB_FOLDED_STORE; if (UnfoldLoad && !FoldedLoad) return 0; if (UnfoldStore && !FoldedStore) return 0; if (LoadRegIndex) *LoadRegIndex = I->Flags & TB_INDEX_MASK; return I->DstOp; } bool X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1, int64_t &Offset2) const { if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) return false; unsigned Opc1 = Load1->getMachineOpcode(); unsigned Opc2 = Load2->getMachineOpcode(); switch (Opc1) { default: return false; case X86::MOV8rm: case X86::MOV16rm: case X86::MOV32rm: case X86::MOV64rm: case X86::LD_Fp32m: case X86::LD_Fp64m: case X86::LD_Fp80m: case X86::MOVSSrm: case X86::MOVSDrm: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: case X86::MOVAPSrm: case X86::MOVUPSrm: case X86::MOVAPDrm: case X86::MOVUPDrm: case X86::MOVDQArm: case X86::MOVDQUrm: // AVX load instructions case X86::VMOVSSrm: case X86::VMOVSDrm: case X86::VMOVAPSrm: case X86::VMOVUPSrm: case X86::VMOVAPDrm: case X86::VMOVUPDrm: case X86::VMOVDQArm: case X86::VMOVDQUrm: case X86::VMOVAPSYrm: case X86::VMOVUPSYrm: case X86::VMOVAPDYrm: case X86::VMOVUPDYrm: case X86::VMOVDQAYrm: case X86::VMOVDQUYrm: // AVX512 load instructions case X86::VMOVSSZrm: case X86::VMOVSDZrm: case X86::VMOVAPSZ128rm: case X86::VMOVUPSZ128rm: case X86::VMOVAPSZ128rm_NOVLX: case X86::VMOVUPSZ128rm_NOVLX: case X86::VMOVAPDZ128rm: case X86::VMOVUPDZ128rm: case X86::VMOVDQU8Z128rm: case X86::VMOVDQU16Z128rm: case X86::VMOVDQA32Z128rm: case X86::VMOVDQU32Z128rm: case X86::VMOVDQA64Z128rm: case X86::VMOVDQU64Z128rm: case X86::VMOVAPSZ256rm: case X86::VMOVUPSZ256rm: case X86::VMOVAPSZ256rm_NOVLX: case X86::VMOVUPSZ256rm_NOVLX: case X86::VMOVAPDZ256rm: case X86::VMOVUPDZ256rm: case X86::VMOVDQU8Z256rm: case X86::VMOVDQU16Z256rm: case X86::VMOVDQA32Z256rm: case X86::VMOVDQU32Z256rm: case X86::VMOVDQA64Z256rm: case X86::VMOVDQU64Z256rm: case X86::VMOVAPSZrm: case X86::VMOVUPSZrm: case X86::VMOVAPDZrm: case X86::VMOVUPDZrm: case X86::VMOVDQU8Zrm: case X86::VMOVDQU16Zrm: case X86::VMOVDQA32Zrm: case X86::VMOVDQU32Zrm: case X86::VMOVDQA64Zrm: case X86::VMOVDQU64Zrm: case X86::KMOVBkm: case X86::KMOVWkm: case X86::KMOVDkm: case X86::KMOVQkm: break; } switch (Opc2) { default: return false; case X86::MOV8rm: case X86::MOV16rm: case X86::MOV32rm: case X86::MOV64rm: case X86::LD_Fp32m: case X86::LD_Fp64m: case X86::LD_Fp80m: case X86::MOVSSrm: case X86::MOVSDrm: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: case X86::MOVAPSrm: case X86::MOVUPSrm: case X86::MOVAPDrm: case X86::MOVUPDrm: case X86::MOVDQArm: case X86::MOVDQUrm: // AVX load instructions case X86::VMOVSSrm: case X86::VMOVSDrm: case X86::VMOVAPSrm: case X86::VMOVUPSrm: case X86::VMOVAPDrm: case X86::VMOVUPDrm: case X86::VMOVDQArm: case X86::VMOVDQUrm: case X86::VMOVAPSYrm: case X86::VMOVUPSYrm: case X86::VMOVAPDYrm: case X86::VMOVUPDYrm: case X86::VMOVDQAYrm: case X86::VMOVDQUYrm: // AVX512 load instructions case X86::VMOVSSZrm: case X86::VMOVSDZrm: case X86::VMOVAPSZ128rm: case X86::VMOVUPSZ128rm: case X86::VMOVAPSZ128rm_NOVLX: case X86::VMOVUPSZ128rm_NOVLX: case X86::VMOVAPDZ128rm: case X86::VMOVUPDZ128rm: case X86::VMOVDQU8Z128rm: case X86::VMOVDQU16Z128rm: case X86::VMOVDQA32Z128rm: case X86::VMOVDQU32Z128rm: case X86::VMOVDQA64Z128rm: case X86::VMOVDQU64Z128rm: case X86::VMOVAPSZ256rm: case X86::VMOVUPSZ256rm: case X86::VMOVAPSZ256rm_NOVLX: case X86::VMOVUPSZ256rm_NOVLX: case X86::VMOVAPDZ256rm: case X86::VMOVUPDZ256rm: case X86::VMOVDQU8Z256rm: case X86::VMOVDQU16Z256rm: case X86::VMOVDQA32Z256rm: case X86::VMOVDQU32Z256rm: case X86::VMOVDQA64Z256rm: case X86::VMOVDQU64Z256rm: case X86::VMOVAPSZrm: case X86::VMOVUPSZrm: case X86::VMOVAPDZrm: case X86::VMOVUPDZrm: case X86::VMOVDQU8Zrm: case X86::VMOVDQU16Zrm: case X86::VMOVDQA32Zrm: case X86::VMOVDQU32Zrm: case X86::VMOVDQA64Zrm: case X86::VMOVDQU64Zrm: case X86::KMOVBkm: case X86::KMOVWkm: case X86::KMOVDkm: case X86::KMOVQkm: break; } // Lambda to check if both the loads have the same value for an operand index. auto HasSameOp = [&](int I) { return Load1->getOperand(I) == Load2->getOperand(I); }; // All operands except the displacement should match. if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) || !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg)) return false; // Chain Operand must be the same. if (!HasSameOp(5)) return false; // Now let's examine if the displacements are constants. auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp)); auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp)); if (!Disp1 || !Disp2) return false; Offset1 = Disp1->getSExtValue(); Offset2 = Disp2->getSExtValue(); return true; } bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1, int64_t Offset2, unsigned NumLoads) const { assert(Offset2 > Offset1); if ((Offset2 - Offset1) / 8 > 64) return false; unsigned Opc1 = Load1->getMachineOpcode(); unsigned Opc2 = Load2->getMachineOpcode(); if (Opc1 != Opc2) return false; // FIXME: overly conservative? switch (Opc1) { default: break; case X86::LD_Fp32m: case X86::LD_Fp64m: case X86::LD_Fp80m: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: return false; } EVT VT = Load1->getValueType(0); switch (VT.getSimpleVT().SimpleTy) { default: // XMM registers. In 64-bit mode we can be a bit more aggressive since we // have 16 of them to play with. if (Subtarget.is64Bit()) { if (NumLoads >= 3) return false; } else if (NumLoads) { return false; } break; case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: case MVT::f32: case MVT::f64: if (NumLoads) return false; break; } return true; } bool X86InstrInfo:: reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { assert(Cond.size() == 1 && "Invalid X86 branch condition!"); X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm()); Cond[0].setImm(GetOppositeBranchCondition(CC)); return false; } bool X86InstrInfo:: isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { // FIXME: Return false for x87 stack register classes for now. We can't // allow any loads of these registers before FpGet_ST0_80. return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass || RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass); } /// Return a virtual register initialized with the /// the global base register value. Output instructions required to /// initialize the register in the function entry block, if necessary. /// /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. /// unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { assert((!Subtarget.is64Bit() || MF->getTarget().getCodeModel() == CodeModel::Medium || MF->getTarget().getCodeModel() == CodeModel::Large) && "X86-64 PIC uses RIP relative addressing"); X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); if (GlobalBaseReg != 0) return GlobalBaseReg; // Create the register. The code to initialize it is inserted // later, by the CGBR pass (below). MachineRegisterInfo &RegInfo = MF->getRegInfo(); GlobalBaseReg = RegInfo.createVirtualRegister( Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass); X86FI->setGlobalBaseReg(GlobalBaseReg); return GlobalBaseReg; } // These are the replaceable SSE instructions. Some of these have Int variants // that we don't include here. We don't want to replace instructions selected // by intrinsics. static const uint16_t ReplaceableInstrs[][3] = { //PackedSingle PackedDouble PackedInt { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr }, { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm }, { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr }, { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr }, { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm }, { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr }, { X86::MOVSDmr, X86::MOVSDmr, X86::MOVPQI2QImr }, { X86::MOVSSmr, X86::MOVSSmr, X86::MOVPDI2DImr }, { X86::MOVSDrm, X86::MOVSDrm, X86::MOVQI2PQIrm }, { X86::MOVSSrm, X86::MOVSSrm, X86::MOVDI2PDIrm }, { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr }, { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm }, { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr }, { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm }, { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr }, { X86::ORPSrm, X86::ORPDrm, X86::PORrm }, { X86::ORPSrr, X86::ORPDrr, X86::PORrr }, { X86::XORPSrm, X86::XORPDrm, X86::PXORrm }, { X86::XORPSrr, X86::XORPDrr, X86::PXORrr }, { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm }, { X86::MOVLHPSrr, X86::UNPCKLPDrr, X86::PUNPCKLQDQrr }, { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm }, { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr }, { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm }, { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr }, { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm }, { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr }, { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr }, { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr }, // AVX 128-bit support { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr }, { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm }, { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr }, { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr }, { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm }, { X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr }, { X86::VMOVSDmr, X86::VMOVSDmr, X86::VMOVPQI2QImr }, { X86::VMOVSSmr, X86::VMOVSSmr, X86::VMOVPDI2DImr }, { X86::VMOVSDrm, X86::VMOVSDrm, X86::VMOVQI2PQIrm }, { X86::VMOVSSrm, X86::VMOVSSrm, X86::VMOVDI2PDIrm }, { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr }, { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm }, { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr }, { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm }, { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr }, { X86::VORPSrm, X86::VORPDrm, X86::VPORrm }, { X86::VORPSrr, X86::VORPDrr, X86::VPORrr }, { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm }, { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr }, { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm }, { X86::VMOVLHPSrr, X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr }, { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm }, { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr }, { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm }, { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr }, { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm }, { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr }, { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr }, { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr }, // AVX 256-bit support { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr }, { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm }, { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr }, { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr }, { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm }, { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr }, { X86::VPERMPSYrm, X86::VPERMPSYrm, X86::VPERMDYrm }, { X86::VPERMPSYrr, X86::VPERMPSYrr, X86::VPERMDYrr }, { X86::VPERMPDYmi, X86::VPERMPDYmi, X86::VPERMQYmi }, { X86::VPERMPDYri, X86::VPERMPDYri, X86::VPERMQYri }, // AVX512 support { X86::VMOVLPSZ128mr, X86::VMOVLPDZ128mr, X86::VMOVPQI2QIZmr }, { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr }, { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr }, { X86::VMOVNTPSZmr, X86::VMOVNTPDZmr, X86::VMOVNTDQZmr }, { X86::VMOVSDZmr, X86::VMOVSDZmr, X86::VMOVPQI2QIZmr }, { X86::VMOVSSZmr, X86::VMOVSSZmr, X86::VMOVPDI2DIZmr }, { X86::VMOVSDZrm, X86::VMOVSDZrm, X86::VMOVQI2PQIZrm }, { X86::VMOVSSZrm, X86::VMOVSSZrm, X86::VMOVDI2PDIZrm }, { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128r, X86::VPBROADCASTDZ128r }, { X86::VBROADCASTSSZ128m, X86::VBROADCASTSSZ128m, X86::VPBROADCASTDZ128m }, { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256r, X86::VPBROADCASTDZ256r }, { X86::VBROADCASTSSZ256m, X86::VBROADCASTSSZ256m, X86::VPBROADCASTDZ256m }, { X86::VBROADCASTSSZr, X86::VBROADCASTSSZr, X86::VPBROADCASTDZr }, { X86::VBROADCASTSSZm, X86::VBROADCASTSSZm, X86::VPBROADCASTDZm }, { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256r, X86::VPBROADCASTQZ256r }, { X86::VBROADCASTSDZ256m, X86::VBROADCASTSDZ256m, X86::VPBROADCASTQZ256m }, { X86::VBROADCASTSDZr, X86::VBROADCASTSDZr, X86::VPBROADCASTQZr }, { X86::VBROADCASTSDZm, X86::VBROADCASTSDZm, X86::VPBROADCASTQZm }, { X86::VINSERTF32x4Zrr, X86::VINSERTF32x4Zrr, X86::VINSERTI32x4Zrr }, { X86::VINSERTF32x4Zrm, X86::VINSERTF32x4Zrm, X86::VINSERTI32x4Zrm }, { X86::VINSERTF32x8Zrr, X86::VINSERTF32x8Zrr, X86::VINSERTI32x8Zrr }, { X86::VINSERTF32x8Zrm, X86::VINSERTF32x8Zrm, X86::VINSERTI32x8Zrm }, { X86::VINSERTF64x2Zrr, X86::VINSERTF64x2Zrr, X86::VINSERTI64x2Zrr }, { X86::VINSERTF64x2Zrm, X86::VINSERTF64x2Zrm, X86::VINSERTI64x2Zrm }, { X86::VINSERTF64x4Zrr, X86::VINSERTF64x4Zrr, X86::VINSERTI64x4Zrr }, { X86::VINSERTF64x4Zrm, X86::VINSERTF64x4Zrm, X86::VINSERTI64x4Zrm }, { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr }, { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm }, { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr }, { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm }, { X86::VEXTRACTF32x4Zrr, X86::VEXTRACTF32x4Zrr, X86::VEXTRACTI32x4Zrr }, { X86::VEXTRACTF32x4Zmr, X86::VEXTRACTF32x4Zmr, X86::VEXTRACTI32x4Zmr }, { X86::VEXTRACTF32x8Zrr, X86::VEXTRACTF32x8Zrr, X86::VEXTRACTI32x8Zrr }, { X86::VEXTRACTF32x8Zmr, X86::VEXTRACTF32x8Zmr, X86::VEXTRACTI32x8Zmr }, { X86::VEXTRACTF64x2Zrr, X86::VEXTRACTF64x2Zrr, X86::VEXTRACTI64x2Zrr }, { X86::VEXTRACTF64x2Zmr, X86::VEXTRACTF64x2Zmr, X86::VEXTRACTI64x2Zmr }, { X86::VEXTRACTF64x4Zrr, X86::VEXTRACTF64x4Zrr, X86::VEXTRACTI64x4Zrr }, { X86::VEXTRACTF64x4Zmr, X86::VEXTRACTF64x4Zmr, X86::VEXTRACTI64x4Zmr }, { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr }, { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr }, { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr }, { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr }, { X86::VPERMILPSmi, X86::VPERMILPSmi, X86::VPSHUFDmi }, { X86::VPERMILPSri, X86::VPERMILPSri, X86::VPSHUFDri }, { X86::VPERMILPSZ128mi, X86::VPERMILPSZ128mi, X86::VPSHUFDZ128mi }, { X86::VPERMILPSZ128ri, X86::VPERMILPSZ128ri, X86::VPSHUFDZ128ri }, { X86::VPERMILPSZ256mi, X86::VPERMILPSZ256mi, X86::VPSHUFDZ256mi }, { X86::VPERMILPSZ256ri, X86::VPERMILPSZ256ri, X86::VPSHUFDZ256ri }, { X86::VPERMILPSZmi, X86::VPERMILPSZmi, X86::VPSHUFDZmi }, { X86::VPERMILPSZri, X86::VPERMILPSZri, X86::VPSHUFDZri }, { X86::VPERMPSZ256rm, X86::VPERMPSZ256rm, X86::VPERMDZ256rm }, { X86::VPERMPSZ256rr, X86::VPERMPSZ256rr, X86::VPERMDZ256rr }, { X86::VPERMPDZ256mi, X86::VPERMPDZ256mi, X86::VPERMQZ256mi }, { X86::VPERMPDZ256ri, X86::VPERMPDZ256ri, X86::VPERMQZ256ri }, { X86::VPERMPDZ256rm, X86::VPERMPDZ256rm, X86::VPERMQZ256rm }, { X86::VPERMPDZ256rr, X86::VPERMPDZ256rr, X86::VPERMQZ256rr }, { X86::VPERMPSZrm, X86::VPERMPSZrm, X86::VPERMDZrm }, { X86::VPERMPSZrr, X86::VPERMPSZrr, X86::VPERMDZrr }, { X86::VPERMPDZmi, X86::VPERMPDZmi, X86::VPERMQZmi }, { X86::VPERMPDZri, X86::VPERMPDZri, X86::VPERMQZri }, { X86::VPERMPDZrm, X86::VPERMPDZrm, X86::VPERMQZrm }, { X86::VPERMPDZrr, X86::VPERMPDZrr, X86::VPERMQZrr }, { X86::VUNPCKLPDZ256rm, X86::VUNPCKLPDZ256rm, X86::VPUNPCKLQDQZ256rm }, { X86::VUNPCKLPDZ256rr, X86::VUNPCKLPDZ256rr, X86::VPUNPCKLQDQZ256rr }, { X86::VUNPCKHPDZ256rm, X86::VUNPCKHPDZ256rm, X86::VPUNPCKHQDQZ256rm }, { X86::VUNPCKHPDZ256rr, X86::VUNPCKHPDZ256rr, X86::VPUNPCKHQDQZ256rr }, { X86::VUNPCKLPSZ256rm, X86::VUNPCKLPSZ256rm, X86::VPUNPCKLDQZ256rm }, { X86::VUNPCKLPSZ256rr, X86::VUNPCKLPSZ256rr, X86::VPUNPCKLDQZ256rr }, { X86::VUNPCKHPSZ256rm, X86::VUNPCKHPSZ256rm, X86::VPUNPCKHDQZ256rm }, { X86::VUNPCKHPSZ256rr, X86::VUNPCKHPSZ256rr, X86::VPUNPCKHDQZ256rr }, { X86::VUNPCKLPDZ128rm, X86::VUNPCKLPDZ128rm, X86::VPUNPCKLQDQZ128rm }, { X86::VMOVLHPSZrr, X86::VUNPCKLPDZ128rr, X86::VPUNPCKLQDQZ128rr }, { X86::VUNPCKHPDZ128rm, X86::VUNPCKHPDZ128rm, X86::VPUNPCKHQDQZ128rm }, { X86::VUNPCKHPDZ128rr, X86::VUNPCKHPDZ128rr, X86::VPUNPCKHQDQZ128rr }, { X86::VUNPCKLPSZ128rm, X86::VUNPCKLPSZ128rm, X86::VPUNPCKLDQZ128rm }, { X86::VUNPCKLPSZ128rr, X86::VUNPCKLPSZ128rr, X86::VPUNPCKLDQZ128rr }, { X86::VUNPCKHPSZ128rm, X86::VUNPCKHPSZ128rm, X86::VPUNPCKHDQZ128rm }, { X86::VUNPCKHPSZ128rr, X86::VUNPCKHPSZ128rr, X86::VPUNPCKHDQZ128rr }, { X86::VUNPCKLPDZrm, X86::VUNPCKLPDZrm, X86::VPUNPCKLQDQZrm }, { X86::VUNPCKLPDZrr, X86::VUNPCKLPDZrr, X86::VPUNPCKLQDQZrr }, { X86::VUNPCKHPDZrm, X86::VUNPCKHPDZrm, X86::VPUNPCKHQDQZrm }, { X86::VUNPCKHPDZrr, X86::VUNPCKHPDZrr, X86::VPUNPCKHQDQZrr }, { X86::VUNPCKLPSZrm, X86::VUNPCKLPSZrm, X86::VPUNPCKLDQZrm }, { X86::VUNPCKLPSZrr, X86::VUNPCKLPSZrr, X86::VPUNPCKLDQZrr }, { X86::VUNPCKHPSZrm, X86::VUNPCKHPSZrm, X86::VPUNPCKHDQZrm }, { X86::VUNPCKHPSZrr, X86::VUNPCKHPSZrr, X86::VPUNPCKHDQZrr }, { X86::VEXTRACTPSZmr, X86::VEXTRACTPSZmr, X86::VPEXTRDZmr }, { X86::VEXTRACTPSZrr, X86::VEXTRACTPSZrr, X86::VPEXTRDZrr }, }; static const uint16_t ReplaceableInstrsAVX2[][3] = { //PackedSingle PackedDouble PackedInt { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm }, { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr }, { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm }, { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr }, { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm }, { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr }, { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm }, { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr }, { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm }, { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr }, { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm}, { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr}, { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr}, { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm}, { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr}, { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm}, { X86::VBROADCASTF128, X86::VBROADCASTF128, X86::VBROADCASTI128 }, { X86::VBLENDPSYrri, X86::VBLENDPSYrri, X86::VPBLENDDYrri }, { X86::VBLENDPSYrmi, X86::VBLENDPSYrmi, X86::VPBLENDDYrmi }, { X86::VPERMILPSYmi, X86::VPERMILPSYmi, X86::VPSHUFDYmi }, { X86::VPERMILPSYri, X86::VPERMILPSYri, X86::VPSHUFDYri }, { X86::VUNPCKLPDYrm, X86::VUNPCKLPDYrm, X86::VPUNPCKLQDQYrm }, { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrr, X86::VPUNPCKLQDQYrr }, { X86::VUNPCKHPDYrm, X86::VUNPCKHPDYrm, X86::VPUNPCKHQDQYrm }, { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrr, X86::VPUNPCKHQDQYrr }, { X86::VUNPCKLPSYrm, X86::VUNPCKLPSYrm, X86::VPUNPCKLDQYrm }, { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrr, X86::VPUNPCKLDQYrr }, { X86::VUNPCKHPSYrm, X86::VUNPCKHPSYrm, X86::VPUNPCKHDQYrm }, { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrr, X86::VPUNPCKHDQYrr }, }; static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = { //PackedSingle PackedDouble PackedInt { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr }, { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr }, { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm }, { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr }, }; static const uint16_t ReplaceableInstrsAVX512[][4] = { // Two integer columns for 64-bit and 32-bit elements. //PackedSingle PackedDouble PackedInt PackedInt { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr }, { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm }, { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr }, { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr }, { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm }, { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr }, { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm }, { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr }, { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr }, { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm }, { X86::VMOVAPSZmr, X86::VMOVAPDZmr, X86::VMOVDQA64Zmr, X86::VMOVDQA32Zmr }, { X86::VMOVAPSZrm, X86::VMOVAPDZrm, X86::VMOVDQA64Zrm, X86::VMOVDQA32Zrm }, { X86::VMOVAPSZrr, X86::VMOVAPDZrr, X86::VMOVDQA64Zrr, X86::VMOVDQA32Zrr }, { X86::VMOVUPSZmr, X86::VMOVUPDZmr, X86::VMOVDQU64Zmr, X86::VMOVDQU32Zmr }, { X86::VMOVUPSZrm, X86::VMOVUPDZrm, X86::VMOVDQU64Zrm, X86::VMOVDQU32Zrm }, }; static const uint16_t ReplaceableInstrsAVX512DQ[][4] = { // Two integer columns for 64-bit and 32-bit elements. //PackedSingle PackedDouble PackedInt PackedInt { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm }, { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr }, { X86::VANDPSZ128rm, X86::VANDPDZ128rm, X86::VPANDQZ128rm, X86::VPANDDZ128rm }, { X86::VANDPSZ128rr, X86::VANDPDZ128rr, X86::VPANDQZ128rr, X86::VPANDDZ128rr }, { X86::VORPSZ128rm, X86::VORPDZ128rm, X86::VPORQZ128rm, X86::VPORDZ128rm }, { X86::VORPSZ128rr, X86::VORPDZ128rr, X86::VPORQZ128rr, X86::VPORDZ128rr }, { X86::VXORPSZ128rm, X86::VXORPDZ128rm, X86::VPXORQZ128rm, X86::VPXORDZ128rm }, { X86::VXORPSZ128rr, X86::VXORPDZ128rr, X86::VPXORQZ128rr, X86::VPXORDZ128rr }, { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm }, { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr }, { X86::VANDPSZ256rm, X86::VANDPDZ256rm, X86::VPANDQZ256rm, X86::VPANDDZ256rm }, { X86::VANDPSZ256rr, X86::VANDPDZ256rr, X86::VPANDQZ256rr, X86::VPANDDZ256rr }, { X86::VORPSZ256rm, X86::VORPDZ256rm, X86::VPORQZ256rm, X86::VPORDZ256rm }, { X86::VORPSZ256rr, X86::VORPDZ256rr, X86::VPORQZ256rr, X86::VPORDZ256rr }, { X86::VXORPSZ256rm, X86::VXORPDZ256rm, X86::VPXORQZ256rm, X86::VPXORDZ256rm }, { X86::VXORPSZ256rr, X86::VXORPDZ256rr, X86::VPXORQZ256rr, X86::VPXORDZ256rr }, { X86::VANDNPSZrm, X86::VANDNPDZrm, X86::VPANDNQZrm, X86::VPANDNDZrm }, { X86::VANDNPSZrr, X86::VANDNPDZrr, X86::VPANDNQZrr, X86::VPANDNDZrr }, { X86::VANDPSZrm, X86::VANDPDZrm, X86::VPANDQZrm, X86::VPANDDZrm }, { X86::VANDPSZrr, X86::VANDPDZrr, X86::VPANDQZrr, X86::VPANDDZrr }, { X86::VORPSZrm, X86::VORPDZrm, X86::VPORQZrm, X86::VPORDZrm }, { X86::VORPSZrr, X86::VORPDZrr, X86::VPORQZrr, X86::VPORDZrr }, { X86::VXORPSZrm, X86::VXORPDZrm, X86::VPXORQZrm, X86::VPXORDZrm }, { X86::VXORPSZrr, X86::VXORPDZrr, X86::VPXORQZrr, X86::VPXORDZrr }, }; static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = { // Two integer columns for 64-bit and 32-bit elements. //PackedSingle PackedDouble //PackedInt PackedInt { X86::VANDNPSZ128rmk, X86::VANDNPDZ128rmk, X86::VPANDNQZ128rmk, X86::VPANDNDZ128rmk }, { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz, X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz }, { X86::VANDNPSZ128rrk, X86::VANDNPDZ128rrk, X86::VPANDNQZ128rrk, X86::VPANDNDZ128rrk }, { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz, X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz }, { X86::VANDPSZ128rmk, X86::VANDPDZ128rmk, X86::VPANDQZ128rmk, X86::VPANDDZ128rmk }, { X86::VANDPSZ128rmkz, X86::VANDPDZ128rmkz, X86::VPANDQZ128rmkz, X86::VPANDDZ128rmkz }, { X86::VANDPSZ128rrk, X86::VANDPDZ128rrk, X86::VPANDQZ128rrk, X86::VPANDDZ128rrk }, { X86::VANDPSZ128rrkz, X86::VANDPDZ128rrkz, X86::VPANDQZ128rrkz, X86::VPANDDZ128rrkz }, { X86::VORPSZ128rmk, X86::VORPDZ128rmk, X86::VPORQZ128rmk, X86::VPORDZ128rmk }, { X86::VORPSZ128rmkz, X86::VORPDZ128rmkz, X86::VPORQZ128rmkz, X86::VPORDZ128rmkz }, { X86::VORPSZ128rrk, X86::VORPDZ128rrk, X86::VPORQZ128rrk, X86::VPORDZ128rrk }, { X86::VORPSZ128rrkz, X86::VORPDZ128rrkz, X86::VPORQZ128rrkz, X86::VPORDZ128rrkz }, { X86::VXORPSZ128rmk, X86::VXORPDZ128rmk, X86::VPXORQZ128rmk, X86::VPXORDZ128rmk }, { X86::VXORPSZ128rmkz, X86::VXORPDZ128rmkz, X86::VPXORQZ128rmkz, X86::VPXORDZ128rmkz }, { X86::VXORPSZ128rrk, X86::VXORPDZ128rrk, X86::VPXORQZ128rrk, X86::VPXORDZ128rrk }, { X86::VXORPSZ128rrkz, X86::VXORPDZ128rrkz, X86::VPXORQZ128rrkz, X86::VPXORDZ128rrkz }, { X86::VANDNPSZ256rmk, X86::VANDNPDZ256rmk, X86::VPANDNQZ256rmk, X86::VPANDNDZ256rmk }, { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz, X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz }, { X86::VANDNPSZ256rrk, X86::VANDNPDZ256rrk, X86::VPANDNQZ256rrk, X86::VPANDNDZ256rrk }, { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz, X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz }, { X86::VANDPSZ256rmk, X86::VANDPDZ256rmk, X86::VPANDQZ256rmk, X86::VPANDDZ256rmk }, { X86::VANDPSZ256rmkz, X86::VANDPDZ256rmkz, X86::VPANDQZ256rmkz, X86::VPANDDZ256rmkz }, { X86::VANDPSZ256rrk, X86::VANDPDZ256rrk, X86::VPANDQZ256rrk, X86::VPANDDZ256rrk }, { X86::VANDPSZ256rrkz, X86::VANDPDZ256rrkz, X86::VPANDQZ256rrkz, X86::VPANDDZ256rrkz }, { X86::VORPSZ256rmk, X86::VORPDZ256rmk, X86::VPORQZ256rmk, X86::VPORDZ256rmk }, { X86::VORPSZ256rmkz, X86::VORPDZ256rmkz, X86::VPORQZ256rmkz, X86::VPORDZ256rmkz }, { X86::VORPSZ256rrk, X86::VORPDZ256rrk, X86::VPORQZ256rrk, X86::VPORDZ256rrk }, { X86::VORPSZ256rrkz, X86::VORPDZ256rrkz, X86::VPORQZ256rrkz, X86::VPORDZ256rrkz }, { X86::VXORPSZ256rmk, X86::VXORPDZ256rmk, X86::VPXORQZ256rmk, X86::VPXORDZ256rmk }, { X86::VXORPSZ256rmkz, X86::VXORPDZ256rmkz, X86::VPXORQZ256rmkz, X86::VPXORDZ256rmkz }, { X86::VXORPSZ256rrk, X86::VXORPDZ256rrk, X86::VPXORQZ256rrk, X86::VPXORDZ256rrk }, { X86::VXORPSZ256rrkz, X86::VXORPDZ256rrkz, X86::VPXORQZ256rrkz, X86::VPXORDZ256rrkz }, { X86::VANDNPSZrmk, X86::VANDNPDZrmk, X86::VPANDNQZrmk, X86::VPANDNDZrmk }, { X86::VANDNPSZrmkz, X86::VANDNPDZrmkz, X86::VPANDNQZrmkz, X86::VPANDNDZrmkz }, { X86::VANDNPSZrrk, X86::VANDNPDZrrk, X86::VPANDNQZrrk, X86::VPANDNDZrrk }, { X86::VANDNPSZrrkz, X86::VANDNPDZrrkz, X86::VPANDNQZrrkz, X86::VPANDNDZrrkz }, { X86::VANDPSZrmk, X86::VANDPDZrmk, X86::VPANDQZrmk, X86::VPANDDZrmk }, { X86::VANDPSZrmkz, X86::VANDPDZrmkz, X86::VPANDQZrmkz, X86::VPANDDZrmkz }, { X86::VANDPSZrrk, X86::VANDPDZrrk, X86::VPANDQZrrk, X86::VPANDDZrrk }, { X86::VANDPSZrrkz, X86::VANDPDZrrkz, X86::VPANDQZrrkz, X86::VPANDDZrrkz }, { X86::VORPSZrmk, X86::VORPDZrmk, X86::VPORQZrmk, X86::VPORDZrmk }, { X86::VORPSZrmkz, X86::VORPDZrmkz, X86::VPORQZrmkz, X86::VPORDZrmkz }, { X86::VORPSZrrk, X86::VORPDZrrk, X86::VPORQZrrk, X86::VPORDZrrk }, { X86::VORPSZrrkz, X86::VORPDZrrkz, X86::VPORQZrrkz, X86::VPORDZrrkz }, { X86::VXORPSZrmk, X86::VXORPDZrmk, X86::VPXORQZrmk, X86::VPXORDZrmk }, { X86::VXORPSZrmkz, X86::VXORPDZrmkz, X86::VPXORQZrmkz, X86::VPXORDZrmkz }, { X86::VXORPSZrrk, X86::VXORPDZrrk, X86::VPXORQZrrk, X86::VPXORDZrrk }, { X86::VXORPSZrrkz, X86::VXORPDZrrkz, X86::VPXORQZrrkz, X86::VPXORDZrrkz }, // Broadcast loads can be handled the same as masked operations to avoid // changing element size. { X86::VANDNPSZ128rmb, X86::VANDNPDZ128rmb, X86::VPANDNQZ128rmb, X86::VPANDNDZ128rmb }, { X86::VANDPSZ128rmb, X86::VANDPDZ128rmb, X86::VPANDQZ128rmb, X86::VPANDDZ128rmb }, { X86::VORPSZ128rmb, X86::VORPDZ128rmb, X86::VPORQZ128rmb, X86::VPORDZ128rmb }, { X86::VXORPSZ128rmb, X86::VXORPDZ128rmb, X86::VPXORQZ128rmb, X86::VPXORDZ128rmb }, { X86::VANDNPSZ256rmb, X86::VANDNPDZ256rmb, X86::VPANDNQZ256rmb, X86::VPANDNDZ256rmb }, { X86::VANDPSZ256rmb, X86::VANDPDZ256rmb, X86::VPANDQZ256rmb, X86::VPANDDZ256rmb }, { X86::VORPSZ256rmb, X86::VORPDZ256rmb, X86::VPORQZ256rmb, X86::VPORDZ256rmb }, { X86::VXORPSZ256rmb, X86::VXORPDZ256rmb, X86::VPXORQZ256rmb, X86::VPXORDZ256rmb }, { X86::VANDNPSZrmb, X86::VANDNPDZrmb, X86::VPANDNQZrmb, X86::VPANDNDZrmb }, { X86::VANDPSZrmb, X86::VANDPDZrmb, X86::VPANDQZrmb, X86::VPANDDZrmb }, { X86::VANDPSZrmb, X86::VANDPDZrmb, X86::VPANDQZrmb, X86::VPANDDZrmb }, { X86::VORPSZrmb, X86::VORPDZrmb, X86::VPORQZrmb, X86::VPORDZrmb }, { X86::VXORPSZrmb, X86::VXORPDZrmb, X86::VPXORQZrmb, X86::VPXORDZrmb }, { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk, X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk }, { X86::VANDPSZ128rmbk, X86::VANDPDZ128rmbk, X86::VPANDQZ128rmbk, X86::VPANDDZ128rmbk }, { X86::VORPSZ128rmbk, X86::VORPDZ128rmbk, X86::VPORQZ128rmbk, X86::VPORDZ128rmbk }, { X86::VXORPSZ128rmbk, X86::VXORPDZ128rmbk, X86::VPXORQZ128rmbk, X86::VPXORDZ128rmbk }, { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk, X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk }, { X86::VANDPSZ256rmbk, X86::VANDPDZ256rmbk, X86::VPANDQZ256rmbk, X86::VPANDDZ256rmbk }, { X86::VORPSZ256rmbk, X86::VORPDZ256rmbk, X86::VPORQZ256rmbk, X86::VPORDZ256rmbk }, { X86::VXORPSZ256rmbk, X86::VXORPDZ256rmbk, X86::VPXORQZ256rmbk, X86::VPXORDZ256rmbk }, { X86::VANDNPSZrmbk, X86::VANDNPDZrmbk, X86::VPANDNQZrmbk, X86::VPANDNDZrmbk }, { X86::VANDPSZrmbk, X86::VANDPDZrmbk, X86::VPANDQZrmbk, X86::VPANDDZrmbk }, { X86::VANDPSZrmbk, X86::VANDPDZrmbk, X86::VPANDQZrmbk, X86::VPANDDZrmbk }, { X86::VORPSZrmbk, X86::VORPDZrmbk, X86::VPORQZrmbk, X86::VPORDZrmbk }, { X86::VXORPSZrmbk, X86::VXORPDZrmbk, X86::VPXORQZrmbk, X86::VPXORDZrmbk }, { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz, X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz}, { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz, X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz }, { X86::VORPSZ128rmbkz, X86::VORPDZ128rmbkz, X86::VPORQZ128rmbkz, X86::VPORDZ128rmbkz }, { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz, X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz }, { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz, X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz}, { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz, X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz }, { X86::VORPSZ256rmbkz, X86::VORPDZ256rmbkz, X86::VPORQZ256rmbkz, X86::VPORDZ256rmbkz }, { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz, X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz }, { X86::VANDNPSZrmbkz, X86::VANDNPDZrmbkz, X86::VPANDNQZrmbkz, X86::VPANDNDZrmbkz }, { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz, X86::VPANDQZrmbkz, X86::VPANDDZrmbkz }, { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz, X86::VPANDQZrmbkz, X86::VPANDDZrmbkz }, { X86::VORPSZrmbkz, X86::VORPDZrmbkz, X86::VPORQZrmbkz, X86::VPORDZrmbkz }, { X86::VXORPSZrmbkz, X86::VXORPDZrmbkz, X86::VPXORQZrmbkz, X86::VPXORDZrmbkz }, }; // NOTE: These should only be used by the custom domain methods. static const uint16_t ReplaceableCustomInstrs[][3] = { //PackedSingle PackedDouble PackedInt { X86::BLENDPSrmi, X86::BLENDPDrmi, X86::PBLENDWrmi }, { X86::BLENDPSrri, X86::BLENDPDrri, X86::PBLENDWrri }, { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDWrmi }, { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDWrri }, { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDWYrmi }, { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDWYrri }, }; static const uint16_t ReplaceableCustomAVX2Instrs[][3] = { //PackedSingle PackedDouble PackedInt { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDDrmi }, { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDDrri }, { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDDYrmi }, { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDDYrri }, }; // Special table for changing EVEX logic instructions to VEX. // TODO: Should we run EVEX->VEX earlier? static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = { // Two integer columns for 64-bit and 32-bit elements. //PackedSingle PackedDouble PackedInt PackedInt { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm }, { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr }, { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDQZ128rm, X86::VPANDDZ128rm }, { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDQZ128rr, X86::VPANDDZ128rr }, { X86::VORPSrm, X86::VORPDrm, X86::VPORQZ128rm, X86::VPORDZ128rm }, { X86::VORPSrr, X86::VORPDrr, X86::VPORQZ128rr, X86::VPORDZ128rr }, { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORQZ128rm, X86::VPXORDZ128rm }, { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORQZ128rr, X86::VPXORDZ128rr }, { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm }, { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr }, { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDQZ256rm, X86::VPANDDZ256rm }, { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDQZ256rr, X86::VPANDDZ256rr }, { X86::VORPSYrm, X86::VORPDYrm, X86::VPORQZ256rm, X86::VPORDZ256rm }, { X86::VORPSYrr, X86::VORPDYrr, X86::VPORQZ256rr, X86::VPORDZ256rr }, { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORQZ256rm, X86::VPXORDZ256rm }, { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORQZ256rr, X86::VPXORDZ256rr }, }; // FIXME: Some shuffle and unpack instructions have equivalents in different // domains, but they require a bit more work than just switching opcodes. static const uint16_t *lookup(unsigned opcode, unsigned domain, ArrayRef<uint16_t[3]> Table) { for (const uint16_t (&Row)[3] : Table) if (Row[domain-1] == opcode) return Row; return nullptr; } static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain, ArrayRef<uint16_t[4]> Table) { // If this is the integer domain make sure to check both integer columns. for (const uint16_t (&Row)[4] : Table) if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode)) return Row; return nullptr; } // Helper to attempt to widen/narrow blend masks. static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth, unsigned NewWidth, unsigned *pNewMask = nullptr) { assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) && "Illegal blend mask scale"); unsigned NewMask = 0; if ((OldWidth % NewWidth) == 0) { unsigned Scale = OldWidth / NewWidth; unsigned SubMask = (1u << Scale) - 1; for (unsigned i = 0; i != NewWidth; ++i) { unsigned Sub = (OldMask >> (i * Scale)) & SubMask; if (Sub == SubMask) NewMask |= (1u << i); else if (Sub != 0x0) return false; } } else { unsigned Scale = NewWidth / OldWidth; unsigned SubMask = (1u << Scale) - 1; for (unsigned i = 0; i != OldWidth; ++i) { if (OldMask & (1 << i)) { NewMask |= (SubMask << (i * Scale)); } } } if (pNewMask) *pNewMask = NewMask; return true; } uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const { unsigned Opcode = MI.getOpcode(); unsigned NumOperands = MI.getDesc().getNumOperands(); auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) { uint16_t validDomains = 0; if (MI.getOperand(NumOperands - 1).isImm()) { unsigned Imm = MI.getOperand(NumOperands - 1).getImm(); if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4)) validDomains |= 0x2; // PackedSingle if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2)) validDomains |= 0x4; // PackedDouble if (!Is256 || Subtarget.hasAVX2()) validDomains |= 0x8; // PackedInt } return validDomains; }; switch (Opcode) { case X86::BLENDPDrmi: case X86::BLENDPDrri: case X86::VBLENDPDrmi: case X86::VBLENDPDrri: return GetBlendDomains(2, false); case X86::VBLENDPDYrmi: case X86::VBLENDPDYrri: return GetBlendDomains(4, true); case X86::BLENDPSrmi: case X86::BLENDPSrri: case X86::VBLENDPSrmi: case X86::VBLENDPSrri: case X86::VPBLENDDrmi: case X86::VPBLENDDrri: return GetBlendDomains(4, false); case X86::VBLENDPSYrmi: case X86::VBLENDPSYrri: case X86::VPBLENDDYrmi: case X86::VPBLENDDYrri: return GetBlendDomains(8, true); case X86::PBLENDWrmi: case X86::PBLENDWrri: case X86::VPBLENDWrmi: case X86::VPBLENDWrri: // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks. case X86::VPBLENDWYrmi: case X86::VPBLENDWYrri: return GetBlendDomains(8, false); case X86::VPANDDZ128rr: case X86::VPANDDZ128rm: case X86::VPANDDZ256rr: case X86::VPANDDZ256rm: case X86::VPANDQZ128rr: case X86::VPANDQZ128rm: case X86::VPANDQZ256rr: case X86::VPANDQZ256rm: case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm: case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm: case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm: case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm: case X86::VPORDZ128rr: case X86::VPORDZ128rm: case X86::VPORDZ256rr: case X86::VPORDZ256rm: case X86::VPORQZ128rr: case X86::VPORQZ128rm: case X86::VPORQZ256rr: case X86::VPORQZ256rm: case X86::VPXORDZ128rr: case X86::VPXORDZ128rm: case X86::VPXORDZ256rr: case X86::VPXORDZ256rm: case X86::VPXORQZ128rr: case X86::VPXORQZ128rm: case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: // If we don't have DQI see if we can still switch from an EVEX integer // instruction to a VEX floating point instruction. if (Subtarget.hasDQI()) return 0; if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16) return 0; if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16) return 0; // Register forms will have 3 operands. Memory form will have more. if (NumOperands == 3 && RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16) return 0; // All domains are valid. return 0xe; } return 0; } bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI, unsigned Domain) const { assert(Domain > 0 && Domain < 4 && "Invalid execution domain"); uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; assert(dom && "Not an SSE instruction"); unsigned Opcode = MI.getOpcode(); unsigned NumOperands = MI.getDesc().getNumOperands(); auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) { if (MI.getOperand(NumOperands - 1).isImm()) { unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255; Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm); unsigned NewImm = Imm; const uint16_t *table = lookup(Opcode, dom, ReplaceableCustomInstrs); if (!table) table = lookup(Opcode, dom, ReplaceableCustomAVX2Instrs); if (Domain == 1) { // PackedSingle AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm); } else if (Domain == 2) { // PackedDouble AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm); } else if (Domain == 3) { // PackedInt if (Subtarget.hasAVX2()) { // If we are already VPBLENDW use that, else use VPBLENDD. if ((ImmWidth / (Is256 ? 2 : 1)) != 8) { table = lookup(Opcode, dom, ReplaceableCustomAVX2Instrs); AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm); } } else { assert(!Is256 && "128-bit vector expected"); AdjustBlendMask(Imm, ImmWidth, 8, &NewImm); } } assert(table && table[Domain - 1] && "Unknown domain op"); MI.setDesc(get(table[Domain - 1])); MI.getOperand(NumOperands - 1).setImm(NewImm & 255); } return true; }; switch (Opcode) { case X86::BLENDPDrmi: case X86::BLENDPDrri: case X86::VBLENDPDrmi: case X86::VBLENDPDrri: return SetBlendDomain(2, false); case X86::VBLENDPDYrmi: case X86::VBLENDPDYrri: return SetBlendDomain(4, true); case X86::BLENDPSrmi: case X86::BLENDPSrri: case X86::VBLENDPSrmi: case X86::VBLENDPSrri: case X86::VPBLENDDrmi: case X86::VPBLENDDrri: return SetBlendDomain(4, false); case X86::VBLENDPSYrmi: case X86::VBLENDPSYrri: case X86::VPBLENDDYrmi: case X86::VPBLENDDYrri: return SetBlendDomain(8, true); case X86::PBLENDWrmi: case X86::PBLENDWrri: case X86::VPBLENDWrmi: case X86::VPBLENDWrri: return SetBlendDomain(8, false); case X86::VPBLENDWYrmi: case X86::VPBLENDWYrri: return SetBlendDomain(16, true); case X86::VPANDDZ128rr: case X86::VPANDDZ128rm: case X86::VPANDDZ256rr: case X86::VPANDDZ256rm: case X86::VPANDQZ128rr: case X86::VPANDQZ128rm: case X86::VPANDQZ256rr: case X86::VPANDQZ256rm: case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm: case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm: case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm: case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm: case X86::VPORDZ128rr: case X86::VPORDZ128rm: case X86::VPORDZ256rr: case X86::VPORDZ256rm: case X86::VPORQZ128rr: case X86::VPORQZ128rm: case X86::VPORQZ256rr: case X86::VPORQZ256rm: case X86::VPXORDZ128rr: case X86::VPXORDZ128rm: case X86::VPXORDZ256rr: case X86::VPXORDZ256rm: case X86::VPXORQZ128rr: case X86::VPXORQZ128rm: case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: { // Without DQI, convert EVEX instructions to VEX instructions. if (Subtarget.hasDQI()) return false; const uint16_t *table = lookupAVX512(MI.getOpcode(), dom, ReplaceableCustomAVX512LogicInstrs); assert(table && "Instruction not found in table?"); // Don't change integer Q instructions to D instructions and // use D intructions if we started with a PS instruction. if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) Domain = 4; MI.setDesc(get(table[Domain - 1])); return true; } } return false; } std::pair<uint16_t, uint16_t> X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const { uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; unsigned opcode = MI.getOpcode(); uint16_t validDomains = 0; if (domain) { // Attempt to match for custom instructions. validDomains = getExecutionDomainCustom(MI); if (validDomains) return std::make_pair(domain, validDomains); if (lookup(opcode, domain, ReplaceableInstrs)) { validDomains = 0xe; } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) { validDomains = Subtarget.hasAVX2() ? 0xe : 0x6; } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) { // Insert/extract instructions should only effect domain if AVX2 // is enabled. if (!Subtarget.hasAVX2()) return std::make_pair(0, 0); validDomains = 0xe; } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) { validDomains = 0xe; } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain, ReplaceableInstrsAVX512DQ)) { validDomains = 0xe; } else if (Subtarget.hasDQI()) { if (const uint16_t *table = lookupAVX512(opcode, domain, ReplaceableInstrsAVX512DQMasked)) { if (domain == 1 || (domain == 3 && table[3] == opcode)) validDomains = 0xa; else validDomains = 0xc; } } } return std::make_pair(domain, validDomains); } void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const { assert(Domain>0 && Domain<4 && "Invalid execution domain"); uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; assert(dom && "Not an SSE instruction"); // Attempt to match for custom instructions. if (setExecutionDomainCustom(MI, Domain)) return; const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs); if (!table) { // try the other table assert((Subtarget.hasAVX2() || Domain < 3) && "256-bit vector operations only available in AVX2"); table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2); } if (!table) { // try the other table assert(Subtarget.hasAVX2() && "256-bit insert/extract only available in AVX2"); table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract); } if (!table) { // try the AVX512 table assert(Subtarget.hasAVX512() && "Requires AVX-512"); table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512); // Don't change integer Q instructions to D instructions. if (table && Domain == 3 && table[3] == MI.getOpcode()) Domain = 4; } if (!table) { // try the AVX512DQ table assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ); // Don't change integer Q instructions to D instructions and // use D intructions if we started with a PS instruction. if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) Domain = 4; } if (!table) { // try the AVX512DQMasked table assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked); if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) Domain = 4; } assert(table && "Cannot change domain"); MI.setDesc(get(table[Domain - 1])); } /// Return the noop instruction to use for a noop. void X86InstrInfo::getNoop(MCInst &NopInst) const { NopInst.setOpcode(X86::NOOP); } bool X86InstrInfo::isHighLatencyDef(int opc) const { switch (opc) { default: return false; case X86::DIVPDrm: case X86::DIVPDrr: case X86::DIVPSrm: case X86::DIVPSrr: case X86::DIVSDrm: case X86::DIVSDrm_Int: case X86::DIVSDrr: case X86::DIVSDrr_Int: case X86::DIVSSrm: case X86::DIVSSrm_Int: case X86::DIVSSrr: case X86::DIVSSrr_Int: case X86::SQRTPDm: case X86::SQRTPDr: case X86::SQRTPSm: case X86::SQRTPSr: case X86::SQRTSDm: case X86::SQRTSDm_Int: case X86::SQRTSDr: case X86::SQRTSDr_Int: case X86::SQRTSSm: case X86::SQRTSSm_Int: case X86::SQRTSSr: case X86::SQRTSSr_Int: // AVX instructions with high latency case X86::VDIVPDrm: case X86::VDIVPDrr: case X86::VDIVPDYrm: case X86::VDIVPDYrr: case X86::VDIVPSrm: case X86::VDIVPSrr: case X86::VDIVPSYrm: case X86::VDIVPSYrr: case X86::VDIVSDrm: case X86::VDIVSDrm_Int: case X86::VDIVSDrr: case X86::VDIVSDrr_Int: case X86::VDIVSSrm: case X86::VDIVSSrm_Int: case X86::VDIVSSrr: case X86::VDIVSSrr_Int: case X86::VSQRTPDm: case X86::VSQRTPDr: case X86::VSQRTPDYm: case X86::VSQRTPDYr: case X86::VSQRTPSm: case X86::VSQRTPSr: case X86::VSQRTPSYm: case X86::VSQRTPSYr: case X86::VSQRTSDm: case X86::VSQRTSDm_Int: case X86::VSQRTSDr: case X86::VSQRTSDr_Int: case X86::VSQRTSSm: case X86::VSQRTSSm_Int: case X86::VSQRTSSr: case X86::VSQRTSSr_Int: // AVX512 instructions with high latency case X86::VDIVPDZ128rm: case X86::VDIVPDZ128rmb: case X86::VDIVPDZ128rmbk: case X86::VDIVPDZ128rmbkz: case X86::VDIVPDZ128rmk: case X86::VDIVPDZ128rmkz: case X86::VDIVPDZ128rr: case X86::VDIVPDZ128rrk: case X86::VDIVPDZ128rrkz: case X86::VDIVPDZ256rm: case X86::VDIVPDZ256rmb: case X86::VDIVPDZ256rmbk: case X86::VDIVPDZ256rmbkz: case X86::VDIVPDZ256rmk: case X86::VDIVPDZ256rmkz: case X86::VDIVPDZ256rr: case X86::VDIVPDZ256rrk: case X86::VDIVPDZ256rrkz: case X86::VDIVPDZrrb: case X86::VDIVPDZrrbk: case X86::VDIVPDZrrbkz: case X86::VDIVPDZrm: case X86::VDIVPDZrmb: case X86::VDIVPDZrmbk: case X86::VDIVPDZrmbkz: case X86::VDIVPDZrmk: case X86::VDIVPDZrmkz: case X86::VDIVPDZrr: case X86::VDIVPDZrrk: case X86::VDIVPDZrrkz: case X86::VDIVPSZ128rm: case X86::VDIVPSZ128rmb: case X86::VDIVPSZ128rmbk: case X86::VDIVPSZ128rmbkz: case X86::VDIVPSZ128rmk: case X86::VDIVPSZ128rmkz: case X86::VDIVPSZ128rr: case X86::VDIVPSZ128rrk: case X86::VDIVPSZ128rrkz: case X86::VDIVPSZ256rm: case X86::VDIVPSZ256rmb: case X86::VDIVPSZ256rmbk: case X86::VDIVPSZ256rmbkz: case X86::VDIVPSZ256rmk: case X86::VDIVPSZ256rmkz: case X86::VDIVPSZ256rr: case X86::VDIVPSZ256rrk: case X86::VDIVPSZ256rrkz: case X86::VDIVPSZrrb: case X86::VDIVPSZrrbk: case X86::VDIVPSZrrbkz: case X86::VDIVPSZrm: case X86::VDIVPSZrmb: case X86::VDIVPSZrmbk: case X86::VDIVPSZrmbkz: case X86::VDIVPSZrmk: case X86::VDIVPSZrmkz: case X86::VDIVPSZrr: case X86::VDIVPSZrrk: case X86::VDIVPSZrrkz: case X86::VDIVSDZrm: case X86::VDIVSDZrr: case X86::VDIVSDZrm_Int: case X86::VDIVSDZrm_Intk: case X86::VDIVSDZrm_Intkz: case X86::VDIVSDZrr_Int: case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz: case X86::VDIVSDZrrb_Int: case X86::VDIVSDZrrb_Intk: case X86::VDIVSDZrrb_Intkz: case X86::VDIVSSZrm: case X86::VDIVSSZrr: case X86::VDIVSSZrm_Int: case X86::VDIVSSZrm_Intk: case X86::VDIVSSZrm_Intkz: case X86::VDIVSSZrr_Int: case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz: case X86::VDIVSSZrrb_Int: case X86::VDIVSSZrrb_Intk: case X86::VDIVSSZrrb_Intkz: case X86::VSQRTPDZ128m: case X86::VSQRTPDZ128mb: case X86::VSQRTPDZ128mbk: case X86::VSQRTPDZ128mbkz: case X86::VSQRTPDZ128mk: case X86::VSQRTPDZ128mkz: case X86::VSQRTPDZ128r: case X86::VSQRTPDZ128rk: case X86::VSQRTPDZ128rkz: case X86::VSQRTPDZ256m: case X86::VSQRTPDZ256mb: case X86::VSQRTPDZ256mbk: case X86::VSQRTPDZ256mbkz: case X86::VSQRTPDZ256mk: case X86::VSQRTPDZ256mkz: case X86::VSQRTPDZ256r: case X86::VSQRTPDZ256rk: case X86::VSQRTPDZ256rkz: case X86::VSQRTPDZm: case X86::VSQRTPDZmb: case X86::VSQRTPDZmbk: case X86::VSQRTPDZmbkz: case X86::VSQRTPDZmk: case X86::VSQRTPDZmkz: case X86::VSQRTPDZr: case X86::VSQRTPDZrb: case X86::VSQRTPDZrbk: case X86::VSQRTPDZrbkz: case X86::VSQRTPDZrk: case X86::VSQRTPDZrkz: case X86::VSQRTPSZ128m: case X86::VSQRTPSZ128mb: case X86::VSQRTPSZ128mbk: case X86::VSQRTPSZ128mbkz: case X86::VSQRTPSZ128mk: case X86::VSQRTPSZ128mkz: case X86::VSQRTPSZ128r: case X86::VSQRTPSZ128rk: case X86::VSQRTPSZ128rkz: case X86::VSQRTPSZ256m: case X86::VSQRTPSZ256mb: case X86::VSQRTPSZ256mbk: case X86::VSQRTPSZ256mbkz: case X86::VSQRTPSZ256mk: case X86::VSQRTPSZ256mkz: case X86::VSQRTPSZ256r: case X86::VSQRTPSZ256rk: case X86::VSQRTPSZ256rkz: case X86::VSQRTPSZm: case X86::VSQRTPSZmb: case X86::VSQRTPSZmbk: case X86::VSQRTPSZmbkz: case X86::VSQRTPSZmk: case X86::VSQRTPSZmkz: case X86::VSQRTPSZr: case X86::VSQRTPSZrb: case X86::VSQRTPSZrbk: case X86::VSQRTPSZrbkz: case X86::VSQRTPSZrk: case X86::VSQRTPSZrkz: case X86::VSQRTSDZm: case X86::VSQRTSDZm_Int: case X86::VSQRTSDZm_Intk: case X86::VSQRTSDZm_Intkz: case X86::VSQRTSDZr: case X86::VSQRTSDZr_Int: case X86::VSQRTSDZr_Intk: case X86::VSQRTSDZr_Intkz: case X86::VSQRTSDZrb_Int: case X86::VSQRTSDZrb_Intk: case X86::VSQRTSDZrb_Intkz: case X86::VSQRTSSZm: case X86::VSQRTSSZm_Int: case X86::VSQRTSSZm_Intk: case X86::VSQRTSSZm_Intkz: case X86::VSQRTSSZr: case X86::VSQRTSSZr_Int: case X86::VSQRTSSZr_Intk: case X86::VSQRTSSZr_Intkz: case X86::VSQRTSSZrb_Int: case X86::VSQRTSSZrb_Intk: case X86::VSQRTSSZrb_Intkz: case X86::VGATHERDPDYrm: case X86::VGATHERDPDZ128rm: case X86::VGATHERDPDZ256rm: case X86::VGATHERDPDZrm: case X86::VGATHERDPDrm: case X86::VGATHERDPSYrm: case X86::VGATHERDPSZ128rm: case X86::VGATHERDPSZ256rm: case X86::VGATHERDPSZrm: case X86::VGATHERDPSrm: case X86::VGATHERPF0DPDm: case X86::VGATHERPF0DPSm: case X86::VGATHERPF0QPDm: case X86::VGATHERPF0QPSm: case X86::VGATHERPF1DPDm: case X86::VGATHERPF1DPSm: case X86::VGATHERPF1QPDm: case X86::VGATHERPF1QPSm: case X86::VGATHERQPDYrm: case X86::VGATHERQPDZ128rm: case X86::VGATHERQPDZ256rm: case X86::VGATHERQPDZrm: case X86::VGATHERQPDrm: case X86::VGATHERQPSYrm: case X86::VGATHERQPSZ128rm: case X86::VGATHERQPSZ256rm: case X86::VGATHERQPSZrm: case X86::VGATHERQPSrm: case X86::VPGATHERDDYrm: case X86::VPGATHERDDZ128rm: case X86::VPGATHERDDZ256rm: case X86::VPGATHERDDZrm: case X86::VPGATHERDDrm: case X86::VPGATHERDQYrm: case X86::VPGATHERDQZ128rm: case X86::VPGATHERDQZ256rm: case X86::VPGATHERDQZrm: case X86::VPGATHERDQrm: case X86::VPGATHERQDYrm: case X86::VPGATHERQDZ128rm: case X86::VPGATHERQDZ256rm: case X86::VPGATHERQDZrm: case X86::VPGATHERQDrm: case X86::VPGATHERQQYrm: case X86::VPGATHERQQZ128rm: case X86::VPGATHERQQZ256rm: case X86::VPGATHERQQZrm: case X86::VPGATHERQQrm: case X86::VSCATTERDPDZ128mr: case X86::VSCATTERDPDZ256mr: case X86::VSCATTERDPDZmr: case X86::VSCATTERDPSZ128mr: case X86::VSCATTERDPSZ256mr: case X86::VSCATTERDPSZmr: case X86::VSCATTERPF0DPDm: case X86::VSCATTERPF0DPSm: case X86::VSCATTERPF0QPDm: case X86::VSCATTERPF0QPSm: case X86::VSCATTERPF1DPDm: case X86::VSCATTERPF1DPSm: case X86::VSCATTERPF1QPDm: case X86::VSCATTERPF1QPSm: case X86::VSCATTERQPDZ128mr: case X86::VSCATTERQPDZ256mr: case X86::VSCATTERQPDZmr: case X86::VSCATTERQPSZ128mr: case X86::VSCATTERQPSZ256mr: case X86::VSCATTERQPSZmr: case X86::VPSCATTERDDZ128mr: case X86::VPSCATTERDDZ256mr: case X86::VPSCATTERDDZmr: case X86::VPSCATTERDQZ128mr: case X86::VPSCATTERDQZ256mr: case X86::VPSCATTERDQZmr: case X86::VPSCATTERQDZ128mr: case X86::VPSCATTERQDZ256mr: case X86::VPSCATTERQDZmr: case X86::VPSCATTERQQZ128mr: case X86::VPSCATTERQQZ256mr: case X86::VPSCATTERQQZmr: return true; } } bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, const MachineRegisterInfo *MRI, const MachineInstr &DefMI, unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const { return isHighLatencyDef(DefMI.getOpcode()); } bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst, const MachineBasicBlock *MBB) const { assert((Inst.getNumOperands() == 3 || Inst.getNumOperands() == 4) && "Reassociation needs binary operators"); // Integer binary math/logic instructions have a third source operand: // the EFLAGS register. That operand must be both defined here and never // used; ie, it must be dead. If the EFLAGS operand is live, then we can // not change anything because rearranging the operands could affect other // instructions that depend on the exact status flags (zero, sign, etc.) // that are set by using these particular operands with this operation. if (Inst.getNumOperands() == 4) { assert(Inst.getOperand(3).isReg() && Inst.getOperand(3).getReg() == X86::EFLAGS && "Unexpected operand in reassociable instruction"); if (!Inst.getOperand(3).isDead()) return false; } return TargetInstrInfo::hasReassociableOperands(Inst, MBB); } // TODO: There are many more machine instruction opcodes to match: // 1. Other data types (integer, vectors) // 2. Other math / logic operations (xor, or) // 3. Other forms of the same operation (intrinsics and other variants) bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { switch (Inst.getOpcode()) { case X86::AND8rr: case X86::AND16rr: case X86::AND32rr: case X86::AND64rr: case X86::OR8rr: case X86::OR16rr: case X86::OR32rr: case X86::OR64rr: case X86::XOR8rr: case X86::XOR16rr: case X86::XOR32rr: case X86::XOR64rr: case X86::IMUL16rr: case X86::IMUL32rr: case X86::IMUL64rr: case X86::PANDrr: case X86::PORrr: case X86::PXORrr: case X86::ANDPDrr: case X86::ANDPSrr: case X86::ORPDrr: case X86::ORPSrr: case X86::XORPDrr: case X86::XORPSrr: case X86::PADDBrr: case X86::PADDWrr: case X86::PADDDrr: case X86::PADDQrr: case X86::VPANDrr: case X86::VPANDYrr: case X86::VPANDDZ128rr: case X86::VPANDDZ256rr: case X86::VPANDDZrr: case X86::VPANDQZ128rr: case X86::VPANDQZ256rr: case X86::VPANDQZrr: case X86::VPORrr: case X86::VPORYrr: case X86::VPORDZ128rr: case X86::VPORDZ256rr: case X86::VPORDZrr: case X86::VPORQZ128rr: case X86::VPORQZ256rr: case X86::VPORQZrr: case X86::VPXORrr: case X86::VPXORYrr: case X86::VPXORDZ128rr: case X86::VPXORDZ256rr: case X86::VPXORDZrr: case X86::VPXORQZ128rr: case X86::VPXORQZ256rr: case X86::VPXORQZrr: case X86::VANDPDrr: case X86::VANDPSrr: case X86::VANDPDYrr: case X86::VANDPSYrr: case X86::VANDPDZ128rr: case X86::VANDPSZ128rr: case X86::VANDPDZ256rr: case X86::VANDPSZ256rr: case X86::VANDPDZrr: case X86::VANDPSZrr: case X86::VORPDrr: case X86::VORPSrr: case X86::VORPDYrr: case X86::VORPSYrr: case X86::VORPDZ128rr: case X86::VORPSZ128rr: case X86::VORPDZ256rr: case X86::VORPSZ256rr: case X86::VORPDZrr: case X86::VORPSZrr: case X86::VXORPDrr: case X86::VXORPSrr: case X86::VXORPDYrr: case X86::VXORPSYrr: case X86::VXORPDZ128rr: case X86::VXORPSZ128rr: case X86::VXORPDZ256rr: case X86::VXORPSZ256rr: case X86::VXORPDZrr: case X86::VXORPSZrr: case X86::KADDBrr: case X86::KADDWrr: case X86::KADDDrr: case X86::KADDQrr: case X86::KANDBrr: case X86::KANDWrr: case X86::KANDDrr: case X86::KANDQrr: case X86::KORBrr: case X86::KORWrr: case X86::KORDrr: case X86::KORQrr: case X86::KXORBrr: case X86::KXORWrr: case X86::KXORDrr: case X86::KXORQrr: case X86::VPADDBrr: case X86::VPADDWrr: case X86::VPADDDrr: case X86::VPADDQrr: case X86::VPADDBYrr: case X86::VPADDWYrr: case X86::VPADDDYrr: case X86::VPADDQYrr: case X86::VPADDBZ128rr: case X86::VPADDWZ128rr: case X86::VPADDDZ128rr: case X86::VPADDQZ128rr: case X86::VPADDBZ256rr: case X86::VPADDWZ256rr: case X86::VPADDDZ256rr: case X86::VPADDQZ256rr: case X86::VPADDBZrr: case X86::VPADDWZrr: case X86::VPADDDZrr: case X86::VPADDQZrr: case X86::VPMULLWrr: case X86::VPMULLWYrr: case X86::VPMULLWZ128rr: case X86::VPMULLWZ256rr: case X86::VPMULLWZrr: case X86::VPMULLDrr: case X86::VPMULLDYrr: case X86::VPMULLDZ128rr: case X86::VPMULLDZ256rr: case X86::VPMULLDZrr: case X86::VPMULLQZ128rr: case X86::VPMULLQZ256rr: case X86::VPMULLQZrr: // Normal min/max instructions are not commutative because of NaN and signed // zero semantics, but these are. Thus, there's no need to check for global // relaxed math; the instructions themselves have the properties we need. case X86::MAXCPDrr: case X86::MAXCPSrr: case X86::MAXCSDrr: case X86::MAXCSSrr: case X86::MINCPDrr: case X86::MINCPSrr: case X86::MINCSDrr: case X86::MINCSSrr: case X86::VMAXCPDrr: case X86::VMAXCPSrr: case X86::VMAXCPDYrr: case X86::VMAXCPSYrr: case X86::VMAXCPDZ128rr: case X86::VMAXCPSZ128rr: case X86::VMAXCPDZ256rr: case X86::VMAXCPSZ256rr: case X86::VMAXCPDZrr: case X86::VMAXCPSZrr: case X86::VMAXCSDrr: case X86::VMAXCSSrr: case X86::VMAXCSDZrr: case X86::VMAXCSSZrr: case X86::VMINCPDrr: case X86::VMINCPSrr: case X86::VMINCPDYrr: case X86::VMINCPSYrr: case X86::VMINCPDZ128rr: case X86::VMINCPSZ128rr: case X86::VMINCPDZ256rr: case X86::VMINCPSZ256rr: case X86::VMINCPDZrr: case X86::VMINCPSZrr: case X86::VMINCSDrr: case X86::VMINCSSrr: case X86::VMINCSDZrr: case X86::VMINCSSZrr: return true; case X86::ADDPDrr: case X86::ADDPSrr: case X86::ADDSDrr: case X86::ADDSSrr: case X86::MULPDrr: case X86::MULPSrr: case X86::MULSDrr: case X86::MULSSrr: case X86::VADDPDrr: case X86::VADDPSrr: case X86::VADDPDYrr: case X86::VADDPSYrr: case X86::VADDPDZ128rr: case X86::VADDPSZ128rr: case X86::VADDPDZ256rr: case X86::VADDPSZ256rr: case X86::VADDPDZrr: case X86::VADDPSZrr: case X86::VADDSDrr: case X86::VADDSSrr: case X86::VADDSDZrr: case X86::VADDSSZrr: case X86::VMULPDrr: case X86::VMULPSrr: case X86::VMULPDYrr: case X86::VMULPSYrr: case X86::VMULPDZ128rr: case X86::VMULPSZ128rr: case X86::VMULPDZ256rr: case X86::VMULPSZ256rr: case X86::VMULPDZrr: case X86::VMULPSZrr: case X86::VMULSDrr: case X86::VMULSSrr: case X86::VMULSDZrr: case X86::VMULSSZrr: return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath; default: return false; } } /// This is an architecture-specific helper function of reassociateOps. /// Set special operand attributes for new instructions after reassociation. void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, MachineInstr &NewMI1, MachineInstr &NewMI2) const { // Integer instructions define an implicit EFLAGS source register operand as // the third source (fourth total) operand. if (OldMI1.getNumOperands() != 4 || OldMI2.getNumOperands() != 4) return; assert(NewMI1.getNumOperands() == 4 && NewMI2.getNumOperands() == 4 && "Unexpected instruction type for reassociation"); MachineOperand &OldOp1 = OldMI1.getOperand(3); MachineOperand &OldOp2 = OldMI2.getOperand(3); MachineOperand &NewOp1 = NewMI1.getOperand(3); MachineOperand &NewOp2 = NewMI2.getOperand(3); assert(OldOp1.isReg() && OldOp1.getReg() == X86::EFLAGS && OldOp1.isDead() && "Must have dead EFLAGS operand in reassociable instruction"); assert(OldOp2.isReg() && OldOp2.getReg() == X86::EFLAGS && OldOp2.isDead() && "Must have dead EFLAGS operand in reassociable instruction"); (void)OldOp1; (void)OldOp2; assert(NewOp1.isReg() && NewOp1.getReg() == X86::EFLAGS && "Unexpected operand in reassociable instruction"); assert(NewOp2.isReg() && NewOp2.getReg() == X86::EFLAGS && "Unexpected operand in reassociable instruction"); // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations // of this pass or other passes. The EFLAGS operands must be dead in these new // instructions because the EFLAGS operands in the original instructions must // be dead in order for reassociation to occur. NewOp1.setIsDead(); NewOp2.setIsDead(); } std::pair<unsigned, unsigned> X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { return std::make_pair(TF, 0u); } ArrayRef<std::pair<unsigned, const char *>> X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const { using namespace X86II; static const std::pair<unsigned, const char *> TargetFlags[] = { {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"}, {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"}, {MO_GOT, "x86-got"}, {MO_GOTOFF, "x86-gotoff"}, {MO_GOTPCREL, "x86-gotpcrel"}, {MO_PLT, "x86-plt"}, {MO_TLSGD, "x86-tlsgd"}, {MO_TLSLD, "x86-tlsld"}, {MO_TLSLDM, "x86-tlsldm"}, {MO_GOTTPOFF, "x86-gottpoff"}, {MO_INDNTPOFF, "x86-indntpoff"}, {MO_TPOFF, "x86-tpoff"}, {MO_DTPOFF, "x86-dtpoff"}, {MO_NTPOFF, "x86-ntpoff"}, {MO_GOTNTPOFF, "x86-gotntpoff"}, {MO_DLLIMPORT, "x86-dllimport"}, {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"}, {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"}, {MO_TLVP, "x86-tlvp"}, {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"}, {MO_SECREL, "x86-secrel"}}; return makeArrayRef(TargetFlags); } namespace { /// Create Global Base Reg pass. This initializes the PIC /// global base register for x86-32. struct CGBR : public MachineFunctionPass { static char ID; CGBR() : MachineFunctionPass(ID) {} bool runOnMachineFunction(MachineFunction &MF) override { const X86TargetMachine *TM = static_cast<const X86TargetMachine *>(&MF.getTarget()); const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); // Don't do anything in the 64-bit small and kernel code models. They use // RIP-relative addressing for everything. if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small || TM->getCodeModel() == CodeModel::Kernel)) return false; // Only emit a global base reg in PIC mode. if (!TM->isPositionIndependent()) return false; X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); // If we didn't need a GlobalBaseReg, don't insert code. if (GlobalBaseReg == 0) return false; // Insert the set of GlobalBaseReg into the first MBB of the function MachineBasicBlock &FirstMBB = MF.front(); MachineBasicBlock::iterator MBBI = FirstMBB.begin(); DebugLoc DL = FirstMBB.findDebugLoc(MBBI); MachineRegisterInfo &RegInfo = MF.getRegInfo(); const X86InstrInfo *TII = STI.getInstrInfo(); unsigned PC; if (STI.isPICStyleGOT()) PC = RegInfo.createVirtualRegister(&X86::GR32RegClass); else PC = GlobalBaseReg; if (STI.is64Bit()) { if (TM->getCodeModel() == CodeModel::Medium) { // In the medium code model, use a RIP-relative LEA to materialize the // GOT. BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC) .addReg(X86::RIP) .addImm(0) .addReg(0) .addExternalSymbol("_GLOBAL_OFFSET_TABLE_") .addReg(0); } else if (TM->getCodeModel() == CodeModel::Large) { // Loading the GOT in the large code model requires math with labels, // so we use a pseudo instruction and expand it during MC emission. unsigned Scratch = RegInfo.createVirtualRegister(&X86::GR64RegClass); BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVGOT64r), PC) .addReg(Scratch, RegState::Undef | RegState::Define) .addExternalSymbol("_GLOBAL_OFFSET_TABLE_"); } else { llvm_unreachable("unexpected code model"); } } else { // Operand of MovePCtoStack is completely ignored by asm printer. It's // only used in JIT code emission as displacement to pc. BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); // If we're using vanilla 'GOT' PIC style, we should use relative // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external. if (STI.isPICStyleGOT()) { // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], // %some_register BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) .addReg(PC) .addExternalSymbol("_GLOBAL_OFFSET_TABLE_", X86II::MO_GOT_ABSOLUTE_ADDRESS); } } return true; } StringRef getPassName() const override { return "X86 PIC Global Base Reg Initialization"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } }; } char CGBR::ID = 0; FunctionPass* llvm::createX86GlobalBaseRegPass() { return new CGBR(); } namespace { struct LDTLSCleanup : public MachineFunctionPass { static char ID; LDTLSCleanup() : MachineFunctionPass(ID) {} bool runOnMachineFunction(MachineFunction &MF) override { if (skipFunction(MF.getFunction())) return false; X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>(); if (MFI->getNumLocalDynamicTLSAccesses() < 2) { // No point folding accesses if there isn't at least two. return false; } MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>(); return VisitNode(DT->getRootNode(), 0); } // Visit the dominator subtree rooted at Node in pre-order. // If TLSBaseAddrReg is non-null, then use that to replace any // TLS_base_addr instructions. Otherwise, create the register // when the first such instruction is seen, and then use it // as we encounter more instructions. bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { MachineBasicBlock *BB = Node->getBlock(); bool Changed = false; // Traverse the current block. for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { switch (I->getOpcode()) { case X86::TLS_base_addr32: case X86::TLS_base_addr64: if (TLSBaseAddrReg) I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg); else I = SetRegister(*I, &TLSBaseAddrReg); Changed = true; break; default: break; } } // Visit the children of this block in the dominator tree. for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end(); I != E; ++I) { Changed |= VisitNode(*I, TLSBaseAddrReg); } return Changed; } // Replace the TLS_base_addr instruction I with a copy from // TLSBaseAddrReg, returning the new instruction. MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I, unsigned TLSBaseAddrReg) { MachineFunction *MF = I.getParent()->getParent(); const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); const bool is64Bit = STI.is64Bit(); const X86InstrInfo *TII = STI.getInstrInfo(); // Insert a Copy from TLSBaseAddrReg to RAX/EAX. MachineInstr *Copy = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX) .addReg(TLSBaseAddrReg); // Erase the TLS_base_addr instruction. I.eraseFromParent(); return Copy; } // Create a virtual register in *TLSBaseAddrReg, and populate it by // inserting a copy instruction after I. Returns the new instruction. MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) { MachineFunction *MF = I.getParent()->getParent(); const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); const bool is64Bit = STI.is64Bit(); const X86InstrInfo *TII = STI.getInstrInfo(); // Create a virtual register for the TLS base address. MachineRegisterInfo &RegInfo = MF->getRegInfo(); *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit ? &X86::GR64RegClass : &X86::GR32RegClass); // Insert a copy from RAX/EAX to TLSBaseAddrReg. MachineInstr *Next = I.getNextNode(); MachineInstr *Copy = BuildMI(*I.getParent(), Next, I.getDebugLoc(), TII->get(TargetOpcode::COPY), *TLSBaseAddrReg) .addReg(is64Bit ? X86::RAX : X86::EAX); return Copy; } StringRef getPassName() const override { return "Local Dynamic TLS Access Clean-up"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired<MachineDominatorTree>(); MachineFunctionPass::getAnalysisUsage(AU); } }; } char LDTLSCleanup::ID = 0; FunctionPass* llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); } /// Constants defining how certain sequences should be outlined. /// /// \p MachineOutlinerDefault implies that the function is called with a call /// instruction, and a return must be emitted for the outlined function frame. /// /// That is, /// /// I1 OUTLINED_FUNCTION: /// I2 --> call OUTLINED_FUNCTION I1 /// I3 I2 /// I3 /// ret /// /// * Call construction overhead: 1 (call instruction) /// * Frame construction overhead: 1 (return instruction) /// /// \p MachineOutlinerTailCall implies that the function is being tail called. /// A jump is emitted instead of a call, and the return is already present in /// the outlined sequence. That is, /// /// I1 OUTLINED_FUNCTION: /// I2 --> jmp OUTLINED_FUNCTION I1 /// ret I2 /// ret /// /// * Call construction overhead: 1 (jump instruction) /// * Frame construction overhead: 0 (don't need to return) /// enum MachineOutlinerClass { MachineOutlinerDefault, MachineOutlinerTailCall }; outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo( std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { unsigned SequenceSize = std::accumulate(RepeatedSequenceLocs[0].front(), std::next(RepeatedSequenceLocs[0].back()), 0, [](unsigned Sum, const MachineInstr &MI) { // FIXME: x86 doesn't implement getInstSizeInBytes, so // we can't tell the cost. Just assume each instruction // is one byte. if (MI.isDebugInstr() || MI.isKill()) return Sum; return Sum + 1; }); // FIXME: Use real size in bytes for call and ret instructions. if (RepeatedSequenceLocs[0].back()->isTerminator()) { for (outliner::Candidate &C : RepeatedSequenceLocs) C.setCallInfo(MachineOutlinerTailCall, 1); return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 0, // Number of bytes to emit frame. MachineOutlinerTailCall // Type of frame. ); } for (outliner::Candidate &C : RepeatedSequenceLocs) C.setCallInfo(MachineOutlinerDefault, 1); return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1, MachineOutlinerDefault); } bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF, bool OutlineFromLinkOnceODRs) const { const Function &F = MF.getFunction(); // Does the function use a red zone? If it does, then we can't risk messing // with the stack. if (!F.hasFnAttribute(Attribute::NoRedZone)) { // It could have a red zone. If it does, then we don't want to touch it. const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); if (!X86FI || X86FI->getUsesRedZone()) return false; } // If we *don't* want to outline from things that could potentially be deduped // then return false. if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) return false; // This function is viable for outlining, so return true. return true; } outliner::InstrType X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const { MachineInstr &MI = *MIT; // Don't allow debug values to impact outlining type. if (MI.isDebugInstr() || MI.isIndirectDebugValue()) return outliner::InstrType::Invisible; // At this point, KILL instructions don't really tell us much so we can go // ahead and skip over them. if (MI.isKill()) return outliner::InstrType::Invisible; // Is this a tail call? If yes, we can outline as a tail call. if (isTailCall(MI)) return outliner::InstrType::Legal; // Is this the terminator of a basic block? if (MI.isTerminator() || MI.isReturn()) { // Does its parent have any successors in its MachineFunction? if (MI.getParent()->succ_empty()) return outliner::InstrType::Legal; // It does, so we can't tail call it. return outliner::InstrType::Illegal; } // Don't outline anything that modifies or reads from the stack pointer. // // FIXME: There are instructions which are being manually built without // explicit uses/defs so we also have to check the MCInstrDesc. We should be // able to remove the extra checks once those are fixed up. For example, // sometimes we might get something like %rax = POP64r 1. This won't be // caught by modifiesRegister or readsRegister even though the instruction // really ought to be formed so that modifiesRegister/readsRegister would // catch it. if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) || MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) || MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP)) return outliner::InstrType::Illegal; // Outlined calls change the instruction pointer, so don't read from it. if (MI.readsRegister(X86::RIP, &RI) || MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) || MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP)) return outliner::InstrType::Illegal; // Positions can't safely be outlined. if (MI.isPosition()) return outliner::InstrType::Illegal; // Make sure none of the operands of this instruction do anything tricky. for (const MachineOperand &MOP : MI.operands()) if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() || MOP.isTargetIndex()) return outliner::InstrType::Illegal; return outliner::InstrType::Legal; } void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF, const outliner::OutlinedFunction &OF) const { // If we're a tail call, we already have a return, so don't do anything. if (OF.FrameConstructionID == MachineOutlinerTailCall) return; // We're a normal call, so our sequence doesn't have a return instruction. // Add it in. MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ)); MBB.insert(MBB.end(), retq); } MachineBasicBlock::iterator X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, MachineFunction &MF, const outliner::Candidate &C) const { // Is it a tail call? if (C.CallConstructionID == MachineOutlinerTailCall) { // Yes, just insert a JMP. It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64)) .addGlobalAddress(M.getNamedValue(MF.getName()))); } else { // No, insert a call. It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32)) .addGlobalAddress(M.getNamedValue(MF.getName()))); } return It; }