; Test 32-bit additions of constants to memory. ; ; RUN: llc < %s -mtriple=s390x-linux-gnu | FileCheck %s declare i32 @foo() ; Check addition of 1. define zeroext i1 @f1(i32 *%ptr) { ; CHECK-LABEL: f1: ; CHECK: asi 0(%r2), 1 ; CHECK: ipm [[REG:%r[0-5]]] ; CHECK: afi [[REG]], 1342177280 ; CHECK: risbg %r2, [[REG]], 63, 191, 33 ; CHECK: br %r14 %a = load i32, i32 *%ptr %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 1) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%ptr ret i1 %obit } ; Check the high end of the constant range. define zeroext i1 @f2(i32 *%ptr) { ; CHECK-LABEL: f2: ; CHECK: asi 0(%r2), 127 ; CHECK: ipm [[REG:%r[0-5]]] ; CHECK: afi [[REG]], 1342177280 ; CHECK: risbg %r2, [[REG]], 63, 191, 33 ; CHECK: br %r14 %a = load i32, i32 *%ptr %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 127) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%ptr ret i1 %obit } ; Check the next constant up, which must use an addition and a store. define zeroext i1 @f3(i32 %dummy, i32 *%ptr) { ; CHECK-LABEL: f3: ; CHECK: l [[VAL:%r[0-5]]], 0(%r3) ; CHECK: ahi [[VAL]], 128 ; CHECK-DAG: st [[VAL]], 0(%r3) ; CHECK-DAG: ipm [[REG:%r[0-5]]] ; CHECK-DAG: afi [[REG]], 1342177280 ; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33 ; CHECK: br %r14 %a = load i32, i32 *%ptr %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 128) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%ptr ret i1 %obit } ; Check the low end of the constant range. define zeroext i1 @f4(i32 *%ptr) { ; CHECK-LABEL: f4: ; CHECK: asi 0(%r2), -128 ; CHECK: ipm [[REG:%r[0-5]]] ; CHECK: afi [[REG]], 1342177280 ; CHECK: risbg %r2, [[REG]], 63, 191, 33 ; CHECK: br %r14 %a = load i32, i32 *%ptr %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 -128) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%ptr ret i1 %obit } ; Check the next value down, with the same comment as f3. define zeroext i1 @f5(i32 %dummy, i32 *%ptr) { ; CHECK-LABEL: f5: ; CHECK: l [[VAL:%r[0-5]]], 0(%r3) ; CHECK: ahi [[VAL]], -129 ; CHECK-DAG: st [[VAL]], 0(%r3) ; CHECK-DAG: ipm [[REG:%r[0-5]]] ; CHECK-DAG: afi [[REG]], 1342177280 ; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33 ; CHECK: br %r14 %a = load i32, i32 *%ptr %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 -129) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%ptr ret i1 %obit } ; Check the high end of the aligned ASI range. define zeroext i1 @f6(i32 *%base) { ; CHECK-LABEL: f6: ; CHECK: asi 524284(%r2), 1 ; CHECK: ipm [[REG:%r[0-5]]] ; CHECK: afi [[REG]], 1342177280 ; CHECK: risbg %r2, [[REG]], 63, 191, 33 ; CHECK: br %r14 %ptr = getelementptr i32, i32 *%base, i64 131071 %a = load i32, i32 *%ptr %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 1) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%ptr ret i1 %obit } ; Check the next word up, which must use separate address logic. ; Other sequences besides this one would be OK. define zeroext i1 @f7(i32 *%base) { ; CHECK-LABEL: f7: ; CHECK: agfi %r2, 524288 ; CHECK: asi 0(%r2), 1 ; CHECK: ipm [[REG:%r[0-5]]] ; CHECK: afi [[REG]], 1342177280 ; CHECK: risbg %r2, [[REG]], 63, 191, 33 ; CHECK: br %r14 %ptr = getelementptr i32, i32 *%base, i64 131072 %a = load i32, i32 *%ptr %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 1) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%ptr ret i1 %obit } ; Check the low end of the ASI range. define zeroext i1 @f8(i32 *%base) { ; CHECK-LABEL: f8: ; CHECK: asi -524288(%r2), 1 ; CHECK: ipm [[REG:%r[0-5]]] ; CHECK: afi [[REG]], 1342177280 ; CHECK: risbg %r2, [[REG]], 63, 191, 33 ; CHECK: br %r14 %ptr = getelementptr i32, i32 *%base, i64 -131072 %a = load i32, i32 *%ptr %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 1) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%ptr ret i1 %obit } ; Check the next word down, which must use separate address logic. ; Other sequences besides this one would be OK. define zeroext i1 @f9(i32 *%base) { ; CHECK-LABEL: f9: ; CHECK: agfi %r2, -524292 ; CHECK: asi 0(%r2), 1 ; CHECK: ipm [[REG:%r[0-5]]] ; CHECK: afi [[REG]], 1342177280 ; CHECK: risbg %r2, [[REG]], 63, 191, 33 ; CHECK: br %r14 %ptr = getelementptr i32, i32 *%base, i64 -131073 %a = load i32, i32 *%ptr %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 1) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%ptr ret i1 %obit } ; Check that ASI does not allow indices. define zeroext i1 @f10(i64 %base, i64 %index) { ; CHECK-LABEL: f10: ; CHECK: agr %r2, %r3 ; CHECK: asi 4(%r2), 1 ; CHECK: ipm [[REG:%r[0-5]]] ; CHECK: afi [[REG]], 1342177280 ; CHECK: risbg %r2, [[REG]], 63, 191, 33 ; CHECK: br %r14 %add1 = add i64 %base, %index %add2 = add i64 %add1, 4 %ptr = inttoptr i64 %add2 to i32 * %a = load i32, i32 *%ptr %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 1) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%ptr ret i1 %obit } ; Check that adding 127 to a spilled value can use ASI. define zeroext i1 @f11(i32 *%ptr, i32 %sel) { ; CHECK-LABEL: f11: ; CHECK: asi {{[0-9]+}}(%r15), 127 ; CHECK: br %r14 entry: %val0 = load volatile i32, i32 *%ptr %val1 = load volatile i32, i32 *%ptr %val2 = load volatile i32, i32 *%ptr %val3 = load volatile i32, i32 *%ptr %val4 = load volatile i32, i32 *%ptr %val5 = load volatile i32, i32 *%ptr %val6 = load volatile i32, i32 *%ptr %val7 = load volatile i32, i32 *%ptr %val8 = load volatile i32, i32 *%ptr %val9 = load volatile i32, i32 *%ptr %val10 = load volatile i32, i32 *%ptr %val11 = load volatile i32, i32 *%ptr %val12 = load volatile i32, i32 *%ptr %val13 = load volatile i32, i32 *%ptr %val14 = load volatile i32, i32 *%ptr %val15 = load volatile i32, i32 *%ptr %test = icmp ne i32 %sel, 0 br i1 %test, label %add, label %store add: %t0 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val0, i32 127) %add0 = extractvalue {i32, i1} %t0, 0 %obit0 = extractvalue {i32, i1} %t0, 1 %t1 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val1, i32 127) %add1 = extractvalue {i32, i1} %t1, 0 %obit1 = extractvalue {i32, i1} %t1, 1 %res1 = or i1 %obit0, %obit1 %t2 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val2, i32 127) %add2 = extractvalue {i32, i1} %t2, 0 %obit2 = extractvalue {i32, i1} %t2, 1 %res2 = or i1 %res1, %obit2 %t3 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val3, i32 127) %add3 = extractvalue {i32, i1} %t3, 0 %obit3 = extractvalue {i32, i1} %t3, 1 %res3 = or i1 %res2, %obit3 %t4 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val4, i32 127) %add4 = extractvalue {i32, i1} %t4, 0 %obit4 = extractvalue {i32, i1} %t4, 1 %res4 = or i1 %res3, %obit4 %t5 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val5, i32 127) %add5 = extractvalue {i32, i1} %t5, 0 %obit5 = extractvalue {i32, i1} %t5, 1 %res5 = or i1 %res4, %obit5 %t6 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val6, i32 127) %add6 = extractvalue {i32, i1} %t6, 0 %obit6 = extractvalue {i32, i1} %t6, 1 %res6 = or i1 %res5, %obit6 %t7 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val7, i32 127) %add7 = extractvalue {i32, i1} %t7, 0 %obit7 = extractvalue {i32, i1} %t7, 1 %res7 = or i1 %res6, %obit7 %t8 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val8, i32 127) %add8 = extractvalue {i32, i1} %t8, 0 %obit8 = extractvalue {i32, i1} %t8, 1 %res8 = or i1 %res7, %obit8 %t9 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val9, i32 127) %add9 = extractvalue {i32, i1} %t9, 0 %obit9 = extractvalue {i32, i1} %t9, 1 %res9 = or i1 %res8, %obit9 %t10 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val10, i32 127) %add10 = extractvalue {i32, i1} %t10, 0 %obit10 = extractvalue {i32, i1} %t10, 1 %res10 = or i1 %res9, %obit10 %t11 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val11, i32 127) %add11 = extractvalue {i32, i1} %t11, 0 %obit11 = extractvalue {i32, i1} %t11, 1 %res11 = or i1 %res10, %obit11 %t12 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val12, i32 127) %add12 = extractvalue {i32, i1} %t12, 0 %obit12 = extractvalue {i32, i1} %t12, 1 %res12 = or i1 %res11, %obit12 %t13 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val13, i32 127) %add13 = extractvalue {i32, i1} %t13, 0 %obit13 = extractvalue {i32, i1} %t13, 1 %res13 = or i1 %res12, %obit13 %t14 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val14, i32 127) %add14 = extractvalue {i32, i1} %t14, 0 %obit14 = extractvalue {i32, i1} %t14, 1 %res14 = or i1 %res13, %obit14 %t15 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val15, i32 127) %add15 = extractvalue {i32, i1} %t15, 0 %obit15 = extractvalue {i32, i1} %t15, 1 %res15 = or i1 %res14, %obit15 br label %store store: %new0 = phi i32 [ %val0, %entry ], [ %add0, %add ] %new1 = phi i32 [ %val1, %entry ], [ %add1, %add ] %new2 = phi i32 [ %val2, %entry ], [ %add2, %add ] %new3 = phi i32 [ %val3, %entry ], [ %add3, %add ] %new4 = phi i32 [ %val4, %entry ], [ %add4, %add ] %new5 = phi i32 [ %val5, %entry ], [ %add5, %add ] %new6 = phi i32 [ %val6, %entry ], [ %add6, %add ] %new7 = phi i32 [ %val7, %entry ], [ %add7, %add ] %new8 = phi i32 [ %val8, %entry ], [ %add8, %add ] %new9 = phi i32 [ %val9, %entry ], [ %add9, %add ] %new10 = phi i32 [ %val10, %entry ], [ %add10, %add ] %new11 = phi i32 [ %val11, %entry ], [ %add11, %add ] %new12 = phi i32 [ %val12, %entry ], [ %add12, %add ] %new13 = phi i32 [ %val13, %entry ], [ %add13, %add ] %new14 = phi i32 [ %val14, %entry ], [ %add14, %add ] %new15 = phi i32 [ %val15, %entry ], [ %add15, %add ] %res = phi i1 [ 0, %entry ], [ %res15, %add ] store volatile i32 %new0, i32 *%ptr store volatile i32 %new1, i32 *%ptr store volatile i32 %new2, i32 *%ptr store volatile i32 %new3, i32 *%ptr store volatile i32 %new4, i32 *%ptr store volatile i32 %new5, i32 *%ptr store volatile i32 %new6, i32 *%ptr store volatile i32 %new7, i32 *%ptr store volatile i32 %new8, i32 *%ptr store volatile i32 %new9, i32 *%ptr store volatile i32 %new10, i32 *%ptr store volatile i32 %new11, i32 *%ptr store volatile i32 %new12, i32 *%ptr store volatile i32 %new13, i32 *%ptr store volatile i32 %new14, i32 *%ptr store volatile i32 %new15, i32 *%ptr ret i1 %res } ; Check that adding -128 to a spilled value can use ASI. define zeroext i1 @f12(i32 *%ptr, i32 %sel) { ; CHECK-LABEL: f12: ; CHECK: asi {{[0-9]+}}(%r15), -128 ; CHECK: br %r14 entry: %val0 = load volatile i32, i32 *%ptr %val1 = load volatile i32, i32 *%ptr %val2 = load volatile i32, i32 *%ptr %val3 = load volatile i32, i32 *%ptr %val4 = load volatile i32, i32 *%ptr %val5 = load volatile i32, i32 *%ptr %val6 = load volatile i32, i32 *%ptr %val7 = load volatile i32, i32 *%ptr %val8 = load volatile i32, i32 *%ptr %val9 = load volatile i32, i32 *%ptr %val10 = load volatile i32, i32 *%ptr %val11 = load volatile i32, i32 *%ptr %val12 = load volatile i32, i32 *%ptr %val13 = load volatile i32, i32 *%ptr %val14 = load volatile i32, i32 *%ptr %val15 = load volatile i32, i32 *%ptr %test = icmp ne i32 %sel, 0 br i1 %test, label %add, label %store add: %t0 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val0, i32 -128) %add0 = extractvalue {i32, i1} %t0, 0 %obit0 = extractvalue {i32, i1} %t0, 1 %t1 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val1, i32 -128) %add1 = extractvalue {i32, i1} %t1, 0 %obit1 = extractvalue {i32, i1} %t1, 1 %res1 = or i1 %obit0, %obit1 %t2 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val2, i32 -128) %add2 = extractvalue {i32, i1} %t2, 0 %obit2 = extractvalue {i32, i1} %t2, 1 %res2 = or i1 %res1, %obit2 %t3 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val3, i32 -128) %add3 = extractvalue {i32, i1} %t3, 0 %obit3 = extractvalue {i32, i1} %t3, 1 %res3 = or i1 %res2, %obit3 %t4 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val4, i32 -128) %add4 = extractvalue {i32, i1} %t4, 0 %obit4 = extractvalue {i32, i1} %t4, 1 %res4 = or i1 %res3, %obit4 %t5 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val5, i32 -128) %add5 = extractvalue {i32, i1} %t5, 0 %obit5 = extractvalue {i32, i1} %t5, 1 %res5 = or i1 %res4, %obit5 %t6 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val6, i32 -128) %add6 = extractvalue {i32, i1} %t6, 0 %obit6 = extractvalue {i32, i1} %t6, 1 %res6 = or i1 %res5, %obit6 %t7 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val7, i32 -128) %add7 = extractvalue {i32, i1} %t7, 0 %obit7 = extractvalue {i32, i1} %t7, 1 %res7 = or i1 %res6, %obit7 %t8 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val8, i32 -128) %add8 = extractvalue {i32, i1} %t8, 0 %obit8 = extractvalue {i32, i1} %t8, 1 %res8 = or i1 %res7, %obit8 %t9 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val9, i32 -128) %add9 = extractvalue {i32, i1} %t9, 0 %obit9 = extractvalue {i32, i1} %t9, 1 %res9 = or i1 %res8, %obit9 %t10 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val10, i32 -128) %add10 = extractvalue {i32, i1} %t10, 0 %obit10 = extractvalue {i32, i1} %t10, 1 %res10 = or i1 %res9, %obit10 %t11 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val11, i32 -128) %add11 = extractvalue {i32, i1} %t11, 0 %obit11 = extractvalue {i32, i1} %t11, 1 %res11 = or i1 %res10, %obit11 %t12 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val12, i32 -128) %add12 = extractvalue {i32, i1} %t12, 0 %obit12 = extractvalue {i32, i1} %t12, 1 %res12 = or i1 %res11, %obit12 %t13 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val13, i32 -128) %add13 = extractvalue {i32, i1} %t13, 0 %obit13 = extractvalue {i32, i1} %t13, 1 %res13 = or i1 %res12, %obit13 %t14 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val14, i32 -128) %add14 = extractvalue {i32, i1} %t14, 0 %obit14 = extractvalue {i32, i1} %t14, 1 %res14 = or i1 %res13, %obit14 %t15 = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %val15, i32 -128) %add15 = extractvalue {i32, i1} %t15, 0 %obit15 = extractvalue {i32, i1} %t15, 1 %res15 = or i1 %res14, %obit15 br label %store store: %new0 = phi i32 [ %val0, %entry ], [ %add0, %add ] %new1 = phi i32 [ %val1, %entry ], [ %add1, %add ] %new2 = phi i32 [ %val2, %entry ], [ %add2, %add ] %new3 = phi i32 [ %val3, %entry ], [ %add3, %add ] %new4 = phi i32 [ %val4, %entry ], [ %add4, %add ] %new5 = phi i32 [ %val5, %entry ], [ %add5, %add ] %new6 = phi i32 [ %val6, %entry ], [ %add6, %add ] %new7 = phi i32 [ %val7, %entry ], [ %add7, %add ] %new8 = phi i32 [ %val8, %entry ], [ %add8, %add ] %new9 = phi i32 [ %val9, %entry ], [ %add9, %add ] %new10 = phi i32 [ %val10, %entry ], [ %add10, %add ] %new11 = phi i32 [ %val11, %entry ], [ %add11, %add ] %new12 = phi i32 [ %val12, %entry ], [ %add12, %add ] %new13 = phi i32 [ %val13, %entry ], [ %add13, %add ] %new14 = phi i32 [ %val14, %entry ], [ %add14, %add ] %new15 = phi i32 [ %val15, %entry ], [ %add15, %add ] %res = phi i1 [ 0, %entry ], [ %res15, %add ] store volatile i32 %new0, i32 *%ptr store volatile i32 %new1, i32 *%ptr store volatile i32 %new2, i32 *%ptr store volatile i32 %new3, i32 *%ptr store volatile i32 %new4, i32 *%ptr store volatile i32 %new5, i32 *%ptr store volatile i32 %new6, i32 *%ptr store volatile i32 %new7, i32 *%ptr store volatile i32 %new8, i32 *%ptr store volatile i32 %new9, i32 *%ptr store volatile i32 %new10, i32 *%ptr store volatile i32 %new11, i32 *%ptr store volatile i32 %new12, i32 *%ptr store volatile i32 %new13, i32 *%ptr store volatile i32 %new14, i32 *%ptr store volatile i32 %new15, i32 *%ptr ret i1 %res } ; Check using the overflow result for a branch. define void @f13(i32 *%ptr) { ; CHECK-LABEL: f13: ; CHECK: asi 0(%r2), 1 ; CHECK: jgo foo@PLT ; CHECK: br %r14 %a = load i32, i32 *%ptr %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 1) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%ptr br i1 %obit, label %call, label %exit call: tail call i32 @foo() br label %exit exit: ret void } ; ... and the same with the inverted direction. define void @f14(i32 *%ptr) { ; CHECK-LABEL: f14: ; CHECK: asi 0(%r2), 1 ; CHECK: jgno foo@PLT ; CHECK: br %r14 %a = load i32, i32 *%ptr %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 1) %val = extractvalue {i32, i1} %t, 0 %obit = extractvalue {i32, i1} %t, 1 store i32 %val, i32 *%ptr br i1 %obit, label %exit, label %call call: tail call i32 @foo() br label %exit exit: ret void } declare {i32, i1} @llvm.sadd.with.overflow.i32(i32, i32) nounwind readnone