; RUN: llc < %s -asm-verbose=false -disable-wasm-fallthrough-return-opt -disable-wasm-explicit-locals -verify-machineinstrs | FileCheck %s ; Test the register stackifier pass. target datalayout = "e-m:e-p:32:32-i64:64-n32:64-S128" target triple = "wasm32-unknown-unknown" ; No because of pointer aliasing. ; CHECK-LABEL: no0: ; CHECK: return $1{{$}} define i32 @no0(i32* %p, i32* %q) { %t = load i32, i32* %q store i32 0, i32* %p ret i32 %t } ; No because of side effects. ; CHECK-LABEL: no1: ; CHECK: return $1{{$}} define i32 @no1(i32* %p, i32* dereferenceable(4) %q) { %t = load volatile i32, i32* %q, !invariant.load !0 store volatile i32 0, i32* %p ret i32 %t } ; Yes because of invariant load and no side effects. ; CHECK-LABEL: yes0: ; CHECK: return $pop{{[0-9]+}}{{$}} define i32 @yes0(i32* %p, i32* dereferenceable(4) %q) { %t = load i32, i32* %q, !invariant.load !0 store i32 0, i32* %p ret i32 %t } ; Yes because of no intervening side effects. ; CHECK-LABEL: yes1: ; CHECK: return $pop0{{$}} define i32 @yes1(i32* %q) { %t = load volatile i32, i32* %q ret i32 %t } ; Yes because undefined behavior can be sunk past a store. ; CHECK-LABEL: sink_trap: ; CHECK: return $pop{{[0-9]+}}{{$}} define i32 @sink_trap(i32 %x, i32 %y, i32* %p) { %t = sdiv i32 %x, %y store volatile i32 0, i32* %p ret i32 %t } ; Yes because the call is readnone. ; CHECK-LABEL: sink_readnone_call: ; CHECK: return $pop0{{$}} declare i32 @readnone_callee() readnone nounwind define i32 @sink_readnone_call(i32 %x, i32 %y, i32* %p) { %t = call i32 @readnone_callee() store volatile i32 0, i32* %p ret i32 %t } ; No because the call is readonly and there's an intervening store. ; CHECK-LABEL: no_sink_readonly_call: ; CHECK: return ${{[0-9]+}}{{$}} declare i32 @readonly_callee() readonly nounwind define i32 @no_sink_readonly_call(i32 %x, i32 %y, i32* %p) { %t = call i32 @readonly_callee() store i32 0, i32* %p ret i32 %t } ; Don't schedule stack uses into the stack. To reduce register pressure, the ; scheduler might be tempted to move the definition of $2 down. However, this ; would risk getting incorrect liveness if the instructions are later ; rearranged to make the stack contiguous. ; CHECK-LABEL: stack_uses: ; CHECK: .param i32, i32, i32, i32{{$}} ; CHECK-NEXT: .result i32{{$}} ; CHECK-NEXT: block {{$}} ; CHECK-NEXT: i32.const $push[[L13:[0-9]+]]=, 1{{$}} ; CHECK-NEXT: i32.lt_s $push[[L0:[0-9]+]]=, $0, $pop[[L13]]{{$}} ; CHECK-NEXT: i32.const $push[[L1:[0-9]+]]=, 2{{$}} ; CHECK-NEXT: i32.lt_s $push[[L2:[0-9]+]]=, $1, $pop[[L1]]{{$}} ; CHECK-NEXT: i32.xor $push[[L5:[0-9]+]]=, $pop[[L0]], $pop[[L2]]{{$}} ; CHECK-NEXT: i32.const $push[[L12:[0-9]+]]=, 1{{$}} ; CHECK-NEXT: i32.lt_s $push[[L3:[0-9]+]]=, $2, $pop[[L12]]{{$}} ; CHECK-NEXT: i32.const $push[[L11:[0-9]+]]=, 2{{$}} ; CHECK-NEXT: i32.lt_s $push[[L4:[0-9]+]]=, $3, $pop[[L11]]{{$}} ; CHECK-NEXT: i32.xor $push[[L6:[0-9]+]]=, $pop[[L3]], $pop[[L4]]{{$}} ; CHECK-NEXT: i32.xor $push[[L7:[0-9]+]]=, $pop[[L5]], $pop[[L6]]{{$}} ; CHECK-NEXT: i32.const $push10=, 1{{$}} ; CHECK-NEXT: i32.ne $push8=, $pop7, $pop10{{$}} ; CHECK-NEXT: br_if 0, $pop8{{$}} ; CHECK-NEXT: i32.const $push9=, 0{{$}} ; CHECK-NEXT: return $pop9{{$}} ; CHECK-NEXT: .LBB7_2: ; CHECK-NEXT: end_block{{$}} ; CHECK-NEXT: i32.const $push14=, 1{{$}} ; CHECK-NEXT: return $pop14{{$}} define i32 @stack_uses(i32 %x, i32 %y, i32 %z, i32 %w) { entry: %c = icmp sle i32 %x, 0 %d = icmp sle i32 %y, 1 %e = icmp sle i32 %z, 0 %f = icmp sle i32 %w, 1 %g = xor i1 %c, %d %h = xor i1 %e, %f %i = xor i1 %g, %h br i1 %i, label %true, label %false true: ret i32 0 false: ret i32 1 } ; Test an interesting case where the load has multiple uses and cannot ; be trivially stackified. However, it can be stackified with a tee_local. ; CHECK-LABEL: multiple_uses: ; CHECK: .param i32, i32, i32{{$}} ; CHECK-NEXT: block {{$}} ; CHECK-NEXT: i32.load $push[[NUM0:[0-9]+]]=, 0($2){{$}} ; CHECK-NEXT: tee_local $push[[NUM1:[0-9]+]]=, $3=, $pop[[NUM0]]{{$}} ; CHECK-NEXT: i32.ge_u $push[[NUM2:[0-9]+]]=, $pop[[NUM1]], $1{{$}} ; CHECK-NEXT: br_if 0, $pop[[NUM2]]{{$}} ; CHECK-NEXT: i32.lt_u $push[[NUM3:[0-9]+]]=, $3, $0{{$}} ; CHECK-NEXT: br_if 0, $pop[[NUM3]]{{$}} ; CHECK-NEXT: i32.store 0($2), $3{{$}} ; CHECK-NEXT: .LBB8_3: ; CHECK-NEXT: end_block{{$}} ; CHECK-NEXT: return{{$}} define void @multiple_uses(i32* %arg0, i32* %arg1, i32* %arg2) nounwind { bb: br label %loop loop: %tmp7 = load i32, i32* %arg2 %tmp8 = inttoptr i32 %tmp7 to i32* %tmp9 = icmp uge i32* %tmp8, %arg1 %tmp10 = icmp ult i32* %tmp8, %arg0 %tmp11 = or i1 %tmp9, %tmp10 br i1 %tmp11, label %back, label %then then: store i32 %tmp7, i32* %arg2 br label %back back: br i1 undef, label %return, label %loop return: ret void } ; Don't stackify stores effects across other instructions with side effects. ; CHECK: side_effects: ; CHECK: store ; CHECK-NEXT: call ; CHECK: store ; CHECK-NEXT: call declare void @evoke_side_effects() define hidden void @stackify_store_across_side_effects(double* nocapture %d) { entry: store double 2.0, double* %d call void @evoke_side_effects() store double 2.0, double* %d call void @evoke_side_effects() ret void } ; Div instructions have side effects and can't be reordered, but this entire ; function should still be able to be stackified because it's already in ; tree order. ; CHECK-LABEL: div_tree: ; CHECK: .param i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32{{$}} ; CHECK-NEXT: .result i32{{$}} ; CHECK-NEXT: i32.div_s $push[[L0:[0-9]+]]=, $0, $1{{$}} ; CHECK-NEXT: i32.div_s $push[[L1:[0-9]+]]=, $2, $3{{$}} ; CHECK-NEXT: i32.div_s $push[[L2:[0-9]+]]=, $pop[[L0]], $pop[[L1]]{{$}} ; CHECK-NEXT: i32.div_s $push[[L3:[0-9]+]]=, $4, $5{{$}} ; CHECK-NEXT: i32.div_s $push[[L4:[0-9]+]]=, $6, $7{{$}} ; CHECK-NEXT: i32.div_s $push[[L5:[0-9]+]]=, $pop[[L3]], $pop[[L4]]{{$}} ; CHECK-NEXT: i32.div_s $push[[L6:[0-9]+]]=, $pop[[L2]], $pop[[L5]]{{$}} ; CHECK-NEXT: i32.div_s $push[[L7:[0-9]+]]=, $8, $9{{$}} ; CHECK-NEXT: i32.div_s $push[[L8:[0-9]+]]=, $10, $11{{$}} ; CHECK-NEXT: i32.div_s $push[[L9:[0-9]+]]=, $pop[[L7]], $pop[[L8]]{{$}} ; CHECK-NEXT: i32.div_s $push[[L10:[0-9]+]]=, $12, $13{{$}} ; CHECK-NEXT: i32.div_s $push[[L11:[0-9]+]]=, $14, $15{{$}} ; CHECK-NEXT: i32.div_s $push[[L12:[0-9]+]]=, $pop[[L10]], $pop[[L11]]{{$}} ; CHECK-NEXT: i32.div_s $push[[L13:[0-9]+]]=, $pop[[L9]], $pop[[L12]]{{$}} ; CHECK-NEXT: i32.div_s $push[[L14:[0-9]+]]=, $pop[[L6]], $pop[[L13]]{{$}} ; CHECK-NEXT: return $pop[[L14]]{{$}} define i32 @div_tree(i32 %a, i32 %b, i32 %c, i32 %d, i32 %e, i32 %f, i32 %g, i32 %h, i32 %i, i32 %j, i32 %k, i32 %l, i32 %m, i32 %n, i32 %o, i32 %p) { entry: %div = sdiv i32 %a, %b %div1 = sdiv i32 %c, %d %div2 = sdiv i32 %div, %div1 %div3 = sdiv i32 %e, %f %div4 = sdiv i32 %g, %h %div5 = sdiv i32 %div3, %div4 %div6 = sdiv i32 %div2, %div5 %div7 = sdiv i32 %i, %j %div8 = sdiv i32 %k, %l %div9 = sdiv i32 %div7, %div8 %div10 = sdiv i32 %m, %n %div11 = sdiv i32 %o, %p %div12 = sdiv i32 %div10, %div11 %div13 = sdiv i32 %div9, %div12 %div14 = sdiv i32 %div6, %div13 ret i32 %div14 } ; A simple multiple-use case. ; CHECK-LABEL: simple_multiple_use: ; CHECK: .param i32, i32{{$}} ; CHECK-NEXT: i32.mul $push[[NUM0:[0-9]+]]=, $1, $0{{$}} ; CHECK-NEXT: tee_local $push[[NUM1:[0-9]+]]=, $[[NUM2:[0-9]+]]=, $pop[[NUM0]]{{$}} ; CHECK-NEXT: call use_a@FUNCTION, $pop[[NUM1]]{{$}} ; CHECK-NEXT: call use_b@FUNCTION, $[[NUM2]]{{$}} ; CHECK-NEXT: return{{$}} declare void @use_a(i32) declare void @use_b(i32) define void @simple_multiple_use(i32 %x, i32 %y) { %mul = mul i32 %y, %x call void @use_a(i32 %mul) call void @use_b(i32 %mul) ret void } ; Multiple uses of the same value in one instruction. ; CHECK-LABEL: multiple_uses_in_same_insn: ; CHECK: .param i32, i32{{$}} ; CHECK-NEXT: i32.mul $push[[NUM0:[0-9]+]]=, $1, $0{{$}} ; CHECK-NEXT: tee_local $push[[NUM1:[0-9]+]]=, $[[NUM2:[0-9]+]]=, $pop[[NUM0]]{{$}} ; CHECK-NEXT: call use_2@FUNCTION, $pop[[NUM1]], $[[NUM2]]{{$}} ; CHECK-NEXT: return{{$}} declare void @use_2(i32, i32) define void @multiple_uses_in_same_insn(i32 %x, i32 %y) { %mul = mul i32 %y, %x call void @use_2(i32 %mul, i32 %mul) ret void } ; Commute operands to achieve better stackifying. ; CHECK-LABEL: commute: ; CHECK-NOT: param ; CHECK: .result i32{{$}} ; CHECK-NEXT: i32.call $push0=, red@FUNCTION{{$}} ; CHECK-NEXT: i32.call $push1=, green@FUNCTION{{$}} ; CHECK-NEXT: i32.add $push2=, $pop0, $pop1{{$}} ; CHECK-NEXT: i32.call $push3=, blue@FUNCTION{{$}} ; CHECK-NEXT: i32.add $push4=, $pop2, $pop3{{$}} ; CHECK-NEXT: return $pop4{{$}} declare i32 @red() declare i32 @green() declare i32 @blue() define i32 @commute() { %call = call i32 @red() %call1 = call i32 @green() %add = add i32 %call1, %call %call2 = call i32 @blue() %add3 = add i32 %add, %call2 ret i32 %add3 } ; Don't stackify a register when it would move a the def of the register past ; an implicit get_local for the register. ; CHECK-LABEL: no_stackify_past_use: ; CHECK: i32.call $1=, callee@FUNCTION, $0 ; CHECK-NEXT: i32.const $push0=, 1 ; CHECK-NEXT: i32.add $push1=, $0, $pop0 ; CHECK-NEXT: i32.call $push2=, callee@FUNCTION, $pop1 ; CHECK-NEXT: i32.sub $push3=, $pop2, $1 ; CHECK-NEXT: i32.div_s $push4=, $pop3, $1 ; CHECK-NEXT: return $pop4 declare i32 @callee(i32) define i32 @no_stackify_past_use(i32 %arg) { %tmp1 = call i32 @callee(i32 %arg) %tmp2 = add i32 %arg, 1 %tmp3 = call i32 @callee(i32 %tmp2) %tmp5 = sub i32 %tmp3, %tmp1 %tmp6 = sdiv i32 %tmp5, %tmp1 ret i32 %tmp6 } ; This is the same as no_stackify_past_use, except using a commutative operator, ; so we can reorder the operands and stackify. ; CHECK-LABEL: commute_to_fix_ordering: ; CHECK: i32.call $push[[L0:.+]]=, callee@FUNCTION, $0 ; CHECK: tee_local $push[[L1:.+]]=, $1=, $pop[[L0]] ; CHECK: i32.const $push0=, 1 ; CHECK: i32.add $push1=, $0, $pop0 ; CHECK: i32.call $push2=, callee@FUNCTION, $pop1 ; CHECK: i32.add $push3=, $1, $pop2 ; CHECK: i32.mul $push4=, $pop[[L1]], $pop3 ; CHECK: return $pop4 define i32 @commute_to_fix_ordering(i32 %arg) { %tmp1 = call i32 @callee(i32 %arg) %tmp2 = add i32 %arg, 1 %tmp3 = call i32 @callee(i32 %tmp2) %tmp5 = add i32 %tmp3, %tmp1 %tmp6 = mul i32 %tmp5, %tmp1 ret i32 %tmp6 } ; Stackify individual defs of virtual registers with multiple defs. ; CHECK-LABEL: multiple_defs: ; CHECK: f64.add $push[[NUM0:[0-9]+]]=, ${{[0-9]+}}, $pop{{[0-9]+}}{{$}} ; CHECK-NEXT: tee_local $push[[NUM1:[0-9]+]]=, $[[NUM2:[0-9]+]]=, $pop[[NUM0]]{{$}} ; CHECK-NEXT: f64.select $push{{[0-9]+}}=, $pop{{[0-9]+}}, $pop[[NUM1]], ${{[0-9]+}}{{$}} ; CHECK: $[[NUM2]]=, define void @multiple_defs(i32 %arg, i32 %arg1, i1 %arg2, i1 %arg3, i1 %arg4) { bb: br label %bb5 bb5: ; preds = %bb21, %bb %tmp = phi double [ 0.000000e+00, %bb ], [ %tmp22, %bb21 ] %tmp6 = phi double [ 0.000000e+00, %bb ], [ %tmp23, %bb21 ] %tmp7 = fcmp olt double %tmp6, 2.323450e+01 br i1 %tmp7, label %bb8, label %bb21 bb8: ; preds = %bb17, %bb5 %tmp9 = phi double [ %tmp19, %bb17 ], [ %tmp, %bb5 ] %tmp10 = fadd double %tmp6, -1.000000e+00 %tmp11 = select i1 %arg2, double -1.135357e+04, double %tmp10 %tmp12 = fadd double %tmp11, %tmp9 br i1 %arg3, label %bb17, label %bb13 bb13: ; preds = %bb8 %tmp14 = or i32 %arg1, 2 %tmp15 = icmp eq i32 %tmp14, 14 %tmp16 = select i1 %tmp15, double -1.135357e+04, double 0xBFCE147AE147B000 br label %bb17 bb17: ; preds = %bb13, %bb8 %tmp18 = phi double [ %tmp16, %bb13 ], [ %tmp10, %bb8 ] %tmp19 = fadd double %tmp18, %tmp12 %tmp20 = fcmp olt double %tmp6, 2.323450e+01 br i1 %tmp20, label %bb8, label %bb21 bb21: ; preds = %bb17, %bb5 %tmp22 = phi double [ %tmp, %bb5 ], [ %tmp9, %bb17 ] %tmp23 = fadd double %tmp6, 1.000000e+00 br i1 %arg4, label %exit, label %bb5 exit: ret void } ; Don't move calls past loads ; CHECK-LABEL: no_stackify_call_past_load: ; CHECK: i32.call $0=, red ; CHECK: i32.const $push0=, 0 ; CHECK: i32.load $1=, count($pop0) @count = hidden global i32 0, align 4 define i32 @no_stackify_call_past_load() { %a = call i32 @red() %b = load i32, i32* @count, align 4 call i32 @callee(i32 %a) ret i32 %b ; use of a } ; Don't move stores past loads if there may be aliasing ; CHECK-LABEL: no_stackify_store_past_load ; CHECK: i32.store 0($1), $0 ; CHECK: i32.load {{.*}}, 0($2) ; CHECK: i32.call {{.*}}, callee@FUNCTION, $0{{$}} define i32 @no_stackify_store_past_load(i32 %a, i32* %p1, i32* %p2) { store i32 %a, i32* %p1 %b = load i32, i32* %p2, align 4 call i32 @callee(i32 %a) ret i32 %b } ; Can still stackify past invariant loads. ; CHECK-LABEL: store_past_invar_load ; CHECK: i32.store 0($1), $0 ; CHECK: i32.call {{.*}}, callee@FUNCTION, $0 ; CHECK: i32.load $push{{.*}}, 0($2) ; CHECK: return $pop define i32 @store_past_invar_load(i32 %a, i32* %p1, i32* dereferenceable(4) %p2) { store i32 %a, i32* %p1 %b = load i32, i32* %p2, !invariant.load !0 call i32 @callee(i32 %a) ret i32 %b } ; CHECK-LABEL: ignore_dbg_value: ; CHECK-NEXT: .Lfunc_begin ; CHECK-NEXT: unreachable declare void @llvm.dbg.value(metadata, i64, metadata, metadata) define void @ignore_dbg_value() { call void @llvm.dbg.value(metadata i32 0, i64 0, metadata !7, metadata !9), !dbg !10 unreachable } ; Don't stackify an expression that might use the stack into a return, since we ; might insert a prologue before the return. ; CHECK-LABEL: no_stackify_past_epilogue: ; CHECK: return ${{[0-9]+}}{{$}} declare i32 @use_memory(i32*) define i32 @no_stackify_past_epilogue() { %x = alloca i32 %call = call i32 @use_memory(i32* %x) ret i32 %call } ; Stackify a loop induction variable into a loop comparison. ; CHECK-LABEL: stackify_indvar: ; CHECK: i32.const $push[[L5:.+]]=, 1{{$}} ; CHECK-NEXT: i32.add $push[[L4:.+]]=, $[[R0:.+]], $pop[[L5]]{{$}} ; CHECK-NEXT: tee_local $push[[L3:.+]]=, $[[R0]]=, $pop[[L4]]{{$}} ; CHECK-NEXT: i32.ne $push[[L2:.+]]=, $0, $pop[[L3]]{{$}} define void @stackify_indvar(i32 %tmp, i32* %v) #0 { bb: br label %bb3 bb3: ; preds = %bb3, %bb2 %tmp4 = phi i32 [ %tmp7, %bb3 ], [ 0, %bb ] %tmp5 = load volatile i32, i32* %v, align 4 %tmp6 = add nsw i32 %tmp5, %tmp4 store volatile i32 %tmp6, i32* %v, align 4 %tmp7 = add nuw nsw i32 %tmp4, 1 %tmp8 = icmp eq i32 %tmp7, %tmp br i1 %tmp8, label %bb10, label %bb3 bb10: ; preds = %bb9, %bb ret void } ; Don't stackify a call past a __stack_pointer store. ; CHECK-LABEL: stackpointer_dependency: ; CHECK: call {{.+}}, stackpointer_callee@FUNCTION, ; CHECK-NEXT: set_global __stack_pointer, declare i32 @stackpointer_callee(i8* readnone, i8* readnone) declare i8* @llvm.frameaddress(i32) define i32 @stackpointer_dependency(i8* readnone) { %2 = tail call i8* @llvm.frameaddress(i32 0) %3 = tail call i32 @stackpointer_callee(i8* %0, i8* %2) ret i32 %3 } ; Stackify a call_indirect with respect to its ordering ; CHECK-LABEL: call_indirect_stackify: ; CHECK: i32.load $push[[L4:.+]]=, 0($0) ; CHECK-NEXT: tee_local $push[[L3:.+]]=, $0=, $pop[[L4]] ; CHECK-NEXT: i32.load $push[[L0:.+]]=, 0($0) ; CHECK-NEXT: i32.load $push[[L1:.+]]=, 0($pop[[L0]]) ; CHECK-NEXT: i32.call_indirect $push{{.+}}=, $pop[[L3]], $1, $pop[[L1]] %class.call_indirect = type { i32 (...)** } define i32 @call_indirect_stackify(%class.call_indirect** %objptr, i32 %arg) { %obj = load %class.call_indirect*, %class.call_indirect** %objptr %addr = bitcast %class.call_indirect* %obj to i32(%class.call_indirect*, i32)*** %vtable = load i32(%class.call_indirect*, i32)**, i32(%class.call_indirect*, i32)*** %addr %vfn = getelementptr inbounds i32(%class.call_indirect*, i32)*, i32(%class.call_indirect*, i32)** %vtable, i32 0 %f = load i32(%class.call_indirect*, i32)*, i32(%class.call_indirect*, i32)** %vfn %ret = call i32 %f(%class.call_indirect* %obj, i32 %arg) ret i32 %ret } !llvm.module.flags = !{!0} !llvm.dbg.cu = !{!1} !0 = !{i32 2, !"Debug Info Version", i32 3} !1 = distinct !DICompileUnit(language: DW_LANG_C99, file: !2, producer: "clang version 3.9.0 (trunk 266005) (llvm/trunk 266105)", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !3) !2 = !DIFile(filename: "test.c", directory: "/") !3 = !{} !5 = distinct !DISubprogram(name: "test", scope: !2, file: !2, line: 10, type: !6, isLocal: false, isDefinition: true, scopeLine: 11, flags: DIFlagPrototyped, isOptimized: true, unit: !1, retainedNodes: !3) !6 = !DISubroutineType(types: !3) !7 = !DILocalVariable(name: "nzcnt", scope: !5, file: !2, line: 15, type: !8) !8 = !DIBasicType(name: "int", size: 32, align: 32, encoding: DW_ATE_signed) !9 = !DIExpression() !10 = !DILocation(line: 15, column: 6, scope: !5)