//===-- BenchmarkRunner.cpp -------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include <array>
#include <string>

#include "Assembler.h"
#include "BenchmarkRunner.h"
#include "MCInstrDescView.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Program.h"

namespace exegesis {

BenchmarkFailure::BenchmarkFailure(const llvm::Twine &S)
    : llvm::StringError(S, llvm::inconvertibleErrorCode()) {}

BenchmarkRunner::BenchmarkRunner(const LLVMState &State,
                                 InstructionBenchmark::ModeE Mode)
    : State(State), RATC(State.getRegInfo(),
                         getFunctionReservedRegs(State.getTargetMachine())),
      Mode(Mode) {}

BenchmarkRunner::~BenchmarkRunner() = default;

llvm::Expected<std::vector<InstructionBenchmark>>
BenchmarkRunner::run(unsigned Opcode, unsigned NumRepetitions) {
  const llvm::MCInstrDesc &InstrDesc = State.getInstrInfo().get(Opcode);
  // Ignore instructions that we cannot run.
  if (InstrDesc.isPseudo())
    return llvm::make_error<BenchmarkFailure>("Unsupported opcode: isPseudo");
  if (InstrDesc.isBranch() || InstrDesc.isIndirectBranch())
    return llvm::make_error<BenchmarkFailure>(
        "Unsupported opcode: isBranch/isIndirectBranch");
  if (InstrDesc.isCall() || InstrDesc.isReturn())
    return llvm::make_error<BenchmarkFailure>(
        "Unsupported opcode: isCall/isReturn");

  llvm::Expected<std::vector<BenchmarkConfiguration>> ConfigurationOrError =
      generateConfigurations(Opcode);

  if (llvm::Error E = ConfigurationOrError.takeError())
    return std::move(E);

  std::vector<InstructionBenchmark> InstrBenchmarks;
  for (const BenchmarkConfiguration &Conf : ConfigurationOrError.get())
    InstrBenchmarks.push_back(runOne(Conf, Opcode, NumRepetitions));
  return InstrBenchmarks;
}

InstructionBenchmark
BenchmarkRunner::runOne(const BenchmarkConfiguration &Configuration,
                        unsigned Opcode, unsigned NumRepetitions) const {
  InstructionBenchmark InstrBenchmark;
  InstrBenchmark.Mode = Mode;
  InstrBenchmark.CpuName = State.getTargetMachine().getTargetCPU();
  InstrBenchmark.LLVMTriple =
      State.getTargetMachine().getTargetTriple().normalize();
  InstrBenchmark.NumRepetitions = NumRepetitions;
  InstrBenchmark.Info = Configuration.Info;

  const std::vector<llvm::MCInst> &Snippet = Configuration.Snippet;
  if (Snippet.empty()) {
    InstrBenchmark.Error = "Empty snippet";
    return InstrBenchmark;
  }

  InstrBenchmark.Key.Instructions = Snippet;

  // Repeat the snippet until there are at least NumInstructions in the
  // resulting code. The snippet is always repeated at least once.
  const auto GenerateInstructions = [&Configuration](
                                        const int MinInstructions) {
    std::vector<llvm::MCInst> Code = Configuration.Snippet;
    for (int I = 0; I < MinInstructions; ++I)
      Code.push_back(Configuration.Snippet[I % Configuration.Snippet.size()]);
    return Code;
  };

  // Assemble at least kMinInstructionsForSnippet instructions by repeating the
  // snippet for debug/analysis. This is so that the user clearly understands
  // that the inside instructions are repeated.
  constexpr const int kMinInstructionsForSnippet = 16;
  {
    auto ObjectFilePath =
        writeObjectFile(Configuration.SnippetSetup,
                        GenerateInstructions(kMinInstructionsForSnippet));
    if (llvm::Error E = ObjectFilePath.takeError()) {
      InstrBenchmark.Error = llvm::toString(std::move(E));
      return InstrBenchmark;
    }
    const ExecutableFunction EF(State.createTargetMachine(),
                                getObjectFromFile(*ObjectFilePath));
    const auto FnBytes = EF.getFunctionBytes();
    InstrBenchmark.AssembledSnippet.assign(FnBytes.begin(), FnBytes.end());
  }

  // Assemble NumRepetitions instructions repetitions of the snippet for
  // measurements.
  auto ObjectFilePath =
      writeObjectFile(Configuration.SnippetSetup,
                      GenerateInstructions(InstrBenchmark.NumRepetitions));
  if (llvm::Error E = ObjectFilePath.takeError()) {
    InstrBenchmark.Error = llvm::toString(std::move(E));
    return InstrBenchmark;
  }
  llvm::outs() << "Check generated assembly with: /usr/bin/objdump -d "
               << *ObjectFilePath << "\n";
  const ExecutableFunction EF(State.createTargetMachine(),
                              getObjectFromFile(*ObjectFilePath));
  InstrBenchmark.Measurements = runMeasurements(EF, NumRepetitions);

  return InstrBenchmark;
}

llvm::Expected<std::vector<BenchmarkConfiguration>>
BenchmarkRunner::generateConfigurations(unsigned Opcode) const {
  if (auto E = generatePrototype(Opcode)) {
    SnippetPrototype &Prototype = E.get();
    // TODO: Generate as many configurations as needed here.
    BenchmarkConfiguration Configuration;
    Configuration.Info = Prototype.Explanation;
    for (InstructionInstance &II : Prototype.Snippet) {
      II.randomizeUnsetVariables();
      Configuration.Snippet.push_back(II.build());
    }
    Configuration.SnippetSetup.RegsToDef = computeRegsToDef(Prototype.Snippet);
    return std::vector<BenchmarkConfiguration>{Configuration};
  } else
    return E.takeError();
}

std::vector<unsigned> BenchmarkRunner::computeRegsToDef(
    const std::vector<InstructionInstance> &Snippet) const {
  // Collect all register uses and create an assignment for each of them.
  // Loop invariant: DefinedRegs[i] is true iif it has been set at least once
  // before the current instruction.
  llvm::BitVector DefinedRegs = RATC.emptyRegisters();
  std::vector<unsigned> RegsToDef;
  for (const InstructionInstance &II : Snippet) {
    // Returns the register that this Operand sets or uses, or 0 if this is not
    // a register.
    const auto GetOpReg = [&II](const Operand &Op) -> unsigned {
      if (Op.ImplicitReg) {
        return *Op.ImplicitReg;
      } else if (Op.IsExplicit && II.getValueFor(Op).isReg()) {
        return II.getValueFor(Op).getReg();
      }
      return 0;
    };
    // Collect used registers that have never been def'ed.
    for (const Operand &Op : II.Instr.Operands) {
      if (!Op.IsDef) {
        const unsigned Reg = GetOpReg(Op);
        if (Reg > 0 && !DefinedRegs.test(Reg)) {
          RegsToDef.push_back(Reg);
          DefinedRegs.set(Reg);
        }
      }
    }
    // Mark defs as having been def'ed.
    for (const Operand &Op : II.Instr.Operands) {
      if (Op.IsDef) {
        const unsigned Reg = GetOpReg(Op);
        if (Reg > 0) {
          DefinedRegs.set(Reg);
        }
      }
    }
  }
  return RegsToDef;
}

llvm::Expected<std::string>
BenchmarkRunner::writeObjectFile(const BenchmarkConfiguration::Setup &Setup,
                                 llvm::ArrayRef<llvm::MCInst> Code) const {
  int ResultFD = 0;
  llvm::SmallString<256> ResultPath;
  if (llvm::Error E = llvm::errorCodeToError(llvm::sys::fs::createTemporaryFile(
          "snippet", "o", ResultFD, ResultPath)))
    return std::move(E);
  llvm::raw_fd_ostream OFS(ResultFD, true /*ShouldClose*/);
  assembleToStream(State.getExegesisTarget(), State.createTargetMachine(),
                   Setup.RegsToDef, Code, OFS);
  return ResultPath.str();
}

llvm::Expected<SnippetPrototype>
BenchmarkRunner::generateSelfAliasingPrototype(const Instruction &Instr) const {
  const AliasingConfigurations SelfAliasing(Instr, Instr);
  if (SelfAliasing.empty()) {
    return llvm::make_error<BenchmarkFailure>("empty self aliasing");
  }
  SnippetPrototype Prototype;
  InstructionInstance II(Instr);
  if (SelfAliasing.hasImplicitAliasing()) {
    Prototype.Explanation = "implicit Self cycles, picking random values.";
  } else {
    Prototype.Explanation =
        "explicit self cycles, selecting one aliasing Conf.";
    // This is a self aliasing instruction so defs and uses are from the same
    // instance, hence twice II in the following call.
    setRandomAliasing(SelfAliasing, II, II);
  }
  Prototype.Snippet.push_back(std::move(II));
  return std::move(Prototype);
}

llvm::Expected<SnippetPrototype>
BenchmarkRunner::generateUnconstrainedPrototype(const Instruction &Instr,
                                                llvm::StringRef Msg) const {
  SnippetPrototype Prototype;
  Prototype.Explanation =
      llvm::formatv("{0}, repeating an unconstrained assignment", Msg);
  Prototype.Snippet.emplace_back(Instr);
  return std::move(Prototype);
}
} // namespace exegesis