//===--------------------- Scheduler.cpp ------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // A scheduler for processor resource units and processor resource groups. // //===----------------------------------------------------------------------===// #include "Scheduler.h" #include "Support.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" namespace mca { using namespace llvm; #define DEBUG_TYPE "llvm-mca" uint64_t ResourceState::selectNextInSequence() { assert(isReady()); uint64_t Next = getNextInSequence(); while (!isSubResourceReady(Next)) { updateNextInSequence(); Next = getNextInSequence(); } return Next; } #ifndef NDEBUG void ResourceState::dump() const { dbgs() << "MASK: " << ResourceMask << ", SIZE_MASK: " << ResourceSizeMask << ", NEXT: " << NextInSequenceMask << ", RDYMASK: " << ReadyMask << ", BufferSize=" << BufferSize << ", AvailableSlots=" << AvailableSlots << ", Reserved=" << Unavailable << '\n'; } #endif void ResourceManager::initialize(const llvm::MCSchedModel &SM) { computeProcResourceMasks(SM, ProcResID2Mask); for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) addResource(*SM.getProcResource(I), I, ProcResID2Mask[I]); } // Adds a new resource state in Resources, as well as a new descriptor in // ResourceDescriptor. Map 'Resources' allows to quickly obtain ResourceState // objects from resource mask identifiers. void ResourceManager::addResource(const MCProcResourceDesc &Desc, unsigned Index, uint64_t Mask) { assert(Resources.find(Mask) == Resources.end() && "Resource already added!"); Resources[Mask] = llvm::make_unique<ResourceState>(Desc, Index, Mask); } // Returns the actual resource consumed by this Use. // First, is the primary resource ID. // Second, is the specific sub-resource ID. std::pair<uint64_t, uint64_t> ResourceManager::selectPipe(uint64_t ResourceID) { ResourceState &RS = *Resources[ResourceID]; uint64_t SubResourceID = RS.selectNextInSequence(); if (RS.isAResourceGroup()) return selectPipe(SubResourceID); return std::pair<uint64_t, uint64_t>(ResourceID, SubResourceID); } void ResourceState::removeFromNextInSequence(uint64_t ID) { assert(NextInSequenceMask); assert(countPopulation(ID) == 1); if (ID > getNextInSequence()) RemovedFromNextInSequence |= ID; NextInSequenceMask = NextInSequenceMask & (~ID); if (!NextInSequenceMask) { NextInSequenceMask = ResourceSizeMask; assert(NextInSequenceMask != RemovedFromNextInSequence); NextInSequenceMask ^= RemovedFromNextInSequence; RemovedFromNextInSequence = 0; } } void ResourceManager::use(ResourceRef RR) { // Mark the sub-resource referenced by RR as used. ResourceState &RS = *Resources[RR.first]; RS.markSubResourceAsUsed(RR.second); // If there are still available units in RR.first, // then we are done. if (RS.isReady()) return; // Notify to other resources that RR.first is no longer available. for (const std::pair<uint64_t, UniqueResourceState> &Res : Resources) { ResourceState &Current = *Res.second.get(); if (!Current.isAResourceGroup() || Current.getResourceMask() == RR.first) continue; if (Current.containsResource(RR.first)) { Current.markSubResourceAsUsed(RR.first); Current.removeFromNextInSequence(RR.first); } } } void ResourceManager::release(ResourceRef RR) { ResourceState &RS = *Resources[RR.first]; bool WasFullyUsed = !RS.isReady(); RS.releaseSubResource(RR.second); if (!WasFullyUsed) return; for (const std::pair<uint64_t, UniqueResourceState> &Res : Resources) { ResourceState &Current = *Res.second.get(); if (!Current.isAResourceGroup() || Current.getResourceMask() == RR.first) continue; if (Current.containsResource(RR.first)) Current.releaseSubResource(RR.first); } } ResourceStateEvent ResourceManager::canBeDispatched(ArrayRef<uint64_t> Buffers) const { ResourceStateEvent Result = ResourceStateEvent::RS_BUFFER_AVAILABLE; for (uint64_t Buffer : Buffers) { Result = isBufferAvailable(Buffer); if (Result != ResourceStateEvent::RS_BUFFER_AVAILABLE) break; } return Result; } void ResourceManager::reserveBuffers(ArrayRef<uint64_t> Buffers) { for (const uint64_t R : Buffers) { reserveBuffer(R); ResourceState &Resource = *Resources[R]; if (Resource.isADispatchHazard()) { assert(!Resource.isReserved()); Resource.setReserved(); } } } void ResourceManager::releaseBuffers(ArrayRef<uint64_t> Buffers) { for (const uint64_t R : Buffers) releaseBuffer(R); } bool ResourceManager::canBeIssued(const InstrDesc &Desc) const { return std::all_of(Desc.Resources.begin(), Desc.Resources.end(), [&](const std::pair<uint64_t, const ResourceUsage> &E) { unsigned NumUnits = E.second.isReserved() ? 0U : E.second.NumUnits; return isReady(E.first, NumUnits); }); } // Returns true if all resources are in-order, and there is at least one // resource which is a dispatch hazard (BufferSize = 0). bool ResourceManager::mustIssueImmediately(const InstrDesc &Desc) { if (!canBeIssued(Desc)) return false; bool AllInOrderResources = all_of(Desc.Buffers, [&](uint64_t BufferMask) { const ResourceState &Resource = *Resources[BufferMask]; return Resource.isInOrder() || Resource.isADispatchHazard(); }); if (!AllInOrderResources) return false; return any_of(Desc.Buffers, [&](uint64_t BufferMask) { return Resources[BufferMask]->isADispatchHazard(); }); } void ResourceManager::issueInstruction( const InstrDesc &Desc, SmallVectorImpl<std::pair<ResourceRef, double>> &Pipes) { for (const std::pair<uint64_t, ResourceUsage> &R : Desc.Resources) { const CycleSegment &CS = R.second.CS; if (!CS.size()) { releaseResource(R.first); continue; } assert(CS.begin() == 0 && "Invalid {Start, End} cycles!"); if (!R.second.isReserved()) { ResourceRef Pipe = selectPipe(R.first); use(Pipe); BusyResources[Pipe] += CS.size(); // Replace the resource mask with a valid processor resource index. const ResourceState &RS = *Resources[Pipe.first]; Pipe.first = RS.getProcResourceID(); Pipes.emplace_back( std::pair<ResourceRef, double>(Pipe, static_cast<double>(CS.size()))); } else { assert((countPopulation(R.first) > 1) && "Expected a group!"); // Mark this group as reserved. assert(R.second.isReserved()); reserveResource(R.first); BusyResources[ResourceRef(R.first, R.first)] += CS.size(); } } } void ResourceManager::cycleEvent(SmallVectorImpl<ResourceRef> &ResourcesFreed) { for (std::pair<ResourceRef, unsigned> &BR : BusyResources) { if (BR.second) BR.second--; if (!BR.second) { // Release this resource. const ResourceRef &RR = BR.first; if (countPopulation(RR.first) == 1) release(RR); releaseResource(RR.first); ResourcesFreed.push_back(RR); } } for (const ResourceRef &RF : ResourcesFreed) BusyResources.erase(RF); } #ifndef NDEBUG void Scheduler::dump() const { dbgs() << "[SCHEDULER]: WaitQueue size is: " << WaitQueue.size() << '\n'; dbgs() << "[SCHEDULER]: ReadyQueue size is: " << ReadyQueue.size() << '\n'; dbgs() << "[SCHEDULER]: IssuedQueue size is: " << IssuedQueue.size() << '\n'; Resources->dump(); } #endif bool Scheduler::canBeDispatched(const InstRef &IR, HWStallEvent::GenericEventType &Event) const { Event = HWStallEvent::Invalid; const InstrDesc &Desc = IR.getInstruction()->getDesc(); if (Desc.MayLoad && LSU->isLQFull()) Event = HWStallEvent::LoadQueueFull; else if (Desc.MayStore && LSU->isSQFull()) Event = HWStallEvent::StoreQueueFull; else { switch (Resources->canBeDispatched(Desc.Buffers)) { default: return true; case ResourceStateEvent::RS_BUFFER_UNAVAILABLE: Event = HWStallEvent::SchedulerQueueFull; break; case ResourceStateEvent::RS_RESERVED: Event = HWStallEvent::DispatchGroupStall; } } return false; } void Scheduler::issueInstructionImpl( InstRef &IR, SmallVectorImpl<std::pair<ResourceRef, double>> &UsedResources) { Instruction *IS = IR.getInstruction(); const InstrDesc &D = IS->getDesc(); // Issue the instruction and collect all the consumed resources // into a vector. That vector is then used to notify the listener. Resources->issueInstruction(D, UsedResources); // Notify the instruction that it started executing. // This updates the internal state of each write. IS->execute(); if (IS->isExecuting()) IssuedQueue[IR.getSourceIndex()] = IS; } // Release the buffered resources and issue the instruction. void Scheduler::issueInstruction( InstRef &IR, SmallVectorImpl<std::pair<ResourceRef, double>> &UsedResources) { const InstrDesc &Desc = IR.getInstruction()->getDesc(); releaseBuffers(Desc.Buffers); issueInstructionImpl(IR, UsedResources); } void Scheduler::promoteToReadyQueue(SmallVectorImpl<InstRef> &Ready) { // Scan the set of waiting instructions and promote them to the // ready queue if operands are all ready. for (auto I = WaitQueue.begin(), E = WaitQueue.end(); I != E;) { const unsigned IID = I->first; Instruction *IS = I->second; // Check if this instruction is now ready. In case, force // a transition in state using method 'update()'. if (!IS->isReady()) IS->update(); const InstrDesc &Desc = IS->getDesc(); bool IsMemOp = Desc.MayLoad || Desc.MayStore; if (!IS->isReady() || (IsMemOp && !LSU->isReady({IID, IS}))) { ++I; continue; } Ready.emplace_back(IID, IS); ReadyQueue[IID] = IS; auto ToRemove = I; ++I; WaitQueue.erase(ToRemove); } } InstRef Scheduler::select() { // Find the oldest ready-to-issue instruction in the ReadyQueue. auto It = std::find_if(ReadyQueue.begin(), ReadyQueue.end(), [&](const QueueEntryTy &Entry) { const InstrDesc &D = Entry.second->getDesc(); return Resources->canBeIssued(D); }); if (It == ReadyQueue.end()) return {0, nullptr}; // We want to prioritize older instructions over younger instructions to // minimize the pressure on the reorder buffer. We also want to // rank higher the instructions with more users to better expose ILP. // Compute a rank value based on the age of an instruction (i.e. its source // index) and its number of users. The lower the rank value, the better. int Rank = It->first - It->second->getNumUsers(); for (auto I = It, E = ReadyQueue.end(); I != E; ++I) { int CurrentRank = I->first - I->second->getNumUsers(); if (CurrentRank < Rank) { const InstrDesc &D = I->second->getDesc(); if (Resources->canBeIssued(D)) It = I; } } // We found an instruction to issue. InstRef IR(It->first, It->second); ReadyQueue.erase(It); return IR; } void Scheduler::updatePendingQueue(SmallVectorImpl<InstRef> &Ready) { // Notify to instructions in the pending queue that a new cycle just // started. for (QueueEntryTy Entry : WaitQueue) Entry.second->cycleEvent(); promoteToReadyQueue(Ready); } void Scheduler::updateIssuedQueue(SmallVectorImpl<InstRef> &Executed) { for (auto I = IssuedQueue.begin(), E = IssuedQueue.end(); I != E;) { const QueueEntryTy Entry = *I; Instruction *IS = Entry.second; IS->cycleEvent(); if (IS->isExecuted()) { Executed.push_back({Entry.first, Entry.second}); auto ToRemove = I; ++I; IssuedQueue.erase(ToRemove); } else { LLVM_DEBUG(dbgs() << "[SCHEDULER]: Instruction #" << Entry.first << " is still executing.\n"); ++I; } } } void Scheduler::onInstructionExecuted(const InstRef &IR) { LSU->onInstructionExecuted(IR); } void Scheduler::reclaimSimulatedResources(SmallVectorImpl<ResourceRef> &Freed) { Resources->cycleEvent(Freed); } bool Scheduler::reserveResources(InstRef &IR) { // If necessary, reserve queue entries in the load-store unit (LSU). const bool Reserved = LSU->reserve(IR); if (!IR.getInstruction()->isReady() || (Reserved && !LSU->isReady(IR))) { LLVM_DEBUG(dbgs() << "[SCHEDULER] Adding #" << IR << " to the Wait Queue\n"); WaitQueue[IR.getSourceIndex()] = IR.getInstruction(); return false; } return true; } bool Scheduler::issueImmediately(InstRef &IR) { const InstrDesc &Desc = IR.getInstruction()->getDesc(); if (!Desc.isZeroLatency() && !Resources->mustIssueImmediately(Desc)) { LLVM_DEBUG(dbgs() << "[SCHEDULER] Adding #" << IR << " to the Ready Queue\n"); ReadyQueue[IR.getSourceIndex()] = IR.getInstruction(); return false; } return true; } } // namespace mca