//===-- COFFDump.cpp - COFF-specific dumper ---------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// This file implements the COFF-specific dumper for llvm-objdump. /// It outputs the Win64 EH data structures as plain text. /// The encoding of the unwind codes is described in MSDN: /// http://msdn.microsoft.com/en-us/library/ck9asaa9.aspx /// //===----------------------------------------------------------------------===// #include "llvm-objdump.h" #include "llvm/Object/COFF.h" #include "llvm/Object/COFFImportFile.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/Format.h" #include "llvm/Support/Win64EH.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; using namespace object; using namespace llvm::Win64EH; // Returns the name of the unwind code. static StringRef getUnwindCodeTypeName(uint8_t Code) { switch(Code) { default: llvm_unreachable("Invalid unwind code"); case UOP_PushNonVol: return "UOP_PushNonVol"; case UOP_AllocLarge: return "UOP_AllocLarge"; case UOP_AllocSmall: return "UOP_AllocSmall"; case UOP_SetFPReg: return "UOP_SetFPReg"; case UOP_SaveNonVol: return "UOP_SaveNonVol"; case UOP_SaveNonVolBig: return "UOP_SaveNonVolBig"; case UOP_SaveXMM128: return "UOP_SaveXMM128"; case UOP_SaveXMM128Big: return "UOP_SaveXMM128Big"; case UOP_PushMachFrame: return "UOP_PushMachFrame"; } } // Returns the name of a referenced register. static StringRef getUnwindRegisterName(uint8_t Reg) { switch(Reg) { default: llvm_unreachable("Invalid register"); case 0: return "RAX"; case 1: return "RCX"; case 2: return "RDX"; case 3: return "RBX"; case 4: return "RSP"; case 5: return "RBP"; case 6: return "RSI"; case 7: return "RDI"; case 8: return "R8"; case 9: return "R9"; case 10: return "R10"; case 11: return "R11"; case 12: return "R12"; case 13: return "R13"; case 14: return "R14"; case 15: return "R15"; } } // Calculates the number of array slots required for the unwind code. static unsigned getNumUsedSlots(const UnwindCode &UnwindCode) { switch (UnwindCode.getUnwindOp()) { default: llvm_unreachable("Invalid unwind code"); case UOP_PushNonVol: case UOP_AllocSmall: case UOP_SetFPReg: case UOP_PushMachFrame: return 1; case UOP_SaveNonVol: case UOP_SaveXMM128: return 2; case UOP_SaveNonVolBig: case UOP_SaveXMM128Big: return 3; case UOP_AllocLarge: return (UnwindCode.getOpInfo() == 0) ? 2 : 3; } } // Prints one unwind code. Because an unwind code can occupy up to 3 slots in // the unwind codes array, this function requires that the correct number of // slots is provided. static void printUnwindCode(ArrayRef<UnwindCode> UCs) { assert(UCs.size() >= getNumUsedSlots(UCs[0])); outs() << format(" 0x%02x: ", unsigned(UCs[0].u.CodeOffset)) << getUnwindCodeTypeName(UCs[0].getUnwindOp()); switch (UCs[0].getUnwindOp()) { case UOP_PushNonVol: outs() << " " << getUnwindRegisterName(UCs[0].getOpInfo()); break; case UOP_AllocLarge: if (UCs[0].getOpInfo() == 0) { outs() << " " << UCs[1].FrameOffset; } else { outs() << " " << UCs[1].FrameOffset + (static_cast<uint32_t>(UCs[2].FrameOffset) << 16); } break; case UOP_AllocSmall: outs() << " " << ((UCs[0].getOpInfo() + 1) * 8); break; case UOP_SetFPReg: outs() << " "; break; case UOP_SaveNonVol: outs() << " " << getUnwindRegisterName(UCs[0].getOpInfo()) << format(" [0x%04x]", 8 * UCs[1].FrameOffset); break; case UOP_SaveNonVolBig: outs() << " " << getUnwindRegisterName(UCs[0].getOpInfo()) << format(" [0x%08x]", UCs[1].FrameOffset + (static_cast<uint32_t>(UCs[2].FrameOffset) << 16)); break; case UOP_SaveXMM128: outs() << " XMM" << static_cast<uint32_t>(UCs[0].getOpInfo()) << format(" [0x%04x]", 16 * UCs[1].FrameOffset); break; case UOP_SaveXMM128Big: outs() << " XMM" << UCs[0].getOpInfo() << format(" [0x%08x]", UCs[1].FrameOffset + (static_cast<uint32_t>(UCs[2].FrameOffset) << 16)); break; case UOP_PushMachFrame: outs() << " " << (UCs[0].getOpInfo() ? "w/o" : "w") << " error code"; break; } outs() << "\n"; } static void printAllUnwindCodes(ArrayRef<UnwindCode> UCs) { for (const UnwindCode *I = UCs.begin(), *E = UCs.end(); I < E; ) { unsigned UsedSlots = getNumUsedSlots(*I); if (UsedSlots > UCs.size()) { outs() << "Unwind data corrupted: Encountered unwind op " << getUnwindCodeTypeName((*I).getUnwindOp()) << " which requires " << UsedSlots << " slots, but only " << UCs.size() << " remaining in buffer"; return ; } printUnwindCode(makeArrayRef(I, E)); I += UsedSlots; } } // Given a symbol sym this functions returns the address and section of it. static std::error_code resolveSectionAndAddress(const COFFObjectFile *Obj, const SymbolRef &Sym, const coff_section *&ResolvedSection, uint64_t &ResolvedAddr) { Expected<uint64_t> ResolvedAddrOrErr = Sym.getAddress(); if (!ResolvedAddrOrErr) return errorToErrorCode(ResolvedAddrOrErr.takeError()); ResolvedAddr = *ResolvedAddrOrErr; Expected<section_iterator> Iter = Sym.getSection(); if (!Iter) return errorToErrorCode(Iter.takeError()); ResolvedSection = Obj->getCOFFSection(**Iter); return std::error_code(); } // Given a vector of relocations for a section and an offset into this section // the function returns the symbol used for the relocation at the offset. static std::error_code resolveSymbol(const std::vector<RelocationRef> &Rels, uint64_t Offset, SymbolRef &Sym) { for (auto &R : Rels) { uint64_t Ofs = R.getOffset(); if (Ofs == Offset) { Sym = *R.getSymbol(); return std::error_code(); } } return object_error::parse_failed; } // Given a vector of relocations for a section and an offset into this section // the function resolves the symbol used for the relocation at the offset and // returns the section content and the address inside the content pointed to // by the symbol. static std::error_code getSectionContents(const COFFObjectFile *Obj, const std::vector<RelocationRef> &Rels, uint64_t Offset, ArrayRef<uint8_t> &Contents, uint64_t &Addr) { SymbolRef Sym; if (std::error_code EC = resolveSymbol(Rels, Offset, Sym)) return EC; const coff_section *Section; if (std::error_code EC = resolveSectionAndAddress(Obj, Sym, Section, Addr)) return EC; if (std::error_code EC = Obj->getSectionContents(Section, Contents)) return EC; return std::error_code(); } // Given a vector of relocations for a section and an offset into this section // the function returns the name of the symbol used for the relocation at the // offset. static std::error_code resolveSymbolName(const std::vector<RelocationRef> &Rels, uint64_t Offset, StringRef &Name) { SymbolRef Sym; if (std::error_code EC = resolveSymbol(Rels, Offset, Sym)) return EC; Expected<StringRef> NameOrErr = Sym.getName(); if (!NameOrErr) return errorToErrorCode(NameOrErr.takeError()); Name = *NameOrErr; return std::error_code(); } static void printCOFFSymbolAddress(llvm::raw_ostream &Out, const std::vector<RelocationRef> &Rels, uint64_t Offset, uint32_t Disp) { StringRef Sym; if (!resolveSymbolName(Rels, Offset, Sym)) { Out << Sym; if (Disp > 0) Out << format(" + 0x%04x", Disp); } else { Out << format("0x%04x", Disp); } } static void printSEHTable(const COFFObjectFile *Obj, uint32_t TableVA, int Count) { if (Count == 0) return; const pe32_header *PE32Header; error(Obj->getPE32Header(PE32Header)); uint32_t ImageBase = PE32Header->ImageBase; uintptr_t IntPtr = 0; error(Obj->getVaPtr(TableVA, IntPtr)); const support::ulittle32_t *P = (const support::ulittle32_t *)IntPtr; outs() << "SEH Table:"; for (int I = 0; I < Count; ++I) outs() << format(" 0x%x", P[I] + ImageBase); outs() << "\n\n"; } template <typename T> static void printTLSDirectoryT(const coff_tls_directory<T> *TLSDir) { size_t FormatWidth = sizeof(T) * 2; outs() << "TLS directory:" << "\n StartAddressOfRawData: " << format_hex(TLSDir->StartAddressOfRawData, FormatWidth) << "\n EndAddressOfRawData: " << format_hex(TLSDir->EndAddressOfRawData, FormatWidth) << "\n AddressOfIndex: " << format_hex(TLSDir->AddressOfIndex, FormatWidth) << "\n AddressOfCallBacks: " << format_hex(TLSDir->AddressOfCallBacks, FormatWidth) << "\n SizeOfZeroFill: " << TLSDir->SizeOfZeroFill << "\n Characteristics: " << TLSDir->Characteristics << "\n Alignment: " << TLSDir->getAlignment() << "\n\n"; } static void printTLSDirectory(const COFFObjectFile *Obj) { const pe32_header *PE32Header; error(Obj->getPE32Header(PE32Header)); const pe32plus_header *PE32PlusHeader; error(Obj->getPE32PlusHeader(PE32PlusHeader)); // Skip if it's not executable. if (!PE32Header && !PE32PlusHeader) return; const data_directory *DataDir; error(Obj->getDataDirectory(COFF::TLS_TABLE, DataDir)); uintptr_t IntPtr = 0; if (DataDir->RelativeVirtualAddress == 0) return; error(Obj->getRvaPtr(DataDir->RelativeVirtualAddress, IntPtr)); if (PE32Header) { auto *TLSDir = reinterpret_cast<const coff_tls_directory32 *>(IntPtr); printTLSDirectoryT(TLSDir); } else { auto *TLSDir = reinterpret_cast<const coff_tls_directory64 *>(IntPtr); printTLSDirectoryT(TLSDir); } outs() << "\n"; } static void printLoadConfiguration(const COFFObjectFile *Obj) { // Skip if it's not executable. const pe32_header *PE32Header; error(Obj->getPE32Header(PE32Header)); if (!PE32Header) return; // Currently only x86 is supported if (Obj->getMachine() != COFF::IMAGE_FILE_MACHINE_I386) return; const data_directory *DataDir; error(Obj->getDataDirectory(COFF::LOAD_CONFIG_TABLE, DataDir)); uintptr_t IntPtr = 0; if (DataDir->RelativeVirtualAddress == 0) return; error(Obj->getRvaPtr(DataDir->RelativeVirtualAddress, IntPtr)); auto *LoadConf = reinterpret_cast<const coff_load_configuration32 *>(IntPtr); outs() << "Load configuration:" << "\n Timestamp: " << LoadConf->TimeDateStamp << "\n Major Version: " << LoadConf->MajorVersion << "\n Minor Version: " << LoadConf->MinorVersion << "\n GlobalFlags Clear: " << LoadConf->GlobalFlagsClear << "\n GlobalFlags Set: " << LoadConf->GlobalFlagsSet << "\n Critical Section Default Timeout: " << LoadConf->CriticalSectionDefaultTimeout << "\n Decommit Free Block Threshold: " << LoadConf->DeCommitFreeBlockThreshold << "\n Decommit Total Free Threshold: " << LoadConf->DeCommitTotalFreeThreshold << "\n Lock Prefix Table: " << LoadConf->LockPrefixTable << "\n Maximum Allocation Size: " << LoadConf->MaximumAllocationSize << "\n Virtual Memory Threshold: " << LoadConf->VirtualMemoryThreshold << "\n Process Affinity Mask: " << LoadConf->ProcessAffinityMask << "\n Process Heap Flags: " << LoadConf->ProcessHeapFlags << "\n CSD Version: " << LoadConf->CSDVersion << "\n Security Cookie: " << LoadConf->SecurityCookie << "\n SEH Table: " << LoadConf->SEHandlerTable << "\n SEH Count: " << LoadConf->SEHandlerCount << "\n\n"; printSEHTable(Obj, LoadConf->SEHandlerTable, LoadConf->SEHandlerCount); outs() << "\n"; } // Prints import tables. The import table is a table containing the list of // DLL name and symbol names which will be linked by the loader. static void printImportTables(const COFFObjectFile *Obj) { import_directory_iterator I = Obj->import_directory_begin(); import_directory_iterator E = Obj->import_directory_end(); if (I == E) return; outs() << "The Import Tables:\n"; for (const ImportDirectoryEntryRef &DirRef : Obj->import_directories()) { const coff_import_directory_table_entry *Dir; StringRef Name; if (DirRef.getImportTableEntry(Dir)) return; if (DirRef.getName(Name)) return; outs() << format(" lookup %08x time %08x fwd %08x name %08x addr %08x\n\n", static_cast<uint32_t>(Dir->ImportLookupTableRVA), static_cast<uint32_t>(Dir->TimeDateStamp), static_cast<uint32_t>(Dir->ForwarderChain), static_cast<uint32_t>(Dir->NameRVA), static_cast<uint32_t>(Dir->ImportAddressTableRVA)); outs() << " DLL Name: " << Name << "\n"; outs() << " Hint/Ord Name\n"; for (const ImportedSymbolRef &Entry : DirRef.imported_symbols()) { bool IsOrdinal; if (Entry.isOrdinal(IsOrdinal)) return; if (IsOrdinal) { uint16_t Ordinal; if (Entry.getOrdinal(Ordinal)) return; outs() << format(" % 6d\n", Ordinal); continue; } uint32_t HintNameRVA; if (Entry.getHintNameRVA(HintNameRVA)) return; uint16_t Hint; StringRef Name; if (Obj->getHintName(HintNameRVA, Hint, Name)) return; outs() << format(" % 6d ", Hint) << Name << "\n"; } outs() << "\n"; } } // Prints export tables. The export table is a table containing the list of // exported symbol from the DLL. static void printExportTable(const COFFObjectFile *Obj) { outs() << "Export Table:\n"; export_directory_iterator I = Obj->export_directory_begin(); export_directory_iterator E = Obj->export_directory_end(); if (I == E) return; StringRef DllName; uint32_t OrdinalBase; if (I->getDllName(DllName)) return; if (I->getOrdinalBase(OrdinalBase)) return; outs() << " DLL name: " << DllName << "\n"; outs() << " Ordinal base: " << OrdinalBase << "\n"; outs() << " Ordinal RVA Name\n"; for (; I != E; I = ++I) { uint32_t Ordinal; if (I->getOrdinal(Ordinal)) return; uint32_t RVA; if (I->getExportRVA(RVA)) return; bool IsForwarder; if (I->isForwarder(IsForwarder)) return; if (IsForwarder) { // Export table entries can be used to re-export symbols that // this COFF file is imported from some DLLs. This is rare. // In most cases IsForwarder is false. outs() << format(" % 4d ", Ordinal); } else { outs() << format(" % 4d %# 8x", Ordinal, RVA); } StringRef Name; if (I->getSymbolName(Name)) continue; if (!Name.empty()) outs() << " " << Name; if (IsForwarder) { StringRef S; if (I->getForwardTo(S)) return; outs() << " (forwarded to " << S << ")"; } outs() << "\n"; } } // Given the COFF object file, this function returns the relocations for .pdata // and the pointer to "runtime function" structs. static bool getPDataSection(const COFFObjectFile *Obj, std::vector<RelocationRef> &Rels, const RuntimeFunction *&RFStart, int &NumRFs) { for (const SectionRef &Section : Obj->sections()) { StringRef Name; error(Section.getName(Name)); if (Name != ".pdata") continue; const coff_section *Pdata = Obj->getCOFFSection(Section); for (const RelocationRef &Reloc : Section.relocations()) Rels.push_back(Reloc); // Sort relocations by address. llvm::sort(Rels.begin(), Rels.end(), RelocAddressLess); ArrayRef<uint8_t> Contents; error(Obj->getSectionContents(Pdata, Contents)); if (Contents.empty()) continue; RFStart = reinterpret_cast<const RuntimeFunction *>(Contents.data()); NumRFs = Contents.size() / sizeof(RuntimeFunction); return true; } return false; } static void printWin64EHUnwindInfo(const Win64EH::UnwindInfo *UI) { // The casts to int are required in order to output the value as number. // Without the casts the value would be interpreted as char data (which // results in garbage output). outs() << " Version: " << static_cast<int>(UI->getVersion()) << "\n"; outs() << " Flags: " << static_cast<int>(UI->getFlags()); if (UI->getFlags()) { if (UI->getFlags() & UNW_ExceptionHandler) outs() << " UNW_ExceptionHandler"; if (UI->getFlags() & UNW_TerminateHandler) outs() << " UNW_TerminateHandler"; if (UI->getFlags() & UNW_ChainInfo) outs() << " UNW_ChainInfo"; } outs() << "\n"; outs() << " Size of prolog: " << static_cast<int>(UI->PrologSize) << "\n"; outs() << " Number of Codes: " << static_cast<int>(UI->NumCodes) << "\n"; // Maybe this should move to output of UOP_SetFPReg? if (UI->getFrameRegister()) { outs() << " Frame register: " << getUnwindRegisterName(UI->getFrameRegister()) << "\n"; outs() << " Frame offset: " << 16 * UI->getFrameOffset() << "\n"; } else { outs() << " No frame pointer used\n"; } if (UI->getFlags() & (UNW_ExceptionHandler | UNW_TerminateHandler)) { // FIXME: Output exception handler data } else if (UI->getFlags() & UNW_ChainInfo) { // FIXME: Output chained unwind info } if (UI->NumCodes) outs() << " Unwind Codes:\n"; printAllUnwindCodes(makeArrayRef(&UI->UnwindCodes[0], UI->NumCodes)); outs() << "\n"; outs().flush(); } /// Prints out the given RuntimeFunction struct for x64, assuming that Obj is /// pointing to an executable file. static void printRuntimeFunction(const COFFObjectFile *Obj, const RuntimeFunction &RF) { if (!RF.StartAddress) return; outs() << "Function Table:\n" << format(" Start Address: 0x%04x\n", static_cast<uint32_t>(RF.StartAddress)) << format(" End Address: 0x%04x\n", static_cast<uint32_t>(RF.EndAddress)) << format(" Unwind Info Address: 0x%04x\n", static_cast<uint32_t>(RF.UnwindInfoOffset)); uintptr_t addr; if (Obj->getRvaPtr(RF.UnwindInfoOffset, addr)) return; printWin64EHUnwindInfo(reinterpret_cast<const Win64EH::UnwindInfo *>(addr)); } /// Prints out the given RuntimeFunction struct for x64, assuming that Obj is /// pointing to an object file. Unlike executable, fields in RuntimeFunction /// struct are filled with zeros, but instead there are relocations pointing to /// them so that the linker will fill targets' RVAs to the fields at link /// time. This function interprets the relocations to find the data to be used /// in the resulting executable. static void printRuntimeFunctionRels(const COFFObjectFile *Obj, const RuntimeFunction &RF, uint64_t SectionOffset, const std::vector<RelocationRef> &Rels) { outs() << "Function Table:\n"; outs() << " Start Address: "; printCOFFSymbolAddress(outs(), Rels, SectionOffset + /*offsetof(RuntimeFunction, StartAddress)*/ 0, RF.StartAddress); outs() << "\n"; outs() << " End Address: "; printCOFFSymbolAddress(outs(), Rels, SectionOffset + /*offsetof(RuntimeFunction, EndAddress)*/ 4, RF.EndAddress); outs() << "\n"; outs() << " Unwind Info Address: "; printCOFFSymbolAddress(outs(), Rels, SectionOffset + /*offsetof(RuntimeFunction, UnwindInfoOffset)*/ 8, RF.UnwindInfoOffset); outs() << "\n"; ArrayRef<uint8_t> XContents; uint64_t UnwindInfoOffset = 0; error(getSectionContents( Obj, Rels, SectionOffset + /*offsetof(RuntimeFunction, UnwindInfoOffset)*/ 8, XContents, UnwindInfoOffset)); if (XContents.empty()) return; UnwindInfoOffset += RF.UnwindInfoOffset; if (UnwindInfoOffset > XContents.size()) return; auto *UI = reinterpret_cast<const Win64EH::UnwindInfo *>(XContents.data() + UnwindInfoOffset); printWin64EHUnwindInfo(UI); } void llvm::printCOFFUnwindInfo(const COFFObjectFile *Obj) { if (Obj->getMachine() != COFF::IMAGE_FILE_MACHINE_AMD64) { errs() << "Unsupported image machine type " "(currently only AMD64 is supported).\n"; return; } std::vector<RelocationRef> Rels; const RuntimeFunction *RFStart; int NumRFs; if (!getPDataSection(Obj, Rels, RFStart, NumRFs)) return; ArrayRef<RuntimeFunction> RFs(RFStart, NumRFs); bool IsExecutable = Rels.empty(); if (IsExecutable) { for (const RuntimeFunction &RF : RFs) printRuntimeFunction(Obj, RF); return; } for (const RuntimeFunction &RF : RFs) { uint64_t SectionOffset = std::distance(RFs.begin(), &RF) * sizeof(RuntimeFunction); printRuntimeFunctionRels(Obj, RF, SectionOffset, Rels); } } void llvm::printCOFFFileHeader(const object::ObjectFile *Obj) { const COFFObjectFile *file = dyn_cast<const COFFObjectFile>(Obj); printTLSDirectory(file); printLoadConfiguration(file); printImportTables(file); printExportTable(file); } void llvm::printCOFFSymbolTable(const object::COFFImportFile *i) { unsigned Index = 0; bool IsCode = i->getCOFFImportHeader()->getType() == COFF::IMPORT_CODE; for (const object::BasicSymbolRef &Sym : i->symbols()) { std::string Name; raw_string_ostream NS(Name); Sym.printName(NS); NS.flush(); outs() << "[" << format("%2d", Index) << "]" << "(sec " << format("%2d", 0) << ")" << "(fl 0x00)" // Flag bits, which COFF doesn't have. << "(ty " << format("%3x", (IsCode && Index) ? 32 : 0) << ")" << "(scl " << format("%3x", 0) << ") " << "(nx " << 0 << ") " << "0x" << format("%08x", 0) << " " << Name << '\n'; ++Index; } } void llvm::printCOFFSymbolTable(const COFFObjectFile *coff) { for (unsigned SI = 0, SE = coff->getNumberOfSymbols(); SI != SE; ++SI) { Expected<COFFSymbolRef> Symbol = coff->getSymbol(SI); StringRef Name; error(errorToErrorCode(Symbol.takeError())); error(coff->getSymbolName(*Symbol, Name)); outs() << "[" << format("%2d", SI) << "]" << "(sec " << format("%2d", int(Symbol->getSectionNumber())) << ")" << "(fl 0x00)" // Flag bits, which COFF doesn't have. << "(ty " << format("%3x", unsigned(Symbol->getType())) << ")" << "(scl " << format("%3x", unsigned(Symbol->getStorageClass())) << ") " << "(nx " << unsigned(Symbol->getNumberOfAuxSymbols()) << ") " << "0x" << format("%08x", unsigned(Symbol->getValue())) << " " << Name << "\n"; for (unsigned AI = 0, AE = Symbol->getNumberOfAuxSymbols(); AI < AE; ++AI, ++SI) { if (Symbol->isSectionDefinition()) { const coff_aux_section_definition *asd; error(coff->getAuxSymbol<coff_aux_section_definition>(SI + 1, asd)); int32_t AuxNumber = asd->getNumber(Symbol->isBigObj()); outs() << "AUX " << format("scnlen 0x%x nreloc %d nlnno %d checksum 0x%x " , unsigned(asd->Length) , unsigned(asd->NumberOfRelocations) , unsigned(asd->NumberOfLinenumbers) , unsigned(asd->CheckSum)) << format("assoc %d comdat %d\n" , unsigned(AuxNumber) , unsigned(asd->Selection)); } else if (Symbol->isFileRecord()) { const char *FileName; error(coff->getAuxSymbol<char>(SI + 1, FileName)); StringRef Name(FileName, Symbol->getNumberOfAuxSymbols() * coff->getSymbolTableEntrySize()); outs() << "AUX " << Name.rtrim(StringRef("\0", 1)) << '\n'; SI = SI + Symbol->getNumberOfAuxSymbols(); break; } else if (Symbol->isWeakExternal()) { const coff_aux_weak_external *awe; error(coff->getAuxSymbol<coff_aux_weak_external>(SI + 1, awe)); outs() << "AUX " << format("indx %d srch %d\n", static_cast<uint32_t>(awe->TagIndex), static_cast<uint32_t>(awe->Characteristics)); } else { outs() << "AUX Unknown\n"; } } } }