//===- llvm/unittest/DebugInfo/MSF/MappedBlockStreamTest.cpp --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/DebugInfo/MSF/MappedBlockStream.h" #include "llvm/Support/BinaryByteStream.h" #include "llvm/Support/BinaryStreamReader.h" #include "llvm/Support/BinaryStreamRef.h" #include "llvm/Support/BinaryStreamWriter.h" #include "llvm/Testing/Support/Error.h" #include "gmock/gmock.h" #include "gtest/gtest.h" using namespace llvm; using namespace llvm::msf; using namespace llvm::support; namespace { static const uint32_t BlocksAry[] = {0, 1, 2, 5, 4, 3, 6, 7, 8, 9}; static uint8_t DataAry[] = {'A', 'B', 'C', 'F', 'E', 'D', 'G', 'H', 'I', 'J'}; class DiscontiguousStream : public WritableBinaryStream { public: DiscontiguousStream(ArrayRef<uint32_t> Blocks, MutableArrayRef<uint8_t> Data) : Blocks(Blocks.begin(), Blocks.end()), Data(Data.begin(), Data.end()) {} uint32_t block_size() const { return 1; } uint32_t block_count() const { return Blocks.size(); } endianness getEndian() const override { return little; } Error readBytes(uint32_t Offset, uint32_t Size, ArrayRef<uint8_t> &Buffer) override { if (auto EC = checkOffsetForRead(Offset, Size)) return EC; Buffer = Data.slice(Offset, Size); return Error::success(); } Error readLongestContiguousChunk(uint32_t Offset, ArrayRef<uint8_t> &Buffer) override { if (auto EC = checkOffsetForRead(Offset, 1)) return EC; Buffer = Data.drop_front(Offset); return Error::success(); } uint32_t getLength() override { return Data.size(); } Error writeBytes(uint32_t Offset, ArrayRef<uint8_t> SrcData) override { if (auto EC = checkOffsetForWrite(Offset, SrcData.size())) return EC; ::memcpy(&Data[Offset], SrcData.data(), SrcData.size()); return Error::success(); } Error commit() override { return Error::success(); } MSFStreamLayout layout() const { return MSFStreamLayout{static_cast<uint32_t>(Data.size()), Blocks}; } BumpPtrAllocator Allocator; private: std::vector<support::ulittle32_t> Blocks; MutableArrayRef<uint8_t> Data; }; TEST(MappedBlockStreamTest, NumBlocks) { DiscontiguousStream F(BlocksAry, DataAry); auto S = MappedBlockStream::createStream(F.block_size(), F.layout(), F, F.Allocator); EXPECT_EQ(F.block_size(), S->getBlockSize()); EXPECT_EQ(F.layout().Blocks.size(), S->getNumBlocks()); } // Tests that a read which is entirely contained within a single block works // and does not allocate. TEST(MappedBlockStreamTest, ReadBeyondEndOfStreamRef) { DiscontiguousStream F(BlocksAry, DataAry); auto S = MappedBlockStream::createStream(F.block_size(), F.layout(), F, F.Allocator); BinaryStreamReader R(*S); BinaryStreamRef SR; EXPECT_THAT_ERROR(R.readStreamRef(SR, 0U), Succeeded()); ArrayRef<uint8_t> Buffer; EXPECT_THAT_ERROR(SR.readBytes(0U, 1U, Buffer), Failed()); EXPECT_THAT_ERROR(R.readStreamRef(SR, 1U), Succeeded()); EXPECT_THAT_ERROR(SR.readBytes(1U, 1U, Buffer), Failed()); } // Tests that a read which outputs into a full destination buffer works and // does not fail due to the length of the output buffer. TEST(MappedBlockStreamTest, ReadOntoNonEmptyBuffer) { DiscontiguousStream F(BlocksAry, DataAry); auto S = MappedBlockStream::createStream(F.block_size(), F.layout(), F, F.Allocator); BinaryStreamReader R(*S); StringRef Str = "ZYXWVUTSRQPONMLKJIHGFEDCBA"; EXPECT_THAT_ERROR(R.readFixedString(Str, 1), Succeeded()); EXPECT_EQ(Str, StringRef("A")); EXPECT_EQ(0U, F.Allocator.getBytesAllocated()); } // Tests that a read which crosses a block boundary, but where the subsequent // blocks are still contiguous in memory to the previous block works and does // not allocate memory. TEST(MappedBlockStreamTest, ZeroCopyReadContiguousBreak) { DiscontiguousStream F(BlocksAry, DataAry); auto S = MappedBlockStream::createStream(F.block_size(), F.layout(), F, F.Allocator); BinaryStreamReader R(*S); StringRef Str; EXPECT_THAT_ERROR(R.readFixedString(Str, 2), Succeeded()); EXPECT_EQ(Str, StringRef("AB")); EXPECT_EQ(0U, F.Allocator.getBytesAllocated()); R.setOffset(6); EXPECT_THAT_ERROR(R.readFixedString(Str, 4), Succeeded()); EXPECT_EQ(Str, StringRef("GHIJ")); EXPECT_EQ(0U, F.Allocator.getBytesAllocated()); } // Tests that a read which crosses a block boundary and cannot be referenced // contiguously works and allocates only the precise amount of bytes // requested. TEST(MappedBlockStreamTest, CopyReadNonContiguousBreak) { DiscontiguousStream F(BlocksAry, DataAry); auto S = MappedBlockStream::createStream(F.block_size(), F.layout(), F, F.Allocator); BinaryStreamReader R(*S); StringRef Str; EXPECT_THAT_ERROR(R.readFixedString(Str, 10), Succeeded()); EXPECT_EQ(Str, StringRef("ABCDEFGHIJ")); EXPECT_EQ(10U, F.Allocator.getBytesAllocated()); } // Test that an out of bounds read which doesn't cross a block boundary // fails and allocates no memory. TEST(MappedBlockStreamTest, InvalidReadSizeNoBreak) { DiscontiguousStream F(BlocksAry, DataAry); auto S = MappedBlockStream::createStream(F.block_size(), F.layout(), F, F.Allocator); BinaryStreamReader R(*S); StringRef Str; R.setOffset(10); EXPECT_THAT_ERROR(R.readFixedString(Str, 1), Failed()); EXPECT_EQ(0U, F.Allocator.getBytesAllocated()); } // Test that an out of bounds read which crosses a contiguous block boundary // fails and allocates no memory. TEST(MappedBlockStreamTest, InvalidReadSizeContiguousBreak) { DiscontiguousStream F(BlocksAry, DataAry); auto S = MappedBlockStream::createStream(F.block_size(), F.layout(), F, F.Allocator); BinaryStreamReader R(*S); StringRef Str; R.setOffset(6); EXPECT_THAT_ERROR(R.readFixedString(Str, 5), Failed()); EXPECT_EQ(0U, F.Allocator.getBytesAllocated()); } // Test that an out of bounds read which crosses a discontiguous block // boundary fails and allocates no memory. TEST(MappedBlockStreamTest, InvalidReadSizeNonContiguousBreak) { DiscontiguousStream F(BlocksAry, DataAry); auto S = MappedBlockStream::createStream(F.block_size(), F.layout(), F, F.Allocator); BinaryStreamReader R(*S); StringRef Str; EXPECT_THAT_ERROR(R.readFixedString(Str, 11), Failed()); EXPECT_EQ(0U, F.Allocator.getBytesAllocated()); } // Tests that a read which is entirely contained within a single block but // beyond the end of a StreamRef fails. TEST(MappedBlockStreamTest, ZeroCopyReadNoBreak) { DiscontiguousStream F(BlocksAry, DataAry); auto S = MappedBlockStream::createStream(F.block_size(), F.layout(), F, F.Allocator); BinaryStreamReader R(*S); StringRef Str; EXPECT_THAT_ERROR(R.readFixedString(Str, 1), Succeeded()); EXPECT_EQ(Str, StringRef("A")); EXPECT_EQ(0U, F.Allocator.getBytesAllocated()); } // Tests that a read which is not aligned on the same boundary as a previous // cached request, but which is known to overlap that request, shares the // previous allocation. TEST(MappedBlockStreamTest, UnalignedOverlappingRead) { DiscontiguousStream F(BlocksAry, DataAry); auto S = MappedBlockStream::createStream(F.block_size(), F.layout(), F, F.Allocator); BinaryStreamReader R(*S); StringRef Str1; StringRef Str2; EXPECT_THAT_ERROR(R.readFixedString(Str1, 7), Succeeded()); EXPECT_EQ(Str1, StringRef("ABCDEFG")); EXPECT_EQ(7U, F.Allocator.getBytesAllocated()); R.setOffset(2); EXPECT_THAT_ERROR(R.readFixedString(Str2, 3), Succeeded()); EXPECT_EQ(Str2, StringRef("CDE")); EXPECT_EQ(Str1.data() + 2, Str2.data()); EXPECT_EQ(7U, F.Allocator.getBytesAllocated()); } // Tests that a read which is not aligned on the same boundary as a previous // cached request, but which only partially overlaps a previous cached request, // still works correctly and allocates again from the shared pool. TEST(MappedBlockStreamTest, UnalignedOverlappingReadFail) { DiscontiguousStream F(BlocksAry, DataAry); auto S = MappedBlockStream::createStream(F.block_size(), F.layout(), F, F.Allocator); BinaryStreamReader R(*S); StringRef Str1; StringRef Str2; EXPECT_THAT_ERROR(R.readFixedString(Str1, 6), Succeeded()); EXPECT_EQ(Str1, StringRef("ABCDEF")); EXPECT_EQ(6U, F.Allocator.getBytesAllocated()); R.setOffset(4); EXPECT_THAT_ERROR(R.readFixedString(Str2, 4), Succeeded()); EXPECT_EQ(Str2, StringRef("EFGH")); EXPECT_EQ(10U, F.Allocator.getBytesAllocated()); } TEST(MappedBlockStreamTest, WriteBeyondEndOfStream) { static uint8_t Data[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'}; static uint8_t LargeBuffer[] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A'}; static uint8_t SmallBuffer[] = {'0', '1', '2'}; static_assert(sizeof(LargeBuffer) > sizeof(Data), "LargeBuffer is not big enough"); DiscontiguousStream F(BlocksAry, Data); auto S = WritableMappedBlockStream::createStream(F.block_size(), F.layout(), F, F.Allocator); EXPECT_THAT_ERROR(S->writeBytes(0, ArrayRef<uint8_t>(LargeBuffer)), Failed()); EXPECT_THAT_ERROR(S->writeBytes(0, ArrayRef<uint8_t>(SmallBuffer)), Succeeded()); EXPECT_THAT_ERROR(S->writeBytes(7, ArrayRef<uint8_t>(SmallBuffer)), Succeeded()); EXPECT_THAT_ERROR(S->writeBytes(8, ArrayRef<uint8_t>(SmallBuffer)), Failed()); } TEST(MappedBlockStreamTest, TestWriteBytesNoBreakBoundary) { static uint8_t Data[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'}; DiscontiguousStream F(BlocksAry, Data); auto S = WritableMappedBlockStream::createStream(F.block_size(), F.layout(), F, F.Allocator); ArrayRef<uint8_t> Buffer; EXPECT_THAT_ERROR(S->readBytes(0, 1, Buffer), Succeeded()); EXPECT_EQ(Buffer, ArrayRef<uint8_t>('A')); EXPECT_THAT_ERROR(S->readBytes(9, 1, Buffer), Succeeded()); EXPECT_EQ(Buffer, ArrayRef<uint8_t>('J')); EXPECT_THAT_ERROR(S->writeBytes(0, ArrayRef<uint8_t>('J')), Succeeded()); EXPECT_THAT_ERROR(S->writeBytes(9, ArrayRef<uint8_t>('A')), Succeeded()); EXPECT_THAT_ERROR(S->readBytes(0, 1, Buffer), Succeeded()); EXPECT_EQ(Buffer, ArrayRef<uint8_t>('J')); EXPECT_THAT_ERROR(S->readBytes(9, 1, Buffer), Succeeded()); EXPECT_EQ(Buffer, ArrayRef<uint8_t>('A')); EXPECT_THAT_ERROR(S->writeBytes(0, ArrayRef<uint8_t>('A')), Succeeded()); EXPECT_THAT_ERROR(S->writeBytes(9, ArrayRef<uint8_t>('J')), Succeeded()); EXPECT_THAT_ERROR(S->readBytes(0, 1, Buffer), Succeeded()); EXPECT_EQ(Buffer, ArrayRef<uint8_t>('A')); EXPECT_THAT_ERROR(S->readBytes(9, 1, Buffer), Succeeded()); EXPECT_EQ(Buffer, ArrayRef<uint8_t>('J')); } TEST(MappedBlockStreamTest, TestWriteBytesBreakBoundary) { static uint8_t Data[] = {'0', '0', '0', '0', '0', '0', '0', '0', '0', '0'}; static uint8_t TestData[] = {'T', 'E', 'S', 'T', 'I', 'N', 'G', '.'}; static uint8_t Expected[] = {'T', 'E', 'S', 'N', 'I', 'T', 'G', '.', '0', '0'}; DiscontiguousStream F(BlocksAry, Data); auto S = WritableMappedBlockStream::createStream(F.block_size(), F.layout(), F, F.Allocator); ArrayRef<uint8_t> Buffer; EXPECT_THAT_ERROR(S->writeBytes(0, TestData), Succeeded()); // First just compare the memory, then compare the result of reading the // string out. EXPECT_EQ(ArrayRef<uint8_t>(Data), ArrayRef<uint8_t>(Expected)); EXPECT_THAT_ERROR(S->readBytes(0, 8, Buffer), Succeeded()); EXPECT_EQ(Buffer, ArrayRef<uint8_t>(TestData)); } TEST(MappedBlockStreamTest, TestWriteThenRead) { std::vector<uint8_t> DataBytes(10); MutableArrayRef<uint8_t> Data(DataBytes); const uint32_t Blocks[] = {2, 1, 0, 6, 3, 4, 5, 7, 9, 8}; DiscontiguousStream F(Blocks, Data); auto S = WritableMappedBlockStream::createStream(F.block_size(), F.layout(), F, F.Allocator); enum class MyEnum : uint32_t { Val1 = 2908234, Val2 = 120891234 }; using support::ulittle32_t; uint16_t u16[] = {31468, 0}; uint32_t u32[] = {890723408, 0}; MyEnum Enum[] = {MyEnum::Val1, MyEnum::Val2}; StringRef ZStr[] = {"Zero Str", ""}; StringRef FStr[] = {"Fixed Str", ""}; uint8_t byteArray0[] = {'1', '2'}; uint8_t byteArray1[] = {'0', '0'}; ArrayRef<uint8_t> byteArrayRef0(byteArray0); ArrayRef<uint8_t> byteArrayRef1(byteArray1); ArrayRef<uint8_t> byteArray[] = {byteArrayRef0, byteArrayRef1}; uint32_t intArr0[] = {890723408, 29082234}; uint32_t intArr1[] = {890723408, 29082234}; ArrayRef<uint32_t> intArray[] = {intArr0, intArr1}; BinaryStreamReader Reader(*S); BinaryStreamWriter Writer(*S); EXPECT_THAT_ERROR(Writer.writeInteger(u16[0]), Succeeded()); EXPECT_THAT_ERROR(Reader.readInteger(u16[1]), Succeeded()); EXPECT_EQ(u16[0], u16[1]); EXPECT_EQ(std::vector<uint8_t>({0, 0x7A, 0xEC, 0, 0, 0, 0, 0, 0, 0}), DataBytes); Reader.setOffset(0); Writer.setOffset(0); ::memset(DataBytes.data(), 0, 10); EXPECT_THAT_ERROR(Writer.writeInteger(u32[0]), Succeeded()); EXPECT_THAT_ERROR(Reader.readInteger(u32[1]), Succeeded()); EXPECT_EQ(u32[0], u32[1]); EXPECT_EQ(std::vector<uint8_t>({0x17, 0x5C, 0x50, 0, 0, 0, 0x35, 0, 0, 0}), DataBytes); Reader.setOffset(0); Writer.setOffset(0); ::memset(DataBytes.data(), 0, 10); EXPECT_THAT_ERROR(Writer.writeEnum(Enum[0]), Succeeded()); EXPECT_THAT_ERROR(Reader.readEnum(Enum[1]), Succeeded()); EXPECT_EQ(Enum[0], Enum[1]); EXPECT_EQ(std::vector<uint8_t>({0x2C, 0x60, 0x4A, 0, 0, 0, 0, 0, 0, 0}), DataBytes); Reader.setOffset(0); Writer.setOffset(0); ::memset(DataBytes.data(), 0, 10); EXPECT_THAT_ERROR(Writer.writeCString(ZStr[0]), Succeeded()); EXPECT_THAT_ERROR(Reader.readCString(ZStr[1]), Succeeded()); EXPECT_EQ(ZStr[0], ZStr[1]); EXPECT_EQ( std::vector<uint8_t>({'r', 'e', 'Z', ' ', 'S', 't', 'o', 'r', 0, 0}), DataBytes); Reader.setOffset(0); Writer.setOffset(0); ::memset(DataBytes.data(), 0, 10); EXPECT_THAT_ERROR(Writer.writeFixedString(FStr[0]), Succeeded()); EXPECT_THAT_ERROR(Reader.readFixedString(FStr[1], FStr[0].size()), Succeeded()); EXPECT_EQ(FStr[0], FStr[1]); EXPECT_EQ( std::vector<uint8_t>({'x', 'i', 'F', 'd', ' ', 'S', 'e', 't', 0, 'r'}), DataBytes); Reader.setOffset(0); Writer.setOffset(0); ::memset(DataBytes.data(), 0, 10); EXPECT_THAT_ERROR(Writer.writeArray(byteArray[0]), Succeeded()); EXPECT_THAT_ERROR(Reader.readArray(byteArray[1], byteArray[0].size()), Succeeded()); EXPECT_EQ(byteArray[0], byteArray[1]); EXPECT_EQ(std::vector<uint8_t>({0, 0x32, 0x31, 0, 0, 0, 0, 0, 0, 0}), DataBytes); Reader.setOffset(0); Writer.setOffset(0); ::memset(DataBytes.data(), 0, 10); EXPECT_THAT_ERROR(Writer.writeArray(intArray[0]), Succeeded()); EXPECT_THAT_ERROR(Reader.readArray(intArray[1], intArray[0].size()), Succeeded()); EXPECT_EQ(intArray[0], intArray[1]); } TEST(MappedBlockStreamTest, TestWriteContiguousStreamRef) { std::vector<uint8_t> DestDataBytes(10); MutableArrayRef<uint8_t> DestData(DestDataBytes); const uint32_t DestBlocks[] = {2, 1, 0, 6, 3, 4, 5, 7, 9, 8}; std::vector<uint8_t> SrcDataBytes(10); MutableArrayRef<uint8_t> SrcData(SrcDataBytes); DiscontiguousStream F(DestBlocks, DestData); auto DestStream = WritableMappedBlockStream::createStream( F.block_size(), F.layout(), F, F.Allocator); // First write "Test Str" into the source stream. MutableBinaryByteStream SourceStream(SrcData, little); BinaryStreamWriter SourceWriter(SourceStream); EXPECT_THAT_ERROR(SourceWriter.writeCString("Test Str"), Succeeded()); EXPECT_EQ(SrcDataBytes, std::vector<uint8_t>( {'T', 'e', 's', 't', ' ', 'S', 't', 'r', 0, 0})); // Then write the source stream into the dest stream. BinaryStreamWriter DestWriter(*DestStream); EXPECT_THAT_ERROR(DestWriter.writeStreamRef(SourceStream), Succeeded()); EXPECT_EQ(DestDataBytes, std::vector<uint8_t>( {'s', 'e', 'T', ' ', 'S', 't', 't', 'r', 0, 0})); // Then read the string back out of the dest stream. StringRef Result; BinaryStreamReader DestReader(*DestStream); EXPECT_THAT_ERROR(DestReader.readCString(Result), Succeeded()); EXPECT_EQ(Result, "Test Str"); } TEST(MappedBlockStreamTest, TestWriteDiscontiguousStreamRef) { std::vector<uint8_t> DestDataBytes(10); MutableArrayRef<uint8_t> DestData(DestDataBytes); const uint32_t DestBlocks[] = {2, 1, 0, 6, 3, 4, 5, 7, 9, 8}; std::vector<uint8_t> SrcDataBytes(10); MutableArrayRef<uint8_t> SrcData(SrcDataBytes); const uint32_t SrcBlocks[] = {1, 0, 6, 3, 4, 5, 2, 7, 8, 9}; DiscontiguousStream DestF(DestBlocks, DestData); DiscontiguousStream SrcF(SrcBlocks, SrcData); auto Dest = WritableMappedBlockStream::createStream( DestF.block_size(), DestF.layout(), DestF, DestF.Allocator); auto Src = WritableMappedBlockStream::createStream( SrcF.block_size(), SrcF.layout(), SrcF, SrcF.Allocator); // First write "Test Str" into the source stream. BinaryStreamWriter SourceWriter(*Src); EXPECT_THAT_ERROR(SourceWriter.writeCString("Test Str"), Succeeded()); EXPECT_EQ(SrcDataBytes, std::vector<uint8_t>( {'e', 'T', 't', 't', ' ', 'S', 's', 'r', 0, 0})); // Then write the source stream into the dest stream. BinaryStreamWriter DestWriter(*Dest); EXPECT_THAT_ERROR(DestWriter.writeStreamRef(*Src), Succeeded()); EXPECT_EQ(DestDataBytes, std::vector<uint8_t>( {'s', 'e', 'T', ' ', 'S', 't', 't', 'r', 0, 0})); // Then read the string back out of the dest stream. StringRef Result; BinaryStreamReader DestReader(*Dest); EXPECT_THAT_ERROR(DestReader.readCString(Result), Succeeded()); EXPECT_EQ(Result, "Test Str"); } TEST(MappedBlockStreamTest, DataLivesAfterStreamDestruction) { std::vector<uint8_t> DataBytes(10); MutableArrayRef<uint8_t> Data(DataBytes); const uint32_t Blocks[] = {2, 1, 0, 6, 3, 4, 5, 7, 9, 8}; StringRef Str[] = {"Zero Str", ""}; DiscontiguousStream F(Blocks, Data); { auto S = WritableMappedBlockStream::createStream(F.block_size(), F.layout(), F, F.Allocator); BinaryStreamReader Reader(*S); BinaryStreamWriter Writer(*S); ::memset(DataBytes.data(), 0, 10); EXPECT_THAT_ERROR(Writer.writeCString(Str[0]), Succeeded()); EXPECT_THAT_ERROR(Reader.readCString(Str[1]), Succeeded()); EXPECT_EQ(Str[0], Str[1]); } EXPECT_EQ(Str[0], Str[1]); } } // namespace MATCHER_P3(BlockIsFilledWith, Layout, BlockIndex, Byte, "succeeded") { uint64_t Offset = msf::blockToOffset(BlockIndex, Layout.SB->BlockSize); ArrayRef<uint8_t> BufferRef = makeArrayRef(arg); BufferRef = BufferRef.slice(Offset, Layout.SB->BlockSize); return llvm::all_of(BufferRef, [this](uint8_t B) { return B == Byte; }); } namespace { TEST(MappedBlockStreamTest, CreateFpmStream) { BumpPtrAllocator Allocator; SuperBlock SB; MSFLayout L; L.SB = &SB; SB.FreeBlockMapBlock = 1; SB.BlockSize = 4096; constexpr uint32_t NumFileBlocks = 4096 * 4; std::vector<uint8_t> MsfBuffer(NumFileBlocks * SB.BlockSize); MutableBinaryByteStream MsfStream(MsfBuffer, llvm::support::little); SB.NumBlocks = NumFileBlocks; auto FpmStream = WritableMappedBlockStream::createFpmStream(L, MsfStream, Allocator); // 4096 * 4 / 8 = 2048 bytes of FPM data is needed to describe 4096 * 4 // blocks. This translates to 1 FPM block. EXPECT_EQ(2048u, FpmStream->getLength()); EXPECT_EQ(1u, FpmStream->getStreamLayout().Blocks.size()); EXPECT_EQ(1u, FpmStream->getStreamLayout().Blocks[0]); // All blocks from FPM1 should be 1 initialized, and all blocks from FPM2 // should be 0 initialized (since we requested the main FPM, not the alt FPM) for (int I = 0; I < 4; ++I) { EXPECT_THAT(MsfBuffer, BlockIsFilledWith(L, 1 + I * SB.BlockSize, 0xFF)); EXPECT_THAT(MsfBuffer, BlockIsFilledWith(L, 2 + I * SB.BlockSize, 0)); } ::memset(MsfBuffer.data(), 0, MsfBuffer.size()); FpmStream = WritableMappedBlockStream::createFpmStream(L, MsfStream, Allocator, true); // 4096 * 4 / 8 = 2048 bytes of FPM data is needed to describe 4096 * 4 // blocks. This translates to 1 FPM block. EXPECT_EQ(2048u, FpmStream->getLength()); EXPECT_EQ(1u, FpmStream->getStreamLayout().Blocks.size()); EXPECT_EQ(2u, FpmStream->getStreamLayout().Blocks[0]); // All blocks from FPM2 should be 1 initialized, and all blocks from FPM1 // should be 0 initialized (since we requested the alt FPM, not the main FPM) for (int I = 0; I < 4; ++I) { EXPECT_THAT(MsfBuffer, BlockIsFilledWith(L, 1 + I * SB.BlockSize, 0)); EXPECT_THAT(MsfBuffer, BlockIsFilledWith(L, 2 + I * SB.BlockSize, 0xFF)); } } } // end anonymous namespace