//===- llvm/unittest/IR/BasicBlockTest.cpp - BasicBlock unit tests --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/IR/BasicBlock.h" #include "llvm/ADT/STLExtras.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/NoFolder.h" #include "gmock/gmock-matchers.h" #include "gtest/gtest.h" #include <memory> namespace llvm { namespace { TEST(BasicBlockTest, PhiRange) { LLVMContext Context; // Create the main block. std::unique_ptr<BasicBlock> BB(BasicBlock::Create(Context)); // Create some predecessors of it. std::unique_ptr<BasicBlock> BB1(BasicBlock::Create(Context)); BranchInst::Create(BB.get(), BB1.get()); std::unique_ptr<BasicBlock> BB2(BasicBlock::Create(Context)); BranchInst::Create(BB.get(), BB2.get()); // Make sure this doesn't crash if there are no phis. for (auto &PN : BB->phis()) { (void)PN; EXPECT_TRUE(false) << "empty block should have no phis"; } // Make it a cycle. auto *BI = BranchInst::Create(BB.get(), BB.get()); // Now insert some PHI nodes. auto *Int32Ty = Type::getInt32Ty(Context); auto *P1 = PHINode::Create(Int32Ty, /*NumReservedValues*/ 3, "phi.1", BI); auto *P2 = PHINode::Create(Int32Ty, /*NumReservedValues*/ 3, "phi.2", BI); auto *P3 = PHINode::Create(Int32Ty, /*NumReservedValues*/ 3, "phi.3", BI); // Some non-PHI nodes. auto *Sum = BinaryOperator::CreateAdd(P1, P2, "sum", BI); // Now wire up the incoming values that are interesting. P1->addIncoming(P2, BB.get()); P2->addIncoming(P1, BB.get()); P3->addIncoming(Sum, BB.get()); // Finally, let's iterate them, which is the thing we're trying to test. // We'll use this to wire up the rest of the incoming values. for (auto &PN : BB->phis()) { PN.addIncoming(UndefValue::get(Int32Ty), BB1.get()); PN.addIncoming(UndefValue::get(Int32Ty), BB2.get()); } // Test that we can use const iterators and generally that the iterators // behave like iterators. BasicBlock::const_phi_iterator CI; CI = BB->phis().begin(); EXPECT_NE(CI, BB->phis().end()); // Test that filtering iterators work with basic blocks. auto isPhi = [](Instruction &I) { return isa<PHINode>(&I); }; auto Phis = make_filter_range(*BB, isPhi); auto ReversedPhis = reverse(make_filter_range(*BB, isPhi)); EXPECT_EQ(std::distance(Phis.begin(), Phis.end()), 3); EXPECT_EQ(&*Phis.begin(), P1); EXPECT_EQ(std::distance(ReversedPhis.begin(), ReversedPhis.end()), 3); EXPECT_EQ(&*ReversedPhis.begin(), P3); // And iterate a const range. for (const auto &PN : const_cast<const BasicBlock *>(BB.get())->phis()) { EXPECT_EQ(BB.get(), PN.getIncomingBlock(0)); EXPECT_EQ(BB1.get(), PN.getIncomingBlock(1)); EXPECT_EQ(BB2.get(), PN.getIncomingBlock(2)); } } #define CHECK_ITERATORS(Range1, Range2) \ EXPECT_EQ(std::distance(Range1.begin(), Range1.end()), \ std::distance(Range2.begin(), Range2.end())); \ for (auto Pair : zip(Range1, Range2)) \ EXPECT_EQ(&std::get<0>(Pair), std::get<1>(Pair)); TEST(BasicBlockTest, TestInstructionsWithoutDebug) { LLVMContext Ctx; Module *M = new Module("MyModule", Ctx); Type *ArgTy1[] = {Type::getInt32PtrTy(Ctx)}; FunctionType *FT = FunctionType::get(Type::getVoidTy(Ctx), ArgTy1, false); Argument *V = new Argument(Type::getInt32Ty(Ctx)); Function *F = Function::Create(FT, Function::ExternalLinkage, "", M); Value *DbgAddr = Intrinsic::getDeclaration(M, Intrinsic::dbg_addr); Value *DbgDeclare = Intrinsic::getDeclaration(M, Intrinsic::dbg_declare); Value *DbgValue = Intrinsic::getDeclaration(M, Intrinsic::dbg_value); Value *DIV = MetadataAsValue::get(Ctx, (Metadata *)nullptr); SmallVector<Value *, 3> Args = {DIV, DIV, DIV}; BasicBlock *BB1 = BasicBlock::Create(Ctx, "", F); const BasicBlock *BBConst = BB1; IRBuilder<> Builder1(BB1); AllocaInst *Var = Builder1.CreateAlloca(Builder1.getInt8Ty()); Builder1.CreateCall(DbgValue, Args); Instruction *AddInst = cast<Instruction>(Builder1.CreateAdd(V, V)); Instruction *MulInst = cast<Instruction>(Builder1.CreateMul(AddInst, V)); Builder1.CreateCall(DbgDeclare, Args); Instruction *SubInst = cast<Instruction>(Builder1.CreateSub(MulInst, V)); Builder1.CreateCall(DbgAddr, Args); SmallVector<Instruction *, 4> Exp = {Var, AddInst, MulInst, SubInst}; CHECK_ITERATORS(BB1->instructionsWithoutDebug(), Exp); CHECK_ITERATORS(BBConst->instructionsWithoutDebug(), Exp); delete M; delete V; } } // End anonymous namespace. } // End llvm namespace.