//===- unittests/Support/MathExtrasTest.cpp - math utils tests ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Support/MathExtras.h" #include "gtest/gtest.h" using namespace llvm; namespace { TEST(MathExtras, countTrailingZeros) { uint8_t Z8 = 0; uint16_t Z16 = 0; uint32_t Z32 = 0; uint64_t Z64 = 0; EXPECT_EQ(8u, countTrailingZeros(Z8)); EXPECT_EQ(16u, countTrailingZeros(Z16)); EXPECT_EQ(32u, countTrailingZeros(Z32)); EXPECT_EQ(64u, countTrailingZeros(Z64)); uint8_t NZ8 = 42; uint16_t NZ16 = 42; uint32_t NZ32 = 42; uint64_t NZ64 = 42; EXPECT_EQ(1u, countTrailingZeros(NZ8)); EXPECT_EQ(1u, countTrailingZeros(NZ16)); EXPECT_EQ(1u, countTrailingZeros(NZ32)); EXPECT_EQ(1u, countTrailingZeros(NZ64)); } TEST(MathExtras, countLeadingZeros) { uint8_t Z8 = 0; uint16_t Z16 = 0; uint32_t Z32 = 0; uint64_t Z64 = 0; EXPECT_EQ(8u, countLeadingZeros(Z8)); EXPECT_EQ(16u, countLeadingZeros(Z16)); EXPECT_EQ(32u, countLeadingZeros(Z32)); EXPECT_EQ(64u, countLeadingZeros(Z64)); uint8_t NZ8 = 42; uint16_t NZ16 = 42; uint32_t NZ32 = 42; uint64_t NZ64 = 42; EXPECT_EQ(2u, countLeadingZeros(NZ8)); EXPECT_EQ(10u, countLeadingZeros(NZ16)); EXPECT_EQ(26u, countLeadingZeros(NZ32)); EXPECT_EQ(58u, countLeadingZeros(NZ64)); EXPECT_EQ(8u, countLeadingZeros(0x00F000FFu)); EXPECT_EQ(8u, countLeadingZeros(0x00F12345u)); for (unsigned i = 0; i <= 30; ++i) { EXPECT_EQ(31 - i, countLeadingZeros(1u << i)); } EXPECT_EQ(8u, countLeadingZeros(0x00F1234500F12345ULL)); EXPECT_EQ(1u, countLeadingZeros(1ULL << 62)); for (unsigned i = 0; i <= 62; ++i) { EXPECT_EQ(63 - i, countLeadingZeros(1ULL << i)); } } TEST(MathExtras, onesMask) { EXPECT_EQ(0U, maskLeadingOnes<uint8_t>(0)); EXPECT_EQ(0U, maskTrailingOnes<uint8_t>(0)); EXPECT_EQ(0U, maskLeadingOnes<uint16_t>(0)); EXPECT_EQ(0U, maskTrailingOnes<uint16_t>(0)); EXPECT_EQ(0U, maskLeadingOnes<uint32_t>(0)); EXPECT_EQ(0U, maskTrailingOnes<uint32_t>(0)); EXPECT_EQ(0U, maskLeadingOnes<uint64_t>(0)); EXPECT_EQ(0U, maskTrailingOnes<uint64_t>(0)); EXPECT_EQ(0x00000003U, maskTrailingOnes<uint32_t>(2U)); EXPECT_EQ(0xC0000000U, maskLeadingOnes<uint32_t>(2U)); EXPECT_EQ(0x000007FFU, maskTrailingOnes<uint32_t>(11U)); EXPECT_EQ(0xFFE00000U, maskLeadingOnes<uint32_t>(11U)); EXPECT_EQ(0xFFFFFFFFU, maskTrailingOnes<uint32_t>(32U)); EXPECT_EQ(0xFFFFFFFFU, maskLeadingOnes<uint32_t>(32U)); EXPECT_EQ(0xFFFFFFFFFFFFFFFFULL, maskTrailingOnes<uint64_t>(64U)); EXPECT_EQ(0xFFFFFFFFFFFFFFFFULL, maskLeadingOnes<uint64_t>(64U)); EXPECT_EQ(0x0000FFFFFFFFFFFFULL, maskTrailingOnes<uint64_t>(48U)); EXPECT_EQ(0xFFFFFFFFFFFF0000ULL, maskLeadingOnes<uint64_t>(48U)); } TEST(MathExtras, findFirstSet) { uint8_t Z8 = 0; uint16_t Z16 = 0; uint32_t Z32 = 0; uint64_t Z64 = 0; EXPECT_EQ(0xFFULL, findFirstSet(Z8)); EXPECT_EQ(0xFFFFULL, findFirstSet(Z16)); EXPECT_EQ(0xFFFFFFFFULL, findFirstSet(Z32)); EXPECT_EQ(0xFFFFFFFFFFFFFFFFULL, findFirstSet(Z64)); uint8_t NZ8 = 42; uint16_t NZ16 = 42; uint32_t NZ32 = 42; uint64_t NZ64 = 42; EXPECT_EQ(1u, findFirstSet(NZ8)); EXPECT_EQ(1u, findFirstSet(NZ16)); EXPECT_EQ(1u, findFirstSet(NZ32)); EXPECT_EQ(1u, findFirstSet(NZ64)); } TEST(MathExtras, findLastSet) { uint8_t Z8 = 0; uint16_t Z16 = 0; uint32_t Z32 = 0; uint64_t Z64 = 0; EXPECT_EQ(0xFFULL, findLastSet(Z8)); EXPECT_EQ(0xFFFFULL, findLastSet(Z16)); EXPECT_EQ(0xFFFFFFFFULL, findLastSet(Z32)); EXPECT_EQ(0xFFFFFFFFFFFFFFFFULL, findLastSet(Z64)); uint8_t NZ8 = 42; uint16_t NZ16 = 42; uint32_t NZ32 = 42; uint64_t NZ64 = 42; EXPECT_EQ(5u, findLastSet(NZ8)); EXPECT_EQ(5u, findLastSet(NZ16)); EXPECT_EQ(5u, findLastSet(NZ32)); EXPECT_EQ(5u, findLastSet(NZ64)); } TEST(MathExtras, isIntN) { EXPECT_TRUE(isIntN(16, 32767)); EXPECT_FALSE(isIntN(16, 32768)); } TEST(MathExtras, isUIntN) { EXPECT_TRUE(isUIntN(16, 65535)); EXPECT_FALSE(isUIntN(16, 65536)); EXPECT_TRUE(isUIntN(1, 0)); EXPECT_TRUE(isUIntN(6, 63)); } TEST(MathExtras, maxIntN) { EXPECT_EQ(32767, maxIntN(16)); EXPECT_EQ(2147483647, maxIntN(32)); EXPECT_EQ(std::numeric_limits<int32_t>::max(), maxIntN(32)); EXPECT_EQ(std::numeric_limits<int64_t>::max(), maxIntN(64)); } TEST(MathExtras, minIntN) { EXPECT_EQ(-32768LL, minIntN(16)); EXPECT_EQ(-64LL, minIntN(7)); EXPECT_EQ(std::numeric_limits<int32_t>::min(), minIntN(32)); EXPECT_EQ(std::numeric_limits<int64_t>::min(), minIntN(64)); } TEST(MathExtras, maxUIntN) { EXPECT_EQ(0xffffULL, maxUIntN(16)); EXPECT_EQ(0xffffffffULL, maxUIntN(32)); EXPECT_EQ(0xffffffffffffffffULL, maxUIntN(64)); EXPECT_EQ(1ULL, maxUIntN(1)); EXPECT_EQ(0x0fULL, maxUIntN(4)); } TEST(MathExtras, reverseBits) { uint8_t NZ8 = 42; uint16_t NZ16 = 42; uint32_t NZ32 = 42; uint64_t NZ64 = 42; EXPECT_EQ(0x54ULL, reverseBits(NZ8)); EXPECT_EQ(0x5400ULL, reverseBits(NZ16)); EXPECT_EQ(0x54000000ULL, reverseBits(NZ32)); EXPECT_EQ(0x5400000000000000ULL, reverseBits(NZ64)); } TEST(MathExtras, isPowerOf2_32) { EXPECT_FALSE(isPowerOf2_32(0)); EXPECT_TRUE(isPowerOf2_32(1 << 6)); EXPECT_TRUE(isPowerOf2_32(1 << 12)); EXPECT_FALSE(isPowerOf2_32((1 << 19) + 3)); EXPECT_FALSE(isPowerOf2_32(0xABCDEF0)); } TEST(MathExtras, isPowerOf2_64) { EXPECT_FALSE(isPowerOf2_64(0)); EXPECT_TRUE(isPowerOf2_64(1LL << 46)); EXPECT_TRUE(isPowerOf2_64(1LL << 12)); EXPECT_FALSE(isPowerOf2_64((1LL << 53) + 3)); EXPECT_FALSE(isPowerOf2_64(0xABCDEF0ABCDEF0LL)); } TEST(MathExtras, PowerOf2Ceil) { EXPECT_EQ(0U, PowerOf2Ceil(0U)); EXPECT_EQ(8U, PowerOf2Ceil(8U)); EXPECT_EQ(8U, PowerOf2Ceil(7U)); } TEST(MathExtras, PowerOf2Floor) { EXPECT_EQ(0U, PowerOf2Floor(0U)); EXPECT_EQ(8U, PowerOf2Floor(8U)); EXPECT_EQ(4U, PowerOf2Floor(7U)); } TEST(MathExtras, ByteSwap_32) { EXPECT_EQ(0x44332211u, ByteSwap_32(0x11223344)); EXPECT_EQ(0xDDCCBBAAu, ByteSwap_32(0xAABBCCDD)); } TEST(MathExtras, ByteSwap_64) { EXPECT_EQ(0x8877665544332211ULL, ByteSwap_64(0x1122334455667788LL)); EXPECT_EQ(0x1100FFEEDDCCBBAAULL, ByteSwap_64(0xAABBCCDDEEFF0011LL)); } TEST(MathExtras, countLeadingOnes) { for (int i = 30; i >= 0; --i) { // Start with all ones and unset some bit. EXPECT_EQ(31u - i, countLeadingOnes(0xFFFFFFFF ^ (1 << i))); } for (int i = 62; i >= 0; --i) { // Start with all ones and unset some bit. EXPECT_EQ(63u - i, countLeadingOnes(0xFFFFFFFFFFFFFFFFULL ^ (1LL << i))); } for (int i = 30; i >= 0; --i) { // Start with all ones and unset some bit. EXPECT_EQ(31u - i, countLeadingOnes(0xFFFFFFFF ^ (1 << i))); } } TEST(MathExtras, FloatBits) { static const float kValue = 5632.34f; EXPECT_FLOAT_EQ(kValue, BitsToFloat(FloatToBits(kValue))); } TEST(MathExtras, DoubleBits) { static const double kValue = 87987234.983498; EXPECT_DOUBLE_EQ(kValue, BitsToDouble(DoubleToBits(kValue))); } TEST(MathExtras, MinAlign) { EXPECT_EQ(1u, MinAlign(2, 3)); EXPECT_EQ(2u, MinAlign(2, 4)); EXPECT_EQ(1u, MinAlign(17, 64)); EXPECT_EQ(256u, MinAlign(256, 512)); } TEST(MathExtras, NextPowerOf2) { EXPECT_EQ(4u, NextPowerOf2(3)); EXPECT_EQ(16u, NextPowerOf2(15)); EXPECT_EQ(256u, NextPowerOf2(128)); } TEST(MathExtras, alignTo) { EXPECT_EQ(8u, alignTo(5, 8)); EXPECT_EQ(24u, alignTo(17, 8)); EXPECT_EQ(0u, alignTo(~0LL, 8)); EXPECT_EQ(7u, alignTo(5, 8, 7)); EXPECT_EQ(17u, alignTo(17, 8, 1)); EXPECT_EQ(3u, alignTo(~0LL, 8, 3)); EXPECT_EQ(552u, alignTo(321, 255, 42)); } template<typename T> void SaturatingAddTestHelper() { const T Max = std::numeric_limits<T>::max(); bool ResultOverflowed; EXPECT_EQ(T(3), SaturatingAdd(T(1), T(2))); EXPECT_EQ(T(3), SaturatingAdd(T(1), T(2), &ResultOverflowed)); EXPECT_FALSE(ResultOverflowed); EXPECT_EQ(Max, SaturatingAdd(Max, T(1))); EXPECT_EQ(Max, SaturatingAdd(Max, T(1), &ResultOverflowed)); EXPECT_TRUE(ResultOverflowed); EXPECT_EQ(Max, SaturatingAdd(T(1), T(Max - 1))); EXPECT_EQ(Max, SaturatingAdd(T(1), T(Max - 1), &ResultOverflowed)); EXPECT_FALSE(ResultOverflowed); EXPECT_EQ(Max, SaturatingAdd(T(1), Max)); EXPECT_EQ(Max, SaturatingAdd(T(1), Max, &ResultOverflowed)); EXPECT_TRUE(ResultOverflowed); EXPECT_EQ(Max, SaturatingAdd(Max, Max)); EXPECT_EQ(Max, SaturatingAdd(Max, Max, &ResultOverflowed)); EXPECT_TRUE(ResultOverflowed); } TEST(MathExtras, SaturatingAdd) { SaturatingAddTestHelper<uint8_t>(); SaturatingAddTestHelper<uint16_t>(); SaturatingAddTestHelper<uint32_t>(); SaturatingAddTestHelper<uint64_t>(); } template<typename T> void SaturatingMultiplyTestHelper() { const T Max = std::numeric_limits<T>::max(); bool ResultOverflowed; // Test basic multiplication. EXPECT_EQ(T(6), SaturatingMultiply(T(2), T(3))); EXPECT_EQ(T(6), SaturatingMultiply(T(2), T(3), &ResultOverflowed)); EXPECT_FALSE(ResultOverflowed); EXPECT_EQ(T(6), SaturatingMultiply(T(3), T(2))); EXPECT_EQ(T(6), SaturatingMultiply(T(3), T(2), &ResultOverflowed)); EXPECT_FALSE(ResultOverflowed); // Test multiplication by zero. EXPECT_EQ(T(0), SaturatingMultiply(T(0), T(0))); EXPECT_EQ(T(0), SaturatingMultiply(T(0), T(0), &ResultOverflowed)); EXPECT_FALSE(ResultOverflowed); EXPECT_EQ(T(0), SaturatingMultiply(T(1), T(0))); EXPECT_EQ(T(0), SaturatingMultiply(T(1), T(0), &ResultOverflowed)); EXPECT_FALSE(ResultOverflowed); EXPECT_EQ(T(0), SaturatingMultiply(T(0), T(1))); EXPECT_EQ(T(0), SaturatingMultiply(T(0), T(1), &ResultOverflowed)); EXPECT_FALSE(ResultOverflowed); EXPECT_EQ(T(0), SaturatingMultiply(Max, T(0))); EXPECT_EQ(T(0), SaturatingMultiply(Max, T(0), &ResultOverflowed)); EXPECT_FALSE(ResultOverflowed); EXPECT_EQ(T(0), SaturatingMultiply(T(0), Max)); EXPECT_EQ(T(0), SaturatingMultiply(T(0), Max, &ResultOverflowed)); EXPECT_FALSE(ResultOverflowed); // Test multiplication by maximum value. EXPECT_EQ(Max, SaturatingMultiply(Max, T(2))); EXPECT_EQ(Max, SaturatingMultiply(Max, T(2), &ResultOverflowed)); EXPECT_TRUE(ResultOverflowed); EXPECT_EQ(Max, SaturatingMultiply(T(2), Max)); EXPECT_EQ(Max, SaturatingMultiply(T(2), Max, &ResultOverflowed)); EXPECT_TRUE(ResultOverflowed); EXPECT_EQ(Max, SaturatingMultiply(Max, Max)); EXPECT_EQ(Max, SaturatingMultiply(Max, Max, &ResultOverflowed)); EXPECT_TRUE(ResultOverflowed); // Test interesting boundary conditions for algorithm - // ((1 << A) - 1) * ((1 << B) + K) for K in [-1, 0, 1] // and A + B == std::numeric_limits<T>::digits. // We expect overflow iff A > B and K = 1. const int Digits = std::numeric_limits<T>::digits; for (int A = 1, B = Digits - 1; B >= 1; ++A, --B) { for (int K = -1; K <= 1; ++K) { T X = (T(1) << A) - T(1); T Y = (T(1) << B) + K; bool OverflowExpected = A > B && K == 1; if(OverflowExpected) { EXPECT_EQ(Max, SaturatingMultiply(X, Y)); EXPECT_EQ(Max, SaturatingMultiply(X, Y, &ResultOverflowed)); EXPECT_TRUE(ResultOverflowed); } else { EXPECT_EQ(X * Y, SaturatingMultiply(X, Y)); EXPECT_EQ(X * Y, SaturatingMultiply(X, Y, &ResultOverflowed)); EXPECT_FALSE(ResultOverflowed); } } } } TEST(MathExtras, SaturatingMultiply) { SaturatingMultiplyTestHelper<uint8_t>(); SaturatingMultiplyTestHelper<uint16_t>(); SaturatingMultiplyTestHelper<uint32_t>(); SaturatingMultiplyTestHelper<uint64_t>(); } template<typename T> void SaturatingMultiplyAddTestHelper() { const T Max = std::numeric_limits<T>::max(); bool ResultOverflowed; // Test basic multiply-add. EXPECT_EQ(T(16), SaturatingMultiplyAdd(T(2), T(3), T(10))); EXPECT_EQ(T(16), SaturatingMultiplyAdd(T(2), T(3), T(10), &ResultOverflowed)); EXPECT_FALSE(ResultOverflowed); // Test multiply overflows, add doesn't overflow EXPECT_EQ(Max, SaturatingMultiplyAdd(Max, Max, T(0), &ResultOverflowed)); EXPECT_TRUE(ResultOverflowed); // Test multiply doesn't overflow, add overflows EXPECT_EQ(Max, SaturatingMultiplyAdd(T(1), T(1), Max, &ResultOverflowed)); EXPECT_TRUE(ResultOverflowed); // Test multiply-add with Max as operand EXPECT_EQ(Max, SaturatingMultiplyAdd(T(1), T(1), Max, &ResultOverflowed)); EXPECT_TRUE(ResultOverflowed); EXPECT_EQ(Max, SaturatingMultiplyAdd(T(1), Max, T(1), &ResultOverflowed)); EXPECT_TRUE(ResultOverflowed); EXPECT_EQ(Max, SaturatingMultiplyAdd(Max, Max, T(1), &ResultOverflowed)); EXPECT_TRUE(ResultOverflowed); EXPECT_EQ(Max, SaturatingMultiplyAdd(Max, Max, Max, &ResultOverflowed)); EXPECT_TRUE(ResultOverflowed); // Test multiply-add with 0 as operand EXPECT_EQ(T(1), SaturatingMultiplyAdd(T(1), T(1), T(0), &ResultOverflowed)); EXPECT_FALSE(ResultOverflowed); EXPECT_EQ(T(1), SaturatingMultiplyAdd(T(1), T(0), T(1), &ResultOverflowed)); EXPECT_FALSE(ResultOverflowed); EXPECT_EQ(T(1), SaturatingMultiplyAdd(T(0), T(0), T(1), &ResultOverflowed)); EXPECT_FALSE(ResultOverflowed); EXPECT_EQ(T(0), SaturatingMultiplyAdd(T(0), T(0), T(0), &ResultOverflowed)); EXPECT_FALSE(ResultOverflowed); } TEST(MathExtras, SaturatingMultiplyAdd) { SaturatingMultiplyAddTestHelper<uint8_t>(); SaturatingMultiplyAddTestHelper<uint16_t>(); SaturatingMultiplyAddTestHelper<uint32_t>(); SaturatingMultiplyAddTestHelper<uint64_t>(); } TEST(MathExtras, IsShiftedUInt) { EXPECT_TRUE((isShiftedUInt<1, 0>(0))); EXPECT_TRUE((isShiftedUInt<1, 0>(1))); EXPECT_FALSE((isShiftedUInt<1, 0>(2))); EXPECT_FALSE((isShiftedUInt<1, 0>(3))); EXPECT_FALSE((isShiftedUInt<1, 0>(0x8000000000000000))); EXPECT_TRUE((isShiftedUInt<1, 63>(0x8000000000000000))); EXPECT_TRUE((isShiftedUInt<2, 62>(0xC000000000000000))); EXPECT_FALSE((isShiftedUInt<2, 62>(0xE000000000000000))); // 0x201 is ten bits long and has a 1 in the MSB and LSB. EXPECT_TRUE((isShiftedUInt<10, 5>(uint64_t(0x201) << 5))); EXPECT_FALSE((isShiftedUInt<10, 5>(uint64_t(0x201) << 4))); EXPECT_FALSE((isShiftedUInt<10, 5>(uint64_t(0x201) << 6))); } TEST(MathExtras, IsShiftedInt) { EXPECT_TRUE((isShiftedInt<1, 0>(0))); EXPECT_TRUE((isShiftedInt<1, 0>(-1))); EXPECT_FALSE((isShiftedInt<1, 0>(2))); EXPECT_FALSE((isShiftedInt<1, 0>(3))); EXPECT_FALSE((isShiftedInt<1, 0>(0x8000000000000000))); EXPECT_TRUE((isShiftedInt<1, 63>(0x8000000000000000))); EXPECT_TRUE((isShiftedInt<2, 62>(0xC000000000000000))); EXPECT_FALSE((isShiftedInt<2, 62>(0xE000000000000000))); // 0x201 is ten bits long and has a 1 in the MSB and LSB. EXPECT_TRUE((isShiftedInt<11, 5>(int64_t(0x201) << 5))); EXPECT_FALSE((isShiftedInt<11, 5>(int64_t(0x201) << 3))); EXPECT_FALSE((isShiftedInt<11, 5>(int64_t(0x201) << 6))); EXPECT_TRUE((isShiftedInt<11, 5>(-(int64_t(0x201) << 5)))); EXPECT_FALSE((isShiftedInt<11, 5>(-(int64_t(0x201) << 3)))); EXPECT_FALSE((isShiftedInt<11, 5>(-(int64_t(0x201) << 6)))); EXPECT_TRUE((isShiftedInt<6, 10>(-(int64_t(1) << 15)))); EXPECT_FALSE((isShiftedInt<6, 10>(int64_t(1) << 15))); } } // namespace