//===- DFAPacketizerEmitter.cpp - Packetization DFA for a VLIW machine ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This class parses the Schedule.td file and produces an API that can be used // to reason about whether an instruction can be added to a packet on a VLIW // architecture. The class internally generates a deterministic finite // automaton (DFA) that models all possible mappings of machine instructions // to functional units as instructions are added to a packet. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "dfa-emitter" #include "CodeGenTarget.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include <cassert> #include <cstdint> #include <map> #include <set> #include <string> #include <vector> using namespace llvm; // -------------------------------------------------------------------- // Definitions shared between DFAPacketizer.cpp and DFAPacketizerEmitter.cpp // DFA_MAX_RESTERMS * DFA_MAX_RESOURCES must fit within sizeof DFAInput. // This is verified in DFAPacketizer.cpp:DFAPacketizer::DFAPacketizer. // // e.g. terms x resource bit combinations that fit in uint32_t: // 4 terms x 8 bits = 32 bits // 3 terms x 10 bits = 30 bits // 2 terms x 16 bits = 32 bits // // e.g. terms x resource bit combinations that fit in uint64_t: // 8 terms x 8 bits = 64 bits // 7 terms x 9 bits = 63 bits // 6 terms x 10 bits = 60 bits // 5 terms x 12 bits = 60 bits // 4 terms x 16 bits = 64 bits <--- current // 3 terms x 21 bits = 63 bits // 2 terms x 32 bits = 64 bits // #define DFA_MAX_RESTERMS 4 // The max # of AND'ed resource terms. #define DFA_MAX_RESOURCES 16 // The max # of resource bits in one term. typedef uint64_t DFAInput; typedef int64_t DFAStateInput; #define DFA_TBLTYPE "int64_t" // For generating DFAStateInputTable. namespace { DFAInput addDFAFuncUnits(DFAInput Inp, unsigned FuncUnits) { return (Inp << DFA_MAX_RESOURCES) | FuncUnits; } /// Return the DFAInput for an instruction class input vector. /// This function is used in both DFAPacketizer.cpp and in /// DFAPacketizerEmitter.cpp. DFAInput getDFAInsnInput(const std::vector<unsigned> &InsnClass) { DFAInput InsnInput = 0; assert((InsnClass.size() <= DFA_MAX_RESTERMS) && "Exceeded maximum number of DFA terms"); for (auto U : InsnClass) InsnInput = addDFAFuncUnits(InsnInput, U); return InsnInput; } } // end anonymous namespace // -------------------------------------------------------------------- #ifndef NDEBUG // To enable debugging, run llvm-tblgen with: "-debug-only dfa-emitter". // // dbgsInsnClass - When debugging, print instruction class stages. // void dbgsInsnClass(const std::vector<unsigned> &InsnClass); // // dbgsStateInfo - When debugging, print the set of state info. // void dbgsStateInfo(const std::set<unsigned> &stateInfo); // // dbgsIndent - When debugging, indent by the specified amount. // void dbgsIndent(unsigned indent); #endif // // class DFAPacketizerEmitter: class that generates and prints out the DFA // for resource tracking. // namespace { class DFAPacketizerEmitter { private: std::string TargetName; // // allInsnClasses is the set of all possible resources consumed by an // InstrStage. // std::vector<std::vector<unsigned>> allInsnClasses; RecordKeeper &Records; public: DFAPacketizerEmitter(RecordKeeper &R); // // collectAllFuncUnits - Construct a map of function unit names to bits. // int collectAllFuncUnits(std::vector<Record*> &ProcItinList, std::map<std::string, unsigned> &FUNameToBitsMap, int &maxResources, raw_ostream &OS); // // collectAllComboFuncs - Construct a map from a combo function unit bit to // the bits of all included functional units. // int collectAllComboFuncs(std::vector<Record*> &ComboFuncList, std::map<std::string, unsigned> &FUNameToBitsMap, std::map<unsigned, unsigned> &ComboBitToBitsMap, raw_ostream &OS); // // collectOneInsnClass - Populate allInsnClasses with one instruction class. // int collectOneInsnClass(const std::string &ProcName, std::vector<Record*> &ProcItinList, std::map<std::string, unsigned> &FUNameToBitsMap, Record *ItinData, raw_ostream &OS); // // collectAllInsnClasses - Populate allInsnClasses which is a set of units // used in each stage. // int collectAllInsnClasses(const std::string &ProcName, std::vector<Record*> &ProcItinList, std::map<std::string, unsigned> &FUNameToBitsMap, std::vector<Record*> &ItinDataList, int &maxStages, raw_ostream &OS); void run(raw_ostream &OS); }; // // State represents the usage of machine resources if the packet contains // a set of instruction classes. // // Specifically, currentState is a set of bit-masks. // The nth bit in a bit-mask indicates whether the nth resource is being used // by this state. The set of bit-masks in a state represent the different // possible outcomes of transitioning to this state. // For example: consider a two resource architecture: resource L and resource M // with three instruction classes: L, M, and L_or_M. // From the initial state (currentState = 0x00), if we add instruction class // L_or_M we will transition to a state with currentState = [0x01, 0x10]. This // represents the possible resource states that can result from adding a L_or_M // instruction // // Another way of thinking about this transition is we are mapping a NDFA with // two states [0x01] and [0x10] into a DFA with a single state [0x01, 0x10]. // // A State instance also contains a collection of transitions from that state: // a map from inputs to new states. // class State { public: static int currentStateNum; // stateNum is the only member used for equality/ordering, all other members // can be mutated even in const State objects. const int stateNum; mutable bool isInitial; mutable std::set<unsigned> stateInfo; typedef std::map<std::vector<unsigned>, const State *> TransitionMap; mutable TransitionMap Transitions; State(); bool operator<(const State &s) const { return stateNum < s.stateNum; } // // canMaybeAddInsnClass - Quickly verifies if an instruction of type InsnClass // may be a valid transition from this state i.e., can an instruction of type // InsnClass be added to the packet represented by this state. // // Note that for multiple stages, this quick check does not take into account // any possible resource competition between the stages themselves. That is // enforced in AddInsnClassStages which checks the cross product of all // stages for resource availability (which is a more involved check). // bool canMaybeAddInsnClass(std::vector<unsigned> &InsnClass, std::map<unsigned, unsigned> &ComboBitToBitsMap) const; // // AddInsnClass - Return all combinations of resource reservation // which are possible from this state (PossibleStates). // // PossibleStates is the set of valid resource states that ensue from valid // transitions. // void AddInsnClass(std::vector<unsigned> &InsnClass, std::map<unsigned, unsigned> &ComboBitToBitsMap, std::set<unsigned> &PossibleStates) const; // // AddInsnClassStages - Return all combinations of resource reservation // resulting from the cross product of all stages for this InsnClass // which are possible from this state (PossibleStates). // void AddInsnClassStages(std::vector<unsigned> &InsnClass, std::map<unsigned, unsigned> &ComboBitToBitsMap, unsigned chkstage, unsigned numstages, unsigned prevState, unsigned origState, DenseSet<unsigned> &VisitedResourceStates, std::set<unsigned> &PossibleStates) const; // // addTransition - Add a transition from this state given the input InsnClass // void addTransition(std::vector<unsigned> InsnClass, const State *To) const; // // hasTransition - Returns true if there is a transition from this state // given the input InsnClass // bool hasTransition(std::vector<unsigned> InsnClass) const; }; // // class DFA: deterministic finite automaton for processor resource tracking. // class DFA { public: DFA() = default; // Set of states. Need to keep this sorted to emit the transition table. typedef std::set<State> StateSet; StateSet states; State *currentState = nullptr; // // Modify the DFA. // const State &newState(); // // writeTable: Print out a table representing the DFA. // void writeTableAndAPI(raw_ostream &OS, const std::string &ClassName, int numInsnClasses = 0, int maxResources = 0, int numCombos = 0, int maxStages = 0); }; } // end anonymous namespace #ifndef NDEBUG // To enable debugging, run llvm-tblgen with: "-debug-only dfa-emitter". // // dbgsInsnClass - When debugging, print instruction class stages. // void dbgsInsnClass(const std::vector<unsigned> &InsnClass) { LLVM_DEBUG(dbgs() << "InsnClass: "); for (unsigned i = 0; i < InsnClass.size(); ++i) { if (i > 0) { LLVM_DEBUG(dbgs() << ", "); } LLVM_DEBUG(dbgs() << "0x" << Twine::utohexstr(InsnClass[i])); } DFAInput InsnInput = getDFAInsnInput(InsnClass); LLVM_DEBUG(dbgs() << " (input: 0x" << Twine::utohexstr(InsnInput) << ")"); } // // dbgsStateInfo - When debugging, print the set of state info. // void dbgsStateInfo(const std::set<unsigned> &stateInfo) { LLVM_DEBUG(dbgs() << "StateInfo: "); unsigned i = 0; for (std::set<unsigned>::iterator SI = stateInfo.begin(); SI != stateInfo.end(); ++SI, ++i) { unsigned thisState = *SI; if (i > 0) { LLVM_DEBUG(dbgs() << ", "); } LLVM_DEBUG(dbgs() << "0x" << Twine::utohexstr(thisState)); } } // // dbgsIndent - When debugging, indent by the specified amount. // void dbgsIndent(unsigned indent) { for (unsigned i = 0; i < indent; ++i) { LLVM_DEBUG(dbgs() << " "); } } #endif // NDEBUG // // Constructors and destructors for State and DFA // State::State() : stateNum(currentStateNum++), isInitial(false) {} // // addTransition - Add a transition from this state given the input InsnClass // void State::addTransition(std::vector<unsigned> InsnClass, const State *To) const { assert(!Transitions.count(InsnClass) && "Cannot have multiple transitions for the same input"); Transitions[InsnClass] = To; } // // hasTransition - Returns true if there is a transition from this state // given the input InsnClass // bool State::hasTransition(std::vector<unsigned> InsnClass) const { return Transitions.count(InsnClass) > 0; } // // AddInsnClass - Return all combinations of resource reservation // which are possible from this state (PossibleStates). // // PossibleStates is the set of valid resource states that ensue from valid // transitions. // void State::AddInsnClass(std::vector<unsigned> &InsnClass, std::map<unsigned, unsigned> &ComboBitToBitsMap, std::set<unsigned> &PossibleStates) const { // // Iterate over all resource states in currentState. // unsigned numstages = InsnClass.size(); assert((numstages > 0) && "InsnClass has no stages"); for (std::set<unsigned>::iterator SI = stateInfo.begin(); SI != stateInfo.end(); ++SI) { unsigned thisState = *SI; DenseSet<unsigned> VisitedResourceStates; LLVM_DEBUG(dbgs() << " thisState: 0x" << Twine::utohexstr(thisState) << "\n"); AddInsnClassStages(InsnClass, ComboBitToBitsMap, numstages - 1, numstages, thisState, thisState, VisitedResourceStates, PossibleStates); } } void State::AddInsnClassStages(std::vector<unsigned> &InsnClass, std::map<unsigned, unsigned> &ComboBitToBitsMap, unsigned chkstage, unsigned numstages, unsigned prevState, unsigned origState, DenseSet<unsigned> &VisitedResourceStates, std::set<unsigned> &PossibleStates) const { assert((chkstage < numstages) && "AddInsnClassStages: stage out of range"); unsigned thisStage = InsnClass[chkstage]; LLVM_DEBUG({ dbgsIndent((1 + numstages - chkstage) << 1); dbgs() << "AddInsnClassStages " << chkstage << " (0x" << Twine::utohexstr(thisStage) << ") from "; dbgsInsnClass(InsnClass); dbgs() << "\n"; }); // // Iterate over all possible resources used in thisStage. // For ex: for thisStage = 0x11, all resources = {0x01, 0x10}. // for (unsigned int j = 0; j < DFA_MAX_RESOURCES; ++j) { unsigned resourceMask = (0x1 << j); if (resourceMask & thisStage) { unsigned combo = ComboBitToBitsMap[resourceMask]; if (combo && ((~prevState & combo) != combo)) { LLVM_DEBUG(dbgs() << "\tSkipped Add 0x" << Twine::utohexstr(prevState) << " - combo op 0x" << Twine::utohexstr(resourceMask) << " (0x" << Twine::utohexstr(combo) << ") cannot be scheduled\n"); continue; } // // For each possible resource used in thisStage, generate the // resource state if that resource was used. // unsigned ResultingResourceState = prevState | resourceMask | combo; LLVM_DEBUG({ dbgsIndent((2 + numstages - chkstage) << 1); dbgs() << "0x" << Twine::utohexstr(prevState) << " | 0x" << Twine::utohexstr(resourceMask); if (combo) dbgs() << " | 0x" << Twine::utohexstr(combo); dbgs() << " = 0x" << Twine::utohexstr(ResultingResourceState) << " "; }); // // If this is the final stage for this class // if (chkstage == 0) { // // Check if the resulting resource state can be accommodated in this // packet. // We compute resource OR prevState (originally started as origState). // If the result of the OR is different than origState, it implies // that there is at least one resource that can be used to schedule // thisStage in the current packet. // Insert ResultingResourceState into PossibleStates only if we haven't // processed ResultingResourceState before. // if (ResultingResourceState != prevState) { if (VisitedResourceStates.count(ResultingResourceState) == 0) { VisitedResourceStates.insert(ResultingResourceState); PossibleStates.insert(ResultingResourceState); LLVM_DEBUG(dbgs() << "\tResultingResourceState: 0x" << Twine::utohexstr(ResultingResourceState) << "\n"); } else { LLVM_DEBUG(dbgs() << "\tSkipped Add - state already seen\n"); } } else { LLVM_DEBUG(dbgs() << "\tSkipped Add - no final resources available\n"); } } else { // // If the current resource can be accommodated, check the next // stage in InsnClass for available resources. // if (ResultingResourceState != prevState) { LLVM_DEBUG(dbgs() << "\n"); AddInsnClassStages(InsnClass, ComboBitToBitsMap, chkstage - 1, numstages, ResultingResourceState, origState, VisitedResourceStates, PossibleStates); } else { LLVM_DEBUG(dbgs() << "\tSkipped Add - no resources available\n"); } } } } } // // canMaybeAddInsnClass - Quickly verifies if an instruction of type InsnClass // may be a valid transition from this state i.e., can an instruction of type // InsnClass be added to the packet represented by this state. // // Note that this routine is performing conservative checks that can be // quickly executed acting as a filter before calling AddInsnClassStages. // Any cases allowed through here will be caught later in AddInsnClassStages // which performs the more expensive exact check. // bool State::canMaybeAddInsnClass(std::vector<unsigned> &InsnClass, std::map<unsigned, unsigned> &ComboBitToBitsMap) const { for (std::set<unsigned>::const_iterator SI = stateInfo.begin(); SI != stateInfo.end(); ++SI) { // Check to see if all required resources are available. bool available = true; // Inspect each stage independently. // note: This is a conservative check as we aren't checking for // possible resource competition between the stages themselves // The full cross product is examined later in AddInsnClass. for (unsigned i = 0; i < InsnClass.size(); ++i) { unsigned resources = *SI; if ((~resources & InsnClass[i]) == 0) { available = false; break; } // Make sure _all_ resources for a combo function are available. // note: This is a quick conservative check as it won't catch an // unscheduleable combo if this stage is an OR expression // containing a combo. // These cases are caught later in AddInsnClass. unsigned combo = ComboBitToBitsMap[InsnClass[i]]; if (combo && ((~resources & combo) != combo)) { LLVM_DEBUG(dbgs() << "\tSkipped canMaybeAdd 0x" << Twine::utohexstr(resources) << " - combo op 0x" << Twine::utohexstr(InsnClass[i]) << " (0x" << Twine::utohexstr(combo) << ") cannot be scheduled\n"); available = false; break; } } if (available) { return true; } } return false; } const State &DFA::newState() { auto IterPair = states.insert(State()); assert(IterPair.second && "State already exists"); return *IterPair.first; } int State::currentStateNum = 0; DFAPacketizerEmitter::DFAPacketizerEmitter(RecordKeeper &R): TargetName(CodeGenTarget(R).getName()), Records(R) {} // // writeTableAndAPI - Print out a table representing the DFA and the // associated API to create a DFA packetizer. // // Format: // DFAStateInputTable[][2] = pairs of <Input, Transition> for all valid // transitions. // DFAStateEntryTable[i] = Index of the first entry in DFAStateInputTable for // the ith state. // // void DFA::writeTableAndAPI(raw_ostream &OS, const std::string &TargetName, int numInsnClasses, int maxResources, int numCombos, int maxStages) { unsigned numStates = states.size(); LLVM_DEBUG(dbgs() << "-------------------------------------------------------" "----------------------\n"); LLVM_DEBUG(dbgs() << "writeTableAndAPI\n"); LLVM_DEBUG(dbgs() << "Total states: " << numStates << "\n"); OS << "namespace llvm {\n"; OS << "\n// Input format:\n"; OS << "#define DFA_MAX_RESTERMS " << DFA_MAX_RESTERMS << "\t// maximum AND'ed resource terms\n"; OS << "#define DFA_MAX_RESOURCES " << DFA_MAX_RESOURCES << "\t// maximum resource bits in one term\n"; OS << "\n// " << TargetName << "DFAStateInputTable[][2] = " << "pairs of <Input, NextState> for all valid\n"; OS << "// transitions.\n"; OS << "// " << numStates << "\tstates\n"; OS << "// " << numInsnClasses << "\tinstruction classes\n"; OS << "// " << maxResources << "\tresources max\n"; OS << "// " << numCombos << "\tcombo resources\n"; OS << "// " << maxStages << "\tstages max\n"; OS << "const " << DFA_TBLTYPE << " " << TargetName << "DFAStateInputTable[][2] = {\n"; // This table provides a map to the beginning of the transitions for State s // in DFAStateInputTable. std::vector<int> StateEntry(numStates+1); static const std::string SentinelEntry = "{-1, -1}"; // Tracks the total valid transitions encountered so far. It is used // to construct the StateEntry table. int ValidTransitions = 0; DFA::StateSet::iterator SI = states.begin(); for (unsigned i = 0; i < numStates; ++i, ++SI) { assert ((SI->stateNum == (int) i) && "Mismatch in state numbers"); StateEntry[i] = ValidTransitions; for (State::TransitionMap::iterator II = SI->Transitions.begin(), IE = SI->Transitions.end(); II != IE; ++II) { OS << "{0x" << Twine::utohexstr(getDFAInsnInput(II->first)) << ", " << II->second->stateNum << "},\t"; } ValidTransitions += SI->Transitions.size(); // If there are no valid transitions from this stage, we need a sentinel // transition. if (ValidTransitions == StateEntry[i]) { OS << SentinelEntry << ",\t"; ++ValidTransitions; } OS << " // state " << i << ": " << StateEntry[i]; if (StateEntry[i] != (ValidTransitions-1)) { // More than one transition. OS << "-" << (ValidTransitions-1); } OS << "\n"; } // Print out a sentinel entry at the end of the StateInputTable. This is // needed to iterate over StateInputTable in DFAPacketizer::ReadTable() OS << SentinelEntry << "\t"; OS << " // state " << numStates << ": " << ValidTransitions; OS << "\n"; OS << "};\n\n"; OS << "// " << TargetName << "DFAStateEntryTable[i] = " << "Index of the first entry in DFAStateInputTable for\n"; OS << "// " << "the ith state.\n"; OS << "// " << numStates << " states\n"; OS << "const unsigned int " << TargetName << "DFAStateEntryTable[] = {\n"; // Multiply i by 2 since each entry in DFAStateInputTable is a set of // two numbers. unsigned lastState = 0; for (unsigned i = 0; i < numStates; ++i) { if (i && ((i % 10) == 0)) { lastState = i-1; OS << " // states " << (i-10) << ":" << lastState << "\n"; } OS << StateEntry[i] << ", "; } // Print out the index to the sentinel entry in StateInputTable OS << ValidTransitions << ", "; OS << " // states " << (lastState+1) << ":" << numStates << "\n"; OS << "};\n"; OS << "} // namespace\n"; // // Emit DFA Packetizer tables if the target is a VLIW machine. // std::string SubTargetClassName = TargetName + "GenSubtargetInfo"; OS << "\n" << "#include \"llvm/CodeGen/DFAPacketizer.h\"\n"; OS << "namespace llvm {\n"; OS << "DFAPacketizer *" << SubTargetClassName << "::" << "createDFAPacketizer(const InstrItineraryData *IID) const {\n" << " return new DFAPacketizer(IID, " << TargetName << "DFAStateInputTable, " << TargetName << "DFAStateEntryTable);\n}\n\n"; OS << "} // End llvm namespace \n"; } // // collectAllFuncUnits - Construct a map of function unit names to bits. // int DFAPacketizerEmitter::collectAllFuncUnits( std::vector<Record*> &ProcItinList, std::map<std::string, unsigned> &FUNameToBitsMap, int &maxFUs, raw_ostream &OS) { LLVM_DEBUG(dbgs() << "-------------------------------------------------------" "----------------------\n"); LLVM_DEBUG(dbgs() << "collectAllFuncUnits"); LLVM_DEBUG(dbgs() << " (" << ProcItinList.size() << " itineraries)\n"); int totalFUs = 0; // Parse functional units for all the itineraries. for (unsigned i = 0, N = ProcItinList.size(); i < N; ++i) { Record *Proc = ProcItinList[i]; std::vector<Record*> FUs = Proc->getValueAsListOfDefs("FU"); LLVM_DEBUG(dbgs() << " FU:" << i << " (" << FUs.size() << " FUs) " << Proc->getName()); // Convert macros to bits for each stage. unsigned numFUs = FUs.size(); for (unsigned j = 0; j < numFUs; ++j) { assert ((j < DFA_MAX_RESOURCES) && "Exceeded maximum number of representable resources"); unsigned FuncResources = (unsigned) (1U << j); FUNameToBitsMap[FUs[j]->getName()] = FuncResources; LLVM_DEBUG(dbgs() << " " << FUs[j]->getName() << ":0x" << Twine::utohexstr(FuncResources)); } if (((int) numFUs) > maxFUs) { maxFUs = numFUs; } totalFUs += numFUs; LLVM_DEBUG(dbgs() << "\n"); } return totalFUs; } // // collectAllComboFuncs - Construct a map from a combo function unit bit to // the bits of all included functional units. // int DFAPacketizerEmitter::collectAllComboFuncs( std::vector<Record*> &ComboFuncList, std::map<std::string, unsigned> &FUNameToBitsMap, std::map<unsigned, unsigned> &ComboBitToBitsMap, raw_ostream &OS) { LLVM_DEBUG(dbgs() << "-------------------------------------------------------" "----------------------\n"); LLVM_DEBUG(dbgs() << "collectAllComboFuncs"); LLVM_DEBUG(dbgs() << " (" << ComboFuncList.size() << " sets)\n"); int numCombos = 0; for (unsigned i = 0, N = ComboFuncList.size(); i < N; ++i) { Record *Func = ComboFuncList[i]; std::vector<Record*> FUs = Func->getValueAsListOfDefs("CFD"); LLVM_DEBUG(dbgs() << " CFD:" << i << " (" << FUs.size() << " combo FUs) " << Func->getName() << "\n"); // Convert macros to bits for each stage. for (unsigned j = 0, N = FUs.size(); j < N; ++j) { assert ((j < DFA_MAX_RESOURCES) && "Exceeded maximum number of DFA resources"); Record *FuncData = FUs[j]; Record *ComboFunc = FuncData->getValueAsDef("TheComboFunc"); const std::vector<Record*> &FuncList = FuncData->getValueAsListOfDefs("FuncList"); const std::string &ComboFuncName = ComboFunc->getName(); unsigned ComboBit = FUNameToBitsMap[ComboFuncName]; unsigned ComboResources = ComboBit; LLVM_DEBUG(dbgs() << " combo: " << ComboFuncName << ":0x" << Twine::utohexstr(ComboResources) << "\n"); for (unsigned k = 0, M = FuncList.size(); k < M; ++k) { std::string FuncName = FuncList[k]->getName(); unsigned FuncResources = FUNameToBitsMap[FuncName]; LLVM_DEBUG(dbgs() << " " << FuncName << ":0x" << Twine::utohexstr(FuncResources) << "\n"); ComboResources |= FuncResources; } ComboBitToBitsMap[ComboBit] = ComboResources; numCombos++; LLVM_DEBUG(dbgs() << " => combo bits: " << ComboFuncName << ":0x" << Twine::utohexstr(ComboBit) << " = 0x" << Twine::utohexstr(ComboResources) << "\n"); } } return numCombos; } // // collectOneInsnClass - Populate allInsnClasses with one instruction class // int DFAPacketizerEmitter::collectOneInsnClass(const std::string &ProcName, std::vector<Record*> &ProcItinList, std::map<std::string, unsigned> &FUNameToBitsMap, Record *ItinData, raw_ostream &OS) { const std::vector<Record*> &StageList = ItinData->getValueAsListOfDefs("Stages"); // The number of stages. unsigned NStages = StageList.size(); LLVM_DEBUG(dbgs() << " " << ItinData->getValueAsDef("TheClass")->getName() << "\n"); std::vector<unsigned> UnitBits; // Compute the bitwise or of each unit used in this stage. for (unsigned i = 0; i < NStages; ++i) { const Record *Stage = StageList[i]; // Get unit list. const std::vector<Record*> &UnitList = Stage->getValueAsListOfDefs("Units"); LLVM_DEBUG(dbgs() << " stage:" << i << " [" << UnitList.size() << " units]:"); unsigned dbglen = 26; // cursor after stage dbgs // Compute the bitwise or of each unit used in this stage. unsigned UnitBitValue = 0; for (unsigned j = 0, M = UnitList.size(); j < M; ++j) { // Conduct bitwise or. std::string UnitName = UnitList[j]->getName(); LLVM_DEBUG(dbgs() << " " << j << ":" << UnitName); dbglen += 3 + UnitName.length(); assert(FUNameToBitsMap.count(UnitName)); UnitBitValue |= FUNameToBitsMap[UnitName]; } if (UnitBitValue != 0) UnitBits.push_back(UnitBitValue); while (dbglen <= 64) { // line up bits dbgs dbglen += 8; LLVM_DEBUG(dbgs() << "\t"); } LLVM_DEBUG(dbgs() << " (bits: 0x" << Twine::utohexstr(UnitBitValue) << ")\n"); } if (!UnitBits.empty()) allInsnClasses.push_back(UnitBits); LLVM_DEBUG({ dbgs() << " "; dbgsInsnClass(UnitBits); dbgs() << "\n"; }); return NStages; } // // collectAllInsnClasses - Populate allInsnClasses which is a set of units // used in each stage. // int DFAPacketizerEmitter::collectAllInsnClasses(const std::string &ProcName, std::vector<Record*> &ProcItinList, std::map<std::string, unsigned> &FUNameToBitsMap, std::vector<Record*> &ItinDataList, int &maxStages, raw_ostream &OS) { // Collect all instruction classes. unsigned M = ItinDataList.size(); int numInsnClasses = 0; LLVM_DEBUG(dbgs() << "-------------------------------------------------------" "----------------------\n" << "collectAllInsnClasses " << ProcName << " (" << M << " classes)\n"); // Collect stages for each instruction class for all itinerary data for (unsigned j = 0; j < M; j++) { Record *ItinData = ItinDataList[j]; int NStages = collectOneInsnClass(ProcName, ProcItinList, FUNameToBitsMap, ItinData, OS); if (NStages > maxStages) { maxStages = NStages; } numInsnClasses++; } return numInsnClasses; } // // Run the worklist algorithm to generate the DFA. // void DFAPacketizerEmitter::run(raw_ostream &OS) { // Collect processor iteraries. std::vector<Record*> ProcItinList = Records.getAllDerivedDefinitions("ProcessorItineraries"); // // Collect the Functional units. // std::map<std::string, unsigned> FUNameToBitsMap; int maxResources = 0; collectAllFuncUnits(ProcItinList, FUNameToBitsMap, maxResources, OS); // // Collect the Combo Functional units. // std::map<unsigned, unsigned> ComboBitToBitsMap; std::vector<Record*> ComboFuncList = Records.getAllDerivedDefinitions("ComboFuncUnits"); int numCombos = collectAllComboFuncs(ComboFuncList, FUNameToBitsMap, ComboBitToBitsMap, OS); // // Collect the itineraries. // int maxStages = 0; int numInsnClasses = 0; for (unsigned i = 0, N = ProcItinList.size(); i < N; i++) { Record *Proc = ProcItinList[i]; // Get processor itinerary name. const std::string &ProcName = Proc->getName(); // Skip default. if (ProcName == "NoItineraries") continue; // Sanity check for at least one instruction itinerary class. unsigned NItinClasses = Records.getAllDerivedDefinitions("InstrItinClass").size(); if (NItinClasses == 0) return; // Get itinerary data list. std::vector<Record*> ItinDataList = Proc->getValueAsListOfDefs("IID"); // Collect all instruction classes numInsnClasses += collectAllInsnClasses(ProcName, ProcItinList, FUNameToBitsMap, ItinDataList, maxStages, OS); } // // Run a worklist algorithm to generate the DFA. // DFA D; const State *Initial = &D.newState(); Initial->isInitial = true; Initial->stateInfo.insert(0x0); SmallVector<const State*, 32> WorkList; std::map<std::set<unsigned>, const State*> Visited; WorkList.push_back(Initial); // // Worklist algorithm to create a DFA for processor resource tracking. // C = {set of InsnClasses} // Begin with initial node in worklist. Initial node does not have // any consumed resources, // ResourceState = 0x0 // Visited = {} // While worklist != empty // S = first element of worklist // For every instruction class C // if we can accommodate C in S: // S' = state with resource states = {S Union C} // Add a new transition: S x C -> S' // If S' is not in Visited: // Add S' to worklist // Add S' to Visited // while (!WorkList.empty()) { const State *current = WorkList.pop_back_val(); LLVM_DEBUG({ dbgs() << "---------------------\n"; dbgs() << "Processing state: " << current->stateNum << " - "; dbgsStateInfo(current->stateInfo); dbgs() << "\n"; }); for (unsigned i = 0; i < allInsnClasses.size(); i++) { std::vector<unsigned> InsnClass = allInsnClasses[i]; LLVM_DEBUG({ dbgs() << i << " "; dbgsInsnClass(InsnClass); dbgs() << "\n"; }); std::set<unsigned> NewStateResources; // // If we haven't already created a transition for this input // and the state can accommodate this InsnClass, create a transition. // if (!current->hasTransition(InsnClass) && current->canMaybeAddInsnClass(InsnClass, ComboBitToBitsMap)) { const State *NewState = nullptr; current->AddInsnClass(InsnClass, ComboBitToBitsMap, NewStateResources); if (NewStateResources.empty()) { LLVM_DEBUG(dbgs() << " Skipped - no new states generated\n"); continue; } LLVM_DEBUG({ dbgs() << "\t"; dbgsStateInfo(NewStateResources); dbgs() << "\n"; }); // // If we have seen this state before, then do not create a new state. // auto VI = Visited.find(NewStateResources); if (VI != Visited.end()) { NewState = VI->second; LLVM_DEBUG({ dbgs() << "\tFound existing state: " << NewState->stateNum << " - "; dbgsStateInfo(NewState->stateInfo); dbgs() << "\n"; }); } else { NewState = &D.newState(); NewState->stateInfo = NewStateResources; Visited[NewStateResources] = NewState; WorkList.push_back(NewState); LLVM_DEBUG({ dbgs() << "\tAccepted new state: " << NewState->stateNum << " - "; dbgsStateInfo(NewState->stateInfo); dbgs() << "\n"; }); } current->addTransition(InsnClass, NewState); } } } // Print out the table. D.writeTableAndAPI(OS, TargetName, numInsnClasses, maxResources, numCombos, maxStages); } namespace llvm { void EmitDFAPacketizer(RecordKeeper &RK, raw_ostream &OS) { emitSourceFileHeader("Target DFA Packetizer Tables", OS); DFAPacketizerEmitter(RK).run(OS); } } // end namespace llvm