//===-- CommandLine.cpp - Command line parser implementation --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This class implements a command line argument processor that is useful when // creating a tool. It provides a simple, minimalistic interface that is easily // extensible and supports nonlocal (library) command line options. // // Note that rather than trying to figure out what this code does, you could try // reading the library documentation located in docs/CommandLine.html // //===----------------------------------------------------------------------===// #include "llvm/Support/CommandLine.h" #include "llvm-c/Support.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/Twine.h" #include "llvm/Config/config.h" #include "llvm/Support/ConvertUTF.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Host.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/Process.h" #include "llvm/Support/StringSaver.h" #include "llvm/Support/raw_ostream.h" #include <cstdlib> #include <map> using namespace llvm; using namespace cl; #define DEBUG_TYPE "commandline" #if LLVM_ENABLE_ABI_BREAKING_CHECKS namespace llvm { // If LLVM_ENABLE_ABI_BREAKING_CHECKS is set the flag -mllvm -reverse-iterate // can be used to toggle forward/reverse iteration of unordered containers. // This will help uncover differences in codegen caused due to undefined // iteration order. static cl::opt<bool, true> ReverseIteration("reverse-iterate", cl::location(ReverseIterate<bool>::value)); } #endif //===----------------------------------------------------------------------===// // Template instantiations and anchors. // namespace llvm { namespace cl { template class basic_parser<bool>; template class basic_parser<boolOrDefault>; template class basic_parser<int>; template class basic_parser<unsigned>; template class basic_parser<unsigned long long>; template class basic_parser<double>; template class basic_parser<float>; template class basic_parser<std::string>; template class basic_parser<char>; template class opt<unsigned>; template class opt<int>; template class opt<std::string>; template class opt<char>; template class opt<bool>; } } // end namespace llvm::cl // Pin the vtables to this file. void GenericOptionValue::anchor() {} void OptionValue<boolOrDefault>::anchor() {} void OptionValue<std::string>::anchor() {} void Option::anchor() {} void basic_parser_impl::anchor() {} void parser<bool>::anchor() {} void parser<boolOrDefault>::anchor() {} void parser<int>::anchor() {} void parser<unsigned>::anchor() {} void parser<unsigned long long>::anchor() {} void parser<double>::anchor() {} void parser<float>::anchor() {} void parser<std::string>::anchor() {} void parser<char>::anchor() {} //===----------------------------------------------------------------------===// namespace { class CommandLineParser { public: // Globals for name and overview of program. Program name is not a string to // avoid static ctor/dtor issues. std::string ProgramName; StringRef ProgramOverview; // This collects additional help to be printed. std::vector<StringRef> MoreHelp; // This collects the different option categories that have been registered. SmallPtrSet<OptionCategory *, 16> RegisteredOptionCategories; // This collects the different subcommands that have been registered. SmallPtrSet<SubCommand *, 4> RegisteredSubCommands; CommandLineParser() : ActiveSubCommand(nullptr) { registerSubCommand(&*TopLevelSubCommand); registerSubCommand(&*AllSubCommands); } void ResetAllOptionOccurrences(); bool ParseCommandLineOptions(int argc, const char *const *argv, StringRef Overview, bool IgnoreErrors); void addLiteralOption(Option &Opt, SubCommand *SC, StringRef Name) { if (Opt.hasArgStr()) return; if (!SC->OptionsMap.insert(std::make_pair(Name, &Opt)).second) { errs() << ProgramName << ": CommandLine Error: Option '" << Name << "' registered more than once!\n"; report_fatal_error("inconsistency in registered CommandLine options"); } // If we're adding this to all sub-commands, add it to the ones that have // already been registered. if (SC == &*AllSubCommands) { for (const auto &Sub : RegisteredSubCommands) { if (SC == Sub) continue; addLiteralOption(Opt, Sub, Name); } } } void addLiteralOption(Option &Opt, StringRef Name) { if (Opt.Subs.empty()) addLiteralOption(Opt, &*TopLevelSubCommand, Name); else { for (auto SC : Opt.Subs) addLiteralOption(Opt, SC, Name); } } void addOption(Option *O, SubCommand *SC) { bool HadErrors = false; if (O->hasArgStr()) { // Add argument to the argument map! if (!SC->OptionsMap.insert(std::make_pair(O->ArgStr, O)).second) { errs() << ProgramName << ": CommandLine Error: Option '" << O->ArgStr << "' registered more than once!\n"; HadErrors = true; } } // Remember information about positional options. if (O->getFormattingFlag() == cl::Positional) SC->PositionalOpts.push_back(O); else if (O->getMiscFlags() & cl::Sink) // Remember sink options SC->SinkOpts.push_back(O); else if (O->getNumOccurrencesFlag() == cl::ConsumeAfter) { if (SC->ConsumeAfterOpt) { O->error("Cannot specify more than one option with cl::ConsumeAfter!"); HadErrors = true; } SC->ConsumeAfterOpt = O; } // Fail hard if there were errors. These are strictly unrecoverable and // indicate serious issues such as conflicting option names or an // incorrectly // linked LLVM distribution. if (HadErrors) report_fatal_error("inconsistency in registered CommandLine options"); // If we're adding this to all sub-commands, add it to the ones that have // already been registered. if (SC == &*AllSubCommands) { for (const auto &Sub : RegisteredSubCommands) { if (SC == Sub) continue; addOption(O, Sub); } } } void addOption(Option *O) { if (O->Subs.empty()) { addOption(O, &*TopLevelSubCommand); } else { for (auto SC : O->Subs) addOption(O, SC); } } void removeOption(Option *O, SubCommand *SC) { SmallVector<StringRef, 16> OptionNames; O->getExtraOptionNames(OptionNames); if (O->hasArgStr()) OptionNames.push_back(O->ArgStr); SubCommand &Sub = *SC; for (auto Name : OptionNames) Sub.OptionsMap.erase(Name); if (O->getFormattingFlag() == cl::Positional) for (auto Opt = Sub.PositionalOpts.begin(); Opt != Sub.PositionalOpts.end(); ++Opt) { if (*Opt == O) { Sub.PositionalOpts.erase(Opt); break; } } else if (O->getMiscFlags() & cl::Sink) for (auto Opt = Sub.SinkOpts.begin(); Opt != Sub.SinkOpts.end(); ++Opt) { if (*Opt == O) { Sub.SinkOpts.erase(Opt); break; } } else if (O == Sub.ConsumeAfterOpt) Sub.ConsumeAfterOpt = nullptr; } void removeOption(Option *O) { if (O->Subs.empty()) removeOption(O, &*TopLevelSubCommand); else { if (O->isInAllSubCommands()) { for (auto SC : RegisteredSubCommands) removeOption(O, SC); } else { for (auto SC : O->Subs) removeOption(O, SC); } } } bool hasOptions(const SubCommand &Sub) const { return (!Sub.OptionsMap.empty() || !Sub.PositionalOpts.empty() || nullptr != Sub.ConsumeAfterOpt); } bool hasOptions() const { for (const auto &S : RegisteredSubCommands) { if (hasOptions(*S)) return true; } return false; } SubCommand *getActiveSubCommand() { return ActiveSubCommand; } void updateArgStr(Option *O, StringRef NewName, SubCommand *SC) { SubCommand &Sub = *SC; if (!Sub.OptionsMap.insert(std::make_pair(NewName, O)).second) { errs() << ProgramName << ": CommandLine Error: Option '" << O->ArgStr << "' registered more than once!\n"; report_fatal_error("inconsistency in registered CommandLine options"); } Sub.OptionsMap.erase(O->ArgStr); } void updateArgStr(Option *O, StringRef NewName) { if (O->Subs.empty()) updateArgStr(O, NewName, &*TopLevelSubCommand); else { for (auto SC : O->Subs) updateArgStr(O, NewName, SC); } } void printOptionValues(); void registerCategory(OptionCategory *cat) { assert(count_if(RegisteredOptionCategories, [cat](const OptionCategory *Category) { return cat->getName() == Category->getName(); }) == 0 && "Duplicate option categories"); RegisteredOptionCategories.insert(cat); } void registerSubCommand(SubCommand *sub) { assert(count_if(RegisteredSubCommands, [sub](const SubCommand *Sub) { return (!sub->getName().empty()) && (Sub->getName() == sub->getName()); }) == 0 && "Duplicate subcommands"); RegisteredSubCommands.insert(sub); // For all options that have been registered for all subcommands, add the // option to this subcommand now. if (sub != &*AllSubCommands) { for (auto &E : AllSubCommands->OptionsMap) { Option *O = E.second; if ((O->isPositional() || O->isSink() || O->isConsumeAfter()) || O->hasArgStr()) addOption(O, sub); else addLiteralOption(*O, sub, E.first()); } } } void unregisterSubCommand(SubCommand *sub) { RegisteredSubCommands.erase(sub); } iterator_range<typename SmallPtrSet<SubCommand *, 4>::iterator> getRegisteredSubcommands() { return make_range(RegisteredSubCommands.begin(), RegisteredSubCommands.end()); } void reset() { ActiveSubCommand = nullptr; ProgramName.clear(); ProgramOverview = StringRef(); MoreHelp.clear(); RegisteredOptionCategories.clear(); ResetAllOptionOccurrences(); RegisteredSubCommands.clear(); TopLevelSubCommand->reset(); AllSubCommands->reset(); registerSubCommand(&*TopLevelSubCommand); registerSubCommand(&*AllSubCommands); } private: SubCommand *ActiveSubCommand; Option *LookupOption(SubCommand &Sub, StringRef &Arg, StringRef &Value); SubCommand *LookupSubCommand(StringRef Name); }; } // namespace static ManagedStatic<CommandLineParser> GlobalParser; void cl::AddLiteralOption(Option &O, StringRef Name) { GlobalParser->addLiteralOption(O, Name); } extrahelp::extrahelp(StringRef Help) : morehelp(Help) { GlobalParser->MoreHelp.push_back(Help); } void Option::addArgument() { GlobalParser->addOption(this); FullyInitialized = true; } void Option::removeArgument() { GlobalParser->removeOption(this); } void Option::setArgStr(StringRef S) { if (FullyInitialized) GlobalParser->updateArgStr(this, S); ArgStr = S; } // Initialise the general option category. OptionCategory llvm::cl::GeneralCategory("General options"); void OptionCategory::registerCategory() { GlobalParser->registerCategory(this); } // A special subcommand representing no subcommand ManagedStatic<SubCommand> llvm::cl::TopLevelSubCommand; // A special subcommand that can be used to put an option into all subcommands. ManagedStatic<SubCommand> llvm::cl::AllSubCommands; void SubCommand::registerSubCommand() { GlobalParser->registerSubCommand(this); } void SubCommand::unregisterSubCommand() { GlobalParser->unregisterSubCommand(this); } void SubCommand::reset() { PositionalOpts.clear(); SinkOpts.clear(); OptionsMap.clear(); ConsumeAfterOpt = nullptr; } SubCommand::operator bool() const { return (GlobalParser->getActiveSubCommand() == this); } //===----------------------------------------------------------------------===// // Basic, shared command line option processing machinery. // /// LookupOption - Lookup the option specified by the specified option on the /// command line. If there is a value specified (after an equal sign) return /// that as well. This assumes that leading dashes have already been stripped. Option *CommandLineParser::LookupOption(SubCommand &Sub, StringRef &Arg, StringRef &Value) { // Reject all dashes. if (Arg.empty()) return nullptr; assert(&Sub != &*AllSubCommands); size_t EqualPos = Arg.find('='); // If we have an equals sign, remember the value. if (EqualPos == StringRef::npos) { // Look up the option. auto I = Sub.OptionsMap.find(Arg); if (I == Sub.OptionsMap.end()) return nullptr; return I != Sub.OptionsMap.end() ? I->second : nullptr; } // If the argument before the = is a valid option name, we match. If not, // return Arg unmolested. auto I = Sub.OptionsMap.find(Arg.substr(0, EqualPos)); if (I == Sub.OptionsMap.end()) return nullptr; Value = Arg.substr(EqualPos + 1); Arg = Arg.substr(0, EqualPos); return I->second; } SubCommand *CommandLineParser::LookupSubCommand(StringRef Name) { if (Name.empty()) return &*TopLevelSubCommand; for (auto S : RegisteredSubCommands) { if (S == &*AllSubCommands) continue; if (S->getName().empty()) continue; if (StringRef(S->getName()) == StringRef(Name)) return S; } return &*TopLevelSubCommand; } /// LookupNearestOption - Lookup the closest match to the option specified by /// the specified option on the command line. If there is a value specified /// (after an equal sign) return that as well. This assumes that leading dashes /// have already been stripped. static Option *LookupNearestOption(StringRef Arg, const StringMap<Option *> &OptionsMap, std::string &NearestString) { // Reject all dashes. if (Arg.empty()) return nullptr; // Split on any equal sign. std::pair<StringRef, StringRef> SplitArg = Arg.split('='); StringRef &LHS = SplitArg.first; // LHS == Arg when no '=' is present. StringRef &RHS = SplitArg.second; // Find the closest match. Option *Best = nullptr; unsigned BestDistance = 0; for (StringMap<Option *>::const_iterator it = OptionsMap.begin(), ie = OptionsMap.end(); it != ie; ++it) { Option *O = it->second; SmallVector<StringRef, 16> OptionNames; O->getExtraOptionNames(OptionNames); if (O->hasArgStr()) OptionNames.push_back(O->ArgStr); bool PermitValue = O->getValueExpectedFlag() != cl::ValueDisallowed; StringRef Flag = PermitValue ? LHS : Arg; for (auto Name : OptionNames) { unsigned Distance = StringRef(Name).edit_distance( Flag, /*AllowReplacements=*/true, /*MaxEditDistance=*/BestDistance); if (!Best || Distance < BestDistance) { Best = O; BestDistance = Distance; if (RHS.empty() || !PermitValue) NearestString = Name; else NearestString = (Twine(Name) + "=" + RHS).str(); } } } return Best; } /// CommaSeparateAndAddOccurrence - A wrapper around Handler->addOccurrence() /// that does special handling of cl::CommaSeparated options. static bool CommaSeparateAndAddOccurrence(Option *Handler, unsigned pos, StringRef ArgName, StringRef Value, bool MultiArg = false) { // Check to see if this option accepts a comma separated list of values. If // it does, we have to split up the value into multiple values. if (Handler->getMiscFlags() & CommaSeparated) { StringRef Val(Value); StringRef::size_type Pos = Val.find(','); while (Pos != StringRef::npos) { // Process the portion before the comma. if (Handler->addOccurrence(pos, ArgName, Val.substr(0, Pos), MultiArg)) return true; // Erase the portion before the comma, AND the comma. Val = Val.substr(Pos + 1); // Check for another comma. Pos = Val.find(','); } Value = Val; } return Handler->addOccurrence(pos, ArgName, Value, MultiArg); } /// ProvideOption - For Value, this differentiates between an empty value ("") /// and a null value (StringRef()). The later is accepted for arguments that /// don't allow a value (-foo) the former is rejected (-foo=). static inline bool ProvideOption(Option *Handler, StringRef ArgName, StringRef Value, int argc, const char *const *argv, int &i) { // Is this a multi-argument option? unsigned NumAdditionalVals = Handler->getNumAdditionalVals(); // Enforce value requirements switch (Handler->getValueExpectedFlag()) { case ValueRequired: if (!Value.data()) { // No value specified? if (i + 1 >= argc) return Handler->error("requires a value!"); // Steal the next argument, like for '-o filename' assert(argv && "null check"); Value = StringRef(argv[++i]); } break; case ValueDisallowed: if (NumAdditionalVals > 0) return Handler->error("multi-valued option specified" " with ValueDisallowed modifier!"); if (Value.data()) return Handler->error("does not allow a value! '" + Twine(Value) + "' specified."); break; case ValueOptional: break; } // If this isn't a multi-arg option, just run the handler. if (NumAdditionalVals == 0) return CommaSeparateAndAddOccurrence(Handler, i, ArgName, Value); // If it is, run the handle several times. bool MultiArg = false; if (Value.data()) { if (CommaSeparateAndAddOccurrence(Handler, i, ArgName, Value, MultiArg)) return true; --NumAdditionalVals; MultiArg = true; } while (NumAdditionalVals > 0) { if (i + 1 >= argc) return Handler->error("not enough values!"); assert(argv && "null check"); Value = StringRef(argv[++i]); if (CommaSeparateAndAddOccurrence(Handler, i, ArgName, Value, MultiArg)) return true; MultiArg = true; --NumAdditionalVals; } return false; } static bool ProvidePositionalOption(Option *Handler, StringRef Arg, int i) { int Dummy = i; return ProvideOption(Handler, Handler->ArgStr, Arg, 0, nullptr, Dummy); } // Option predicates... static inline bool isGrouping(const Option *O) { return O->getFormattingFlag() == cl::Grouping; } static inline bool isPrefixedOrGrouping(const Option *O) { return isGrouping(O) || O->getFormattingFlag() == cl::Prefix; } // getOptionPred - Check to see if there are any options that satisfy the // specified predicate with names that are the prefixes in Name. This is // checked by progressively stripping characters off of the name, checking to // see if there options that satisfy the predicate. If we find one, return it, // otherwise return null. // static Option *getOptionPred(StringRef Name, size_t &Length, bool (*Pred)(const Option *), const StringMap<Option *> &OptionsMap) { StringMap<Option *>::const_iterator OMI = OptionsMap.find(Name); // Loop while we haven't found an option and Name still has at least two // characters in it (so that the next iteration will not be the empty // string. while (OMI == OptionsMap.end() && Name.size() > 1) { Name = Name.substr(0, Name.size() - 1); // Chop off the last character. OMI = OptionsMap.find(Name); } if (OMI != OptionsMap.end() && Pred(OMI->second)) { Length = Name.size(); return OMI->second; // Found one! } return nullptr; // No option found! } /// HandlePrefixedOrGroupedOption - The specified argument string (which started /// with at least one '-') does not fully match an available option. Check to /// see if this is a prefix or grouped option. If so, split arg into output an /// Arg/Value pair and return the Option to parse it with. static Option * HandlePrefixedOrGroupedOption(StringRef &Arg, StringRef &Value, bool &ErrorParsing, const StringMap<Option *> &OptionsMap) { if (Arg.size() == 1) return nullptr; // Do the lookup! size_t Length = 0; Option *PGOpt = getOptionPred(Arg, Length, isPrefixedOrGrouping, OptionsMap); if (!PGOpt) return nullptr; // If the option is a prefixed option, then the value is simply the // rest of the name... so fall through to later processing, by // setting up the argument name flags and value fields. if (PGOpt->getFormattingFlag() == cl::Prefix) { Value = Arg.substr(Length); Arg = Arg.substr(0, Length); assert(OptionsMap.count(Arg) && OptionsMap.find(Arg)->second == PGOpt); return PGOpt; } // This must be a grouped option... handle them now. Grouping options can't // have values. assert(isGrouping(PGOpt) && "Broken getOptionPred!"); do { // Move current arg name out of Arg into OneArgName. StringRef OneArgName = Arg.substr(0, Length); Arg = Arg.substr(Length); // Because ValueRequired is an invalid flag for grouped arguments, // we don't need to pass argc/argv in. assert(PGOpt->getValueExpectedFlag() != cl::ValueRequired && "Option can not be cl::Grouping AND cl::ValueRequired!"); int Dummy = 0; ErrorParsing |= ProvideOption(PGOpt, OneArgName, StringRef(), 0, nullptr, Dummy); // Get the next grouping option. PGOpt = getOptionPred(Arg, Length, isGrouping, OptionsMap); } while (PGOpt && Length != Arg.size()); // Return the last option with Arg cut down to just the last one. return PGOpt; } static bool RequiresValue(const Option *O) { return O->getNumOccurrencesFlag() == cl::Required || O->getNumOccurrencesFlag() == cl::OneOrMore; } static bool EatsUnboundedNumberOfValues(const Option *O) { return O->getNumOccurrencesFlag() == cl::ZeroOrMore || O->getNumOccurrencesFlag() == cl::OneOrMore; } static bool isWhitespace(char C) { return strchr(" \t\n\r\f\v", C); } static bool isQuote(char C) { return C == '\"' || C == '\''; } void cl::TokenizeGNUCommandLine(StringRef Src, StringSaver &Saver, SmallVectorImpl<const char *> &NewArgv, bool MarkEOLs) { SmallString<128> Token; for (size_t I = 0, E = Src.size(); I != E; ++I) { // Consume runs of whitespace. if (Token.empty()) { while (I != E && isWhitespace(Src[I])) { // Mark the end of lines in response files if (MarkEOLs && Src[I] == '\n') NewArgv.push_back(nullptr); ++I; } if (I == E) break; } // Backslash escapes the next character. if (I + 1 < E && Src[I] == '\\') { ++I; // Skip the escape. Token.push_back(Src[I]); continue; } // Consume a quoted string. if (isQuote(Src[I])) { char Quote = Src[I++]; while (I != E && Src[I] != Quote) { // Backslash escapes the next character. if (Src[I] == '\\' && I + 1 != E) ++I; Token.push_back(Src[I]); ++I; } if (I == E) break; continue; } // End the token if this is whitespace. if (isWhitespace(Src[I])) { if (!Token.empty()) NewArgv.push_back(Saver.save(StringRef(Token)).data()); Token.clear(); continue; } // This is a normal character. Append it. Token.push_back(Src[I]); } // Append the last token after hitting EOF with no whitespace. if (!Token.empty()) NewArgv.push_back(Saver.save(StringRef(Token)).data()); // Mark the end of response files if (MarkEOLs) NewArgv.push_back(nullptr); } /// Backslashes are interpreted in a rather complicated way in the Windows-style /// command line, because backslashes are used both to separate path and to /// escape double quote. This method consumes runs of backslashes as well as the /// following double quote if it's escaped. /// /// * If an even number of backslashes is followed by a double quote, one /// backslash is output for every pair of backslashes, and the last double /// quote remains unconsumed. The double quote will later be interpreted as /// the start or end of a quoted string in the main loop outside of this /// function. /// /// * If an odd number of backslashes is followed by a double quote, one /// backslash is output for every pair of backslashes, and a double quote is /// output for the last pair of backslash-double quote. The double quote is /// consumed in this case. /// /// * Otherwise, backslashes are interpreted literally. static size_t parseBackslash(StringRef Src, size_t I, SmallString<128> &Token) { size_t E = Src.size(); int BackslashCount = 0; // Skip the backslashes. do { ++I; ++BackslashCount; } while (I != E && Src[I] == '\\'); bool FollowedByDoubleQuote = (I != E && Src[I] == '"'); if (FollowedByDoubleQuote) { Token.append(BackslashCount / 2, '\\'); if (BackslashCount % 2 == 0) return I - 1; Token.push_back('"'); return I; } Token.append(BackslashCount, '\\'); return I - 1; } void cl::TokenizeWindowsCommandLine(StringRef Src, StringSaver &Saver, SmallVectorImpl<const char *> &NewArgv, bool MarkEOLs) { SmallString<128> Token; // This is a small state machine to consume characters until it reaches the // end of the source string. enum { INIT, UNQUOTED, QUOTED } State = INIT; for (size_t I = 0, E = Src.size(); I != E; ++I) { // INIT state indicates that the current input index is at the start of // the string or between tokens. if (State == INIT) { if (isWhitespace(Src[I])) { // Mark the end of lines in response files if (MarkEOLs && Src[I] == '\n') NewArgv.push_back(nullptr); continue; } if (Src[I] == '"') { State = QUOTED; continue; } if (Src[I] == '\\') { I = parseBackslash(Src, I, Token); State = UNQUOTED; continue; } Token.push_back(Src[I]); State = UNQUOTED; continue; } // UNQUOTED state means that it's reading a token not quoted by double // quotes. if (State == UNQUOTED) { // Whitespace means the end of the token. if (isWhitespace(Src[I])) { NewArgv.push_back(Saver.save(StringRef(Token)).data()); Token.clear(); State = INIT; // Mark the end of lines in response files if (MarkEOLs && Src[I] == '\n') NewArgv.push_back(nullptr); continue; } if (Src[I] == '"') { State = QUOTED; continue; } if (Src[I] == '\\') { I = parseBackslash(Src, I, Token); continue; } Token.push_back(Src[I]); continue; } // QUOTED state means that it's reading a token quoted by double quotes. if (State == QUOTED) { if (Src[I] == '"') { State = UNQUOTED; continue; } if (Src[I] == '\\') { I = parseBackslash(Src, I, Token); continue; } Token.push_back(Src[I]); } } // Append the last token after hitting EOF with no whitespace. if (!Token.empty()) NewArgv.push_back(Saver.save(StringRef(Token)).data()); // Mark the end of response files if (MarkEOLs) NewArgv.push_back(nullptr); } // It is called byte order marker but the UTF-8 BOM is actually not affected // by the host system's endianness. static bool hasUTF8ByteOrderMark(ArrayRef<char> S) { return (S.size() >= 3 && S[0] == '\xef' && S[1] == '\xbb' && S[2] == '\xbf'); } static bool ExpandResponseFile(StringRef FName, StringSaver &Saver, TokenizerCallback Tokenizer, SmallVectorImpl<const char *> &NewArgv, bool MarkEOLs, bool RelativeNames) { ErrorOr<std::unique_ptr<MemoryBuffer>> MemBufOrErr = MemoryBuffer::getFile(FName); if (!MemBufOrErr) return false; MemoryBuffer &MemBuf = *MemBufOrErr.get(); StringRef Str(MemBuf.getBufferStart(), MemBuf.getBufferSize()); // If we have a UTF-16 byte order mark, convert to UTF-8 for parsing. ArrayRef<char> BufRef(MemBuf.getBufferStart(), MemBuf.getBufferEnd()); std::string UTF8Buf; if (hasUTF16ByteOrderMark(BufRef)) { if (!convertUTF16ToUTF8String(BufRef, UTF8Buf)) return false; Str = StringRef(UTF8Buf); } // If we see UTF-8 BOM sequence at the beginning of a file, we shall remove // these bytes before parsing. // Reference: http://en.wikipedia.org/wiki/UTF-8#Byte_order_mark else if (hasUTF8ByteOrderMark(BufRef)) Str = StringRef(BufRef.data() + 3, BufRef.size() - 3); // Tokenize the contents into NewArgv. Tokenizer(Str, Saver, NewArgv, MarkEOLs); // If names of nested response files should be resolved relative to including // file, replace the included response file names with their full paths // obtained by required resolution. if (RelativeNames) for (unsigned I = 0; I < NewArgv.size(); ++I) if (NewArgv[I]) { StringRef Arg = NewArgv[I]; if (Arg.front() == '@') { StringRef FileName = Arg.drop_front(); if (llvm::sys::path::is_relative(FileName)) { SmallString<128> ResponseFile; ResponseFile.append(1, '@'); if (llvm::sys::path::is_relative(FName)) { SmallString<128> curr_dir; llvm::sys::fs::current_path(curr_dir); ResponseFile.append(curr_dir.str()); } llvm::sys::path::append( ResponseFile, llvm::sys::path::parent_path(FName), FileName); NewArgv[I] = Saver.save(ResponseFile.c_str()).data(); } } } return true; } /// \brief Expand response files on a command line recursively using the given /// StringSaver and tokenization strategy. bool cl::ExpandResponseFiles(StringSaver &Saver, TokenizerCallback Tokenizer, SmallVectorImpl<const char *> &Argv, bool MarkEOLs, bool RelativeNames) { unsigned RspFiles = 0; bool AllExpanded = true; // Don't cache Argv.size() because it can change. for (unsigned I = 0; I != Argv.size();) { const char *Arg = Argv[I]; // Check if it is an EOL marker if (Arg == nullptr) { ++I; continue; } if (Arg[0] != '@') { ++I; continue; } // If we have too many response files, leave some unexpanded. This avoids // crashing on self-referential response files. if (RspFiles++ > 20) return false; // Replace this response file argument with the tokenization of its // contents. Nested response files are expanded in subsequent iterations. SmallVector<const char *, 0> ExpandedArgv; if (!ExpandResponseFile(Arg + 1, Saver, Tokenizer, ExpandedArgv, MarkEOLs, RelativeNames)) { // We couldn't read this file, so we leave it in the argument stream and // move on. AllExpanded = false; ++I; continue; } Argv.erase(Argv.begin() + I); Argv.insert(Argv.begin() + I, ExpandedArgv.begin(), ExpandedArgv.end()); } return AllExpanded; } /// ParseEnvironmentOptions - An alternative entry point to the /// CommandLine library, which allows you to read the program's name /// from the caller (as PROGNAME) and its command-line arguments from /// an environment variable (whose name is given in ENVVAR). /// void cl::ParseEnvironmentOptions(const char *progName, const char *envVar, const char *Overview) { // Check args. assert(progName && "Program name not specified"); assert(envVar && "Environment variable name missing"); // Get the environment variable they want us to parse options out of. llvm::Optional<std::string> envValue = sys::Process::GetEnv(StringRef(envVar)); if (!envValue) return; // Get program's "name", which we wouldn't know without the caller // telling us. SmallVector<const char *, 20> newArgv; BumpPtrAllocator A; StringSaver Saver(A); newArgv.push_back(Saver.save(progName).data()); // Parse the value of the environment variable into a "command line" // and hand it off to ParseCommandLineOptions(). TokenizeGNUCommandLine(*envValue, Saver, newArgv); int newArgc = static_cast<int>(newArgv.size()); ParseCommandLineOptions(newArgc, &newArgv[0], StringRef(Overview)); } bool cl::ParseCommandLineOptions(int argc, const char *const *argv, StringRef Overview, bool IgnoreErrors) { return GlobalParser->ParseCommandLineOptions(argc, argv, Overview, IgnoreErrors); } void CommandLineParser::ResetAllOptionOccurrences() { // So that we can parse different command lines multiple times in succession // we reset all option values to look like they have never been seen before. for (auto SC : RegisteredSubCommands) { for (auto &O : SC->OptionsMap) O.second->reset(); } } bool CommandLineParser::ParseCommandLineOptions(int argc, const char *const *argv, StringRef Overview, bool IgnoreErrors) { assert(hasOptions() && "No options specified!"); // Expand response files. SmallVector<const char *, 20> newArgv(argv, argv + argc); BumpPtrAllocator A; StringSaver Saver(A); ExpandResponseFiles(Saver, TokenizeGNUCommandLine, newArgv); argv = &newArgv[0]; argc = static_cast<int>(newArgv.size()); // Copy the program name into ProgName, making sure not to overflow it. ProgramName = sys::path::filename(StringRef(argv[0])); ProgramOverview = Overview; bool ErrorParsing = false; // Check out the positional arguments to collect information about them. unsigned NumPositionalRequired = 0; // Determine whether or not there are an unlimited number of positionals bool HasUnlimitedPositionals = false; int FirstArg = 1; SubCommand *ChosenSubCommand = &*TopLevelSubCommand; if (argc >= 2 && argv[FirstArg][0] != '-') { // If the first argument specifies a valid subcommand, start processing // options from the second argument. ChosenSubCommand = LookupSubCommand(StringRef(argv[FirstArg])); if (ChosenSubCommand != &*TopLevelSubCommand) FirstArg = 2; } GlobalParser->ActiveSubCommand = ChosenSubCommand; assert(ChosenSubCommand); auto &ConsumeAfterOpt = ChosenSubCommand->ConsumeAfterOpt; auto &PositionalOpts = ChosenSubCommand->PositionalOpts; auto &SinkOpts = ChosenSubCommand->SinkOpts; auto &OptionsMap = ChosenSubCommand->OptionsMap; if (ConsumeAfterOpt) { assert(PositionalOpts.size() > 0 && "Cannot specify cl::ConsumeAfter without a positional argument!"); } if (!PositionalOpts.empty()) { // Calculate how many positional values are _required_. bool UnboundedFound = false; for (size_t i = 0, e = PositionalOpts.size(); i != e; ++i) { Option *Opt = PositionalOpts[i]; if (RequiresValue(Opt)) ++NumPositionalRequired; else if (ConsumeAfterOpt) { // ConsumeAfter cannot be combined with "optional" positional options // unless there is only one positional argument... if (PositionalOpts.size() > 1) { if (!IgnoreErrors) Opt->error("error - this positional option will never be matched, " "because it does not Require a value, and a " "cl::ConsumeAfter option is active!"); ErrorParsing = true; } } else if (UnboundedFound && !Opt->hasArgStr()) { // This option does not "require" a value... Make sure this option is // not specified after an option that eats all extra arguments, or this // one will never get any! // if (!IgnoreErrors) { Opt->error("error - option can never match, because " "another positional argument will match an " "unbounded number of values, and this option" " does not require a value!"); errs() << ProgramName << ": CommandLine Error: Option '" << Opt->ArgStr << "' is all messed up!\n"; errs() << PositionalOpts.size(); } ErrorParsing = true; } UnboundedFound |= EatsUnboundedNumberOfValues(Opt); } HasUnlimitedPositionals = UnboundedFound || ConsumeAfterOpt; } // PositionalVals - A vector of "positional" arguments we accumulate into // the process at the end. // SmallVector<std::pair<StringRef, unsigned>, 4> PositionalVals; // If the program has named positional arguments, and the name has been run // across, keep track of which positional argument was named. Otherwise put // the positional args into the PositionalVals list... Option *ActivePositionalArg = nullptr; // Loop over all of the arguments... processing them. bool DashDashFound = false; // Have we read '--'? for (int i = FirstArg; i < argc; ++i) { Option *Handler = nullptr; Option *NearestHandler = nullptr; std::string NearestHandlerString; StringRef Value; StringRef ArgName = ""; // Check to see if this is a positional argument. This argument is // considered to be positional if it doesn't start with '-', if it is "-" // itself, or if we have seen "--" already. // if (argv[i][0] != '-' || argv[i][1] == 0 || DashDashFound) { // Positional argument! if (ActivePositionalArg) { ProvidePositionalOption(ActivePositionalArg, StringRef(argv[i]), i); continue; // We are done! } if (!PositionalOpts.empty()) { PositionalVals.push_back(std::make_pair(StringRef(argv[i]), i)); // All of the positional arguments have been fulfulled, give the rest to // the consume after option... if it's specified... // if (PositionalVals.size() >= NumPositionalRequired && ConsumeAfterOpt) { for (++i; i < argc; ++i) PositionalVals.push_back(std::make_pair(StringRef(argv[i]), i)); break; // Handle outside of the argument processing loop... } // Delay processing positional arguments until the end... continue; } } else if (argv[i][0] == '-' && argv[i][1] == '-' && argv[i][2] == 0 && !DashDashFound) { DashDashFound = true; // This is the mythical "--"? continue; // Don't try to process it as an argument itself. } else if (ActivePositionalArg && (ActivePositionalArg->getMiscFlags() & PositionalEatsArgs)) { // If there is a positional argument eating options, check to see if this // option is another positional argument. If so, treat it as an argument, // otherwise feed it to the eating positional. ArgName = StringRef(argv[i] + 1); // Eat leading dashes. while (!ArgName.empty() && ArgName[0] == '-') ArgName = ArgName.substr(1); Handler = LookupOption(*ChosenSubCommand, ArgName, Value); if (!Handler || Handler->getFormattingFlag() != cl::Positional) { ProvidePositionalOption(ActivePositionalArg, StringRef(argv[i]), i); continue; // We are done! } } else { // We start with a '-', must be an argument. ArgName = StringRef(argv[i] + 1); // Eat leading dashes. while (!ArgName.empty() && ArgName[0] == '-') ArgName = ArgName.substr(1); Handler = LookupOption(*ChosenSubCommand, ArgName, Value); // Check to see if this "option" is really a prefixed or grouped argument. if (!Handler) Handler = HandlePrefixedOrGroupedOption(ArgName, Value, ErrorParsing, OptionsMap); // Otherwise, look for the closest available option to report to the user // in the upcoming error. if (!Handler && SinkOpts.empty()) NearestHandler = LookupNearestOption(ArgName, OptionsMap, NearestHandlerString); } if (!Handler) { if (SinkOpts.empty()) { if (!IgnoreErrors) { errs() << ProgramName << ": Unknown command line argument '" << argv[i] << "'. Try: '" << argv[0] << " -help'\n"; if (NearestHandler) { // If we know a near match, report it as well. errs() << ProgramName << ": Did you mean '-" << NearestHandlerString << "'?\n"; } } ErrorParsing = true; } else { for (SmallVectorImpl<Option *>::iterator I = SinkOpts.begin(), E = SinkOpts.end(); I != E; ++I) (*I)->addOccurrence(i, "", StringRef(argv[i])); } continue; } // If this is a named positional argument, just remember that it is the // active one... if (Handler->getFormattingFlag() == cl::Positional) ActivePositionalArg = Handler; else ErrorParsing |= ProvideOption(Handler, ArgName, Value, argc, argv, i); } // Check and handle positional arguments now... if (NumPositionalRequired > PositionalVals.size()) { if (!IgnoreErrors) { errs() << ProgramName << ": Not enough positional command line arguments specified!\n" << "Must specify at least " << NumPositionalRequired << " positional argument" << (NumPositionalRequired > 1 ? "s" : "") << ": See: " << argv[0] << " - help\n"; } ErrorParsing = true; } else if (!HasUnlimitedPositionals && PositionalVals.size() > PositionalOpts.size()) { if (!IgnoreErrors) { errs() << ProgramName << ": Too many positional arguments specified!\n" << "Can specify at most " << PositionalOpts.size() << " positional arguments: See: " << argv[0] << " -help\n"; } ErrorParsing = true; } else if (!ConsumeAfterOpt) { // Positional args have already been handled if ConsumeAfter is specified. unsigned ValNo = 0, NumVals = static_cast<unsigned>(PositionalVals.size()); for (size_t i = 0, e = PositionalOpts.size(); i != e; ++i) { if (RequiresValue(PositionalOpts[i])) { ProvidePositionalOption(PositionalOpts[i], PositionalVals[ValNo].first, PositionalVals[ValNo].second); ValNo++; --NumPositionalRequired; // We fulfilled our duty... } // If we _can_ give this option more arguments, do so now, as long as we // do not give it values that others need. 'Done' controls whether the // option even _WANTS_ any more. // bool Done = PositionalOpts[i]->getNumOccurrencesFlag() == cl::Required; while (NumVals - ValNo > NumPositionalRequired && !Done) { switch (PositionalOpts[i]->getNumOccurrencesFlag()) { case cl::Optional: Done = true; // Optional arguments want _at most_ one value LLVM_FALLTHROUGH; case cl::ZeroOrMore: // Zero or more will take all they can get... case cl::OneOrMore: // One or more will take all they can get... ProvidePositionalOption(PositionalOpts[i], PositionalVals[ValNo].first, PositionalVals[ValNo].second); ValNo++; break; default: llvm_unreachable("Internal error, unexpected NumOccurrences flag in " "positional argument processing!"); } } } } else { assert(ConsumeAfterOpt && NumPositionalRequired <= PositionalVals.size()); unsigned ValNo = 0; for (size_t j = 1, e = PositionalOpts.size(); j != e; ++j) if (RequiresValue(PositionalOpts[j])) { ErrorParsing |= ProvidePositionalOption(PositionalOpts[j], PositionalVals[ValNo].first, PositionalVals[ValNo].second); ValNo++; } // Handle the case where there is just one positional option, and it's // optional. In this case, we want to give JUST THE FIRST option to the // positional option and keep the rest for the consume after. The above // loop would have assigned no values to positional options in this case. // if (PositionalOpts.size() == 1 && ValNo == 0 && !PositionalVals.empty()) { ErrorParsing |= ProvidePositionalOption(PositionalOpts[0], PositionalVals[ValNo].first, PositionalVals[ValNo].second); ValNo++; } // Handle over all of the rest of the arguments to the // cl::ConsumeAfter command line option... for (; ValNo != PositionalVals.size(); ++ValNo) ErrorParsing |= ProvidePositionalOption(ConsumeAfterOpt, PositionalVals[ValNo].first, PositionalVals[ValNo].second); } // Loop over args and make sure all required args are specified! for (const auto &Opt : OptionsMap) { switch (Opt.second->getNumOccurrencesFlag()) { case Required: case OneOrMore: if (Opt.second->getNumOccurrences() == 0) { Opt.second->error("must be specified at least once!"); ErrorParsing = true; } LLVM_FALLTHROUGH; default: break; } } // Now that we know if -debug is specified, we can use it. // Note that if ReadResponseFiles == true, this must be done before the // memory allocated for the expanded command line is free()d below. DEBUG(dbgs() << "Args: "; for (int i = 0; i < argc; ++i) dbgs() << argv[i] << ' '; dbgs() << '\n';); // Free all of the memory allocated to the map. Command line options may only // be processed once! MoreHelp.clear(); // If we had an error processing our arguments, don't let the program execute if (ErrorParsing) { if (!IgnoreErrors) exit(1); return false; } return true; } //===----------------------------------------------------------------------===// // Option Base class implementation // bool Option::error(const Twine &Message, StringRef ArgName) { if (!ArgName.data()) ArgName = ArgStr; if (ArgName.empty()) errs() << HelpStr; // Be nice for positional arguments else errs() << GlobalParser->ProgramName << ": for the -" << ArgName; errs() << " option: " << Message << "\n"; return true; } bool Option::addOccurrence(unsigned pos, StringRef ArgName, StringRef Value, bool MultiArg) { if (!MultiArg) NumOccurrences++; // Increment the number of times we have been seen switch (getNumOccurrencesFlag()) { case Optional: if (NumOccurrences > 1) return error("may only occur zero or one times!", ArgName); break; case Required: if (NumOccurrences > 1) return error("must occur exactly one time!", ArgName); LLVM_FALLTHROUGH; case OneOrMore: case ZeroOrMore: case ConsumeAfter: break; } return handleOccurrence(pos, ArgName, Value); } // getValueStr - Get the value description string, using "DefaultMsg" if nothing // has been specified yet. // static StringRef getValueStr(const Option &O, StringRef DefaultMsg) { if (O.ValueStr.empty()) return DefaultMsg; return O.ValueStr; } //===----------------------------------------------------------------------===// // cl::alias class implementation // // Return the width of the option tag for printing... size_t alias::getOptionWidth() const { return ArgStr.size() + 6; } static void printHelpStr(StringRef HelpStr, size_t Indent, size_t FirstLineIndentedBy) { std::pair<StringRef, StringRef> Split = HelpStr.split('\n'); outs().indent(Indent - FirstLineIndentedBy) << " - " << Split.first << "\n"; while (!Split.second.empty()) { Split = Split.second.split('\n'); outs().indent(Indent) << Split.first << "\n"; } } // Print out the option for the alias. void alias::printOptionInfo(size_t GlobalWidth) const { outs() << " -" << ArgStr; printHelpStr(HelpStr, GlobalWidth, ArgStr.size() + 6); } //===----------------------------------------------------------------------===// // Parser Implementation code... // // basic_parser implementation // // Return the width of the option tag for printing... size_t basic_parser_impl::getOptionWidth(const Option &O) const { size_t Len = O.ArgStr.size(); auto ValName = getValueName(); if (!ValName.empty()) Len += getValueStr(O, ValName).size() + 3; return Len + 6; } // printOptionInfo - Print out information about this option. The // to-be-maintained width is specified. // void basic_parser_impl::printOptionInfo(const Option &O, size_t GlobalWidth) const { outs() << " -" << O.ArgStr; auto ValName = getValueName(); if (!ValName.empty()) outs() << "=<" << getValueStr(O, ValName) << '>'; printHelpStr(O.HelpStr, GlobalWidth, getOptionWidth(O)); } void basic_parser_impl::printOptionName(const Option &O, size_t GlobalWidth) const { outs() << " -" << O.ArgStr; outs().indent(GlobalWidth - O.ArgStr.size()); } // parser<bool> implementation // bool parser<bool>::parse(Option &O, StringRef ArgName, StringRef Arg, bool &Value) { if (Arg == "" || Arg == "true" || Arg == "TRUE" || Arg == "True" || Arg == "1") { Value = true; return false; } if (Arg == "false" || Arg == "FALSE" || Arg == "False" || Arg == "0") { Value = false; return false; } return O.error("'" + Arg + "' is invalid value for boolean argument! Try 0 or 1"); } // parser<boolOrDefault> implementation // bool parser<boolOrDefault>::parse(Option &O, StringRef ArgName, StringRef Arg, boolOrDefault &Value) { if (Arg == "" || Arg == "true" || Arg == "TRUE" || Arg == "True" || Arg == "1") { Value = BOU_TRUE; return false; } if (Arg == "false" || Arg == "FALSE" || Arg == "False" || Arg == "0") { Value = BOU_FALSE; return false; } return O.error("'" + Arg + "' is invalid value for boolean argument! Try 0 or 1"); } // parser<int> implementation // bool parser<int>::parse(Option &O, StringRef ArgName, StringRef Arg, int &Value) { if (Arg.getAsInteger(0, Value)) return O.error("'" + Arg + "' value invalid for integer argument!"); return false; } // parser<unsigned> implementation // bool parser<unsigned>::parse(Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) { if (Arg.getAsInteger(0, Value)) return O.error("'" + Arg + "' value invalid for uint argument!"); return false; } // parser<unsigned long long> implementation // bool parser<unsigned long long>::parse(Option &O, StringRef ArgName, StringRef Arg, unsigned long long &Value) { if (Arg.getAsInteger(0, Value)) return O.error("'" + Arg + "' value invalid for uint argument!"); return false; } // parser<double>/parser<float> implementation // static bool parseDouble(Option &O, StringRef Arg, double &Value) { SmallString<32> TmpStr(Arg.begin(), Arg.end()); const char *ArgStart = TmpStr.c_str(); char *End; Value = strtod(ArgStart, &End); if (*End != 0) return O.error("'" + Arg + "' value invalid for floating point argument!"); return false; } bool parser<double>::parse(Option &O, StringRef ArgName, StringRef Arg, double &Val) { return parseDouble(O, Arg, Val); } bool parser<float>::parse(Option &O, StringRef ArgName, StringRef Arg, float &Val) { double dVal; if (parseDouble(O, Arg, dVal)) return true; Val = (float)dVal; return false; } // generic_parser_base implementation // // findOption - Return the option number corresponding to the specified // argument string. If the option is not found, getNumOptions() is returned. // unsigned generic_parser_base::findOption(StringRef Name) { unsigned e = getNumOptions(); for (unsigned i = 0; i != e; ++i) { if (getOption(i) == Name) return i; } return e; } // Return the width of the option tag for printing... size_t generic_parser_base::getOptionWidth(const Option &O) const { if (O.hasArgStr()) { size_t Size = O.ArgStr.size() + 6; for (unsigned i = 0, e = getNumOptions(); i != e; ++i) Size = std::max(Size, getOption(i).size() + 8); return Size; } else { size_t BaseSize = 0; for (unsigned i = 0, e = getNumOptions(); i != e; ++i) BaseSize = std::max(BaseSize, getOption(i).size() + 8); return BaseSize; } } // printOptionInfo - Print out information about this option. The // to-be-maintained width is specified. // void generic_parser_base::printOptionInfo(const Option &O, size_t GlobalWidth) const { if (O.hasArgStr()) { outs() << " -" << O.ArgStr; printHelpStr(O.HelpStr, GlobalWidth, O.ArgStr.size() + 6); for (unsigned i = 0, e = getNumOptions(); i != e; ++i) { size_t NumSpaces = GlobalWidth - getOption(i).size() - 8; outs() << " =" << getOption(i); outs().indent(NumSpaces) << " - " << getDescription(i) << '\n'; } } else { if (!O.HelpStr.empty()) outs() << " " << O.HelpStr << '\n'; for (unsigned i = 0, e = getNumOptions(); i != e; ++i) { auto Option = getOption(i); outs() << " -" << Option; printHelpStr(getDescription(i), GlobalWidth, Option.size() + 8); } } } static const size_t MaxOptWidth = 8; // arbitrary spacing for printOptionDiff // printGenericOptionDiff - Print the value of this option and it's default. // // "Generic" options have each value mapped to a name. void generic_parser_base::printGenericOptionDiff( const Option &O, const GenericOptionValue &Value, const GenericOptionValue &Default, size_t GlobalWidth) const { outs() << " -" << O.ArgStr; outs().indent(GlobalWidth - O.ArgStr.size()); unsigned NumOpts = getNumOptions(); for (unsigned i = 0; i != NumOpts; ++i) { if (Value.compare(getOptionValue(i))) continue; outs() << "= " << getOption(i); size_t L = getOption(i).size(); size_t NumSpaces = MaxOptWidth > L ? MaxOptWidth - L : 0; outs().indent(NumSpaces) << " (default: "; for (unsigned j = 0; j != NumOpts; ++j) { if (Default.compare(getOptionValue(j))) continue; outs() << getOption(j); break; } outs() << ")\n"; return; } outs() << "= *unknown option value*\n"; } // printOptionDiff - Specializations for printing basic value types. // #define PRINT_OPT_DIFF(T) \ void parser<T>::printOptionDiff(const Option &O, T V, OptionValue<T> D, \ size_t GlobalWidth) const { \ printOptionName(O, GlobalWidth); \ std::string Str; \ { \ raw_string_ostream SS(Str); \ SS << V; \ } \ outs() << "= " << Str; \ size_t NumSpaces = \ MaxOptWidth > Str.size() ? MaxOptWidth - Str.size() : 0; \ outs().indent(NumSpaces) << " (default: "; \ if (D.hasValue()) \ outs() << D.getValue(); \ else \ outs() << "*no default*"; \ outs() << ")\n"; \ } PRINT_OPT_DIFF(bool) PRINT_OPT_DIFF(boolOrDefault) PRINT_OPT_DIFF(int) PRINT_OPT_DIFF(unsigned) PRINT_OPT_DIFF(unsigned long long) PRINT_OPT_DIFF(double) PRINT_OPT_DIFF(float) PRINT_OPT_DIFF(char) void parser<std::string>::printOptionDiff(const Option &O, StringRef V, const OptionValue<std::string> &D, size_t GlobalWidth) const { printOptionName(O, GlobalWidth); outs() << "= " << V; size_t NumSpaces = MaxOptWidth > V.size() ? MaxOptWidth - V.size() : 0; outs().indent(NumSpaces) << " (default: "; if (D.hasValue()) outs() << D.getValue(); else outs() << "*no default*"; outs() << ")\n"; } // Print a placeholder for options that don't yet support printOptionDiff(). void basic_parser_impl::printOptionNoValue(const Option &O, size_t GlobalWidth) const { printOptionName(O, GlobalWidth); outs() << "= *cannot print option value*\n"; } //===----------------------------------------------------------------------===// // -help and -help-hidden option implementation // static int OptNameCompare(const std::pair<const char *, Option *> *LHS, const std::pair<const char *, Option *> *RHS) { return strcmp(LHS->first, RHS->first); } static int SubNameCompare(const std::pair<const char *, SubCommand *> *LHS, const std::pair<const char *, SubCommand *> *RHS) { return strcmp(LHS->first, RHS->first); } // Copy Options into a vector so we can sort them as we like. static void sortOpts(StringMap<Option *> &OptMap, SmallVectorImpl<std::pair<const char *, Option *>> &Opts, bool ShowHidden) { SmallPtrSet<Option *, 32> OptionSet; // Duplicate option detection. for (StringMap<Option *>::iterator I = OptMap.begin(), E = OptMap.end(); I != E; ++I) { // Ignore really-hidden options. if (I->second->getOptionHiddenFlag() == ReallyHidden) continue; // Unless showhidden is set, ignore hidden flags. if (I->second->getOptionHiddenFlag() == Hidden && !ShowHidden) continue; // If we've already seen this option, don't add it to the list again. if (!OptionSet.insert(I->second).second) continue; Opts.push_back( std::pair<const char *, Option *>(I->getKey().data(), I->second)); } // Sort the options list alphabetically. array_pod_sort(Opts.begin(), Opts.end(), OptNameCompare); } static void sortSubCommands(const SmallPtrSetImpl<SubCommand *> &SubMap, SmallVectorImpl<std::pair<const char *, SubCommand *>> &Subs) { for (const auto &S : SubMap) { if (S->getName().empty()) continue; Subs.push_back(std::make_pair(S->getName().data(), S)); } array_pod_sort(Subs.begin(), Subs.end(), SubNameCompare); } namespace { class HelpPrinter { protected: const bool ShowHidden; typedef SmallVector<std::pair<const char *, Option *>, 128> StrOptionPairVector; typedef SmallVector<std::pair<const char *, SubCommand *>, 128> StrSubCommandPairVector; // Print the options. Opts is assumed to be alphabetically sorted. virtual void printOptions(StrOptionPairVector &Opts, size_t MaxArgLen) { for (size_t i = 0, e = Opts.size(); i != e; ++i) Opts[i].second->printOptionInfo(MaxArgLen); } void printSubCommands(StrSubCommandPairVector &Subs, size_t MaxSubLen) { for (const auto &S : Subs) { outs() << " " << S.first; if (!S.second->getDescription().empty()) { outs().indent(MaxSubLen - strlen(S.first)); outs() << " - " << S.second->getDescription(); } outs() << "\n"; } } public: explicit HelpPrinter(bool showHidden) : ShowHidden(showHidden) {} virtual ~HelpPrinter() {} // Invoke the printer. void operator=(bool Value) { if (!Value) return; SubCommand *Sub = GlobalParser->getActiveSubCommand(); auto &OptionsMap = Sub->OptionsMap; auto &PositionalOpts = Sub->PositionalOpts; auto &ConsumeAfterOpt = Sub->ConsumeAfterOpt; StrOptionPairVector Opts; sortOpts(OptionsMap, Opts, ShowHidden); StrSubCommandPairVector Subs; sortSubCommands(GlobalParser->RegisteredSubCommands, Subs); if (!GlobalParser->ProgramOverview.empty()) outs() << "OVERVIEW: " << GlobalParser->ProgramOverview << "\n"; if (Sub == &*TopLevelSubCommand) { outs() << "USAGE: " << GlobalParser->ProgramName; if (Subs.size() > 2) outs() << " [subcommand]"; outs() << " [options]"; } else { if (!Sub->getDescription().empty()) { outs() << "SUBCOMMAND '" << Sub->getName() << "': " << Sub->getDescription() << "\n\n"; } outs() << "USAGE: " << GlobalParser->ProgramName << " " << Sub->getName() << " [options]"; } for (auto Opt : PositionalOpts) { if (Opt->hasArgStr()) outs() << " --" << Opt->ArgStr; outs() << " " << Opt->HelpStr; } // Print the consume after option info if it exists... if (ConsumeAfterOpt) outs() << " " << ConsumeAfterOpt->HelpStr; if (Sub == &*TopLevelSubCommand && !Subs.empty()) { // Compute the maximum subcommand length... size_t MaxSubLen = 0; for (size_t i = 0, e = Subs.size(); i != e; ++i) MaxSubLen = std::max(MaxSubLen, strlen(Subs[i].first)); outs() << "\n\n"; outs() << "SUBCOMMANDS:\n\n"; printSubCommands(Subs, MaxSubLen); outs() << "\n"; outs() << " Type \"" << GlobalParser->ProgramName << " <subcommand> -help\" to get more help on a specific " "subcommand"; } outs() << "\n\n"; // Compute the maximum argument length... size_t MaxArgLen = 0; for (size_t i = 0, e = Opts.size(); i != e; ++i) MaxArgLen = std::max(MaxArgLen, Opts[i].second->getOptionWidth()); outs() << "OPTIONS:\n"; printOptions(Opts, MaxArgLen); // Print any extra help the user has declared. for (auto I : GlobalParser->MoreHelp) outs() << I; GlobalParser->MoreHelp.clear(); // Halt the program since help information was printed exit(0); } }; class CategorizedHelpPrinter : public HelpPrinter { public: explicit CategorizedHelpPrinter(bool showHidden) : HelpPrinter(showHidden) {} // Helper function for printOptions(). // It shall return a negative value if A's name should be lexicographically // ordered before B's name. It returns a value greater equal zero otherwise. static int OptionCategoryCompare(OptionCategory *const *A, OptionCategory *const *B) { return (*A)->getName() == (*B)->getName(); } // Make sure we inherit our base class's operator=() using HelpPrinter::operator=; protected: void printOptions(StrOptionPairVector &Opts, size_t MaxArgLen) override { std::vector<OptionCategory *> SortedCategories; std::map<OptionCategory *, std::vector<Option *>> CategorizedOptions; // Collect registered option categories into vector in preparation for // sorting. for (auto I = GlobalParser->RegisteredOptionCategories.begin(), E = GlobalParser->RegisteredOptionCategories.end(); I != E; ++I) { SortedCategories.push_back(*I); } // Sort the different option categories alphabetically. assert(SortedCategories.size() > 0 && "No option categories registered!"); array_pod_sort(SortedCategories.begin(), SortedCategories.end(), OptionCategoryCompare); // Create map to empty vectors. for (std::vector<OptionCategory *>::const_iterator I = SortedCategories.begin(), E = SortedCategories.end(); I != E; ++I) CategorizedOptions[*I] = std::vector<Option *>(); // Walk through pre-sorted options and assign into categories. // Because the options are already alphabetically sorted the // options within categories will also be alphabetically sorted. for (size_t I = 0, E = Opts.size(); I != E; ++I) { Option *Opt = Opts[I].second; assert(CategorizedOptions.count(Opt->Category) > 0 && "Option has an unregistered category"); CategorizedOptions[Opt->Category].push_back(Opt); } // Now do printing. for (std::vector<OptionCategory *>::const_iterator Category = SortedCategories.begin(), E = SortedCategories.end(); Category != E; ++Category) { // Hide empty categories for -help, but show for -help-hidden. const auto &CategoryOptions = CategorizedOptions[*Category]; bool IsEmptyCategory = CategoryOptions.empty(); if (!ShowHidden && IsEmptyCategory) continue; // Print category information. outs() << "\n"; outs() << (*Category)->getName() << ":\n"; // Check if description is set. if (!(*Category)->getDescription().empty()) outs() << (*Category)->getDescription() << "\n\n"; else outs() << "\n"; // When using -help-hidden explicitly state if the category has no // options associated with it. if (IsEmptyCategory) { outs() << " This option category has no options.\n"; continue; } // Loop over the options in the category and print. for (const Option *Opt : CategoryOptions) Opt->printOptionInfo(MaxArgLen); } } }; // This wraps the Uncategorizing and Categorizing printers and decides // at run time which should be invoked. class HelpPrinterWrapper { private: HelpPrinter &UncategorizedPrinter; CategorizedHelpPrinter &CategorizedPrinter; public: explicit HelpPrinterWrapper(HelpPrinter &UncategorizedPrinter, CategorizedHelpPrinter &CategorizedPrinter) : UncategorizedPrinter(UncategorizedPrinter), CategorizedPrinter(CategorizedPrinter) {} // Invoke the printer. void operator=(bool Value); }; } // End anonymous namespace // Declare the four HelpPrinter instances that are used to print out help, or // help-hidden as an uncategorized list or in categories. static HelpPrinter UncategorizedNormalPrinter(false); static HelpPrinter UncategorizedHiddenPrinter(true); static CategorizedHelpPrinter CategorizedNormalPrinter(false); static CategorizedHelpPrinter CategorizedHiddenPrinter(true); // Declare HelpPrinter wrappers that will decide whether or not to invoke // a categorizing help printer static HelpPrinterWrapper WrappedNormalPrinter(UncategorizedNormalPrinter, CategorizedNormalPrinter); static HelpPrinterWrapper WrappedHiddenPrinter(UncategorizedHiddenPrinter, CategorizedHiddenPrinter); // Define a category for generic options that all tools should have. static cl::OptionCategory GenericCategory("Generic Options"); // Define uncategorized help printers. // -help-list is hidden by default because if Option categories are being used // then -help behaves the same as -help-list. static cl::opt<HelpPrinter, true, parser<bool>> HLOp( "help-list", cl::desc("Display list of available options (-help-list-hidden for more)"), cl::location(UncategorizedNormalPrinter), cl::Hidden, cl::ValueDisallowed, cl::cat(GenericCategory), cl::sub(*AllSubCommands)); static cl::opt<HelpPrinter, true, parser<bool>> HLHOp("help-list-hidden", cl::desc("Display list of all available options"), cl::location(UncategorizedHiddenPrinter), cl::Hidden, cl::ValueDisallowed, cl::cat(GenericCategory), cl::sub(*AllSubCommands)); // Define uncategorized/categorized help printers. These printers change their // behaviour at runtime depending on whether one or more Option categories have // been declared. static cl::opt<HelpPrinterWrapper, true, parser<bool>> HOp("help", cl::desc("Display available options (-help-hidden for more)"), cl::location(WrappedNormalPrinter), cl::ValueDisallowed, cl::cat(GenericCategory), cl::sub(*AllSubCommands)); static cl::opt<HelpPrinterWrapper, true, parser<bool>> HHOp("help-hidden", cl::desc("Display all available options"), cl::location(WrappedHiddenPrinter), cl::Hidden, cl::ValueDisallowed, cl::cat(GenericCategory), cl::sub(*AllSubCommands)); static cl::opt<bool> PrintOptions( "print-options", cl::desc("Print non-default options after command line parsing"), cl::Hidden, cl::init(false), cl::cat(GenericCategory), cl::sub(*AllSubCommands)); static cl::opt<bool> PrintAllOptions( "print-all-options", cl::desc("Print all option values after command line parsing"), cl::Hidden, cl::init(false), cl::cat(GenericCategory), cl::sub(*AllSubCommands)); void HelpPrinterWrapper::operator=(bool Value) { if (!Value) return; // Decide which printer to invoke. If more than one option category is // registered then it is useful to show the categorized help instead of // uncategorized help. if (GlobalParser->RegisteredOptionCategories.size() > 1) { // unhide -help-list option so user can have uncategorized output if they // want it. HLOp.setHiddenFlag(NotHidden); CategorizedPrinter = true; // Invoke categorized printer } else UncategorizedPrinter = true; // Invoke uncategorized printer } // Print the value of each option. void cl::PrintOptionValues() { GlobalParser->printOptionValues(); } void CommandLineParser::printOptionValues() { if (!PrintOptions && !PrintAllOptions) return; SmallVector<std::pair<const char *, Option *>, 128> Opts; sortOpts(ActiveSubCommand->OptionsMap, Opts, /*ShowHidden*/ true); // Compute the maximum argument length... size_t MaxArgLen = 0; for (size_t i = 0, e = Opts.size(); i != e; ++i) MaxArgLen = std::max(MaxArgLen, Opts[i].second->getOptionWidth()); for (size_t i = 0, e = Opts.size(); i != e; ++i) Opts[i].second->printOptionValue(MaxArgLen, PrintAllOptions); } static void (*OverrideVersionPrinter)() = nullptr; static std::vector<void (*)()> *ExtraVersionPrinters = nullptr; namespace { class VersionPrinter { public: void print() { raw_ostream &OS = outs(); #ifdef PACKAGE_VENDOR OS << PACKAGE_VENDOR << " "; #else OS << "LLVM (http://llvm.org/):\n "; #endif OS << PACKAGE_NAME << " version " << PACKAGE_VERSION; #ifdef LLVM_VERSION_INFO OS << " " << LLVM_VERSION_INFO; #endif OS << "\n "; #ifndef __OPTIMIZE__ OS << "DEBUG build"; #else OS << "Optimized build"; #endif #ifndef NDEBUG OS << " with assertions"; #endif std::string CPU = sys::getHostCPUName(); if (CPU == "generic") CPU = "(unknown)"; OS << ".\n" << " Default target: " << sys::getDefaultTargetTriple() << '\n' << " Host CPU: " << CPU << '\n'; } void operator=(bool OptionWasSpecified) { if (!OptionWasSpecified) return; if (OverrideVersionPrinter != nullptr) { (*OverrideVersionPrinter)(); exit(0); } print(); // Iterate over any registered extra printers and call them to add further // information. if (ExtraVersionPrinters != nullptr) { outs() << '\n'; for (std::vector<void (*)()>::iterator I = ExtraVersionPrinters->begin(), E = ExtraVersionPrinters->end(); I != E; ++I) (*I)(); } exit(0); } }; } // End anonymous namespace // Define the --version option that prints out the LLVM version for the tool static VersionPrinter VersionPrinterInstance; static cl::opt<VersionPrinter, true, parser<bool>> VersOp("version", cl::desc("Display the version of this program"), cl::location(VersionPrinterInstance), cl::ValueDisallowed, cl::cat(GenericCategory)); // Utility function for printing the help message. void cl::PrintHelpMessage(bool Hidden, bool Categorized) { // This looks weird, but it actually prints the help message. The Printers are // types of HelpPrinter and the help gets printed when its operator= is // invoked. That's because the "normal" usages of the help printer is to be // assigned true/false depending on whether -help or -help-hidden was given or // not. Since we're circumventing that we have to make it look like -help or // -help-hidden were given, so we assign true. if (!Hidden && !Categorized) UncategorizedNormalPrinter = true; else if (!Hidden && Categorized) CategorizedNormalPrinter = true; else if (Hidden && !Categorized) UncategorizedHiddenPrinter = true; else CategorizedHiddenPrinter = true; } /// Utility function for printing version number. void cl::PrintVersionMessage() { VersionPrinterInstance.print(); } void cl::SetVersionPrinter(void (*func)()) { OverrideVersionPrinter = func; } void cl::AddExtraVersionPrinter(void (*func)()) { if (!ExtraVersionPrinters) ExtraVersionPrinters = new std::vector<void (*)()>; ExtraVersionPrinters->push_back(func); } StringMap<Option *> &cl::getRegisteredOptions(SubCommand &Sub) { auto &Subs = GlobalParser->RegisteredSubCommands; (void)Subs; assert(is_contained(Subs, &Sub)); return Sub.OptionsMap; } iterator_range<typename SmallPtrSet<SubCommand *, 4>::iterator> cl::getRegisteredSubcommands() { return GlobalParser->getRegisteredSubcommands(); } void cl::HideUnrelatedOptions(cl::OptionCategory &Category, SubCommand &Sub) { for (auto &I : Sub.OptionsMap) { if (I.second->Category != &Category && I.second->Category != &GenericCategory) I.second->setHiddenFlag(cl::ReallyHidden); } } void cl::HideUnrelatedOptions(ArrayRef<const cl::OptionCategory *> Categories, SubCommand &Sub) { auto CategoriesBegin = Categories.begin(); auto CategoriesEnd = Categories.end(); for (auto &I : Sub.OptionsMap) { if (std::find(CategoriesBegin, CategoriesEnd, I.second->Category) == CategoriesEnd && I.second->Category != &GenericCategory) I.second->setHiddenFlag(cl::ReallyHidden); } } void cl::ResetCommandLineParser() { GlobalParser->reset(); } void cl::ResetAllOptionOccurrences() { GlobalParser->ResetAllOptionOccurrences(); } void LLVMParseCommandLineOptions(int argc, const char *const *argv, const char *Overview) { llvm::cl::ParseCommandLineOptions(argc, argv, StringRef(Overview), true); }