//===-- ConvertUTFWrapper.cpp - Wrap ConvertUTF.h with clang data types -----=== // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Support/ConvertUTF.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/SwapByteOrder.h" #include <string> #include <vector> namespace llvm { bool ConvertUTF8toWide(unsigned WideCharWidth, llvm::StringRef Source, char *&ResultPtr, const UTF8 *&ErrorPtr) { assert(WideCharWidth == 1 || WideCharWidth == 2 || WideCharWidth == 4); ConversionResult result = conversionOK; // Copy the character span over. if (WideCharWidth == 1) { const UTF8 *Pos = reinterpret_cast<const UTF8*>(Source.begin()); if (!isLegalUTF8String(&Pos, reinterpret_cast<const UTF8*>(Source.end()))) { result = sourceIllegal; ErrorPtr = Pos; } else { memcpy(ResultPtr, Source.data(), Source.size()); ResultPtr += Source.size(); } } else if (WideCharWidth == 2) { const UTF8 *sourceStart = (const UTF8*)Source.data(); // FIXME: Make the type of the result buffer correct instead of // using reinterpret_cast. UTF16 *targetStart = reinterpret_cast<UTF16*>(ResultPtr); ConversionFlags flags = strictConversion; result = ConvertUTF8toUTF16( &sourceStart, sourceStart + Source.size(), &targetStart, targetStart + Source.size(), flags); if (result == conversionOK) ResultPtr = reinterpret_cast<char*>(targetStart); else ErrorPtr = sourceStart; } else if (WideCharWidth == 4) { const UTF8 *sourceStart = (const UTF8*)Source.data(); // FIXME: Make the type of the result buffer correct instead of // using reinterpret_cast. UTF32 *targetStart = reinterpret_cast<UTF32*>(ResultPtr); ConversionFlags flags = strictConversion; result = ConvertUTF8toUTF32( &sourceStart, sourceStart + Source.size(), &targetStart, targetStart + Source.size(), flags); if (result == conversionOK) ResultPtr = reinterpret_cast<char*>(targetStart); else ErrorPtr = sourceStart; } assert((result != targetExhausted) && "ConvertUTF8toUTFXX exhausted target buffer"); return result == conversionOK; } bool ConvertCodePointToUTF8(unsigned Source, char *&ResultPtr) { const UTF32 *SourceStart = &Source; const UTF32 *SourceEnd = SourceStart + 1; UTF8 *TargetStart = reinterpret_cast<UTF8 *>(ResultPtr); UTF8 *TargetEnd = TargetStart + 4; ConversionResult CR = ConvertUTF32toUTF8(&SourceStart, SourceEnd, &TargetStart, TargetEnd, strictConversion); if (CR != conversionOK) return false; ResultPtr = reinterpret_cast<char*>(TargetStart); return true; } bool hasUTF16ByteOrderMark(ArrayRef<char> S) { return (S.size() >= 2 && ((S[0] == '\xff' && S[1] == '\xfe') || (S[0] == '\xfe' && S[1] == '\xff'))); } bool convertUTF16ToUTF8String(ArrayRef<char> SrcBytes, std::string &Out) { assert(Out.empty()); // Error out on an uneven byte count. if (SrcBytes.size() % 2) return false; // Avoid OOB by returning early on empty input. if (SrcBytes.empty()) return true; const UTF16 *Src = reinterpret_cast<const UTF16 *>(SrcBytes.begin()); const UTF16 *SrcEnd = reinterpret_cast<const UTF16 *>(SrcBytes.end()); // Byteswap if necessary. std::vector<UTF16> ByteSwapped; if (Src[0] == UNI_UTF16_BYTE_ORDER_MARK_SWAPPED) { ByteSwapped.insert(ByteSwapped.end(), Src, SrcEnd); for (unsigned I = 0, E = ByteSwapped.size(); I != E; ++I) ByteSwapped[I] = llvm::sys::SwapByteOrder_16(ByteSwapped[I]); Src = &ByteSwapped[0]; SrcEnd = &ByteSwapped[ByteSwapped.size() - 1] + 1; } // Skip the BOM for conversion. if (Src[0] == UNI_UTF16_BYTE_ORDER_MARK_NATIVE) Src++; // Just allocate enough space up front. We'll shrink it later. Allocate // enough that we can fit a null terminator without reallocating. Out.resize(SrcBytes.size() * UNI_MAX_UTF8_BYTES_PER_CODE_POINT + 1); UTF8 *Dst = reinterpret_cast<UTF8 *>(&Out[0]); UTF8 *DstEnd = Dst + Out.size(); ConversionResult CR = ConvertUTF16toUTF8(&Src, SrcEnd, &Dst, DstEnd, strictConversion); assert(CR != targetExhausted); if (CR != conversionOK) { Out.clear(); return false; } Out.resize(reinterpret_cast<char *>(Dst) - &Out[0]); Out.push_back(0); Out.pop_back(); return true; } bool convertUTF16ToUTF8String(ArrayRef<UTF16> Src, std::string &Out) { return convertUTF16ToUTF8String( llvm::ArrayRef<char>(reinterpret_cast<const char *>(Src.data()), Src.size() * sizeof(UTF16)), Out); } bool convertUTF8ToUTF16String(StringRef SrcUTF8, SmallVectorImpl<UTF16> &DstUTF16) { assert(DstUTF16.empty()); // Avoid OOB by returning early on empty input. if (SrcUTF8.empty()) { DstUTF16.push_back(0); DstUTF16.pop_back(); return true; } const UTF8 *Src = reinterpret_cast<const UTF8 *>(SrcUTF8.begin()); const UTF8 *SrcEnd = reinterpret_cast<const UTF8 *>(SrcUTF8.end()); // Allocate the same number of UTF-16 code units as UTF-8 code units. Encoding // as UTF-16 should always require the same amount or less code units than the // UTF-8 encoding. Allocate one extra byte for the null terminator though, // so that someone calling DstUTF16.data() gets a null terminated string. // We resize down later so we don't have to worry that this over allocates. DstUTF16.resize(SrcUTF8.size()+1); UTF16 *Dst = &DstUTF16[0]; UTF16 *DstEnd = Dst + DstUTF16.size(); ConversionResult CR = ConvertUTF8toUTF16(&Src, SrcEnd, &Dst, DstEnd, strictConversion); assert(CR != targetExhausted); if (CR != conversionOK) { DstUTF16.clear(); return false; } DstUTF16.resize(Dst - &DstUTF16[0]); DstUTF16.push_back(0); DstUTF16.pop_back(); return true; } static_assert(sizeof(wchar_t) == 1 || sizeof(wchar_t) == 2 || sizeof(wchar_t) == 4, "Expected wchar_t to be 1, 2, or 4 bytes"); template <typename TResult> static inline bool ConvertUTF8toWideInternal(llvm::StringRef Source, TResult &Result) { // Even in the case of UTF-16, the number of bytes in a UTF-8 string is // at least as large as the number of elements in the resulting wide // string, because surrogate pairs take at least 4 bytes in UTF-8. Result.resize(Source.size() + 1); char *ResultPtr = reinterpret_cast<char *>(&Result[0]); const UTF8 *ErrorPtr; if (!ConvertUTF8toWide(sizeof(wchar_t), Source, ResultPtr, ErrorPtr)) { Result.clear(); return false; } Result.resize(reinterpret_cast<wchar_t *>(ResultPtr) - &Result[0]); return true; } bool ConvertUTF8toWide(llvm::StringRef Source, std::wstring &Result) { return ConvertUTF8toWideInternal(Source, Result); } bool ConvertUTF8toWide(const char *Source, std::wstring &Result) { if (!Source) { Result.clear(); return true; } return ConvertUTF8toWide(llvm::StringRef(Source), Result); } bool convertWideToUTF8(const std::wstring &Source, std::string &Result) { if (sizeof(wchar_t) == 1) { const UTF8 *Start = reinterpret_cast<const UTF8 *>(Source.data()); const UTF8 *End = reinterpret_cast<const UTF8 *>(Source.data() + Source.size()); if (!isLegalUTF8String(&Start, End)) return false; Result.resize(Source.size()); memcpy(&Result[0], Source.data(), Source.size()); return true; } else if (sizeof(wchar_t) == 2) { return convertUTF16ToUTF8String( llvm::ArrayRef<UTF16>(reinterpret_cast<const UTF16 *>(Source.data()), Source.size()), Result); } else if (sizeof(wchar_t) == 4) { const UTF32 *Start = reinterpret_cast<const UTF32 *>(Source.data()); const UTF32 *End = reinterpret_cast<const UTF32 *>(Source.data() + Source.size()); Result.resize(UNI_MAX_UTF8_BYTES_PER_CODE_POINT * Source.size()); UTF8 *ResultPtr = reinterpret_cast<UTF8 *>(&Result[0]); UTF8 *ResultEnd = reinterpret_cast<UTF8 *>(&Result[0] + Result.size()); if (ConvertUTF32toUTF8(&Start, End, &ResultPtr, ResultEnd, strictConversion) == conversionOK) { Result.resize(reinterpret_cast<char *>(ResultPtr) - &Result[0]); return true; } else { Result.clear(); return false; } } else { llvm_unreachable( "Control should never reach this point; see static_assert further up"); } } } // end namespace llvm