//===- subzero/src/IceAssemblerARM32.cpp - Assembler for ARM32 --*- C++ -*-===// // // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file // for details. All rights reserved. Use of this source code is governed by a // BSD-style license that can be found in the LICENSE file. // // Modified by the Subzero authors. // //===----------------------------------------------------------------------===// // // The Subzero Code Generator // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// \brief Implements the Assembler class for ARM32. /// //===----------------------------------------------------------------------===// #include "IceAssemblerARM32.h" #include "IceCfgNode.h" #include "IceUtils.h" namespace { using namespace Ice; using namespace Ice::ARM32; using WordType = uint32_t; static constexpr IValueT kWordSize = sizeof(WordType); // The following define individual bits. static constexpr IValueT B0 = 1; static constexpr IValueT B1 = 1 << 1; static constexpr IValueT B2 = 1 << 2; static constexpr IValueT B3 = 1 << 3; static constexpr IValueT B4 = 1 << 4; static constexpr IValueT B5 = 1 << 5; static constexpr IValueT B6 = 1 << 6; static constexpr IValueT B7 = 1 << 7; static constexpr IValueT B8 = 1 << 8; static constexpr IValueT B9 = 1 << 9; static constexpr IValueT B10 = 1 << 10; static constexpr IValueT B11 = 1 << 11; static constexpr IValueT B12 = 1 << 12; static constexpr IValueT B13 = 1 << 13; static constexpr IValueT B14 = 1 << 14; static constexpr IValueT B15 = 1 << 15; static constexpr IValueT B16 = 1 << 16; static constexpr IValueT B17 = 1 << 17; static constexpr IValueT B18 = 1 << 18; static constexpr IValueT B19 = 1 << 19; static constexpr IValueT B20 = 1 << 20; static constexpr IValueT B21 = 1 << 21; static constexpr IValueT B22 = 1 << 22; static constexpr IValueT B23 = 1 << 23; static constexpr IValueT B24 = 1 << 24; static constexpr IValueT B25 = 1 << 25; static constexpr IValueT B26 = 1 << 26; static constexpr IValueT B27 = 1 << 27; // Constants used for the decoding or encoding of the individual fields of // instructions. Based on ARM section A5.1. static constexpr IValueT L = 1 << 20; // load (or store) static constexpr IValueT W = 1 << 21; // writeback base register // (or leave unchanged) static constexpr IValueT B = 1 << 22; // unsigned byte (or word) static constexpr IValueT U = 1 << 23; // positive (or negative) // offset/index static constexpr IValueT P = 1 << 24; // offset/pre-indexed // addressing (or // post-indexed addressing) static constexpr IValueT kConditionShift = 28; static constexpr IValueT kLinkShift = 24; static constexpr IValueT kOpcodeShift = 21; static constexpr IValueT kRdShift = 12; static constexpr IValueT kRmShift = 0; static constexpr IValueT kRnShift = 16; static constexpr IValueT kRsShift = 8; static constexpr IValueT kSShift = 20; static constexpr IValueT kTypeShift = 25; // Immediate instruction fields encoding. static constexpr IValueT kImmed8Bits = 8; static constexpr IValueT kImmed8Shift = 0; static constexpr IValueT kRotateBits = 4; static constexpr IValueT kRotateShift = 8; // Shift instruction register fields encodings. static constexpr IValueT kShiftImmShift = 7; static constexpr IValueT kShiftImmBits = 5; static constexpr IValueT kShiftShift = 5; static constexpr IValueT kImmed12Bits = 12; static constexpr IValueT kImm12Shift = 0; // Rotation instructions (uxtb etc.). static constexpr IValueT kRotationShift = 10; // MemEx instructions. static constexpr IValueT kMemExOpcodeShift = 20; // Div instruction register field encodings. static constexpr IValueT kDivRdShift = 16; static constexpr IValueT kDivRmShift = 8; static constexpr IValueT kDivRnShift = 0; // Type of instruction encoding (bits 25-27). See ARM section A5.1 static constexpr IValueT kInstTypeDataRegister = 0; // i.e. 000 static constexpr IValueT kInstTypeDataRegShift = 0; // i.e. 000 static constexpr IValueT kInstTypeDataImmediate = 1; // i.e. 001 static constexpr IValueT kInstTypeMemImmediate = 2; // i.e. 010 static constexpr IValueT kInstTypeRegisterShift = 3; // i.e. 011 // Limit on number of registers in a vpush/vpop. static constexpr SizeT VpushVpopMaxConsecRegs = 16; // Offset modifier to current PC for next instruction. The offset is off by 8 // due to the way the ARM CPUs read PC. static constexpr IOffsetT kPCReadOffset = 8; // Mask to pull out PC offset from branch (b) instruction. static constexpr int kBranchOffsetBits = 24; static constexpr IOffsetT kBranchOffsetMask = 0x00ffffff; IValueT encodeBool(bool B) { return B ? 1 : 0; } IValueT encodeRotation(ARM32::AssemblerARM32::RotationValue Value) { return static_cast<IValueT>(Value); } IValueT encodeGPRRegister(RegARM32::GPRRegister Rn) { return static_cast<IValueT>(Rn); } RegARM32::GPRRegister decodeGPRRegister(IValueT R) { return static_cast<RegARM32::GPRRegister>(R); } IValueT encodeCondition(CondARM32::Cond Cond) { return static_cast<IValueT>(Cond); } IValueT encodeShift(OperandARM32::ShiftKind Shift) { // Follows encoding in ARM section A8.4.1 "Constant shifts". switch (Shift) { case OperandARM32::kNoShift: case OperandARM32::LSL: return 0; // 0b00 case OperandARM32::LSR: return 1; // 0b01 case OperandARM32::ASR: return 2; // 0b10 case OperandARM32::ROR: case OperandARM32::RRX: return 3; // 0b11 } llvm::report_fatal_error("Unknown Shift value"); return 0; } // Returns the bits in the corresponding masked value. IValueT mask(IValueT Value, IValueT Shift, IValueT Bits) { return (Value >> Shift) & ((1 << Bits) - 1); } // Extract out a Bit in Value. bool isBitSet(IValueT Bit, IValueT Value) { return (Value & Bit) == Bit; } // Returns the GPR register at given Shift in Value. RegARM32::GPRRegister getGPRReg(IValueT Shift, IValueT Value) { return decodeGPRRegister((Value >> Shift) & 0xF); } IValueT getEncodedGPRegNum(const Variable *Var) { assert(Var->hasReg()); const auto Reg = Var->getRegNum(); return llvm::isa<Variable64On32>(Var) ? RegARM32::getI64PairFirstGPRNum(Reg) : RegARM32::getEncodedGPR(Reg); } IValueT getEncodedSRegNum(const Variable *Var) { assert(Var->hasReg()); return RegARM32::getEncodedSReg(Var->getRegNum()); } IValueT getEncodedDRegNum(const Variable *Var) { return RegARM32::getEncodedDReg(Var->getRegNum()); } IValueT getEncodedQRegNum(const Variable *Var) { return RegARM32::getEncodedQReg(Var->getRegNum()); } IValueT mapQRegToDReg(IValueT EncodedQReg) { IValueT DReg = EncodedQReg << 1; assert(DReg < RegARM32::getNumDRegs()); return DReg; } IValueT mapQRegToSReg(IValueT EncodedQReg) { IValueT SReg = EncodedQReg << 2; assert(SReg < RegARM32::getNumSRegs()); return SReg; } IValueT getYInRegXXXXY(IValueT RegXXXXY) { return RegXXXXY & 0x1; } IValueT getXXXXInRegXXXXY(IValueT RegXXXXY) { return RegXXXXY >> 1; } IValueT getYInRegYXXXX(IValueT RegYXXXX) { return RegYXXXX >> 4; } IValueT getXXXXInRegYXXXX(IValueT RegYXXXX) { return RegYXXXX & 0x0f; } // Figures out Op/Cmode values for given Value. Returns true if able to encode. bool encodeAdvSIMDExpandImm(IValueT Value, Type ElmtTy, IValueT &Op, IValueT &Cmode, IValueT &Imm8) { // TODO(kschimpf): Handle other shifted 8-bit values. constexpr IValueT Imm8Mask = 0xFF; if ((Value & IValueT(~Imm8Mask)) != 0) return false; Imm8 = Value; switch (ElmtTy) { case IceType_i8: Op = 0; Cmode = 14; // 0b1110 return true; case IceType_i16: Op = 0; Cmode = 8; // 0b1000 return true; case IceType_i32: Op = 0; Cmode = 0; // 0b0000 return true; default: return false; } } // Defines layouts of an operand representing a (register) memory address, // possibly modified by an immediate value. enum EncodedImmAddress { // Address modified by a rotated immediate 8-bit value. RotatedImm8Address, // Alternate encoding for RotatedImm8Address, where the offset is divided by 4 // before encoding. RotatedImm8Div4Address, // Address modified by an immediate 12-bit value. Imm12Address, // Alternate encoding 3, for an address modified by a rotated immediate 8-bit // value. RotatedImm8Enc3Address, // Encoding where no immediate offset is used. NoImmOffsetAddress }; // The way an operand is encoded into a sequence of bits in functions // encodeOperand and encodeAddress below. enum EncodedOperand { // Unable to encode, value left undefined. CantEncode = 0, // Value is register found. EncodedAsRegister, // Value=rrrriiiiiiii where rrrr is the rotation, and iiiiiiii is the imm8 // value. EncodedAsRotatedImm8, // EncodedAsImmRegOffset is a memory operand that can take three forms, based // on type EncodedImmAddress: // // ***** RotatedImm8Address ***** // // Value=0000000pu0w0nnnn0000iiiiiiiiiiii where nnnn is the base register Rn, // p=1 if pre-indexed addressing, u=1 if offset positive, w=1 if writeback to // Rn should be used, and iiiiiiiiiiii defines the rotated Imm8 value. // // ***** RotatedImm8Div4Address ***** // // Value=00000000pu0w0nnnn0000iiii0000jjjj where nnnn=Rn, iiiijjjj=Imm8, p=1 // if pre-indexed addressing, u=1 if offset positive, and w=1 if writeback to // Rn. // // ***** Imm12Address ***** // // Value=0000000pu0w0nnnn0000iiiiiiiiiiii where nnnn is the base register Rn, // p=1 if pre-indexed addressing, u=1 if offset positive, w=1 if writeback to // Rn should be used, and iiiiiiiiiiii defines the immediate 12-bit value. // // ***** NoImmOffsetAddress ***** // // Value=000000001000nnnn0000000000000000 where nnnn=Rn. EncodedAsImmRegOffset, // Value=0000000pu0w00nnnnttttiiiiiss0mmmm where nnnn is the base register Rn, // mmmm is the index register Rm, iiiii is the shift amount, ss is the shift // kind, p=1 if pre-indexed addressing, u=1 if offset positive, and w=1 if // writeback to Rn. EncodedAsShiftRotateImm5, // Value=000000000000000000000iiiii0000000 where iiii defines the Imm5 value // to shift. EncodedAsShiftImm5, // Value=iiiiiss0mmmm where mmmm is the register to rotate, ss is the shift // kind, and iiiii is the shift amount. EncodedAsShiftedRegister, // Value=ssss0tt1mmmm where mmmm=Rm, tt is an encoded ShiftKind, and ssss=Rms. EncodedAsRegShiftReg, // Value is 32bit integer constant. EncodedAsConstI32 }; // Sets Encoding to a rotated Imm8 encoding of Value, if possible. IValueT encodeRotatedImm8(IValueT RotateAmt, IValueT Immed8) { assert(RotateAmt < (1 << kRotateBits)); assert(Immed8 < (1 << kImmed8Bits)); return (RotateAmt << kRotateShift) | (Immed8 << kImmed8Shift); } // Encodes iiiiitt0mmmm for data-processing (2nd) operands where iiiii=Imm5, // tt=Shift, and mmmm=Rm. IValueT encodeShiftRotateImm5(IValueT Rm, OperandARM32::ShiftKind Shift, IOffsetT imm5) { (void)kShiftImmBits; assert(imm5 < (1 << kShiftImmBits)); return (imm5 << kShiftImmShift) | (encodeShift(Shift) << kShiftShift) | Rm; } // Encodes mmmmtt01ssss for data-processing operands where mmmm=Rm, ssss=Rs, and // tt=Shift. IValueT encodeShiftRotateReg(IValueT Rm, OperandARM32::ShiftKind Shift, IValueT Rs) { return (Rs << kRsShift) | (encodeShift(Shift) << kShiftShift) | B4 | (Rm << kRmShift); } // Defines the set of registers expected in an operand. enum RegSetWanted { WantGPRegs, WantSRegs, WantDRegs, WantQRegs }; EncodedOperand encodeOperand(const Operand *Opnd, IValueT &Value, RegSetWanted WantedRegSet) { Value = 0; // Make sure initialized. if (const auto *Var = llvm::dyn_cast<Variable>(Opnd)) { if (Var->hasReg()) { switch (WantedRegSet) { case WantGPRegs: Value = getEncodedGPRegNum(Var); break; case WantSRegs: Value = getEncodedSRegNum(Var); break; case WantDRegs: Value = getEncodedDRegNum(Var); break; case WantQRegs: Value = getEncodedQRegNum(Var); break; } return EncodedAsRegister; } return CantEncode; } if (const auto *FlexImm = llvm::dyn_cast<OperandARM32FlexImm>(Opnd)) { const IValueT Immed8 = FlexImm->getImm(); const IValueT Rotate = FlexImm->getRotateAmt(); if (!((Rotate < (1 << kRotateBits)) && (Immed8 < (1 << kImmed8Bits)))) return CantEncode; Value = (Rotate << kRotateShift) | (Immed8 << kImmed8Shift); return EncodedAsRotatedImm8; } if (const auto *Const = llvm::dyn_cast<ConstantInteger32>(Opnd)) { Value = Const->getValue(); return EncodedAsConstI32; } if (const auto *FlexReg = llvm::dyn_cast<OperandARM32FlexReg>(Opnd)) { Operand *Amt = FlexReg->getShiftAmt(); IValueT Rm; if (encodeOperand(FlexReg->getReg(), Rm, WantGPRegs) != EncodedAsRegister) return CantEncode; if (const auto *Var = llvm::dyn_cast<Variable>(Amt)) { IValueT Rs; if (encodeOperand(Var, Rs, WantGPRegs) != EncodedAsRegister) return CantEncode; Value = encodeShiftRotateReg(Rm, FlexReg->getShiftOp(), Rs); return EncodedAsRegShiftReg; } // If reached, the amount is a shifted amount by some 5-bit immediate. uint32_t Imm5; if (const auto *ShAmt = llvm::dyn_cast<OperandARM32ShAmtImm>(Amt)) { Imm5 = ShAmt->getShAmtImm(); } else if (const auto *IntConst = llvm::dyn_cast<ConstantInteger32>(Amt)) { int32_t Val = IntConst->getValue(); if (Val < 0) return CantEncode; Imm5 = static_cast<uint32_t>(Val); } else return CantEncode; Value = encodeShiftRotateImm5(Rm, FlexReg->getShiftOp(), Imm5); return EncodedAsShiftedRegister; } if (const auto *ShImm = llvm::dyn_cast<OperandARM32ShAmtImm>(Opnd)) { const IValueT Immed5 = ShImm->getShAmtImm(); assert(Immed5 < (1 << kShiftImmBits)); Value = (Immed5 << kShiftImmShift); return EncodedAsShiftImm5; } return CantEncode; } IValueT encodeImmRegOffset(IValueT Reg, IOffsetT Offset, OperandARM32Mem::AddrMode Mode, IOffsetT MaxOffset, IValueT OffsetShift) { IValueT Value = Mode | (Reg << kRnShift); if (Offset < 0) { Offset = -Offset; Value ^= U; // Flip U to adjust sign. } assert(Offset <= MaxOffset); (void)MaxOffset; return Value | (Offset >> OffsetShift); } // Encodes immediate register offset using encoding 3. IValueT encodeImmRegOffsetEnc3(IValueT Rn, IOffsetT Imm8, OperandARM32Mem::AddrMode Mode) { IValueT Value = Mode | (Rn << kRnShift); if (Imm8 < 0) { Imm8 = -Imm8; Value = (Value ^ U); } assert(Imm8 < (1 << 8)); Value = Value | B22 | ((Imm8 & 0xf0) << 4) | (Imm8 & 0x0f); return Value; } IValueT encodeImmRegOffset(EncodedImmAddress ImmEncoding, IValueT Reg, IOffsetT Offset, OperandARM32Mem::AddrMode Mode) { switch (ImmEncoding) { case RotatedImm8Address: { constexpr IOffsetT MaxOffset = (1 << 8) - 1; constexpr IValueT NoRightShift = 0; return encodeImmRegOffset(Reg, Offset, Mode, MaxOffset, NoRightShift); } case RotatedImm8Div4Address: { assert((Offset & 0x3) == 0); constexpr IOffsetT MaxOffset = (1 << 8) - 1; constexpr IValueT RightShift2 = 2; return encodeImmRegOffset(Reg, Offset, Mode, MaxOffset, RightShift2); } case Imm12Address: { constexpr IOffsetT MaxOffset = (1 << 12) - 1; constexpr IValueT NoRightShift = 0; return encodeImmRegOffset(Reg, Offset, Mode, MaxOffset, NoRightShift); } case RotatedImm8Enc3Address: return encodeImmRegOffsetEnc3(Reg, Offset, Mode); case NoImmOffsetAddress: { assert(Offset == 0); assert(Mode == OperandARM32Mem::Offset); return Reg << kRnShift; } } llvm_unreachable("(silence g++ warning)"); } // Encodes memory address Opnd, and encodes that information into Value, based // on how ARM represents the address. Returns how the value was encoded. EncodedOperand encodeAddress(const Operand *Opnd, IValueT &Value, const AssemblerARM32::TargetInfo &TInfo, EncodedImmAddress ImmEncoding) { Value = 0; // Make sure initialized. if (const auto *Var = llvm::dyn_cast<Variable>(Opnd)) { // Should be a stack variable, with an offset. if (Var->hasReg()) return CantEncode; IOffsetT Offset = Var->getStackOffset(); if (!Utils::IsAbsoluteUint(12, Offset)) return CantEncode; const auto BaseRegNum = Var->hasReg() ? Var->getBaseRegNum() : TInfo.FrameOrStackReg; Value = encodeImmRegOffset(ImmEncoding, BaseRegNum, Offset, OperandARM32Mem::Offset); return EncodedAsImmRegOffset; } if (const auto *Mem = llvm::dyn_cast<OperandARM32Mem>(Opnd)) { Variable *Var = Mem->getBase(); if (!Var->hasReg()) return CantEncode; IValueT Rn = getEncodedGPRegNum(Var); if (Mem->isRegReg()) { const Variable *Index = Mem->getIndex(); if (Var == nullptr) return CantEncode; Value = (Rn << kRnShift) | Mem->getAddrMode() | encodeShiftRotateImm5(getEncodedGPRegNum(Index), Mem->getShiftOp(), Mem->getShiftAmt()); return EncodedAsShiftRotateImm5; } // Encoded as immediate register offset. ConstantInteger32 *Offset = Mem->getOffset(); Value = encodeImmRegOffset(ImmEncoding, Rn, Offset->getValue(), Mem->getAddrMode()); return EncodedAsImmRegOffset; } return CantEncode; } // Checks that Offset can fit in imm24 constant of branch (b) instruction. void assertCanEncodeBranchOffset(IOffsetT Offset) { (void)Offset; (void)kBranchOffsetBits; assert(Utils::IsAligned(Offset, 4) && Utils::IsInt(kBranchOffsetBits, Offset >> 2)); } IValueT encodeBranchOffset(IOffsetT Offset, IValueT Inst) { // Adjust offset to the way ARM CPUs read PC. Offset -= kPCReadOffset; assertCanEncodeBranchOffset(Offset); // Properly preserve only the bits supported in the instruction. Offset >>= 2; Offset &= kBranchOffsetMask; return (Inst & ~kBranchOffsetMask) | Offset; } IValueT encodeRegister(const Operand *OpReg, RegSetWanted WantedRegSet, const char *RegName, const char *InstName) { IValueT Reg = 0; if (encodeOperand(OpReg, Reg, WantedRegSet) != EncodedAsRegister) llvm::report_fatal_error(std::string(InstName) + ": Can't find register " + RegName); return Reg; } IValueT encodeGPRegister(const Operand *OpReg, const char *RegName, const char *InstName) { return encodeRegister(OpReg, WantGPRegs, RegName, InstName); } IValueT encodeSRegister(const Operand *OpReg, const char *RegName, const char *InstName) { return encodeRegister(OpReg, WantSRegs, RegName, InstName); } IValueT encodeDRegister(const Operand *OpReg, const char *RegName, const char *InstName) { return encodeRegister(OpReg, WantDRegs, RegName, InstName); } IValueT encodeQRegister(const Operand *OpReg, const char *RegName, const char *InstName) { return encodeRegister(OpReg, WantQRegs, RegName, InstName); } void verifyPOrNotW(IValueT Address, const char *InstName) { if (BuildDefs::minimal()) return; if (!isBitSet(P, Address) && isBitSet(W, Address)) llvm::report_fatal_error(std::string(InstName) + ": P=0 when W=1 not allowed"); } void verifyRegsNotEq(IValueT Reg1, const char *Reg1Name, IValueT Reg2, const char *Reg2Name, const char *InstName) { if (BuildDefs::minimal()) return; if (Reg1 == Reg2) llvm::report_fatal_error(std::string(InstName) + ": " + Reg1Name + "=" + Reg2Name + " not allowed"); } void verifyRegNotPc(IValueT Reg, const char *RegName, const char *InstName) { verifyRegsNotEq(Reg, RegName, RegARM32::Encoded_Reg_pc, "pc", InstName); } void verifyAddrRegNotPc(IValueT RegShift, IValueT Address, const char *RegName, const char *InstName) { if (BuildDefs::minimal()) return; if (getGPRReg(RegShift, Address) == RegARM32::Encoded_Reg_pc) llvm::report_fatal_error(std::string(InstName) + ": " + RegName + "=pc not allowed"); } void verifyRegNotPcWhenSetFlags(IValueT Reg, bool SetFlags, const char *InstName) { if (BuildDefs::minimal()) return; if (SetFlags && (Reg == RegARM32::Encoded_Reg_pc)) llvm::report_fatal_error(std::string(InstName) + ": " + RegARM32::getRegName(RegARM32::Reg_pc) + "=pc not allowed when CC=1"); } enum SIMDShiftType { ST_Vshl, ST_Vshr }; IValueT encodeSIMDShiftImm6(SIMDShiftType Shift, Type ElmtTy, const IValueT Imm) { assert(Imm > 0); const SizeT MaxShift = getScalarIntBitWidth(ElmtTy); assert(Imm < 2 * MaxShift); assert(ElmtTy == IceType_i8 || ElmtTy == IceType_i16 || ElmtTy == IceType_i32); const IValueT VshlImm = Imm - MaxShift; const IValueT VshrImm = 2 * MaxShift - Imm; return ((Shift == ST_Vshl) ? VshlImm : VshrImm) & (2 * MaxShift - 1); } IValueT encodeSIMDShiftImm6(SIMDShiftType Shift, Type ElmtTy, const ConstantInteger32 *Imm6) { const IValueT Imm = Imm6->getValue(); return encodeSIMDShiftImm6(Shift, ElmtTy, Imm); } } // end of anonymous namespace namespace Ice { namespace ARM32 { size_t MoveRelocatableFixup::emit(GlobalContext *Ctx, const Assembler &Asm) const { if (!BuildDefs::dump()) return InstARM32::InstSize; Ostream &Str = Ctx->getStrEmit(); IValueT Inst = Asm.load<IValueT>(position()); const bool IsMovw = kind() == llvm::ELF::R_ARM_MOVW_ABS_NC || kind() == llvm::ELF::R_ARM_MOVW_PREL_NC; const auto Symbol = symbol().toString(); const bool NeedsPCRelSuffix = (Asm.fixupIsPCRel(kind()) || Symbol == GlobalOffsetTable); Str << "\t" "mov" << (IsMovw ? "w" : "t") << "\t" << RegARM32::getRegName(RegNumT::fixme((Inst >> kRdShift) & 0xF)) << ", #:" << (IsMovw ? "lower" : "upper") << "16:" << Symbol << (NeedsPCRelSuffix ? " - ." : "") << "\t@ .word " // TODO(jpp): This is broken, it also needs to add a magic constant. << llvm::format_hex_no_prefix(Inst, 8) << "\n"; return InstARM32::InstSize; } IValueT AssemblerARM32::encodeElmtType(Type ElmtTy) { switch (ElmtTy) { case IceType_i8: return 0; case IceType_i16: return 1; case IceType_i32: case IceType_f32: return 2; case IceType_i64: return 3; default: llvm::report_fatal_error("SIMD op: Don't understand element type " + typeStdString(ElmtTy)); } } // This fixup points to an ARM32 instruction with the following format: void MoveRelocatableFixup::emitOffset(Assembler *Asm) const { // cccc00110T00iiiiddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, // iiiiiiiiiiiiiiii = Imm16, and T=1 for movt. const IValueT Inst = Asm->load<IValueT>(position()); constexpr IValueT Imm16Mask = 0x000F0FFF; const IValueT Imm16 = offset() & 0xffff; Asm->store(position(), (Inst & ~Imm16Mask) | ((Imm16 >> 12) << 16) | (Imm16 & 0xfff)); } MoveRelocatableFixup *AssemblerARM32::createMoveFixup(bool IsMovW, const Constant *Value) { MoveRelocatableFixup *F = new (allocate<MoveRelocatableFixup>()) MoveRelocatableFixup(); F->set_kind(IsMovW ? (IsNonsfi ? llvm::ELF::R_ARM_MOVW_PREL_NC : llvm::ELF::R_ARM_MOVW_ABS_NC) : (IsNonsfi ? llvm::ELF::R_ARM_MOVT_PREL : llvm::ELF::R_ARM_MOVT_ABS)); F->set_value(Value); Buffer.installFixup(F); return F; } size_t BlRelocatableFixup::emit(GlobalContext *Ctx, const Assembler &Asm) const { if (!BuildDefs::dump()) return InstARM32::InstSize; Ostream &Str = Ctx->getStrEmit(); IValueT Inst = Asm.load<IValueT>(position()); Str << "\t" "bl\t" << symbol() << "\t@ .word " << llvm::format_hex_no_prefix(Inst, 8) << "\n"; return InstARM32::InstSize; } void BlRelocatableFixup::emitOffset(Assembler *Asm) const { // cccc101liiiiiiiiiiiiiiiiiiiiiiii where cccc=Cond, l=Link, and // iiiiiiiiiiiiiiiiiiiiiiii= // EncodedBranchOffset(cccc101l000000000000000000000000, Offset); const IValueT Inst = Asm->load<IValueT>(position()); constexpr IValueT OffsetMask = 0x00FFFFFF; Asm->store(position(), encodeBranchOffset(offset(), Inst & ~OffsetMask)); } void AssemblerARM32::padWithNop(intptr_t Padding) { constexpr intptr_t InstWidth = sizeof(IValueT); assert(Padding % InstWidth == 0 && "Padding not multiple of instruction size"); for (intptr_t i = 0; i < Padding; i += InstWidth) nop(); } BlRelocatableFixup * AssemblerARM32::createBlFixup(const ConstantRelocatable *BlTarget) { BlRelocatableFixup *F = new (allocate<BlRelocatableFixup>()) BlRelocatableFixup(); F->set_kind(llvm::ELF::R_ARM_CALL); F->set_value(BlTarget); Buffer.installFixup(F); return F; } void AssemblerARM32::bindCfgNodeLabel(const CfgNode *Node) { if (BuildDefs::dump() && !getFlags().getDisableHybridAssembly()) { // Generate label name so that branches can find it. constexpr SizeT InstSize = 0; emitTextInst(Node->getAsmName() + ":", InstSize); } SizeT NodeNumber = Node->getIndex(); assert(!getPreliminary()); Label *L = getOrCreateCfgNodeLabel(NodeNumber); this->bind(L); } Label *AssemblerARM32::getOrCreateLabel(SizeT Number, LabelVector &Labels) { Label *L = nullptr; if (Number == Labels.size()) { L = new (this->allocate<Label>()) Label(); Labels.push_back(L); return L; } if (Number > Labels.size()) { Labels.resize(Number + 1); } L = Labels[Number]; if (!L) { L = new (this->allocate<Label>()) Label(); Labels[Number] = L; } return L; } // Pull out offset from branch Inst. IOffsetT AssemblerARM32::decodeBranchOffset(IValueT Inst) { // Sign-extend, left-shift by 2, and adjust to the way ARM CPUs read PC. const IOffsetT Offset = (Inst & kBranchOffsetMask) << 8; return (Offset >> 6) + kPCReadOffset; } void AssemblerARM32::bind(Label *L) { IOffsetT BoundPc = Buffer.size(); assert(!L->isBound()); // Labels can only be bound once. while (L->isLinked()) { IOffsetT Position = L->getLinkPosition(); IOffsetT Dest = BoundPc - Position; IValueT Inst = Buffer.load<IValueT>(Position); Buffer.store<IValueT>(Position, encodeBranchOffset(Dest, Inst)); L->setPosition(decodeBranchOffset(Inst)); } L->bindTo(BoundPc); } void AssemblerARM32::emitTextInst(const std::string &Text, SizeT InstSize) { AssemblerFixup *F = createTextFixup(Text, InstSize); emitFixup(F); for (SizeT I = 0; I < InstSize; ++I) { AssemblerBuffer::EnsureCapacity ensured(&Buffer); Buffer.emit<char>(0); } } void AssemblerARM32::emitType01(CondARM32::Cond Cond, IValueT InstType, IValueT Opcode, bool SetFlags, IValueT Rn, IValueT Rd, IValueT Imm12, EmitChecks RuleChecks, const char *InstName) { switch (RuleChecks) { case NoChecks: break; case RdIsPcAndSetFlags: verifyRegNotPcWhenSetFlags(Rd, SetFlags, InstName); break; } assert(Rd < RegARM32::getNumGPRegs()); assert(CondARM32::isDefined(Cond)); const IValueT Encoding = (encodeCondition(Cond) << kConditionShift) | (InstType << kTypeShift) | (Opcode << kOpcodeShift) | (encodeBool(SetFlags) << kSShift) | (Rn << kRnShift) | (Rd << kRdShift) | Imm12; emitInst(Encoding); } void AssemblerARM32::emitType01(CondARM32::Cond Cond, IValueT Opcode, const Operand *OpRd, const Operand *OpRn, const Operand *OpSrc1, bool SetFlags, EmitChecks RuleChecks, const char *InstName) { IValueT Rd = encodeGPRegister(OpRd, "Rd", InstName); IValueT Rn = encodeGPRegister(OpRn, "Rn", InstName); emitType01(Cond, Opcode, Rd, Rn, OpSrc1, SetFlags, RuleChecks, InstName); } void AssemblerARM32::emitType01(CondARM32::Cond Cond, IValueT Opcode, IValueT Rd, IValueT Rn, const Operand *OpSrc1, bool SetFlags, EmitChecks RuleChecks, const char *InstName) { IValueT Src1Value; // TODO(kschimpf) Other possible decodings of data operations. switch (encodeOperand(OpSrc1, Src1Value, WantGPRegs)) { default: llvm::report_fatal_error(std::string(InstName) + ": Can't encode instruction"); return; case EncodedAsRegister: { // XXX (register) // xxx{s}<c> <Rd>, <Rn>, <Rm>{, <shiff>} // // cccc000xxxxsnnnnddddiiiiitt0mmmm where cccc=Cond, xxxx=Opcode, dddd=Rd, // nnnn=Rn, mmmm=Rm, iiiii=Shift, tt=ShiftKind, and s=SetFlags. constexpr IValueT Imm5 = 0; Src1Value = encodeShiftRotateImm5(Src1Value, OperandARM32::kNoShift, Imm5); emitType01(Cond, kInstTypeDataRegister, Opcode, SetFlags, Rn, Rd, Src1Value, RuleChecks, InstName); return; } case EncodedAsShiftedRegister: { // Form is defined in case EncodedAsRegister. (i.e. XXX (register)). emitType01(Cond, kInstTypeDataRegister, Opcode, SetFlags, Rn, Rd, Src1Value, RuleChecks, InstName); return; } case EncodedAsConstI32: { // See if we can convert this to an XXX (immediate). IValueT RotateAmt; IValueT Imm8; if (!OperandARM32FlexImm::canHoldImm(Src1Value, &RotateAmt, &Imm8)) llvm::report_fatal_error(std::string(InstName) + ": Immediate rotated constant not valid"); Src1Value = encodeRotatedImm8(RotateAmt, Imm8); // Intentionally fall to next case! } case EncodedAsRotatedImm8: { // XXX (Immediate) // xxx{s}<c> <Rd>, <Rn>, #<RotatedImm8> // // cccc001xxxxsnnnnddddiiiiiiiiiiii where cccc=Cond, xxxx=Opcode, dddd=Rd, // nnnn=Rn, s=SetFlags and iiiiiiiiiiii=Src1Value defining RotatedImm8. emitType01(Cond, kInstTypeDataImmediate, Opcode, SetFlags, Rn, Rd, Src1Value, RuleChecks, InstName); return; } case EncodedAsRegShiftReg: { // XXX (register-shifted reg) // xxx{s}<c> <Rd>, <Rn>, <Rm>, <type> <Rs> // // cccc000xxxxfnnnnddddssss0tt1mmmm where cccc=Cond, xxxx=Opcode, dddd=Rd, // nnnn=Rn, ssss=Rs, f=SetFlags, tt is encoding of type, and // Src1Value=ssss01tt1mmmm. emitType01(Cond, kInstTypeDataRegShift, Opcode, SetFlags, Rn, Rd, Src1Value, RuleChecks, InstName); return; } } } void AssemblerARM32::emitType05(CondARM32::Cond Cond, IOffsetT Offset, bool Link) { // cccc101liiiiiiiiiiiiiiiiiiiiiiii where cccc=Cond, l=Link, and // iiiiiiiiiiiiiiiiiiiiiiii= // EncodedBranchOffset(cccc101l000000000000000000000000, Offset); assert(CondARM32::isDefined(Cond)); IValueT Encoding = static_cast<int32_t>(Cond) << kConditionShift | 5 << kTypeShift | (Link ? 1 : 0) << kLinkShift; Encoding = encodeBranchOffset(Offset, Encoding); emitInst(Encoding); } void AssemblerARM32::emitBranch(Label *L, CondARM32::Cond Cond, bool Link) { // TODO(kschimpf): Handle far jumps. if (L->isBound()) { const int32_t Dest = L->getPosition() - Buffer.size(); emitType05(Cond, Dest, Link); return; } const IOffsetT Position = Buffer.size(); // Use the offset field of the branch instruction for linking the sites. emitType05(Cond, L->getEncodedPosition(), Link); L->linkTo(*this, Position); } void AssemblerARM32::emitCompareOp(CondARM32::Cond Cond, IValueT Opcode, const Operand *OpRn, const Operand *OpSrc1, const char *InstName) { // XXX (register) // XXX<c> <Rn>, <Rm>{, <shift>} // // ccccyyyxxxx1nnnn0000iiiiitt0mmmm where cccc=Cond, nnnn=Rn, mmmm=Rm, iiiii // defines shift constant, tt=ShiftKind, yyy=kInstTypeDataRegister, and // xxxx=Opcode. // // XXX (immediate) // XXX<c> <Rn>, #<RotatedImm8> // // ccccyyyxxxx1nnnn0000iiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn, // yyy=kInstTypeDataImmdiate, xxxx=Opcode, and iiiiiiiiiiii=Src1Value // defining RotatedImm8. constexpr bool SetFlags = true; constexpr IValueT Rd = RegARM32::Encoded_Reg_r0; IValueT Rn = encodeGPRegister(OpRn, "Rn", InstName); emitType01(Cond, Opcode, Rd, Rn, OpSrc1, SetFlags, NoChecks, InstName); } void AssemblerARM32::emitMemOp(CondARM32::Cond Cond, IValueT InstType, bool IsLoad, bool IsByte, IValueT Rt, IValueT Address) { assert(Rt < RegARM32::getNumGPRegs()); assert(CondARM32::isDefined(Cond)); const IValueT Encoding = (encodeCondition(Cond) << kConditionShift) | (InstType << kTypeShift) | (IsLoad ? L : 0) | (IsByte ? B : 0) | (Rt << kRdShift) | Address; emitInst(Encoding); } void AssemblerARM32::emitMemOp(CondARM32::Cond Cond, bool IsLoad, bool IsByte, IValueT Rt, const Operand *OpAddress, const TargetInfo &TInfo, const char *InstName) { IValueT Address; switch (encodeAddress(OpAddress, Address, TInfo, Imm12Address)) { default: llvm::report_fatal_error(std::string(InstName) + ": Memory address not understood"); case EncodedAsImmRegOffset: { // XXX{B} (immediate): // xxx{b}<c> <Rt>, [<Rn>{, #+/-<imm12>}] ; p=1, w=0 // xxx{b}<c> <Rt>, [<Rn>], #+/-<imm12> ; p=1, w=1 // xxx{b}<c> <Rt>, [<Rn>, #+/-<imm12>]! ; p=0, w=1 // // cccc010pubwlnnnnttttiiiiiiiiiiii where cccc=Cond, tttt=Rt, nnnn=Rn, // iiiiiiiiiiii=imm12, b=IsByte, pu0w<<21 is a BlockAddr, l=IsLoad, and // pu0w0nnnn0000iiiiiiiiiiii=Address. RegARM32::GPRRegister Rn = getGPRReg(kRnShift, Address); // Check if conditions of rules violated. verifyRegNotPc(Rn, "Rn", InstName); verifyPOrNotW(Address, InstName); if (!IsByte && (Rn == RegARM32::Encoded_Reg_sp) && !isBitSet(P, Address) && isBitSet(U, Address) && !isBitSet(W, Address) && (mask(Address, kImm12Shift, kImmed12Bits) == 0x8 /* 000000000100 */)) llvm::report_fatal_error(std::string(InstName) + ": Use push/pop instead"); emitMemOp(Cond, kInstTypeMemImmediate, IsLoad, IsByte, Rt, Address); return; } case EncodedAsShiftRotateImm5: { // XXX{B} (register) // xxx{b}<c> <Rt>, [<Rn>, +/-<Rm>{, <shift>}]{!} // xxx{b}<c> <Rt>, [<Rn>], +/-<Rm>{, <shift>} // // cccc011pubwlnnnnttttiiiiiss0mmmm where cccc=Cond, tttt=Rt, // b=IsByte, U=1 if +, pu0b is a BlockAddr, l=IsLoad, and // pu0w0nnnn0000iiiiiss0mmmm=Address. RegARM32::GPRRegister Rn = getGPRReg(kRnShift, Address); RegARM32::GPRRegister Rm = getGPRReg(kRmShift, Address); // Check if conditions of rules violated. verifyPOrNotW(Address, InstName); verifyRegNotPc(Rm, "Rm", InstName); if (IsByte) verifyRegNotPc(Rt, "Rt", InstName); if (isBitSet(W, Address)) { verifyRegNotPc(Rn, "Rn", InstName); verifyRegsNotEq(Rn, "Rn", Rt, "Rt", InstName); } emitMemOp(Cond, kInstTypeRegisterShift, IsLoad, IsByte, Rt, Address); return; } } } void AssemblerARM32::emitMemOpEnc3(CondARM32::Cond Cond, IValueT Opcode, IValueT Rt, const Operand *OpAddress, const TargetInfo &TInfo, const char *InstName) { IValueT Address; switch (encodeAddress(OpAddress, Address, TInfo, RotatedImm8Enc3Address)) { default: llvm::report_fatal_error(std::string(InstName) + ": Memory address not understood"); case EncodedAsImmRegOffset: { // XXXH (immediate) // xxxh<c> <Rt>, [<Rn>{, #+-<Imm8>}] // xxxh<c> <Rt>, [<Rn>, #+/-<Imm8>] // xxxh<c> <Rt>, [<Rn>, #+/-<Imm8>]! // // cccc000pu0wxnnnnttttiiiiyyyyjjjj where cccc=Cond, nnnn=Rn, tttt=Rt, // iiiijjjj=Imm8, pu0w<<21 is a BlockAddr, x000000000000yyyy0000=Opcode, // and pu0w0nnnn0000iiii0000jjjj=Address. assert(Rt < RegARM32::getNumGPRegs()); assert(CondARM32::isDefined(Cond)); verifyPOrNotW(Address, InstName); verifyRegNotPc(Rt, "Rt", InstName); if (isBitSet(W, Address)) verifyRegsNotEq(getGPRReg(kRnShift, Address), "Rn", Rt, "Rt", InstName); const IValueT Encoding = (encodeCondition(Cond) << kConditionShift) | Opcode | (Rt << kRdShift) | Address; emitInst(Encoding); return; } case EncodedAsShiftRotateImm5: { // XXXH (register) // xxxh<c> <Rt>, [<Rn>, +/-<Rm>]{!} // xxxh<c> <Rt>, [<Rn>], +/-<Rm> // // cccc000pu0wxnnnntttt00001011mmmm where cccc=Cond, tttt=Rt, nnnn=Rn, // mmmm=Rm, pu0w<<21 is a BlockAddr, x000000000000yyyy0000=Opcode, and // pu0w0nnnn000000000000mmmm=Address. assert(Rt < RegARM32::getNumGPRegs()); assert(CondARM32::isDefined(Cond)); verifyPOrNotW(Address, InstName); verifyRegNotPc(Rt, "Rt", InstName); verifyAddrRegNotPc(kRmShift, Address, "Rm", InstName); const RegARM32::GPRRegister Rn = getGPRReg(kRnShift, Address); if (isBitSet(W, Address)) { verifyRegNotPc(Rn, "Rn", InstName); verifyRegsNotEq(Rn, "Rn", Rt, "Rt", InstName); } if (mask(Address, kShiftImmShift, 5) != 0) // For encoding 3, no shift is allowed. llvm::report_fatal_error(std::string(InstName) + ": Shift constant not allowed"); const IValueT Encoding = (encodeCondition(Cond) << kConditionShift) | Opcode | (Rt << kRdShift) | Address; emitInst(Encoding); return; } } } void AssemblerARM32::emitDivOp(CondARM32::Cond Cond, IValueT Opcode, IValueT Rd, IValueT Rn, IValueT Rm) { assert(Rd < RegARM32::getNumGPRegs()); assert(Rn < RegARM32::getNumGPRegs()); assert(Rm < RegARM32::getNumGPRegs()); assert(CondARM32::isDefined(Cond)); const IValueT Encoding = Opcode | (encodeCondition(Cond) << kConditionShift) | (Rn << kDivRnShift) | (Rd << kDivRdShift) | B26 | B25 | B24 | B20 | B15 | B14 | B13 | B12 | B4 | (Rm << kDivRmShift); emitInst(Encoding); } void AssemblerARM32::emitInsertExtractInt(CondARM32::Cond Cond, const Operand *OpQn, uint32_t Index, const Operand *OpRt, bool IsExtract, const char *InstName) { const IValueT Rt = encodeGPRegister(OpRt, "Rt", InstName); IValueT Dn = mapQRegToDReg(encodeQRegister(OpQn, "Qn", InstName)); assert(Rt != RegARM32::Encoded_Reg_pc); assert(Rt != RegARM32::Encoded_Reg_sp); assert(CondARM32::isDefined(Cond)); const uint32_t BitSize = typeWidthInBytes(OpRt->getType()) * CHAR_BIT; IValueT Opcode1 = 0; IValueT Opcode2 = 0; switch (BitSize) { default: llvm::report_fatal_error(std::string(InstName) + ": Unable to process type " + typeStdString(OpRt->getType())); case 8: assert(Index < 16); Dn = Dn | mask(Index, 3, 1); Opcode1 = B1 | mask(Index, 2, 1); Opcode2 = mask(Index, 0, 2); break; case 16: assert(Index < 8); Dn = Dn | mask(Index, 2, 1); Opcode1 = mask(Index, 1, 1); Opcode2 = (mask(Index, 0, 1) << 1) | B0; break; case 32: assert(Index < 4); Dn = Dn | mask(Index, 1, 1); Opcode1 = mask(Index, 0, 1); break; } const IValueT Encoding = B27 | B26 | B25 | B11 | B9 | B8 | B4 | (encodeCondition(Cond) << kConditionShift) | (Opcode1 << 21) | (getXXXXInRegYXXXX(Dn) << kRnShift) | (Rt << 12) | (encodeBool(IsExtract) << 20) | (getYInRegYXXXX(Dn) << 7) | (Opcode2 << 5); emitInst(Encoding); } void AssemblerARM32::emitMoveSS(CondARM32::Cond Cond, IValueT Sd, IValueT Sm) { // VMOV (register) - ARM section A8.8.340, encoding A2: // vmov<c>.f32 <Sd>, <Sm> // // cccc11101D110000dddd101001M0mmmm where cccc=Cond, ddddD=Sd, and mmmmM=Sm. constexpr IValueT VmovssOpcode = B23 | B21 | B20 | B6; constexpr IValueT S0 = 0; emitVFPsss(Cond, VmovssOpcode, Sd, S0, Sm); } void AssemblerARM32::emitMulOp(CondARM32::Cond Cond, IValueT Opcode, IValueT Rd, IValueT Rn, IValueT Rm, IValueT Rs, bool SetFlags) { assert(Rd < RegARM32::getNumGPRegs()); assert(Rn < RegARM32::getNumGPRegs()); assert(Rm < RegARM32::getNumGPRegs()); assert(Rs < RegARM32::getNumGPRegs()); assert(CondARM32::isDefined(Cond)); IValueT Encoding = Opcode | (encodeCondition(Cond) << kConditionShift) | (encodeBool(SetFlags) << kSShift) | (Rn << kRnShift) | (Rd << kRdShift) | (Rs << kRsShift) | B7 | B4 | (Rm << kRmShift); emitInst(Encoding); } void AssemblerARM32::emitMultiMemOp(CondARM32::Cond Cond, BlockAddressMode AddressMode, bool IsLoad, IValueT BaseReg, IValueT Registers) { assert(CondARM32::isDefined(Cond)); assert(BaseReg < RegARM32::getNumGPRegs()); assert(Registers < (1 << RegARM32::getNumGPRegs())); IValueT Encoding = (encodeCondition(Cond) << kConditionShift) | B27 | AddressMode | (IsLoad ? L : 0) | (BaseReg << kRnShift) | Registers; emitInst(Encoding); } void AssemblerARM32::emitSignExtend(CondARM32::Cond Cond, IValueT Opcode, const Operand *OpRd, const Operand *OpSrc0, const char *InstName) { IValueT Rd = encodeGPRegister(OpRd, "Rd", InstName); IValueT Rm = encodeGPRegister(OpSrc0, "Rm", InstName); // Note: For the moment, we assume no rotation is specified. RotationValue Rotation = kRotateNone; constexpr IValueT Rn = RegARM32::Encoded_Reg_pc; const Type Ty = OpSrc0->getType(); switch (Ty) { default: llvm::report_fatal_error(std::string(InstName) + ": Type " + typeString(Ty) + " not allowed"); break; case IceType_i1: case IceType_i8: { // SXTB/UXTB - Arm sections A8.8.233 and A8.8.274, encoding A1: // sxtb<c> <Rd>, <Rm>{, <rotate>} // uxtb<c> <Rd>, <Rm>{, <rotate>} // // ccccxxxxxxxx1111ddddrr000111mmmm where cccc=Cond, xxxxxxxx<<20=Opcode, // dddd=Rd, mmmm=Rm, and rr defined (RotationValue) rotate. break; } case IceType_i16: { // SXTH/UXTH - ARM sections A8.8.235 and A8.8.276, encoding A1: // uxth<c> <Rd>< <Rm>{, <rotate>} // // cccc01101111nnnnddddrr000111mmmm where cccc=Cond, dddd=Rd, mmmm=Rm, and // rr defined (RotationValue) rotate. Opcode |= B20; break; } } assert(CondARM32::isDefined(Cond)); IValueT Rot = encodeRotation(Rotation); if (!Utils::IsUint(2, Rot)) llvm::report_fatal_error(std::string(InstName) + ": Illegal rotation value"); IValueT Encoding = (encodeCondition(Cond) << kConditionShift) | Opcode | (Rn << kRnShift) | (Rd << kRdShift) | (Rot << kRotationShift) | B6 | B5 | B4 | (Rm << kRmShift); emitInst(Encoding); } void AssemblerARM32::emitSIMDBase(IValueT Opcode, IValueT Dd, IValueT Dn, IValueT Dm, bool UseQRegs, bool IsFloatTy) { const IValueT Encoding = Opcode | B25 | (encodeCondition(CondARM32::kNone) << kConditionShift) | (getYInRegYXXXX(Dd) << 22) | (getXXXXInRegYXXXX(Dn) << 16) | (getXXXXInRegYXXXX(Dd) << 12) | (IsFloatTy ? B10 : 0) | (getYInRegYXXXX(Dn) << 7) | (encodeBool(UseQRegs) << 6) | (getYInRegYXXXX(Dm) << 5) | getXXXXInRegYXXXX(Dm); emitInst(Encoding); } void AssemblerARM32::emitSIMD(IValueT Opcode, Type ElmtTy, IValueT Dd, IValueT Dn, IValueT Dm, bool UseQRegs) { constexpr IValueT ElmtShift = 20; const IValueT ElmtSize = encodeElmtType(ElmtTy); assert(Utils::IsUint(2, ElmtSize)); emitSIMDBase(Opcode | (ElmtSize << ElmtShift), Dd, Dn, Dm, UseQRegs, isFloatingType(ElmtTy)); } void AssemblerARM32::emitSIMDqqqBase(IValueT Opcode, const Operand *OpQd, const Operand *OpQn, const Operand *OpQm, bool IsFloatTy, const char *OpcodeName) { const IValueT Qd = encodeQRegister(OpQd, "Qd", OpcodeName); const IValueT Qn = encodeQRegister(OpQn, "Qn", OpcodeName); const IValueT Qm = encodeQRegister(OpQm, "Qm", OpcodeName); constexpr bool UseQRegs = true; emitSIMDBase(Opcode, mapQRegToDReg(Qd), mapQRegToDReg(Qn), mapQRegToDReg(Qm), UseQRegs, IsFloatTy); } void AssemblerARM32::emitSIMDqqq(IValueT Opcode, Type ElmtTy, const Operand *OpQd, const Operand *OpQn, const Operand *OpQm, const char *OpcodeName) { constexpr IValueT ElmtShift = 20; const IValueT ElmtSize = encodeElmtType(ElmtTy); assert(Utils::IsUint(2, ElmtSize)); emitSIMDqqqBase(Opcode | (ElmtSize << ElmtShift), OpQd, OpQn, OpQm, isFloatingType(ElmtTy), OpcodeName); } void AssemblerARM32::emitSIMDShiftqqc(IValueT Opcode, const Operand *OpQd, const Operand *OpQm, const IValueT Imm6, const char *OpcodeName) { const IValueT Qd = encodeQRegister(OpQd, "Qd", OpcodeName); const IValueT Qn = 0; const IValueT Qm = encodeQRegister(OpQm, "Qm", OpcodeName); constexpr bool UseQRegs = true; constexpr bool IsFloatTy = false; constexpr IValueT ElmtShift = 16; emitSIMDBase(Opcode | (Imm6 << ElmtShift), mapQRegToDReg(Qd), mapQRegToDReg(Qn), mapQRegToDReg(Qm), UseQRegs, IsFloatTy); } void AssemblerARM32::emitSIMDCvtqq(IValueT Opcode, const Operand *OpQd, const Operand *OpQm, const char *OpcodeName) { const IValueT SIMDOpcode = B24 | B23 | B21 | B20 | B19 | B17 | B16 | B10 | B9 | Opcode; constexpr bool UseQRegs = true; constexpr bool IsFloatTy = false; const IValueT Qd = encodeQRegister(OpQd, "Qd", OpcodeName); constexpr IValueT Qn = 0; const IValueT Qm = encodeQRegister(OpQm, "Qm", OpcodeName); emitSIMDBase(SIMDOpcode, mapQRegToDReg(Qd), mapQRegToDReg(Qn), mapQRegToDReg(Qm), UseQRegs, IsFloatTy); } void AssemblerARM32::emitVFPddd(CondARM32::Cond Cond, IValueT Opcode, IValueT Dd, IValueT Dn, IValueT Dm) { assert(Dd < RegARM32::getNumDRegs()); assert(Dn < RegARM32::getNumDRegs()); assert(Dm < RegARM32::getNumDRegs()); assert(CondARM32::isDefined(Cond)); constexpr IValueT VFPOpcode = B27 | B26 | B25 | B11 | B9 | B8; const IValueT Encoding = Opcode | VFPOpcode | (encodeCondition(Cond) << kConditionShift) | (getYInRegYXXXX(Dd) << 22) | (getXXXXInRegYXXXX(Dn) << 16) | (getXXXXInRegYXXXX(Dd) << 12) | (getYInRegYXXXX(Dn) << 7) | (getYInRegYXXXX(Dm) << 5) | getXXXXInRegYXXXX(Dm); emitInst(Encoding); } void AssemblerARM32::emitVFPddd(CondARM32::Cond Cond, IValueT Opcode, const Operand *OpDd, const Operand *OpDn, const Operand *OpDm, const char *InstName) { IValueT Dd = encodeDRegister(OpDd, "Dd", InstName); IValueT Dn = encodeDRegister(OpDn, "Dn", InstName); IValueT Dm = encodeDRegister(OpDm, "Dm", InstName); emitVFPddd(Cond, Opcode, Dd, Dn, Dm); } void AssemblerARM32::emitVFPsss(CondARM32::Cond Cond, IValueT Opcode, IValueT Sd, IValueT Sn, IValueT Sm) { assert(Sd < RegARM32::getNumSRegs()); assert(Sn < RegARM32::getNumSRegs()); assert(Sm < RegARM32::getNumSRegs()); assert(CondARM32::isDefined(Cond)); constexpr IValueT VFPOpcode = B27 | B26 | B25 | B11 | B9; const IValueT Encoding = Opcode | VFPOpcode | (encodeCondition(Cond) << kConditionShift) | (getYInRegXXXXY(Sd) << 22) | (getXXXXInRegXXXXY(Sn) << 16) | (getXXXXInRegXXXXY(Sd) << 12) | (getYInRegXXXXY(Sn) << 7) | (getYInRegXXXXY(Sm) << 5) | getXXXXInRegXXXXY(Sm); emitInst(Encoding); } void AssemblerARM32::emitVFPsss(CondARM32::Cond Cond, IValueT Opcode, const Operand *OpSd, const Operand *OpSn, const Operand *OpSm, const char *InstName) { const IValueT Sd = encodeSRegister(OpSd, "Sd", InstName); const IValueT Sn = encodeSRegister(OpSn, "Sn", InstName); const IValueT Sm = encodeSRegister(OpSm, "Sm", InstName); emitVFPsss(Cond, Opcode, Sd, Sn, Sm); } void AssemblerARM32::adc(const Operand *OpRd, const Operand *OpRn, const Operand *OpSrc1, bool SetFlags, CondARM32::Cond Cond) { // ADC (register) - ARM section 18.8.2, encoding A1: // adc{s}<c> <Rd>, <Rn>, <Rm>{, <shift>} // // cccc0000101snnnnddddiiiiitt0mmmm where cccc=Cond, dddd=Rd, nnnn=Rn, // mmmm=Rm, iiiii=Shift, tt=ShiftKind, and s=SetFlags. // // ADC (Immediate) - ARM section A8.8.1, encoding A1: // adc{s}<c> <Rd>, <Rn>, #<RotatedImm8> // // cccc0010101snnnnddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn, // s=SetFlags and iiiiiiiiiiii=Src1Value defining RotatedImm8. constexpr const char *AdcName = "adc"; constexpr IValueT AdcOpcode = B2 | B0; // 0101 emitType01(Cond, AdcOpcode, OpRd, OpRn, OpSrc1, SetFlags, RdIsPcAndSetFlags, AdcName); } void AssemblerARM32::add(const Operand *OpRd, const Operand *OpRn, const Operand *OpSrc1, bool SetFlags, CondARM32::Cond Cond) { // ADD (register) - ARM section A8.8.7, encoding A1: // add{s}<c> <Rd>, <Rn>, <Rm>{, <shiff>} // ADD (Sp plus register) - ARM section A8.8.11, encoding A1: // add{s}<c> sp, <Rn>, <Rm>{, <shiff>} // // cccc0000100snnnnddddiiiiitt0mmmm where cccc=Cond, dddd=Rd, nnnn=Rn, // mmmm=Rm, iiiii=Shift, tt=ShiftKind, and s=SetFlags. // // ADD (Immediate) - ARM section A8.8.5, encoding A1: // add{s}<c> <Rd>, <Rn>, #<RotatedImm8> // ADD (SP plus immediate) - ARM section A8.8.9, encoding A1. // add{s}<c> <Rd>, sp, #<RotatedImm8> // // cccc0010100snnnnddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn, // s=SetFlags and iiiiiiiiiiii=Src1Value defining RotatedImm8. constexpr const char *AddName = "add"; constexpr IValueT Add = B2; // 0100 emitType01(Cond, Add, OpRd, OpRn, OpSrc1, SetFlags, RdIsPcAndSetFlags, AddName); } void AssemblerARM32::and_(const Operand *OpRd, const Operand *OpRn, const Operand *OpSrc1, bool SetFlags, CondARM32::Cond Cond) { // AND (register) - ARM section A8.8.14, encoding A1: // and{s}<c> <Rd>, <Rn>{, <shift>} // // cccc0000000snnnnddddiiiiitt0mmmm where cccc=Cond, dddd=Rd, nnnn=Rn, // mmmm=Rm, iiiii=Shift, tt=ShiftKind, and s=SetFlags. // // AND (Immediate) - ARM section A8.8.13, encoding A1: // and{s}<c> <Rd>, <Rn>, #<RotatedImm8> // // cccc0010100snnnnddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn, // s=SetFlags and iiiiiiiiiiii=Src1Value defining RotatedImm8. constexpr const char *AndName = "and"; constexpr IValueT And = 0; // 0000 emitType01(Cond, And, OpRd, OpRn, OpSrc1, SetFlags, RdIsPcAndSetFlags, AndName); } void AssemblerARM32::b(Label *L, CondARM32::Cond Cond) { emitBranch(L, Cond, false); } void AssemblerARM32::bkpt(uint16_t Imm16) { // BKPT - ARM section A*.8.24 - encoding A1: // bkpt #<Imm16> // // cccc00010010iiiiiiiiiiii0111iiii where cccc=AL and iiiiiiiiiiiiiiii=Imm16 const IValueT Encoding = (CondARM32::AL << kConditionShift) | B24 | B21 | ((Imm16 >> 4) << 8) | B6 | B5 | B4 | (Imm16 & 0xf); emitInst(Encoding); } void AssemblerARM32::bic(const Operand *OpRd, const Operand *OpRn, const Operand *OpSrc1, bool SetFlags, CondARM32::Cond Cond) { // BIC (register) - ARM section A8.8.22, encoding A1: // bic{s}<c> <Rd>, <Rn>, <Rm>{, <shift>} // // cccc0001110snnnnddddiiiiitt0mmmm where cccc=Cond, dddd=Rd, nnnn=Rn, // mmmm=Rm, iiiii=Shift, tt=ShiftKind, and s=SetFlags. // // BIC (immediate) - ARM section A8.8.21, encoding A1: // bic{s}<c> <Rd>, <Rn>, #<RotatedImm8> // // cccc0011110snnnnddddiiiiiiiiiiii where cccc=Cond, dddd=Rn, nnnn=Rn, // s=SetFlags, and iiiiiiiiiiii=Src1Value defining RotatedImm8. constexpr const char *BicName = "bic"; constexpr IValueT BicOpcode = B3 | B2 | B1; // i.e. 1110 emitType01(Cond, BicOpcode, OpRd, OpRn, OpSrc1, SetFlags, RdIsPcAndSetFlags, BicName); } void AssemblerARM32::bl(const ConstantRelocatable *Target) { // BL (immediate) - ARM section A8.8.25, encoding A1: // bl<c> <label> // // cccc1011iiiiiiiiiiiiiiiiiiiiiiii where cccc=Cond (not currently allowed) // and iiiiiiiiiiiiiiiiiiiiiiii is the (encoded) Target to branch to. emitFixup(createBlFixup(Target)); constexpr CondARM32::Cond Cond = CondARM32::AL; constexpr IValueT Immed = 0; constexpr bool Link = true; emitType05(Cond, Immed, Link); } void AssemblerARM32::blx(const Operand *Target) { // BLX (register) - ARM section A8.8.26, encoding A1: // blx<c> <Rm> // // cccc000100101111111111110011mmmm where cccc=Cond (not currently allowed) // and mmmm=Rm. constexpr const char *BlxName = "Blx"; IValueT Rm = encodeGPRegister(Target, "Rm", BlxName); verifyRegNotPc(Rm, "Rm", BlxName); constexpr CondARM32::Cond Cond = CondARM32::AL; int32_t Encoding = (encodeCondition(Cond) << kConditionShift) | B24 | B21 | (0xfff << 8) | B5 | B4 | (Rm << kRmShift); emitInst(Encoding); } void AssemblerARM32::bx(RegARM32::GPRRegister Rm, CondARM32::Cond Cond) { // BX - ARM section A8.8.27, encoding A1: // bx<c> <Rm> // // cccc000100101111111111110001mmmm where mmmm=rm and cccc=Cond. assert(CondARM32::isDefined(Cond)); const IValueT Encoding = (encodeCondition(Cond) << kConditionShift) | B24 | B21 | (0xfff << 8) | B4 | (encodeGPRRegister(Rm) << kRmShift); emitInst(Encoding); } void AssemblerARM32::clz(const Operand *OpRd, const Operand *OpSrc, CondARM32::Cond Cond) { // CLZ - ARM section A8.8.33, encoding A1: // clz<c> <Rd> <Rm> // // cccc000101101111dddd11110001mmmm where cccc=Cond, dddd=Rd, and mmmm=Rm. constexpr const char *ClzName = "clz"; constexpr const char *RdName = "Rd"; constexpr const char *RmName = "Rm"; IValueT Rd = encodeGPRegister(OpRd, RdName, ClzName); assert(Rd < RegARM32::getNumGPRegs()); verifyRegNotPc(Rd, RdName, ClzName); IValueT Rm = encodeGPRegister(OpSrc, RmName, ClzName); assert(Rm < RegARM32::getNumGPRegs()); verifyRegNotPc(Rm, RmName, ClzName); assert(CondARM32::isDefined(Cond)); constexpr IValueT PredefinedBits = B24 | B22 | B21 | (0xF << 16) | (0xf << 8) | B4; const IValueT Encoding = PredefinedBits | (Cond << kConditionShift) | (Rd << kRdShift) | (Rm << kRmShift); emitInst(Encoding); } void AssemblerARM32::cmn(const Operand *OpRn, const Operand *OpSrc1, CondARM32::Cond Cond) { // CMN (immediate) - ARM section A8.8.34, encoding A1: // cmn<c> <Rn>, #<RotatedImm8> // // cccc00110111nnnn0000iiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn, // s=SetFlags and iiiiiiiiiiii=Src1Value defining RotatedImm8. // // CMN (register) - ARM section A8.8.35, encodeing A1: // cmn<c> <Rn>, <Rm>{, <shift>} // // cccc00010111nnnn0000iiiiitt0mmmm where cccc=Cond, nnnn=Rn, mmmm=Rm, // iiiii=Shift, and tt=ShiftKind. constexpr const char *CmnName = "cmn"; constexpr IValueT CmnOpcode = B3 | B1 | B0; // ie. 1011 emitCompareOp(Cond, CmnOpcode, OpRn, OpSrc1, CmnName); } void AssemblerARM32::cmp(const Operand *OpRn, const Operand *OpSrc1, CondARM32::Cond Cond) { // CMP (register) - ARM section A8.8.38, encoding A1: // cmp<c> <Rn>, <Rm>{, <shift>} // // cccc00010101nnnn0000iiiiitt0mmmm where cccc=Cond, nnnn=Rn, mmmm=Rm, // iiiii=Shift, and tt=ShiftKind. // // CMP (immediate) - ARM section A8.8.37 // cmp<c: <Rn>, #<RotatedImm8> // // cccc00110101nnnn0000iiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn, // s=SetFlags and iiiiiiiiiiii=Src1Value defining RotatedImm8. constexpr const char *CmpName = "cmp"; constexpr IValueT CmpOpcode = B3 | B1; // ie. 1010 emitCompareOp(Cond, CmpOpcode, OpRn, OpSrc1, CmpName); } void AssemblerARM32::dmb(IValueT Option) { // DMB - ARM section A8.8.43, encoding A1: // dmb <option> // // 1111010101111111111100000101xxxx where xxxx=Option. assert(Utils::IsUint(4, Option) && "Bad dmb option"); const IValueT Encoding = (encodeCondition(CondARM32::kNone) << kConditionShift) | B26 | B24 | B22 | B21 | B20 | B19 | B18 | B17 | B16 | B15 | B14 | B13 | B12 | B6 | B4 | Option; emitInst(Encoding); } void AssemblerARM32::eor(const Operand *OpRd, const Operand *OpRn, const Operand *OpSrc1, bool SetFlags, CondARM32::Cond Cond) { // EOR (register) - ARM section A*.8.47, encoding A1: // eor{s}<c> <Rd>, <Rn>, <Rm>{, <shift>} // // cccc0000001snnnnddddiiiiitt0mmmm where cccc=Cond, dddd=Rd, nnnn=Rn, // mmmm=Rm, iiiii=Shift, tt=ShiftKind, and s=SetFlags. // // EOR (Immediate) - ARM section A8.*.46, encoding A1: // eor{s}<c> <Rd>, <Rn>, #RotatedImm8 // // cccc0010001snnnnddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn, // s=SetFlags and iiiiiiiiiiii=Src1Value defining RotatedImm8. constexpr const char *EorName = "eor"; constexpr IValueT EorOpcode = B0; // 0001 emitType01(Cond, EorOpcode, OpRd, OpRn, OpSrc1, SetFlags, RdIsPcAndSetFlags, EorName); } void AssemblerARM32::ldr(const Operand *OpRt, const Operand *OpAddress, CondARM32::Cond Cond, const TargetInfo &TInfo) { constexpr const char *LdrName = "ldr"; constexpr bool IsLoad = true; IValueT Rt = encodeGPRegister(OpRt, "Rt", LdrName); const Type Ty = OpRt->getType(); switch (Ty) { case IceType_i64: // LDRD is not implemented because target lowering handles i64 and double by // using two (32-bit) load instructions. Note: Intentionally drop to default // case. llvm::report_fatal_error(std::string("ldr : Type ") + typeString(Ty) + " not implemented"); default: llvm::report_fatal_error(std::string("ldr : Type ") + typeString(Ty) + " not allowed"); case IceType_i1: case IceType_i8: { // LDRB (immediate) - ARM section A8.8.68, encoding A1: // ldrb<c> <Rt>, [<Rn>{, #+/-<imm12>}] ; p=1, w=0 // ldrb<c> <Rt>, [<Rn>], #+/-<imm12> ; p=1, w=1 // ldrb<c> <Rt>, [<Rn>, #+/-<imm12>]! ; p=0, w=1 // // cccc010pu1w1nnnnttttiiiiiiiiiiii where cccc=Cond, tttt=Rt, nnnn=Rn, // iiiiiiiiiiii=imm12, u=1 if +, pu0w is a BlockAddr, and // pu0w0nnnn0000iiiiiiiiiiii=Address. // // LDRB (register) - ARM section A8.8.66, encoding A1: // ldrb<c> <Rt>, [<Rn>, +/-<Rm>{, <shift>}]{!} // ldrb<c> <Rt>, [<Rn>], +/-<Rm>{, <shift>} // // cccc011pu1w1nnnnttttiiiiiss0mmmm where cccc=Cond, tttt=Rt, U=1 if +, pu0b // is a BlockAddr, and pu0w0nnnn0000iiiiiss0mmmm=Address. constexpr bool IsByte = true; emitMemOp(Cond, IsLoad, IsByte, Rt, OpAddress, TInfo, LdrName); return; } case IceType_i16: { // LDRH (immediate) - ARM section A8.8.80, encoding A1: // ldrh<c> <Rt>, [<Rn>{, #+/-<Imm8>}] // ldrh<c> <Rt>, [<Rn>], #+/-<Imm8> // ldrh<c> <Rt>, [<Rn>, #+/-<Imm8>]! // // cccc000pu1w1nnnnttttiiii1011iiii where cccc=Cond, tttt=Rt, nnnn=Rn, // iiiiiiii=Imm8, u=1 if +, pu0w is a BlockAddr, and // pu0w0nnnn0000iiiiiiiiiiii=Address. constexpr const char *Ldrh = "ldrh"; emitMemOpEnc3(Cond, L | B7 | B5 | B4, Rt, OpAddress, TInfo, Ldrh); return; } case IceType_i32: { // LDR (immediate) - ARM section A8.8.63, encoding A1: // ldr<c> <Rt>, [<Rn>{, #+/-<imm12>}] ; p=1, w=0 // ldr<c> <Rt>, [<Rn>], #+/-<imm12> ; p=1, w=1 // ldr<c> <Rt>, [<Rn>, #+/-<imm12>]! ; p=0, w=1 // // cccc010pu0w1nnnnttttiiiiiiiiiiii where cccc=Cond, tttt=Rt, nnnn=Rn, // iiiiiiiiiiii=imm12, u=1 if +, pu0w is a BlockAddr, and // // LDR (register) - ARM section A8.8.70, encoding A1: // ldrb<c> <Rt>, [<Rn>, +/-<Rm>{, <shift>}]{!} // ldrb<c> <Rt>, [<Rn>], +-<Rm>{, <shift>} // // cccc011pu0w1nnnnttttiiiiiss0mmmm where cccc=Cond, tttt=Rt, U=1 if +, pu0b // is a BlockAddr, and pu0w0nnnn0000iiiiiss0mmmm=Address. constexpr bool IsByte = false; emitMemOp(Cond, IsLoad, IsByte, Rt, OpAddress, TInfo, LdrName); return; } } } void AssemblerARM32::emitMemExOp(CondARM32::Cond Cond, Type Ty, bool IsLoad, const Operand *OpRd, IValueT Rt, const Operand *OpAddress, const TargetInfo &TInfo, const char *InstName) { IValueT Rd = encodeGPRegister(OpRd, "Rd", InstName); IValueT MemExOpcode = IsLoad ? B0 : 0; switch (Ty) { default: llvm::report_fatal_error(std::string(InstName) + ": Type " + typeString(Ty) + " not allowed"); case IceType_i1: case IceType_i8: MemExOpcode |= B2; break; case IceType_i16: MemExOpcode |= B2 | B1; break; case IceType_i32: break; case IceType_i64: MemExOpcode |= B1; } IValueT AddressRn; if (encodeAddress(OpAddress, AddressRn, TInfo, NoImmOffsetAddress) != EncodedAsImmRegOffset) llvm::report_fatal_error(std::string(InstName) + ": Can't extract Rn from address"); assert(Utils::IsAbsoluteUint(3, MemExOpcode)); assert(Rd < RegARM32::getNumGPRegs()); assert(Rt < RegARM32::getNumGPRegs()); assert(CondARM32::isDefined(Cond)); IValueT Encoding = (Cond << kConditionShift) | B24 | B23 | B11 | B10 | B9 | B8 | B7 | B4 | (MemExOpcode << kMemExOpcodeShift) | AddressRn | (Rd << kRdShift) | (Rt << kRmShift); emitInst(Encoding); return; } void AssemblerARM32::ldrex(const Operand *OpRt, const Operand *OpAddress, CondARM32::Cond Cond, const TargetInfo &TInfo) { // LDREXB - ARM section A8.8.76, encoding A1: // ldrexb<c> <Rt>, [<Rn>] // // cccc00011101nnnntttt111110011111 where cccc=Cond, tttt=Rt, and nnnn=Rn. // // LDREXH - ARM section A8.8.78, encoding A1: // ldrexh<c> <Rt>, [<Rn>] // // cccc00011111nnnntttt111110011111 where cccc=Cond, tttt=Rt, and nnnn=Rn. // // LDREX - ARM section A8.8.75, encoding A1: // ldrex<c> <Rt>, [<Rn>] // // cccc00011001nnnntttt111110011111 where cccc=Cond, tttt=Rt, and nnnn=Rn. // // LDREXD - ARM section A8. // ldrexd<c> <Rt>, [<Rn>] // // cccc00011001nnnntttt111110011111 where cccc=Cond, tttt=Rt, and nnnn=Rn. constexpr const char *LdrexName = "ldrex"; const Type Ty = OpRt->getType(); constexpr bool IsLoad = true; constexpr IValueT Rm = RegARM32::Encoded_Reg_pc; emitMemExOp(Cond, Ty, IsLoad, OpRt, Rm, OpAddress, TInfo, LdrexName); } void AssemblerARM32::emitShift(const CondARM32::Cond Cond, const OperandARM32::ShiftKind Shift, const Operand *OpRd, const Operand *OpRm, const Operand *OpSrc1, const bool SetFlags, const char *InstName) { constexpr IValueT ShiftOpcode = B3 | B2 | B0; // 1101 IValueT Rd = encodeGPRegister(OpRd, "Rd", InstName); IValueT Rm = encodeGPRegister(OpRm, "Rm", InstName); IValueT Value; switch (encodeOperand(OpSrc1, Value, WantGPRegs)) { default: llvm::report_fatal_error(std::string(InstName) + ": Last operand not understood"); case EncodedAsShiftImm5: { // XXX (immediate) // xxx{s}<c> <Rd>, <Rm>, #imm5 // // cccc0001101s0000ddddiiiii000mmmm where cccc=Cond, s=SetFlags, dddd=Rd, // iiiii=imm5, and mmmm=Rm. constexpr IValueT Rn = 0; // Rn field is not used. Value = Value | (Rm << kRmShift) | (Shift << kShiftShift); emitType01(Cond, kInstTypeDataRegShift, ShiftOpcode, SetFlags, Rn, Rd, Value, RdIsPcAndSetFlags, InstName); return; } case EncodedAsRegister: { // XXX (register) // xxx{S}<c> <Rd>, <Rm>, <Rs> // // cccc0001101s0000ddddssss0001mmmm where cccc=Cond, s=SetFlags, dddd=Rd, // mmmm=Rm, and ssss=Rs. constexpr IValueT Rn = 0; // Rn field is not used. IValueT Rs = encodeGPRegister(OpSrc1, "Rs", InstName); verifyRegNotPc(Rd, "Rd", InstName); verifyRegNotPc(Rm, "Rm", InstName); verifyRegNotPc(Rs, "Rs", InstName); emitType01(Cond, kInstTypeDataRegShift, ShiftOpcode, SetFlags, Rn, Rd, encodeShiftRotateReg(Rm, Shift, Rs), NoChecks, InstName); return; } } } void AssemblerARM32::asr(const Operand *OpRd, const Operand *OpRm, const Operand *OpSrc1, bool SetFlags, CondARM32::Cond Cond) { constexpr const char *AsrName = "asr"; emitShift(Cond, OperandARM32::ASR, OpRd, OpRm, OpSrc1, SetFlags, AsrName); } void AssemblerARM32::lsl(const Operand *OpRd, const Operand *OpRm, const Operand *OpSrc1, bool SetFlags, CondARM32::Cond Cond) { constexpr const char *LslName = "lsl"; emitShift(Cond, OperandARM32::LSL, OpRd, OpRm, OpSrc1, SetFlags, LslName); } void AssemblerARM32::lsr(const Operand *OpRd, const Operand *OpRm, const Operand *OpSrc1, bool SetFlags, CondARM32::Cond Cond) { constexpr const char *LsrName = "lsr"; emitShift(Cond, OperandARM32::LSR, OpRd, OpRm, OpSrc1, SetFlags, LsrName); } void AssemblerARM32::mov(const Operand *OpRd, const Operand *OpSrc, CondARM32::Cond Cond) { // MOV (register) - ARM section A8.8.104, encoding A1: // mov{S}<c> <Rd>, <Rn> // // cccc0001101s0000dddd00000000mmmm where cccc=Cond, s=SetFlags, dddd=Rd, // and nnnn=Rn. // // MOV (immediate) - ARM section A8.8.102, encoding A1: // mov{S}<c> <Rd>, #<RotatedImm8> // // cccc0011101s0000ddddiiiiiiiiiiii where cccc=Cond, s=SetFlags, dddd=Rd, // and iiiiiiiiiiii=RotatedImm8=Src. Note: We don't use movs in this // assembler. constexpr const char *MovName = "mov"; IValueT Rd = encodeGPRegister(OpRd, "Rd", MovName); constexpr bool SetFlags = false; constexpr IValueT Rn = 0; constexpr IValueT MovOpcode = B3 | B2 | B0; // 1101. emitType01(Cond, MovOpcode, Rd, Rn, OpSrc, SetFlags, RdIsPcAndSetFlags, MovName); } void AssemblerARM32::emitMovwt(CondARM32::Cond Cond, bool IsMovW, const Operand *OpRd, const Operand *OpSrc, const char *MovName) { IValueT Opcode = B25 | B24 | (IsMovW ? 0 : B22); IValueT Rd = encodeGPRegister(OpRd, "Rd", MovName); IValueT Imm16; if (const auto *Src = llvm::dyn_cast<ConstantRelocatable>(OpSrc)) { emitFixup(createMoveFixup(IsMovW, Src)); // Use 0 for the lower 16 bits of the relocatable, and add a fixup to // install the correct bits. Imm16 = 0; } else if (encodeOperand(OpSrc, Imm16, WantGPRegs) != EncodedAsConstI32) { llvm::report_fatal_error(std::string(MovName) + ": Not i32 constant"); } assert(CondARM32::isDefined(Cond)); if (!Utils::IsAbsoluteUint(16, Imm16)) llvm::report_fatal_error(std::string(MovName) + ": Constant not i16"); const IValueT Encoding = encodeCondition(Cond) << kConditionShift | Opcode | ((Imm16 >> 12) << 16) | Rd << kRdShift | (Imm16 & 0xfff); emitInst(Encoding); } void AssemblerARM32::movw(const Operand *OpRd, const Operand *OpSrc, CondARM32::Cond Cond) { // MOV (immediate) - ARM section A8.8.102, encoding A2: // movw<c> <Rd>, #<imm16> // // cccc00110000iiiiddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, and // iiiiiiiiiiiiiiii=imm16. constexpr const char *MovwName = "movw"; constexpr bool IsMovW = true; emitMovwt(Cond, IsMovW, OpRd, OpSrc, MovwName); } void AssemblerARM32::movt(const Operand *OpRd, const Operand *OpSrc, CondARM32::Cond Cond) { // MOVT - ARM section A8.8.106, encoding A1: // movt<c> <Rd>, #<imm16> // // cccc00110100iiiiddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, and // iiiiiiiiiiiiiiii=imm16. constexpr const char *MovtName = "movt"; constexpr bool IsMovW = false; emitMovwt(Cond, IsMovW, OpRd, OpSrc, MovtName); } void AssemblerARM32::mvn(const Operand *OpRd, const Operand *OpSrc, CondARM32::Cond Cond) { // MVN (immediate) - ARM section A8.8.115, encoding A1: // mvn{s}<c> <Rd>, #<const> // // cccc0011111s0000ddddiiiiiiiiiiii where cccc=Cond, s=SetFlags=0, dddd=Rd, // and iiiiiiiiiiii=const // // MVN (register) - ARM section A8.8.116, encoding A1: // mvn{s}<c> <Rd>, <Rm>{, <shift> // // cccc0001111s0000ddddiiiiitt0mmmm where cccc=Cond, s=SetFlags=0, dddd=Rd, // mmmm=Rm, iiii defines shift constant, and tt=ShiftKind. constexpr const char *MvnName = "mvn"; IValueT Rd = encodeGPRegister(OpRd, "Rd", MvnName); constexpr IValueT MvnOpcode = B3 | B2 | B1 | B0; // i.e. 1111 constexpr IValueT Rn = 0; constexpr bool SetFlags = false; emitType01(Cond, MvnOpcode, Rd, Rn, OpSrc, SetFlags, RdIsPcAndSetFlags, MvnName); } void AssemblerARM32::nop() { // NOP - Section A8.8.119, encoding A1: // nop<c> // // cccc0011001000001111000000000000 where cccc=Cond. constexpr CondARM32::Cond Cond = CondARM32::AL; const IValueT Encoding = (encodeCondition(Cond) << kConditionShift) | B25 | B24 | B21 | B15 | B14 | B13 | B12; emitInst(Encoding); } void AssemblerARM32::sbc(const Operand *OpRd, const Operand *OpRn, const Operand *OpSrc1, bool SetFlags, CondARM32::Cond Cond) { // SBC (register) - ARM section 18.8.162, encoding A1: // sbc{s}<c> <Rd>, <Rn>, <Rm>{, <shift>} // // cccc0000110snnnnddddiiiiitt0mmmm where cccc=Cond, dddd=Rd, nnnn=Rn, // mmmm=Rm, iiiii=Shift, tt=ShiftKind, and s=SetFlags. // // SBC (Immediate) - ARM section A8.8.161, encoding A1: // sbc{s}<c> <Rd>, <Rn>, #<RotatedImm8> // // cccc0010110snnnnddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn, // s=SetFlags and iiiiiiiiiiii=Src1Value defining RotatedImm8. constexpr const char *SbcName = "sbc"; constexpr IValueT SbcOpcode = B2 | B1; // 0110 emitType01(Cond, SbcOpcode, OpRd, OpRn, OpSrc1, SetFlags, RdIsPcAndSetFlags, SbcName); } void AssemblerARM32::sdiv(const Operand *OpRd, const Operand *OpRn, const Operand *OpSrc1, CondARM32::Cond Cond) { // SDIV - ARM section A8.8.165, encoding A1. // sdiv<c> <Rd>, <Rn>, <Rm> // // cccc01110001dddd1111mmmm0001nnnn where cccc=Cond, dddd=Rd, nnnn=Rn, and // mmmm=Rm. constexpr const char *SdivName = "sdiv"; IValueT Rd = encodeGPRegister(OpRd, "Rd", SdivName); IValueT Rn = encodeGPRegister(OpRn, "Rn", SdivName); IValueT Rm = encodeGPRegister(OpSrc1, "Rm", SdivName); verifyRegNotPc(Rd, "Rd", SdivName); verifyRegNotPc(Rn, "Rn", SdivName); verifyRegNotPc(Rm, "Rm", SdivName); // Assembler registers rd, rn, rm are encoded as rn, rm, rs. constexpr IValueT SdivOpcode = 0; emitDivOp(Cond, SdivOpcode, Rd, Rn, Rm); } void AssemblerARM32::str(const Operand *OpRt, const Operand *OpAddress, CondARM32::Cond Cond, const TargetInfo &TInfo) { constexpr const char *StrName = "str"; constexpr bool IsLoad = false; IValueT Rt = encodeGPRegister(OpRt, "Rt", StrName); const Type Ty = OpRt->getType(); switch (Ty) { case IceType_i64: // STRD is not implemented because target lowering handles i64 and double by // using two (32-bit) store instructions. Note: Intentionally drop to // default case. llvm::report_fatal_error(std::string(StrName) + ": Type " + typeString(Ty) + " not implemented"); default: llvm::report_fatal_error(std::string(StrName) + ": Type " + typeString(Ty) + " not allowed"); case IceType_i1: case IceType_i8: { // STRB (immediate) - ARM section A8.8.207, encoding A1: // strb<c> <Rt>, [<Rn>{, #+/-<imm12>}] ; p=1, w=0 // strb<c> <Rt>, [<Rn>], #+/-<imm12> ; p=1, w=1 // strb<c> <Rt>, [<Rn>, #+/-<imm12>]! ; p=0, w=1 // // cccc010pu1w0nnnnttttiiiiiiiiiiii where cccc=Cond, tttt=Rt, nnnn=Rn, // iiiiiiiiiiii=imm12, u=1 if +. constexpr bool IsByte = true; emitMemOp(Cond, IsLoad, IsByte, Rt, OpAddress, TInfo, StrName); return; } case IceType_i16: { // STRH (immediate) - ARM section A8.*.217, encoding A1: // strh<c> <Rt>, [<Rn>{, #+/-<Imm8>}] // strh<c> <Rt>, [<Rn>], #+/-<Imm8> // strh<c> <Rt>, [<Rn>, #+/-<Imm8>]! // // cccc000pu1w0nnnnttttiiii1011iiii where cccc=Cond, tttt=Rt, nnnn=Rn, // iiiiiiii=Imm8, u=1 if +, pu0w is a BlockAddr, and // pu0w0nnnn0000iiiiiiiiiiii=Address. constexpr const char *Strh = "strh"; emitMemOpEnc3(Cond, B7 | B5 | B4, Rt, OpAddress, TInfo, Strh); return; } case IceType_i32: { // Note: Handles i32 and float stores. Target lowering handles i64 and // double by using two (32 bit) store instructions. // // STR (immediate) - ARM section A8.8.207, encoding A1: // str<c> <Rt>, [<Rn>{, #+/-<imm12>}] ; p=1, w=0 // str<c> <Rt>, [<Rn>], #+/-<imm12> ; p=1, w=1 // str<c> <Rt>, [<Rn>, #+/-<imm12>]! ; p=0, w=1 // // cccc010pu1w0nnnnttttiiiiiiiiiiii where cccc=Cond, tttt=Rt, nnnn=Rn, // iiiiiiiiiiii=imm12, u=1 if +. constexpr bool IsByte = false; emitMemOp(Cond, IsLoad, IsByte, Rt, OpAddress, TInfo, StrName); return; } } } void AssemblerARM32::strex(const Operand *OpRd, const Operand *OpRt, const Operand *OpAddress, CondARM32::Cond Cond, const TargetInfo &TInfo) { // STREXB - ARM section A8.8.213, encoding A1: // strexb<c> <Rd>, <Rt>, [<Rn>] // // cccc00011100nnnndddd11111001tttt where cccc=Cond, dddd=Rd, tttt=Rt, and // nnnn=Rn. // // STREXH - ARM section A8.8.215, encoding A1: // strexh<c> <Rd>, <Rt>, [<Rn>] // // cccc00011110nnnndddd11111001tttt where cccc=Cond, dddd=Rd, tttt=Rt, and // nnnn=Rn. // // STREX - ARM section A8.8.212, encoding A1: // strex<c> <Rd>, <Rt>, [<Rn>] // // cccc00011000nnnndddd11111001tttt where cccc=Cond, dddd=Rd, tttt=Rt, and // nnnn=Rn. // // STREXD - ARM section A8.8.214, encoding A1: // strexd<c> <Rd>, <Rt>, [<Rn>] // // cccc00011010nnnndddd11111001tttt where cccc=Cond, dddd=Rd, tttt=Rt, and // nnnn=Rn. constexpr const char *StrexName = "strex"; // Note: Rt uses Rm shift in encoding. IValueT Rt = encodeGPRegister(OpRt, "Rt", StrexName); const Type Ty = OpRt->getType(); constexpr bool IsLoad = true; emitMemExOp(Cond, Ty, !IsLoad, OpRd, Rt, OpAddress, TInfo, StrexName); } void AssemblerARM32::orr(const Operand *OpRd, const Operand *OpRn, const Operand *OpSrc1, bool SetFlags, CondARM32::Cond Cond) { // ORR (register) - ARM Section A8.8.123, encoding A1: // orr{s}<c> <Rd>, <Rn>, <Rm> // // cccc0001100snnnnddddiiiiitt0mmmm where cccc=Cond, dddd=Rd, nnnn=Rn, // mmmm=Rm, iiiii=shift, tt=ShiftKind,, and s=SetFlags. // // ORR (register) - ARM Section A8.8.123, encoding A1: // orr{s}<c> <Rd>, <Rn>, #<RotatedImm8> // // cccc0001100snnnnddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn, // s=SetFlags and iiiiiiiiiiii=Src1Value defining RotatedImm8. constexpr const char *OrrName = "orr"; constexpr IValueT OrrOpcode = B3 | B2; // i.e. 1100 emitType01(Cond, OrrOpcode, OpRd, OpRn, OpSrc1, SetFlags, RdIsPcAndSetFlags, OrrName); } void AssemblerARM32::pop(const Variable *OpRt, CondARM32::Cond Cond) { // POP - ARM section A8.8.132, encoding A2: // pop<c> {Rt} // // cccc010010011101dddd000000000100 where dddd=Rt and cccc=Cond. constexpr const char *Pop = "pop"; IValueT Rt = encodeGPRegister(OpRt, "Rt", Pop); verifyRegsNotEq(Rt, "Rt", RegARM32::Encoded_Reg_sp, "sp", Pop); // Same as load instruction. constexpr bool IsLoad = true; constexpr bool IsByte = false; constexpr IOffsetT MaxOffset = (1 << 8) - 1; constexpr IValueT NoShiftRight = 0; IValueT Address = encodeImmRegOffset(RegARM32::Encoded_Reg_sp, kWordSize, OperandARM32Mem::PostIndex, MaxOffset, NoShiftRight); emitMemOp(Cond, kInstTypeMemImmediate, IsLoad, IsByte, Rt, Address); } void AssemblerARM32::popList(const IValueT Registers, CondARM32::Cond Cond) { // POP - ARM section A8.*.131, encoding A1: // pop<c> <registers> // // cccc100010111101rrrrrrrrrrrrrrrr where cccc=Cond and // rrrrrrrrrrrrrrrr=Registers (one bit for each GP register). constexpr bool IsLoad = true; emitMultiMemOp(Cond, IA_W, IsLoad, RegARM32::Encoded_Reg_sp, Registers); } void AssemblerARM32::push(const Operand *OpRt, CondARM32::Cond Cond) { // PUSH - ARM section A8.8.133, encoding A2: // push<c> {Rt} // // cccc010100101101dddd000000000100 where dddd=Rt and cccc=Cond. constexpr const char *Push = "push"; IValueT Rt = encodeGPRegister(OpRt, "Rt", Push); verifyRegsNotEq(Rt, "Rt", RegARM32::Encoded_Reg_sp, "sp", Push); // Same as store instruction. constexpr bool isLoad = false; constexpr bool isByte = false; constexpr IOffsetT MaxOffset = (1 << 8) - 1; constexpr IValueT NoShiftRight = 0; IValueT Address = encodeImmRegOffset(RegARM32::Encoded_Reg_sp, -kWordSize, OperandARM32Mem::PreIndex, MaxOffset, NoShiftRight); emitMemOp(Cond, kInstTypeMemImmediate, isLoad, isByte, Rt, Address); } void AssemblerARM32::pushList(const IValueT Registers, CondARM32::Cond Cond) { // PUSH - ARM section A8.8.133, encoding A1: // push<c> <Registers> // // cccc100100101101rrrrrrrrrrrrrrrr where cccc=Cond and // rrrrrrrrrrrrrrrr=Registers (one bit for each GP register). constexpr bool IsLoad = false; emitMultiMemOp(Cond, DB_W, IsLoad, RegARM32::Encoded_Reg_sp, Registers); } void AssemblerARM32::mla(const Operand *OpRd, const Operand *OpRn, const Operand *OpRm, const Operand *OpRa, CondARM32::Cond Cond) { // MLA - ARM section A8.8.114, encoding A1. // mla{s}<c> <Rd>, <Rn>, <Rm>, <Ra> // // cccc0000001sddddaaaammmm1001nnnn where cccc=Cond, s=SetFlags, dddd=Rd, // aaaa=Ra, mmmm=Rm, and nnnn=Rn. constexpr const char *MlaName = "mla"; IValueT Rd = encodeGPRegister(OpRd, "Rd", MlaName); IValueT Rn = encodeGPRegister(OpRn, "Rn", MlaName); IValueT Rm = encodeGPRegister(OpRm, "Rm", MlaName); IValueT Ra = encodeGPRegister(OpRa, "Ra", MlaName); verifyRegNotPc(Rd, "Rd", MlaName); verifyRegNotPc(Rn, "Rn", MlaName); verifyRegNotPc(Rm, "Rm", MlaName); verifyRegNotPc(Ra, "Ra", MlaName); constexpr IValueT MlaOpcode = B21; constexpr bool SetFlags = true; // Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd. emitMulOp(Cond, MlaOpcode, Ra, Rd, Rn, Rm, !SetFlags); } void AssemblerARM32::mls(const Operand *OpRd, const Operand *OpRn, const Operand *OpRm, const Operand *OpRa, CondARM32::Cond Cond) { constexpr const char *MlsName = "mls"; IValueT Rd = encodeGPRegister(OpRd, "Rd", MlsName); IValueT Rn = encodeGPRegister(OpRn, "Rn", MlsName); IValueT Rm = encodeGPRegister(OpRm, "Rm", MlsName); IValueT Ra = encodeGPRegister(OpRa, "Ra", MlsName); verifyRegNotPc(Rd, "Rd", MlsName); verifyRegNotPc(Rn, "Rn", MlsName); verifyRegNotPc(Rm, "Rm", MlsName); verifyRegNotPc(Ra, "Ra", MlsName); constexpr IValueT MlsOpcode = B22 | B21; constexpr bool SetFlags = true; // Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd. emitMulOp(Cond, MlsOpcode, Ra, Rd, Rn, Rm, !SetFlags); } void AssemblerARM32::mul(const Operand *OpRd, const Operand *OpRn, const Operand *OpSrc1, bool SetFlags, CondARM32::Cond Cond) { // MUL - ARM section A8.8.114, encoding A1. // mul{s}<c> <Rd>, <Rn>, <Rm> // // cccc0000000sdddd0000mmmm1001nnnn where cccc=Cond, dddd=Rd, nnnn=Rn, // mmmm=Rm, and s=SetFlags. constexpr const char *MulName = "mul"; IValueT Rd = encodeGPRegister(OpRd, "Rd", MulName); IValueT Rn = encodeGPRegister(OpRn, "Rn", MulName); IValueT Rm = encodeGPRegister(OpSrc1, "Rm", MulName); verifyRegNotPc(Rd, "Rd", MulName); verifyRegNotPc(Rn, "Rn", MulName); verifyRegNotPc(Rm, "Rm", MulName); // Assembler registers rd, rn, rm are encoded as rn, rm, rs. constexpr IValueT MulOpcode = 0; emitMulOp(Cond, MulOpcode, RegARM32::Encoded_Reg_r0, Rd, Rn, Rm, SetFlags); } void AssemblerARM32::emitRdRm(CondARM32::Cond Cond, IValueT Opcode, const Operand *OpRd, const Operand *OpRm, const char *InstName) { IValueT Rd = encodeGPRegister(OpRd, "Rd", InstName); IValueT Rm = encodeGPRegister(OpRm, "Rm", InstName); IValueT Encoding = (Cond << kConditionShift) | Opcode | (Rd << kRdShift) | (Rm << kRmShift); emitInst(Encoding); } void AssemblerARM32::rbit(const Operand *OpRd, const Operand *OpRm, CondARM32::Cond Cond) { // RBIT - ARM section A8.8.144, encoding A1: // rbit<c> <Rd>, <Rm> // // cccc011011111111dddd11110011mmmm where cccc=Cond, dddd=Rn, and mmmm=Rm. constexpr const char *RbitName = "rev"; constexpr IValueT RbitOpcode = B26 | B25 | B23 | B22 | B21 | B20 | B19 | B18 | B17 | B16 | B11 | B10 | B9 | B8 | B5 | B4; emitRdRm(Cond, RbitOpcode, OpRd, OpRm, RbitName); } void AssemblerARM32::rev(const Operand *OpRd, const Operand *OpRm, CondARM32::Cond Cond) { // REV - ARM section A8.8.145, encoding A1: // rev<c> <Rd>, <Rm> // // cccc011010111111dddd11110011mmmm where cccc=Cond, dddd=Rn, and mmmm=Rm. constexpr const char *RevName = "rev"; constexpr IValueT RevOpcode = B26 | B25 | B23 | B21 | B20 | B19 | B18 | B17 | B16 | B11 | B10 | B9 | B8 | B5 | B4; emitRdRm(Cond, RevOpcode, OpRd, OpRm, RevName); } void AssemblerARM32::rsb(const Operand *OpRd, const Operand *OpRn, const Operand *OpSrc1, bool SetFlags, CondARM32::Cond Cond) { // RSB (immediate) - ARM section A8.8.152, encoding A1. // rsb{s}<c> <Rd>, <Rn>, #<RotatedImm8> // // cccc0010011snnnnddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn, // s=setFlags and iiiiiiiiiiii defines the RotatedImm8 value. // // RSB (register) - ARM section A8.8.163, encoding A1. // rsb{s}<c> <Rd>, <Rn>, <Rm>{, <Shift>} // // cccc0000011snnnnddddiiiiitt0mmmm where cccc=Cond, dddd=Rd, nnnn=Rn, // mmmm=Rm, iiiii=shift, tt==ShiftKind, and s=SetFlags. constexpr const char *RsbName = "rsb"; constexpr IValueT RsbOpcode = B1 | B0; // 0011 emitType01(Cond, RsbOpcode, OpRd, OpRn, OpSrc1, SetFlags, RdIsPcAndSetFlags, RsbName); } void AssemblerARM32::rsc(const Operand *OpRd, const Operand *OpRn, const Operand *OpSrc1, bool SetFlags, CondARM32::Cond Cond) { // RSC (immediate) - ARM section A8.8.155, encoding A1: // rsc{s}<c> <Rd>, <Rn>, #<RotatedImm8> // // cccc0010111snnnnddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn, // mmmm=Rm, iiiii=shift, tt=ShiftKind, and s=SetFlags. // // RSC (register) - ARM section A8.8.156, encoding A1: // rsc{s}<c> <Rd>, <Rn>, <Rm>{, <shift>} // // cccc0000111snnnnddddiiiiitt0mmmm where cccc=Cond, dddd=Rd, nnnn=Rn, // mmmm=Rm, iiiii=shift, tt=ShiftKind, and s=SetFlags. // // RSC (register-shifted register) - ARM section A8.8.157, encoding A1: // rsc{s}<c> <Rd>, <Rn>, <Rm>, <type> <Rs> // // cccc0000111fnnnnddddssss0tt1mmmm where cccc=Cond, dddd=Rd, nnnn=Rn, // mmmm=Rm, ssss=Rs, tt defined <type>, and f=SetFlags. constexpr const char *RscName = "rsc"; constexpr IValueT RscOpcode = B2 | B1 | B0; // i.e. 0111. emitType01(Cond, RscOpcode, OpRd, OpRn, OpSrc1, SetFlags, RdIsPcAndSetFlags, RscName); } void AssemblerARM32::sxt(const Operand *OpRd, const Operand *OpSrc0, CondARM32::Cond Cond) { constexpr const char *SxtName = "sxt"; constexpr IValueT SxtOpcode = B26 | B25 | B23 | B21; emitSignExtend(Cond, SxtOpcode, OpRd, OpSrc0, SxtName); } void AssemblerARM32::sub(const Operand *OpRd, const Operand *OpRn, const Operand *OpSrc1, bool SetFlags, CondARM32::Cond Cond) { // SUB (register) - ARM section A8.8.223, encoding A1: // sub{s}<c> <Rd>, <Rn>, <Rm>{, <shift>} // SUB (SP minus register): See ARM section 8.8.226, encoding A1: // sub{s}<c> <Rd>, sp, <Rm>{, <Shift>} // // cccc0000010snnnnddddiiiiitt0mmmm where cccc=Cond, dddd=Rd, nnnn=Rn, // mmmm=Rm, iiiii=shift, tt=ShiftKind, and s=SetFlags. // // Sub (Immediate) - ARM section A8.8.222, encoding A1: // sub{s}<c> <Rd>, <Rn>, #<RotatedImm8> // Sub (Sp minus immediate) - ARM section A8.8.225, encoding A1: // sub{s}<c> sp, <Rn>, #<RotatedImm8> // // cccc0010010snnnnddddiiiiiiiiiiii where cccc=Cond, dddd=Rd, nnnn=Rn, // s=SetFlags and iiiiiiiiiiii=Src1Value defining RotatedImm8 constexpr const char *SubName = "sub"; constexpr IValueT SubOpcode = B1; // 0010 emitType01(Cond, SubOpcode, OpRd, OpRn, OpSrc1, SetFlags, RdIsPcAndSetFlags, SubName); } namespace { // Use a particular UDF encoding -- TRAPNaCl in LLVM: 0xE7FEDEF0 // http://llvm.org/viewvc/llvm-project?view=revision&revision=173943 const uint8_t TrapBytesRaw[] = {0xE7, 0xFE, 0xDE, 0xF0}; const auto TrapBytes = llvm::ArrayRef<uint8_t>(TrapBytesRaw, llvm::array_lengthof(TrapBytesRaw)); } // end of anonymous namespace llvm::ArrayRef<uint8_t> AssemblerARM32::getNonExecBundlePadding() const { return TrapBytes; } void AssemblerARM32::trap() { AssemblerBuffer::EnsureCapacity ensured(&Buffer); for (const uint8_t &Byte : reverse_range(TrapBytes)) Buffer.emit<uint8_t>(Byte); } void AssemblerARM32::tst(const Operand *OpRn, const Operand *OpSrc1, CondARM32::Cond Cond) { // TST (register) - ARM section A8.8.241, encoding A1: // tst<c> <Rn>, <Rm>(, <shift>} // // cccc00010001nnnn0000iiiiitt0mmmm where cccc=Cond, nnnn=Rn, mmmm=Rm, // iiiii=Shift, and tt=ShiftKind. // // TST (immediate) - ARM section A8.8.240, encoding A1: // tst<c> <Rn>, #<RotatedImm8> // // cccc00110001nnnn0000iiiiiiiiiiii where cccc=Cond, nnnn=Rn, and // iiiiiiiiiiii defines RotatedImm8. constexpr const char *TstName = "tst"; constexpr IValueT TstOpcode = B3; // ie. 1000 emitCompareOp(Cond, TstOpcode, OpRn, OpSrc1, TstName); } void AssemblerARM32::udiv(const Operand *OpRd, const Operand *OpRn, const Operand *OpSrc1, CondARM32::Cond Cond) { // UDIV - ARM section A8.8.248, encoding A1. // udiv<c> <Rd>, <Rn>, <Rm> // // cccc01110011dddd1111mmmm0001nnnn where cccc=Cond, dddd=Rd, nnnn=Rn, and // mmmm=Rm. constexpr const char *UdivName = "udiv"; IValueT Rd = encodeGPRegister(OpRd, "Rd", UdivName); IValueT Rn = encodeGPRegister(OpRn, "Rn", UdivName); IValueT Rm = encodeGPRegister(OpSrc1, "Rm", UdivName); verifyRegNotPc(Rd, "Rd", UdivName); verifyRegNotPc(Rn, "Rn", UdivName); verifyRegNotPc(Rm, "Rm", UdivName); // Assembler registers rd, rn, rm are encoded as rn, rm, rs. constexpr IValueT UdivOpcode = B21; emitDivOp(Cond, UdivOpcode, Rd, Rn, Rm); } void AssemblerARM32::umull(const Operand *OpRdLo, const Operand *OpRdHi, const Operand *OpRn, const Operand *OpRm, CondARM32::Cond Cond) { // UMULL - ARM section A8.8.257, encoding A1: // umull<c> <RdLo>, <RdHi>, <Rn>, <Rm> // // cccc0000100shhhhllllmmmm1001nnnn where hhhh=RdHi, llll=RdLo, nnnn=Rn, // mmmm=Rm, and s=SetFlags constexpr const char *UmullName = "umull"; IValueT RdLo = encodeGPRegister(OpRdLo, "RdLo", UmullName); IValueT RdHi = encodeGPRegister(OpRdHi, "RdHi", UmullName); IValueT Rn = encodeGPRegister(OpRn, "Rn", UmullName); IValueT Rm = encodeGPRegister(OpRm, "Rm", UmullName); verifyRegNotPc(RdLo, "RdLo", UmullName); verifyRegNotPc(RdHi, "RdHi", UmullName); verifyRegNotPc(Rn, "Rn", UmullName); verifyRegNotPc(Rm, "Rm", UmullName); verifyRegsNotEq(RdHi, "RdHi", RdLo, "RdLo", UmullName); constexpr IValueT UmullOpcode = B23; constexpr bool SetFlags = false; emitMulOp(Cond, UmullOpcode, RdLo, RdHi, Rn, Rm, SetFlags); } void AssemblerARM32::uxt(const Operand *OpRd, const Operand *OpSrc0, CondARM32::Cond Cond) { constexpr const char *UxtName = "uxt"; constexpr IValueT UxtOpcode = B26 | B25 | B23 | B22 | B21; emitSignExtend(Cond, UxtOpcode, OpRd, OpSrc0, UxtName); } void AssemblerARM32::vabss(const Operand *OpSd, const Operand *OpSm, CondARM32::Cond Cond) { // VABS - ARM section A8.8.280, encoding A2: // vabs<c>.f32 <Sd>, <Sm> // // cccc11101D110000dddd101011M0mmmm where cccc=Cond, ddddD=Sd, and mmmmM=Sm. constexpr const char *Vabss = "vabss"; IValueT Sd = encodeSRegister(OpSd, "Sd", Vabss); IValueT Sm = encodeSRegister(OpSm, "Sm", Vabss); constexpr IValueT S0 = 0; constexpr IValueT VabssOpcode = B23 | B21 | B20 | B7 | B6; emitVFPsss(Cond, VabssOpcode, Sd, S0, Sm); } void AssemblerARM32::vabsd(const Operand *OpDd, const Operand *OpDm, CondARM32::Cond Cond) { // VABS - ARM section A8.8.280, encoding A2: // vabs<c>.f64 <Dd>, <Dm> // // cccc11101D110000dddd101111M0mmmm where cccc=Cond, Ddddd=Dd, and Mmmmm=Dm. constexpr const char *Vabsd = "vabsd"; const IValueT Dd = encodeDRegister(OpDd, "Dd", Vabsd); const IValueT Dm = encodeDRegister(OpDm, "Dm", Vabsd); constexpr IValueT D0 = 0; constexpr IValueT VabsdOpcode = B23 | B21 | B20 | B7 | B6; emitVFPddd(Cond, VabsdOpcode, Dd, D0, Dm); } void AssemblerARM32::vabsq(const Operand *OpQd, const Operand *OpQm) { // VABS - ARM section A8.8.280, encoding A1: // vabs.<dt> <Qd>, <Qm> // // 111100111D11ss01ddd0f1101M0mmm0 where Dddd=OpQd, Mddd=OpQm, and // <dt> in {s8, s16, s32, f32} and ss is the encoding of <dt>. const Type ElmtTy = typeElementType(OpQd->getType()); assert(ElmtTy != IceType_i64 && "vabsq doesn't allow i64!"); constexpr const char *Vabsq = "vabsq"; const IValueT Dd = mapQRegToDReg(encodeQRegister(OpQd, "Qd", Vabsq)); const IValueT Dm = mapQRegToDReg(encodeQRegister(OpQm, "Qm", Vabsq)); constexpr IValueT Dn = 0; const IValueT VabsqOpcode = B24 | B23 | B21 | B20 | B16 | B9 | B8 | (encodeElmtType(ElmtTy) << 18); constexpr bool UseQRegs = true; emitSIMDBase(VabsqOpcode, Dd, Dn, Dm, UseQRegs, isFloatingType(ElmtTy)); } void AssemblerARM32::vadds(const Operand *OpSd, const Operand *OpSn, const Operand *OpSm, CondARM32::Cond Cond) { // VADD (floating-point) - ARM section A8.8.283, encoding A2: // vadd<c>.f32 <Sd>, <Sn>, <Sm> // // cccc11100D11nnnndddd101sN0M0mmmm where cccc=Cond, s=0, ddddD=Rd, nnnnN=Rn, // and mmmmM=Rm. constexpr const char *Vadds = "vadds"; constexpr IValueT VaddsOpcode = B21 | B20; emitVFPsss(Cond, VaddsOpcode, OpSd, OpSn, OpSm, Vadds); } void AssemblerARM32::vaddqi(Type ElmtTy, const Operand *OpQd, const Operand *OpQm, const Operand *OpQn) { // VADD (integer) - ARM section A8.8.282, encoding A1: // vadd.<dt> <Qd>, <Qn>, <Qm> // // 111100100Dssnnn0ddd01000N1M0mmm0 where Dddd=OpQd, Nnnn=OpQm, Mmmm=OpQm, // and dt in [i8, i16, i32, i64] where ss is the index. assert(isScalarIntegerType(ElmtTy) && "vaddqi expects vector with integer element type"); constexpr const char *Vaddqi = "vaddqi"; constexpr IValueT VaddqiOpcode = B11; emitSIMDqqq(VaddqiOpcode, ElmtTy, OpQd, OpQm, OpQn, Vaddqi); } void AssemblerARM32::vaddqf(const Operand *OpQd, const Operand *OpQn, const Operand *OpQm) { // VADD (floating-point) - ARM section A8.8.283, Encoding A1: // vadd.f32 <Qd>, <Qn>, <Qm> // // 111100100D00nnn0ddd01101N1M0mmm0 where Dddd=Qd, Nnnn=Qn, and Mmmm=Qm. assert(OpQd->getType() == IceType_v4f32 && "vaddqf expects type <4 x float>"); constexpr const char *Vaddqf = "vaddqf"; constexpr IValueT VaddqfOpcode = B11 | B8; constexpr bool IsFloatTy = true; emitSIMDqqqBase(VaddqfOpcode, OpQd, OpQn, OpQm, IsFloatTy, Vaddqf); } void AssemblerARM32::vaddd(const Operand *OpDd, const Operand *OpDn, const Operand *OpDm, CondARM32::Cond Cond) { // VADD (floating-point) - ARM section A8.8.283, encoding A2: // vadd<c>.f64 <Dd>, <Dn>, <Dm> // // cccc11100D11nnnndddd101sN0M0mmmm where cccc=Cond, s=1, Ddddd=Rd, Nnnnn=Rn, // and Mmmmm=Rm. constexpr const char *Vaddd = "vaddd"; constexpr IValueT VadddOpcode = B21 | B20; emitVFPddd(Cond, VadddOpcode, OpDd, OpDn, OpDm, Vaddd); } void AssemblerARM32::vandq(const Operand *OpQd, const Operand *OpQm, const Operand *OpQn) { // VAND (register) - ARM section A8.8.287, encoding A1: // vand <Qd>, <Qn>, <Qm> // // 111100100D00nnn0ddd00001N1M1mmm0 where Dddd=OpQd, Nnnn=OpQm, and Mmmm=OpQm. constexpr const char *Vandq = "vandq"; constexpr IValueT VandqOpcode = B8 | B4; constexpr Type ElmtTy = IceType_i8; emitSIMDqqq(VandqOpcode, ElmtTy, OpQd, OpQm, OpQn, Vandq); } void AssemblerARM32::vbslq(const Operand *OpQd, const Operand *OpQm, const Operand *OpQn) { // VBSL (register) - ARM section A8.8.290, encoding A1: // vbsl <Qd>, <Qn>, <Qm> // // 111100110D01nnn0ddd00001N1M1mmm0 where Dddd=OpQd, Nnnn=OpQm, and Mmmm=OpQm. constexpr const char *Vbslq = "vbslq"; constexpr IValueT VbslqOpcode = B24 | B20 | B8 | B4; constexpr Type ElmtTy = IceType_i8; // emits sz=0 emitSIMDqqq(VbslqOpcode, ElmtTy, OpQd, OpQm, OpQn, Vbslq); } void AssemblerARM32::vceqqi(const Type ElmtTy, const Operand *OpQd, const Operand *OpQm, const Operand *OpQn) { // vceq (register) - ARM section A8.8.291, encoding A1: // vceq.<st> <Qd>, <Qn>, <Qm> // // 111100110Dssnnnndddd1000NQM1mmmm where Dddd=OpQd, Nnnn=OpQm, Mmmm=OpQm, and // st in [i8, i16, i32] where ss is the index. constexpr const char *Vceq = "vceq"; constexpr IValueT VceqOpcode = B24 | B11 | B4; emitSIMDqqq(VceqOpcode, ElmtTy, OpQd, OpQm, OpQn, Vceq); } void AssemblerARM32::vceqqs(const Operand *OpQd, const Operand *OpQm, const Operand *OpQn) { // vceq (register) - ARM section A8.8.291, encoding A2: // vceq.f32 <Qd>, <Qn>, <Qm> // // 111100100D00nnnndddd1110NQM0mmmm where Dddd=OpQd, Nnnn=OpQm, and Mmmm=OpQm. constexpr const char *Vceq = "vceq"; constexpr IValueT VceqOpcode = B11 | B10 | B9; constexpr Type ElmtTy = IceType_i8; // encoded as 0b00 emitSIMDqqq(VceqOpcode, ElmtTy, OpQd, OpQm, OpQn, Vceq); } void AssemblerARM32::vcgeqi(const Type ElmtTy, const Operand *OpQd, const Operand *OpQm, const Operand *OpQn) { // vcge (register) - ARM section A8.8.293, encoding A1: // vcge.<st> <Qd>, <Qn>, <Qm> // // 1111001U0Dssnnnndddd0011NQM1mmmm where Dddd=OpQd, Nnnn=OpQm, Mmmm=OpQm, // 0=U, and st in [s8, s16, s32] where ss is the index. constexpr const char *Vcge = "vcge"; constexpr IValueT VcgeOpcode = B9 | B8 | B4; emitSIMDqqq(VcgeOpcode, ElmtTy, OpQd, OpQm, OpQn, Vcge); } void AssemblerARM32::vcugeqi(const Type ElmtTy, const Operand *OpQd, const Operand *OpQm, const Operand *OpQn) { // vcge (register) - ARM section A8.8.293, encoding A1: // vcge.<st> <Qd>, <Qn>, <Qm> // // 1111001U0Dssnnnndddd0011NQM1mmmm where Dddd=OpQd, Nnnn=OpQm, Mmmm=OpQm, // 1=U, and st in [u8, u16, u32] where ss is the index. constexpr const char *Vcge = "vcge"; constexpr IValueT VcgeOpcode = B24 | B9 | B8 | B4; emitSIMDqqq(VcgeOpcode, ElmtTy, OpQd, OpQm, OpQn, Vcge); } void AssemblerARM32::vcgeqs(const Operand *OpQd, const Operand *OpQm, const Operand *OpQn) { // vcge (register) - ARM section A8.8.293, encoding A2: // vcge.f32 <Qd>, <Qn>, <Qm> // // 111100110D00nnnndddd1110NQM0mmmm where Dddd=OpQd, Nnnn=OpQm, and Mmmm=OpQm. constexpr const char *Vcge = "vcge"; constexpr IValueT VcgeOpcode = B24 | B11 | B10 | B9; constexpr Type ElmtTy = IceType_i8; // encoded as 0b00. emitSIMDqqq(VcgeOpcode, ElmtTy, OpQd, OpQm, OpQn, Vcge); } void AssemblerARM32::vcgtqi(const Type ElmtTy, const Operand *OpQd, const Operand *OpQm, const Operand *OpQn) { // vcgt (register) - ARM section A8.8.295, encoding A1: // vcgt.<st> <Qd>, <Qn>, <Qm> // // 1111001U0Dssnnnndddd0011NQM0mmmm where Dddd=OpQd, Nnnn=OpQm, Mmmm=OpQm, // 0=U, and st in [s8, s16, s32] where ss is the index. constexpr const char *Vcge = "vcgt"; constexpr IValueT VcgeOpcode = B9 | B8; emitSIMDqqq(VcgeOpcode, ElmtTy, OpQd, OpQm, OpQn, Vcge); } void AssemblerARM32::vcugtqi(const Type ElmtTy, const Operand *OpQd, const Operand *OpQm, const Operand *OpQn) { // vcgt (register) - ARM section A8.8.295, encoding A1: // vcgt.<st> <Qd>, <Qn>, <Qm> // // 111100110Dssnnnndddd0011NQM0mmmm where Dddd=OpQd, Nnnn=OpQm, Mmmm=OpQm, // 1=U, and st in [u8, u16, u32] where ss is the index. constexpr const char *Vcge = "vcgt"; constexpr IValueT VcgeOpcode = B24 | B9 | B8; emitSIMDqqq(VcgeOpcode, ElmtTy, OpQd, OpQm, OpQn, Vcge); } void AssemblerARM32::vcgtqs(const Operand *OpQd, const Operand *OpQm, const Operand *OpQn) { // vcgt (register) - ARM section A8.8.295, encoding A2: // vcgt.f32 <Qd>, <Qn>, <Qm> // // 111100110D10nnnndddd1110NQM0mmmm where Dddd=OpQd, Nnnn=OpQm, and Mmmm=OpQm. constexpr const char *Vcge = "vcgt"; constexpr IValueT VcgeOpcode = B24 | B21 | B11 | B10 | B9; constexpr Type ElmtTy = IceType_i8; // encoded as 0b00. emitSIMDqqq(VcgeOpcode, ElmtTy, OpQd, OpQm, OpQn, Vcge); } void AssemblerARM32::vcmpd(const Operand *OpDd, const Operand *OpDm, CondARM32::Cond Cond) { constexpr const char *Vcmpd = "vcmpd"; IValueT Dd = encodeDRegister(OpDd, "Dd", Vcmpd); IValueT Dm = encodeDRegister(OpDm, "Dm", Vcmpd); constexpr IValueT VcmpdOpcode = B23 | B21 | B20 | B18 | B6; constexpr IValueT Dn = 0; emitVFPddd(Cond, VcmpdOpcode, Dd, Dn, Dm); } void AssemblerARM32::vcmpdz(const Operand *OpDd, CondARM32::Cond Cond) { constexpr const char *Vcmpdz = "vcmpdz"; IValueT Dd = encodeDRegister(OpDd, "Dd", Vcmpdz); constexpr IValueT VcmpdzOpcode = B23 | B21 | B20 | B18 | B16 | B6; constexpr IValueT Dn = 0; constexpr IValueT Dm = 0; emitVFPddd(Cond, VcmpdzOpcode, Dd, Dn, Dm); } void AssemblerARM32::vcmps(const Operand *OpSd, const Operand *OpSm, CondARM32::Cond Cond) { constexpr const char *Vcmps = "vcmps"; IValueT Sd = encodeSRegister(OpSd, "Sd", Vcmps); IValueT Sm = encodeSRegister(OpSm, "Sm", Vcmps); constexpr IValueT VcmpsOpcode = B23 | B21 | B20 | B18 | B6; constexpr IValueT Sn = 0; emitVFPsss(Cond, VcmpsOpcode, Sd, Sn, Sm); } void AssemblerARM32::vcmpsz(const Operand *OpSd, CondARM32::Cond Cond) { constexpr const char *Vcmpsz = "vcmps"; IValueT Sd = encodeSRegister(OpSd, "Sd", Vcmpsz); constexpr IValueT VcmpszOpcode = B23 | B21 | B20 | B18 | B16 | B6; constexpr IValueT Sn = 0; constexpr IValueT Sm = 0; emitVFPsss(Cond, VcmpszOpcode, Sd, Sn, Sm); } void AssemblerARM32::emitVFPsd(CondARM32::Cond Cond, IValueT Opcode, IValueT Sd, IValueT Dm) { assert(Sd < RegARM32::getNumSRegs()); assert(Dm < RegARM32::getNumDRegs()); assert(CondARM32::isDefined(Cond)); constexpr IValueT VFPOpcode = B27 | B26 | B25 | B11 | B9; const IValueT Encoding = Opcode | VFPOpcode | (encodeCondition(Cond) << kConditionShift) | (getYInRegXXXXY(Sd) << 22) | (getXXXXInRegXXXXY(Sd) << 12) | (getYInRegYXXXX(Dm) << 5) | getXXXXInRegYXXXX(Dm); emitInst(Encoding); } void AssemblerARM32::vcvtdi(const Operand *OpDd, const Operand *OpSm, CondARM32::Cond Cond) { // VCVT (between floating-point and integer, Floating-point) // - ARM Section A8.8.306, encoding A1: // vcvt<c>.f64.s32 <Dd>, <Sm> // // cccc11101D111000dddd10111M0mmmm where cccc=Cond, Ddddd=Dd, and mmmmM=Sm. constexpr const char *Vcvtdi = "vcvtdi"; IValueT Dd = encodeDRegister(OpDd, "Dd", Vcvtdi); IValueT Sm = encodeSRegister(OpSm, "Sm", Vcvtdi); constexpr IValueT VcvtdiOpcode = B23 | B21 | B20 | B19 | B8 | B7 | B6; emitVFPds(Cond, VcvtdiOpcode, Dd, Sm); } void AssemblerARM32::vcvtdu(const Operand *OpDd, const Operand *OpSm, CondARM32::Cond Cond) { // VCVT (between floating-point and integer, Floating-point) // - ARM Section A8.8.306, encoding A1: // vcvt<c>.f64.u32 <Dd>, <Sm> // // cccc11101D111000dddd10101M0mmmm where cccc=Cond, Ddddd=Dd, and mmmmM=Sm. constexpr const char *Vcvtdu = "vcvtdu"; IValueT Dd = encodeDRegister(OpDd, "Dd", Vcvtdu); IValueT Sm = encodeSRegister(OpSm, "Sm", Vcvtdu); constexpr IValueT VcvtduOpcode = B23 | B21 | B20 | B19 | B8 | B6; emitVFPds(Cond, VcvtduOpcode, Dd, Sm); } void AssemblerARM32::vcvtsd(const Operand *OpSd, const Operand *OpDm, CondARM32::Cond Cond) { constexpr const char *Vcvtsd = "vcvtsd"; IValueT Sd = encodeSRegister(OpSd, "Sd", Vcvtsd); IValueT Dm = encodeDRegister(OpDm, "Dm", Vcvtsd); constexpr IValueT VcvtsdOpcode = B23 | B21 | B20 | B18 | B17 | B16 | B8 | B7 | B6; emitVFPsd(Cond, VcvtsdOpcode, Sd, Dm); } void AssemblerARM32::vcvtis(const Operand *OpSd, const Operand *OpSm, CondARM32::Cond Cond) { // VCVT (between floating-point and integer, Floating-point) // - ARM Section A8.8.306, encoding A1: // vcvt<c>.s32.f32 <Sd>, <Sm> // // cccc11101D111101dddd10011M0mmmm where cccc=Cond, ddddD=Sd, and mmmmM=Sm. constexpr const char *Vcvtis = "vcvtis"; IValueT Sd = encodeSRegister(OpSd, "Sd", Vcvtis); IValueT Sm = encodeSRegister(OpSm, "Sm", Vcvtis); constexpr IValueT VcvtisOpcode = B23 | B21 | B20 | B19 | B18 | B16 | B7 | B6; constexpr IValueT S0 = 0; emitVFPsss(Cond, VcvtisOpcode, Sd, S0, Sm); } void AssemblerARM32::vcvtid(const Operand *OpSd, const Operand *OpDm, CondARM32::Cond Cond) { // VCVT (between floating-point and integer, Floating-point) // - ARM Section A8.8.306, encoding A1: // vcvt<c>.s32.f64 <Sd>, <Dm> // // cccc11101D111101dddd10111M0mmmm where cccc=Cond, ddddD=Sd, and Mmmmm=Dm. constexpr const char *Vcvtid = "vcvtid"; IValueT Sd = encodeSRegister(OpSd, "Sd", Vcvtid); IValueT Dm = encodeDRegister(OpDm, "Dm", Vcvtid); constexpr IValueT VcvtidOpcode = B23 | B21 | B20 | B19 | B18 | B16 | B8 | B7 | B6; emitVFPsd(Cond, VcvtidOpcode, Sd, Dm); } void AssemblerARM32::vcvtsi(const Operand *OpSd, const Operand *OpSm, CondARM32::Cond Cond) { // VCVT (between floating-point and integer, Floating-point) // - ARM Section A8.8.306, encoding A1: // vcvt<c>.f32.s32 <Sd>, <Sm> // // cccc11101D111000dddd10011M0mmmm where cccc=Cond, ddddD=Sd, and mmmmM=Sm. constexpr const char *Vcvtsi = "vcvtsi"; IValueT Sd = encodeSRegister(OpSd, "Sd", Vcvtsi); IValueT Sm = encodeSRegister(OpSm, "Sm", Vcvtsi); constexpr IValueT VcvtsiOpcode = B23 | B21 | B20 | B19 | B7 | B6; constexpr IValueT S0 = 0; emitVFPsss(Cond, VcvtsiOpcode, Sd, S0, Sm); } void AssemblerARM32::vcvtsu(const Operand *OpSd, const Operand *OpSm, CondARM32::Cond Cond) { // VCVT (between floating-point and integer, Floating-point) // - ARM Section A8.8.306, encoding A1: // vcvt<c>.f32.u32 <Sd>, <Sm> // // cccc11101D111000dddd10001M0mmmm where cccc=Cond, ddddD=Sd, and mmmmM=Sm. constexpr const char *Vcvtsu = "vcvtsu"; IValueT Sd = encodeSRegister(OpSd, "Sd", Vcvtsu); IValueT Sm = encodeSRegister(OpSm, "Sm", Vcvtsu); constexpr IValueT VcvtsuOpcode = B23 | B21 | B20 | B19 | B6; constexpr IValueT S0 = 0; emitVFPsss(Cond, VcvtsuOpcode, Sd, S0, Sm); } void AssemblerARM32::vcvtud(const Operand *OpSd, const Operand *OpDm, CondARM32::Cond Cond) { // VCVT (between floating-point and integer, Floating-point) // - ARM Section A8.8.306, encoding A1: // vcvt<c>.u32.f64 <Sd>, <Dm> // // cccc11101D111100dddd10111M0mmmm where cccc=Cond, ddddD=Sd, and Mmmmm=Dm. constexpr const char *Vcvtud = "vcvtud"; IValueT Sd = encodeSRegister(OpSd, "Sd", Vcvtud); IValueT Dm = encodeDRegister(OpDm, "Dm", Vcvtud); constexpr IValueT VcvtudOpcode = B23 | B21 | B20 | B19 | B18 | B8 | B7 | B6; emitVFPsd(Cond, VcvtudOpcode, Sd, Dm); } void AssemblerARM32::vcvtus(const Operand *OpSd, const Operand *OpSm, CondARM32::Cond Cond) { // VCVT (between floating-point and integer, Floating-point) // - ARM Section A8.8.306, encoding A1: // vcvt<c>.u32.f32 <Sd>, <Sm> // // cccc11101D111100dddd10011M0mmmm where cccc=Cond, ddddD=Sd, and mmmmM=Sm. constexpr const char *Vcvtus = "vcvtus"; IValueT Sd = encodeSRegister(OpSd, "Sd", Vcvtus); IValueT Sm = encodeSRegister(OpSm, "Sm", Vcvtus); constexpr IValueT VcvtsiOpcode = B23 | B21 | B20 | B19 | B18 | B7 | B6; constexpr IValueT S0 = 0; emitVFPsss(Cond, VcvtsiOpcode, Sd, S0, Sm); } void AssemblerARM32::vcvtqsi(const Operand *OpQd, const Operand *OpQm) { // VCVT (between floating-point and integer, Advanced SIMD) // - ARM Section A8.8.305, encoding A1: // vcvt<c>.f32.s32 <Qd>, <Qm> // // 111100111D11ss11dddd011ooQM0mmmm where Ddddd=Qd, Mmmmm=Qm, and 10=op. constexpr const char *Vcvtqsi = "vcvt.s32.f32"; constexpr IValueT VcvtqsiOpcode = B8; emitSIMDCvtqq(VcvtqsiOpcode, OpQd, OpQm, Vcvtqsi); } void AssemblerARM32::vcvtqsu(const Operand *OpQd, const Operand *OpQm) { // VCVT (between floating-point and integer, Advanced SIMD) // - ARM Section A8.8.305, encoding A1: // vcvt<c>.f32.u32 <Qd>, <Qm> // // 111100111D11ss11dddd011ooQM0mmmm where Ddddd=Qd, Mmmmm=Qm, and 11=op. constexpr const char *Vcvtqsu = "vcvt.u32.f32"; constexpr IValueT VcvtqsuOpcode = B8 | B7; emitSIMDCvtqq(VcvtqsuOpcode, OpQd, OpQm, Vcvtqsu); } void AssemblerARM32::vcvtqis(const Operand *OpQd, const Operand *OpQm) { // VCVT (between floating-point and integer, Advanced SIMD) // - ARM Section A8.8.305, encoding A1: // vcvt<c>.f32.s32 <Qd>, <Qm> // // 111100111D11ss11dddd011ooQM0mmmm where Ddddd=Qd, Mmmmm=Qm, and 01=op. constexpr const char *Vcvtqis = "vcvt.f32.s32"; constexpr IValueT VcvtqisOpcode = 0; emitSIMDCvtqq(VcvtqisOpcode, OpQd, OpQm, Vcvtqis); } void AssemblerARM32::vcvtqus(const Operand *OpQd, const Operand *OpQm) { // VCVT (between floating-point and integer, Advanced SIMD) // - ARM Section A8.8.305, encoding A1: // vcvt<c>.f32.u32 <Qd>, <Qm> // // 111100111D11ss11dddd011ooQM0mmmm where Ddddd=Qd, Mmmmm=Qm, and 01=op. constexpr const char *Vcvtqus = "vcvt.f32.u32"; constexpr IValueT VcvtqusOpcode = B7; emitSIMDCvtqq(VcvtqusOpcode, OpQd, OpQm, Vcvtqus); } void AssemblerARM32::emitVFPds(CondARM32::Cond Cond, IValueT Opcode, IValueT Dd, IValueT Sm) { assert(Dd < RegARM32::getNumDRegs()); assert(Sm < RegARM32::getNumSRegs()); assert(CondARM32::isDefined(Cond)); constexpr IValueT VFPOpcode = B27 | B26 | B25 | B11 | B9; const IValueT Encoding = Opcode | VFPOpcode | (encodeCondition(Cond) << kConditionShift) | (getYInRegYXXXX(Dd) << 22) | (getXXXXInRegYXXXX(Dd) << 12) | (getYInRegXXXXY(Sm) << 5) | getXXXXInRegXXXXY(Sm); emitInst(Encoding); } void AssemblerARM32::vcvtds(const Operand *OpDd, const Operand *OpSm, CondARM32::Cond Cond) { constexpr const char *Vcvtds = "Vctds"; IValueT Dd = encodeDRegister(OpDd, "Dd", Vcvtds); IValueT Sm = encodeSRegister(OpSm, "Sm", Vcvtds); constexpr IValueT VcvtdsOpcode = B23 | B21 | B20 | B18 | B17 | B16 | B7 | B6; emitVFPds(Cond, VcvtdsOpcode, Dd, Sm); } void AssemblerARM32::vdivs(const Operand *OpSd, const Operand *OpSn, const Operand *OpSm, CondARM32::Cond Cond) { // VDIV (floating-point) - ARM section A8.8.283, encoding A2: // vdiv<c>.f32 <Sd>, <Sn>, <Sm> // // cccc11101D00nnnndddd101sN0M0mmmm where cccc=Cond, s=0, ddddD=Rd, nnnnN=Rn, // and mmmmM=Rm. constexpr const char *Vdivs = "vdivs"; constexpr IValueT VdivsOpcode = B23; emitVFPsss(Cond, VdivsOpcode, OpSd, OpSn, OpSm, Vdivs); } void AssemblerARM32::vdivd(const Operand *OpDd, const Operand *OpDn, const Operand *OpDm, CondARM32::Cond Cond) { // VDIV (floating-point) - ARM section A8.8.283, encoding A2: // vdiv<c>.f64 <Dd>, <Dn>, <Dm> // // cccc11101D00nnnndddd101sN0M0mmmm where cccc=Cond, s=1, Ddddd=Rd, Nnnnn=Rn, // and Mmmmm=Rm. constexpr const char *Vdivd = "vdivd"; constexpr IValueT VdivdOpcode = B23; emitVFPddd(Cond, VdivdOpcode, OpDd, OpDn, OpDm, Vdivd); } void AssemblerARM32::veord(const Operand *OpDd, const Operand *OpDn, const Operand *OpDm) { // VEOR - ARM secdtion A8.8.315, encoding A1: // veor<c> <Dd>, <Dn>, <Dm> // // 111100110D00nnnndddd0001N0M1mmmm where Ddddd=Dd, Nnnnn=Dn, and Mmmmm=Dm. constexpr const char *Veord = "veord"; IValueT Dd = encodeDRegister(OpDd, "Dd", Veord); IValueT Dn = encodeDRegister(OpDn, "Dn", Veord); IValueT Dm = encodeDRegister(OpDm, "Dm", Veord); const IValueT Encoding = B25 | B24 | B8 | B4 | (encodeCondition(CondARM32::Cond::kNone) << kConditionShift) | (getYInRegYXXXX(Dd) << 22) | (getXXXXInRegYXXXX(Dn) << 16) | (getXXXXInRegYXXXX(Dd) << 12) | (getYInRegYXXXX(Dn) << 7) | (getYInRegYXXXX(Dm) << 5) | getXXXXInRegYXXXX(Dm); emitInst(Encoding); } void AssemblerARM32::veorq(const Operand *OpQd, const Operand *OpQn, const Operand *OpQm) { // VEOR - ARM section A8.8.316, encoding A1: // veor <Qd>, <Qn>, <Qm> // // 111100110D00nnn0ddd00001N1M1mmm0 where Dddd=Qd, Nnnn=Qn, and Mmmm=Qm. constexpr const char *Veorq = "veorq"; constexpr IValueT VeorqOpcode = B24 | B8 | B4; emitSIMDqqq(VeorqOpcode, IceType_i8, OpQd, OpQn, OpQm, Veorq); } void AssemblerARM32::vldrd(const Operand *OpDd, const Operand *OpAddress, CondARM32::Cond Cond, const TargetInfo &TInfo) { // VLDR - ARM section A8.8.333, encoding A1. // vldr<c> <Dd>, [<Rn>{, #+/-<imm>}] // // cccc1101UD01nnnndddd1011iiiiiiii where cccc=Cond, nnnn=Rn, Ddddd=Rd, // iiiiiiii=abs(Imm >> 2), and U=1 if Opcode>=0. constexpr const char *Vldrd = "vldrd"; IValueT Dd = encodeDRegister(OpDd, "Dd", Vldrd); assert(CondARM32::isDefined(Cond)); IValueT Address; EncodedOperand AddressEncoding = encodeAddress(OpAddress, Address, TInfo, RotatedImm8Div4Address); (void)AddressEncoding; assert(AddressEncoding == EncodedAsImmRegOffset); IValueT Encoding = B27 | B26 | B24 | B20 | B11 | B9 | B8 | (encodeCondition(Cond) << kConditionShift) | (getYInRegYXXXX(Dd) << 22) | (getXXXXInRegYXXXX(Dd) << 12) | Address; emitInst(Encoding); } void AssemblerARM32::vldrq(const Operand *OpQd, const Operand *OpAddress, CondARM32::Cond Cond, const TargetInfo &TInfo) { // This is a pseudo-instruction which loads 64-bit data into a quadword // vector register. It is implemented by loading into the lower doubleword. // VLDR - ARM section A8.8.333, encoding A1. // vldr<c> <Dd>, [<Rn>{, #+/-<imm>}] // // cccc1101UD01nnnndddd1011iiiiiiii where cccc=Cond, nnnn=Rn, Ddddd=Rd, // iiiiiiii=abs(Imm >> 2), and U=1 if Opcode>=0. constexpr const char *Vldrd = "vldrd"; IValueT Dd = mapQRegToDReg(encodeQRegister(OpQd, "Qd", Vldrd)); assert(CondARM32::isDefined(Cond)); IValueT Address; EncodedOperand AddressEncoding = encodeAddress(OpAddress, Address, TInfo, RotatedImm8Div4Address); (void)AddressEncoding; assert(AddressEncoding == EncodedAsImmRegOffset); IValueT Encoding = B27 | B26 | B24 | B20 | B11 | B9 | B8 | (encodeCondition(Cond) << kConditionShift) | (getYInRegYXXXX(Dd) << 22) | (getXXXXInRegYXXXX(Dd) << 12) | Address; emitInst(Encoding); } void AssemblerARM32::vldrs(const Operand *OpSd, const Operand *OpAddress, CondARM32::Cond Cond, const TargetInfo &TInfo) { // VDLR - ARM section A8.8.333, encoding A2. // vldr<c> <Sd>, [<Rn>{, #+/-<imm>]] // // cccc1101UD01nnnndddd1010iiiiiiii where cccc=Cond, nnnn=Rn, ddddD=Sd, // iiiiiiii=abs(Opcode), and U=1 if Opcode >= 0; constexpr const char *Vldrs = "vldrs"; IValueT Sd = encodeSRegister(OpSd, "Sd", Vldrs); assert(CondARM32::isDefined(Cond)); IValueT Address; EncodedOperand AddressEncoding = encodeAddress(OpAddress, Address, TInfo, RotatedImm8Div4Address); (void)AddressEncoding; assert(AddressEncoding == EncodedAsImmRegOffset); IValueT Encoding = B27 | B26 | B24 | B20 | B11 | B9 | (encodeCondition(Cond) << kConditionShift) | (getYInRegXXXXY(Sd) << 22) | (getXXXXInRegXXXXY(Sd) << 12) | Address; emitInst(Encoding); } void AssemblerARM32::emitVMem1Op(IValueT Opcode, IValueT Dd, IValueT Rn, IValueT Rm, DRegListSize NumDRegs, size_t ElmtSize, IValueT Align, const char *InstName) { assert(Utils::IsAbsoluteUint(2, Align)); IValueT EncodedElmtSize; switch (ElmtSize) { default: { std::string Buffer; llvm::raw_string_ostream StrBuf(Buffer); StrBuf << InstName << ": found invalid vector element size " << ElmtSize; llvm::report_fatal_error(StrBuf.str()); } case 8: EncodedElmtSize = 0; break; case 16: EncodedElmtSize = 1; break; case 32: EncodedElmtSize = 2; break; case 64: EncodedElmtSize = 3; } const IValueT Encoding = Opcode | (encodeCondition(CondARM32::kNone) << kConditionShift) | (getYInRegYXXXX(Dd) << 22) | (Rn << kRnShift) | (getXXXXInRegYXXXX(Dd) << kRdShift) | (NumDRegs << 8) | (EncodedElmtSize << 6) | (Align << 4) | Rm; emitInst(Encoding); } void AssemblerARM32::emitVMem1Op(IValueT Opcode, IValueT Dd, IValueT Rn, IValueT Rm, size_t ElmtSize, IValueT Align, const char *InstName) { assert(Utils::IsAbsoluteUint(2, Align)); IValueT EncodedElmtSize; switch (ElmtSize) { default: { std::string Buffer; llvm::raw_string_ostream StrBuf(Buffer); StrBuf << InstName << ": found invalid vector element size " << ElmtSize; llvm::report_fatal_error(StrBuf.str()); } case 8: EncodedElmtSize = 0; break; case 16: EncodedElmtSize = 1; break; case 32: EncodedElmtSize = 2; break; case 64: EncodedElmtSize = 3; } const IValueT Encoding = Opcode | (encodeCondition(CondARM32::kNone) << kConditionShift) | (getYInRegYXXXX(Dd) << 22) | (Rn << kRnShift) | (getXXXXInRegYXXXX(Dd) << kRdShift) | (EncodedElmtSize << 10) | (Align << 4) | Rm; emitInst(Encoding); } void AssemblerARM32::vld1qr(size_t ElmtSize, const Operand *OpQd, const Operand *OpAddress, const TargetInfo &TInfo) { // VLD1 (multiple single elements) - ARM section A8.8.320, encoding A1: // vld1.<size> <Qd>, [<Rn>] // // 111101000D10nnnnddd0ttttssaammmm where tttt=DRegListSize2, Dddd=Qd, // nnnn=Rn, aa=0 (use default alignment), size=ElmtSize, and ss is the // encoding of ElmtSize. constexpr const char *Vld1qr = "vld1qr"; const IValueT Qd = encodeQRegister(OpQd, "Qd", Vld1qr); const IValueT Dd = mapQRegToDReg(Qd); IValueT Address; if (encodeAddress(OpAddress, Address, TInfo, NoImmOffsetAddress) != EncodedAsImmRegOffset) llvm::report_fatal_error(std::string(Vld1qr) + ": malform memory address"); const IValueT Rn = mask(Address, kRnShift, 4); constexpr IValueT Rm = RegARM32::Reg_pc; constexpr IValueT Opcode = B26 | B21; constexpr IValueT Align = 0; // use default alignment. emitVMem1Op(Opcode, Dd, Rn, Rm, DRegListSize2, ElmtSize, Align, Vld1qr); } void AssemblerARM32::vld1(size_t ElmtSize, const Operand *OpQd, const Operand *OpAddress, const TargetInfo &TInfo) { // This is a pseudo-instruction for loading a single element of a quadword // vector. For 64-bit the lower doubleword vector is loaded. if (ElmtSize == 64) { return vldrq(OpQd, OpAddress, Ice::CondARM32::AL, TInfo); } // VLD1 (single elements to one lane) - ARMv7-A/R section A8.6.308, encoding // A1: // VLD1<c>.<size> <list>, [<Rn>{@<align>}], <Rm> // // 111101001D10nnnnddddss00aaaammmm where tttt=DRegListSize2, Dddd=Qd, // nnnn=Rn, aa=0 (use default alignment), size=ElmtSize, and ss is the // encoding of ElmtSize. constexpr const char *Vld1qr = "vld1qr"; const IValueT Qd = encodeQRegister(OpQd, "Qd", Vld1qr); const IValueT Dd = mapQRegToDReg(Qd); IValueT Address; if (encodeAddress(OpAddress, Address, TInfo, NoImmOffsetAddress) != EncodedAsImmRegOffset) llvm::report_fatal_error(std::string(Vld1qr) + ": malform memory address"); const IValueT Rn = mask(Address, kRnShift, 4); constexpr IValueT Rm = RegARM32::Reg_pc; constexpr IValueT Opcode = B26 | B23 | B21; constexpr IValueT Align = 0; // use default alignment. emitVMem1Op(Opcode, Dd, Rn, Rm, ElmtSize, Align, Vld1qr); } bool AssemblerARM32::vmovqc(const Operand *OpQd, const ConstantInteger32 *Imm) { // VMOV (immediate) - ARM section A8.8.320, encoding A1: // VMOV.<dt> <Qd>, #<Imm> // 1111001x1D000yyyddddcccc01p1zzzz where Qd=Ddddd, Imm=xyyyzzzz, cmode=cccc, // and Op=p. constexpr const char *Vmovc = "vmovc"; const IValueT Dd = mapQRegToDReg(encodeQRegister(OpQd, "Qd", Vmovc)); IValueT Value = Imm->getValue(); const Type VecTy = OpQd->getType(); if (!isVectorType(VecTy)) return false; IValueT Op; IValueT Cmode; IValueT Imm8; if (!encodeAdvSIMDExpandImm(Value, typeElementType(VecTy), Op, Cmode, Imm8)) return false; if (Op == 0 && mask(Cmode, 0, 1) == 1) return false; if (Op == 1 && Cmode != 13) return false; const IValueT Encoding = (0xF << kConditionShift) | B25 | B23 | B6 | B4 | (mask(Imm8, 7, 1) << 24) | (getYInRegYXXXX(Dd) << 22) | (mask(Imm8, 4, 3) << 16) | (getXXXXInRegYXXXX(Dd) << 12) | (Cmode << 8) | (Op << 5) | mask(Imm8, 0, 4); emitInst(Encoding); return true; } void AssemblerARM32::vmovd(const Operand *OpDd, const OperandARM32FlexFpImm *OpFpImm, CondARM32::Cond Cond) { // VMOV (immediate) - ARM section A8.8.339, encoding A2: // vmov<c>.f64 <Dd>, #<imm> // // cccc11101D11xxxxdddd10110000yyyy where cccc=Cond, ddddD=Sn, xxxxyyyy=imm. constexpr const char *Vmovd = "vmovd"; IValueT Dd = encodeSRegister(OpDd, "Dd", Vmovd); IValueT Imm8 = OpFpImm->getModifiedImm(); assert(Imm8 < (1 << 8)); constexpr IValueT VmovsOpcode = B23 | B21 | B20 | B8; IValueT OpcodePlusImm8 = VmovsOpcode | ((Imm8 >> 4) << 16) | (Imm8 & 0xf); constexpr IValueT D0 = 0; emitVFPddd(Cond, OpcodePlusImm8, Dd, D0, D0); } void AssemblerARM32::vmovdd(const Operand *OpDd, const Variable *OpDm, CondARM32::Cond Cond) { // VMOV (register) - ARM section A8.8.340, encoding A2: // vmov<c>.f64 <Dd>, <Sm> // // cccc11101D110000dddd101101M0mmmm where cccc=Cond, Ddddd=Sd, and Mmmmm=Sm. constexpr const char *Vmovdd = "Vmovdd"; IValueT Dd = encodeSRegister(OpDd, "Dd", Vmovdd); IValueT Dm = encodeSRegister(OpDm, "Dm", Vmovdd); constexpr IValueT VmovddOpcode = B23 | B21 | B20 | B6; constexpr IValueT D0 = 0; emitVFPddd(Cond, VmovddOpcode, Dd, D0, Dm); } void AssemblerARM32::vmovdrr(const Operand *OpDm, const Operand *OpRt, const Operand *OpRt2, CondARM32::Cond Cond) { // VMOV (between two ARM core registers and a doubleword extension register). // ARM section A8.8.345, encoding A1: // vmov<c> <Dm>, <Rt>, <Rt2> // // cccc11000100xxxxyyyy101100M1mmmm where cccc=Cond, xxxx=Rt, yyyy=Rt2, and // Mmmmm=Dm. constexpr const char *Vmovdrr = "vmovdrr"; IValueT Dm = encodeDRegister(OpDm, "Dm", Vmovdrr); IValueT Rt = encodeGPRegister(OpRt, "Rt", Vmovdrr); IValueT Rt2 = encodeGPRegister(OpRt2, "Rt", Vmovdrr); assert(Rt != RegARM32::Encoded_Reg_sp); assert(Rt != RegARM32::Encoded_Reg_pc); assert(Rt2 != RegARM32::Encoded_Reg_sp); assert(Rt2 != RegARM32::Encoded_Reg_pc); assert(Rt != Rt2); assert(CondARM32::isDefined(Cond)); IValueT Encoding = B27 | B26 | B22 | B11 | B9 | B8 | B4 | (encodeCondition(Cond) << kConditionShift) | (Rt2 << 16) | (Rt << 12) | (getYInRegYXXXX(Dm) << 5) | getXXXXInRegYXXXX(Dm); emitInst(Encoding); } void AssemblerARM32::vmovqir(const Operand *OpQn, uint32_t Index, const Operand *OpRt, CondARM32::Cond Cond) { // VMOV (ARM core register to scalar) - ARM section A8.8.341, encoding A1: // vmov<c>.<size> <Dn[x]>, <Rt> constexpr const char *Vmovdr = "vmovdr"; constexpr bool IsExtract = true; emitInsertExtractInt(Cond, OpQn, Index, OpRt, !IsExtract, Vmovdr); } void AssemblerARM32::vmovqis(const Operand *OpQd, uint32_t Index, const Operand *OpSm, CondARM32::Cond Cond) { constexpr const char *Vmovqis = "vmovqis"; assert(Index < 4); IValueT Sd = mapQRegToSReg(encodeQRegister(OpQd, "Qd", Vmovqis)) + Index; IValueT Sm = encodeSRegister(OpSm, "Sm", Vmovqis); emitMoveSS(Cond, Sd, Sm); } void AssemblerARM32::vmovrqi(const Operand *OpRt, const Operand *OpQn, uint32_t Index, CondARM32::Cond Cond) { // VMOV (scalar to ARM core register) - ARM section A8.8.342, encoding A1: // vmov<c>.<dt> <Rt>, <Dn[x]> constexpr const char *Vmovrd = "vmovrd"; constexpr bool IsExtract = true; emitInsertExtractInt(Cond, OpQn, Index, OpRt, IsExtract, Vmovrd); } void AssemblerARM32::vmovrrd(const Operand *OpRt, const Operand *OpRt2, const Operand *OpDm, CondARM32::Cond Cond) { // VMOV (between two ARM core registers and a doubleword extension register). // ARM section A8.8.345, encoding A1: // vmov<c> <Rt>, <Rt2>, <Dm> // // cccc11000101xxxxyyyy101100M1mmmm where cccc=Cond, xxxx=Rt, yyyy=Rt2, and // Mmmmm=Dm. constexpr const char *Vmovrrd = "vmovrrd"; IValueT Rt = encodeGPRegister(OpRt, "Rt", Vmovrrd); IValueT Rt2 = encodeGPRegister(OpRt2, "Rt", Vmovrrd); IValueT Dm = encodeDRegister(OpDm, "Dm", Vmovrrd); assert(Rt != RegARM32::Encoded_Reg_sp); assert(Rt != RegARM32::Encoded_Reg_pc); assert(Rt2 != RegARM32::Encoded_Reg_sp); assert(Rt2 != RegARM32::Encoded_Reg_pc); assert(Rt != Rt2); assert(CondARM32::isDefined(Cond)); IValueT Encoding = B27 | B26 | B22 | B20 | B11 | B9 | B8 | B4 | (encodeCondition(Cond) << kConditionShift) | (Rt2 << 16) | (Rt << 12) | (getYInRegYXXXX(Dm) << 5) | getXXXXInRegYXXXX(Dm); emitInst(Encoding); } void AssemblerARM32::vmovrs(const Operand *OpRt, const Operand *OpSn, CondARM32::Cond Cond) { // VMOV (between ARM core register and single-precision register) // ARM section A8.8.343, encoding A1. // // vmov<c> <Rt>, <Sn> // // cccc11100001nnnntttt1010N0010000 where cccc=Cond, nnnnN = Sn, and tttt=Rt. constexpr const char *Vmovrs = "vmovrs"; IValueT Rt = encodeGPRegister(OpRt, "Rt", Vmovrs); IValueT Sn = encodeSRegister(OpSn, "Sn", Vmovrs); assert(CondARM32::isDefined(Cond)); IValueT Encoding = (encodeCondition(Cond) << kConditionShift) | B27 | B26 | B25 | B20 | B11 | B9 | B4 | (getXXXXInRegXXXXY(Sn) << 16) | (Rt << kRdShift) | (getYInRegXXXXY(Sn) << 7); emitInst(Encoding); } void AssemblerARM32::vmovs(const Operand *OpSd, const OperandARM32FlexFpImm *OpFpImm, CondARM32::Cond Cond) { // VMOV (immediate) - ARM section A8.8.339, encoding A2: // vmov<c>.f32 <Sd>, #<imm> // // cccc11101D11xxxxdddd10100000yyyy where cccc=Cond, ddddD=Sn, xxxxyyyy=imm. constexpr const char *Vmovs = "vmovs"; IValueT Sd = encodeSRegister(OpSd, "Sd", Vmovs); IValueT Imm8 = OpFpImm->getModifiedImm(); assert(Imm8 < (1 << 8)); constexpr IValueT VmovsOpcode = B23 | B21 | B20; IValueT OpcodePlusImm8 = VmovsOpcode | ((Imm8 >> 4) << 16) | (Imm8 & 0xf); constexpr IValueT S0 = 0; emitVFPsss(Cond, OpcodePlusImm8, Sd, S0, S0); } void AssemblerARM32::vmovss(const Operand *OpSd, const Variable *OpSm, CondARM32::Cond Cond) { constexpr const char *Vmovss = "Vmovss"; IValueT Sd = encodeSRegister(OpSd, "Sd", Vmovss); IValueT Sm = encodeSRegister(OpSm, "Sm", Vmovss); emitMoveSS(Cond, Sd, Sm); } void AssemblerARM32::vmovsqi(const Operand *OpSd, const Operand *OpQm, uint32_t Index, CondARM32::Cond Cond) { constexpr const char *Vmovsqi = "vmovsqi"; const IValueT Sd = encodeSRegister(OpSd, "Sd", Vmovsqi); assert(Index < 4); const IValueT Sm = mapQRegToSReg(encodeQRegister(OpQm, "Qm", Vmovsqi)) + Index; emitMoveSS(Cond, Sd, Sm); } void AssemblerARM32::vmovsr(const Operand *OpSn, const Operand *OpRt, CondARM32::Cond Cond) { // VMOV (between ARM core register and single-precision register) // ARM section A8.8.343, encoding A1. // // vmov<c> <Sn>, <Rt> // // cccc11100000nnnntttt1010N0010000 where cccc=Cond, nnnnN = Sn, and tttt=Rt. constexpr const char *Vmovsr = "vmovsr"; IValueT Sn = encodeSRegister(OpSn, "Sn", Vmovsr); IValueT Rt = encodeGPRegister(OpRt, "Rt", Vmovsr); assert(Sn < RegARM32::getNumSRegs()); assert(Rt < RegARM32::getNumGPRegs()); assert(CondARM32::isDefined(Cond)); IValueT Encoding = (encodeCondition(Cond) << kConditionShift) | B27 | B26 | B25 | B11 | B9 | B4 | (getXXXXInRegXXXXY(Sn) << 16) | (Rt << kRdShift) | (getYInRegXXXXY(Sn) << 7); emitInst(Encoding); } void AssemblerARM32::vmlad(const Operand *OpDd, const Operand *OpDn, const Operand *OpDm, CondARM32::Cond Cond) { // VMLA, VMLS (floating-point), ARM section A8.8.337, encoding A2: // vmla<c>.f64 <Dd>, <Dn>, <Dm> // // cccc11100d00nnnndddd1011n0M0mmmm where cccc=Cond, Ddddd=Dd, Nnnnn=Dn, and // Mmmmm=Dm constexpr const char *Vmlad = "vmlad"; constexpr IValueT VmladOpcode = 0; emitVFPddd(Cond, VmladOpcode, OpDd, OpDn, OpDm, Vmlad); } void AssemblerARM32::vmlas(const Operand *OpSd, const Operand *OpSn, const Operand *OpSm, CondARM32::Cond Cond) { // VMLA, VMLS (floating-point), ARM section A8.8.337, encoding A2: // vmla<c>.f32 <Sd>, <Sn>, <Sm> // // cccc11100d00nnnndddd1010n0M0mmmm where cccc=Cond, ddddD=Sd, nnnnN=Sn, and // mmmmM=Sm constexpr const char *Vmlas = "vmlas"; constexpr IValueT VmlasOpcode = 0; emitVFPsss(Cond, VmlasOpcode, OpSd, OpSn, OpSm, Vmlas); } void AssemblerARM32::vmlsd(const Operand *OpDd, const Operand *OpDn, const Operand *OpDm, CondARM32::Cond Cond) { // VMLA, VMLS (floating-point), ARM section A8.8.337, encoding A2: // vmls<c>.f64 <Dd>, <Dn>, <Dm> // // cccc11100d00nnnndddd1011n1M0mmmm where cccc=Cond, Ddddd=Dd, Nnnnn=Dn, and // Mmmmm=Dm constexpr const char *Vmlad = "vmlad"; constexpr IValueT VmladOpcode = B6; emitVFPddd(Cond, VmladOpcode, OpDd, OpDn, OpDm, Vmlad); } void AssemblerARM32::vmlss(const Operand *OpSd, const Operand *OpSn, const Operand *OpSm, CondARM32::Cond Cond) { // VMLA, VMLS (floating-point), ARM section A8.8.337, encoding A2: // vmls<c>.f32 <Sd>, <Sn>, <Sm> // // cccc11100d00nnnndddd1010n1M0mmmm where cccc=Cond, ddddD=Sd, nnnnN=Sn, and // mmmmM=Sm constexpr const char *Vmlas = "vmlas"; constexpr IValueT VmlasOpcode = B6; emitVFPsss(Cond, VmlasOpcode, OpSd, OpSn, OpSm, Vmlas); } void AssemblerARM32::vmrsAPSR_nzcv(CondARM32::Cond Cond) { // MVRS - ARM section A*.8.348, encoding A1: // vmrs<c> APSR_nzcv, FPSCR // // cccc111011110001tttt101000010000 where tttt=0x15 (i.e. when Rt=pc, use // APSR_nzcv instead). assert(CondARM32::isDefined(Cond)); IValueT Encoding = B27 | B26 | B25 | B23 | B22 | B21 | B20 | B16 | B15 | B14 | B13 | B12 | B11 | B9 | B4 | (encodeCondition(Cond) << kConditionShift); emitInst(Encoding); } void AssemblerARM32::vmuls(const Operand *OpSd, const Operand *OpSn, const Operand *OpSm, CondARM32::Cond Cond) { // VMUL (floating-point) - ARM section A8.8.351, encoding A2: // vmul<c>.f32 <Sd>, <Sn>, <Sm> // // cccc11100D10nnnndddd101sN0M0mmmm where cccc=Cond, s=0, ddddD=Rd, nnnnN=Rn, // and mmmmM=Rm. constexpr const char *Vmuls = "vmuls"; constexpr IValueT VmulsOpcode = B21; emitVFPsss(Cond, VmulsOpcode, OpSd, OpSn, OpSm, Vmuls); } void AssemblerARM32::vmuld(const Operand *OpDd, const Operand *OpDn, const Operand *OpDm, CondARM32::Cond Cond) { // VMUL (floating-point) - ARM section A8.8.351, encoding A2: // vmul<c>.f64 <Dd>, <Dn>, <Dm> // // cccc11100D10nnnndddd101sN0M0mmmm where cccc=Cond, s=1, Ddddd=Rd, Nnnnn=Rn, // and Mmmmm=Rm. constexpr const char *Vmuld = "vmuld"; constexpr IValueT VmuldOpcode = B21; emitVFPddd(Cond, VmuldOpcode, OpDd, OpDn, OpDm, Vmuld); } void AssemblerARM32::vmulqi(Type ElmtTy, const Operand *OpQd, const Operand *OpQn, const Operand *OpQm) { // VMUL, VMULL (integer and polynomial) - ARM section A8.8.350, encoding A1: // vmul<c>.<dt> <Qd>, <Qn>, <Qm> // // 111100100Dssnnn0ddd01001NqM1mmm0 where Dddd=Qd, Nnnn=Qn, Mmmm=Qm, and // dt in [i8, i16, i32] where ss is the index. assert(isScalarIntegerType(ElmtTy) && "vmulqi expects vector with integer element type"); assert(ElmtTy != IceType_i64 && "vmulqi on i64 vector not allowed"); constexpr const char *Vmulqi = "vmulqi"; constexpr IValueT VmulqiOpcode = B11 | B8 | B4; emitSIMDqqq(VmulqiOpcode, ElmtTy, OpQd, OpQn, OpQm, Vmulqi); } void AssemblerARM32::vmulh(Type ElmtTy, const Operand *OpQd, const Operand *OpQn, const Operand *OpQm, bool Unsigned) { // Pseudo-instruction for multiplying the corresponding elements in the lower // halves of two quadword vectors, and returning the high halves. // VMULL (integer and polynomial) - ARMv7-A/R section A8.6.337, encoding A1: // VMUL<c>.<dt> <Dd>, <Dn>, <Dm> // // 1111001U1Dssnnnndddd11o0N0M0mmmm assert(isScalarIntegerType(ElmtTy) && "vmull expects vector with integer element type"); assert(ElmtTy != IceType_i64 && "vmull on i64 vector not allowed"); constexpr const char *Vmull = "vmull"; constexpr IValueT ElmtShift = 20; const IValueT ElmtSize = encodeElmtType(ElmtTy); assert(Utils::IsUint(2, ElmtSize)); const IValueT VmullOpcode = B25 | (Unsigned ? B24 : 0) | B23 | (B20) | B11 | B10; const IValueT Qd = encodeQRegister(OpQd, "Qd", Vmull); const IValueT Qn = encodeQRegister(OpQn, "Qn", Vmull); const IValueT Qm = encodeQRegister(OpQm, "Qm", Vmull); const IValueT Dd = mapQRegToDReg(Qd); const IValueT Dn = mapQRegToDReg(Qn); const IValueT Dm = mapQRegToDReg(Qm); constexpr bool UseQRegs = false; constexpr bool IsFloatTy = false; emitSIMDBase(VmullOpcode | (ElmtSize << ElmtShift), Dd, Dn, Dm, UseQRegs, IsFloatTy); // Shift and narrow to obtain high halves. constexpr IValueT VshrnOpcode = B25 | B23 | B11 | B4; const IValueT Imm6 = encodeSIMDShiftImm6(ST_Vshr, IceType_i16, 16); constexpr IValueT ImmShift = 16; emitSIMDBase(VshrnOpcode | (Imm6 << ImmShift), Dd, 0, Dd, UseQRegs, IsFloatTy); } void AssemblerARM32::vmlap(Type ElmtTy, const Operand *OpQd, const Operand *OpQn, const Operand *OpQm) { // Pseudo-instruction for multiplying the corresponding elements in the lower // halves of two quadword vectors, and pairwise-adding the results. // VMULL (integer and polynomial) - ARM section A8.8.350, encoding A1: // vmull<c>.<dt> <Qd>, <Qn>, <Qm> // // 1111001U1Dssnnnndddd11o0N0M0mmmm assert(isScalarIntegerType(ElmtTy) && "vmull expects vector with integer element type"); assert(ElmtTy != IceType_i64 && "vmull on i64 vector not allowed"); constexpr const char *Vmull = "vmull"; constexpr IValueT ElmtShift = 20; const IValueT ElmtSize = encodeElmtType(ElmtTy); assert(Utils::IsUint(2, ElmtSize)); bool Unsigned = false; const IValueT VmullOpcode = B25 | (Unsigned ? B24 : 0) | B23 | (B20) | B11 | B10; const IValueT Dd = mapQRegToDReg(encodeQRegister(OpQd, "Qd", Vmull)); const IValueT Dn = mapQRegToDReg(encodeQRegister(OpQn, "Qn", Vmull)); const IValueT Dm = mapQRegToDReg(encodeQRegister(OpQm, "Qm", Vmull)); constexpr bool UseQRegs = false; constexpr bool IsFloatTy = false; emitSIMDBase(VmullOpcode | (ElmtSize << ElmtShift), Dd, Dn, Dm, UseQRegs, IsFloatTy); // VPADD - ARM section A8.8.280, encoding A1: // vpadd.<dt> <Dd>, <Dm>, <Dn> // // 111100100Dssnnnndddd1011NQM1mmmm where Ddddd=<Dd>, Mmmmm=<Dm>, and // Nnnnn=<Dn> and ss is the encoding of <dt>. assert(ElmtTy != IceType_i64 && "vpadd doesn't allow i64!"); const IValueT VpaddOpcode = B25 | B11 | B9 | B8 | B4 | ((encodeElmtType(ElmtTy) + 1) << 20); emitSIMDBase(VpaddOpcode, Dd, Dd, Dd + 1, UseQRegs, IsFloatTy); } void AssemblerARM32::vdup(Type ElmtTy, const Operand *OpQd, const Operand *OpQn, IValueT Idx) { // VDUP (scalar) - ARMv7-A/R section A8.6.302, encoding A1: // VDUP<c>.<size> <Qd>, <Dm[x]> // // 111100111D11iiiiddd011000QM0mmmm where Dddd=<Qd>, Mmmmm=<Dm>, and // iiii=imm4 encodes <size> and [x]. constexpr const char *Vdup = "vdup"; const IValueT VdupOpcode = B25 | B24 | B23 | B21 | B20 | B11 | B10; const IValueT Dd = mapQRegToDReg(encodeQRegister(OpQd, "Qd", Vdup)); const IValueT Dn = mapQRegToDReg(encodeQRegister(OpQn, "Qn", Vdup)); constexpr bool UseQRegs = true; constexpr bool IsFloatTy = false; IValueT Imm4 = 0; bool Lower = true; switch (ElmtTy) { case IceType_i8: assert(Idx < 16); Lower = Idx < 8; Imm4 = 1 | ((Idx & 0x7) << 1); break; case IceType_i16: assert(Idx < 8); Lower = Idx < 4; Imm4 = 2 | ((Idx & 0x3) << 2); break; case IceType_i32: case IceType_f32: assert(Idx < 4); Lower = Idx < 2; Imm4 = 4 | ((Idx & 0x1) << 3); break; default: assert(false && "vdup only supports 8, 16, and 32-bit elements"); break; } emitSIMDBase(VdupOpcode, Dd, Imm4, Dn + (Lower ? 0 : 1), UseQRegs, IsFloatTy); } void AssemblerARM32::vzip(Type ElmtTy, const Operand *OpQd, const Operand *OpQn, const Operand *OpQm) { // Pseudo-instruction which interleaves the elements of the lower halves of // two quadword registers. // Vzip - ARMv7-A/R section A8.6.410, encoding A1: // VZIP<c>.<size> <Dd>, <Dm> // // 111100111D11ss10dddd00011QM0mmmm where Ddddd=<Dd>, Mmmmm=<Dm>, and // ss=<size> assert(ElmtTy != IceType_i64 && "vzip on i64 vector not allowed"); constexpr const char *Vzip = "vzip"; const IValueT Dd = mapQRegToDReg(encodeQRegister(OpQd, "Qd", Vzip)); const IValueT Dn = mapQRegToDReg(encodeQRegister(OpQn, "Qn", Vzip)); const IValueT Dm = mapQRegToDReg(encodeQRegister(OpQm, "Qm", Vzip)); constexpr bool UseQRegs = false; constexpr bool IsFloatTy = false; // VMOV Dd, Dm // 111100100D10mmmmdddd0001MQM1mmmm constexpr IValueT VmovOpcode = B25 | B21 | B8 | B4; // Copy lower half of second source to upper half of destination. emitSIMDBase(VmovOpcode, Dd + 1, Dm, Dm, UseQRegs, IsFloatTy); // Copy lower half of first source to lower half of destination. if (Dd != Dn) emitSIMDBase(VmovOpcode, Dd, Dn, Dn, UseQRegs, IsFloatTy); constexpr IValueT ElmtShift = 18; const IValueT ElmtSize = encodeElmtType(ElmtTy); assert(Utils::IsUint(2, ElmtSize)); if (ElmtTy != IceType_i32 && ElmtTy != IceType_f32) { constexpr IValueT VzipOpcode = B25 | B24 | B23 | B21 | B20 | B17 | B8 | B7; // Zip the lower and upper half of destination. emitSIMDBase(VzipOpcode | (ElmtSize << ElmtShift), Dd, 0, Dd + 1, UseQRegs, IsFloatTy); } else { constexpr IValueT VtrnOpcode = B25 | B24 | B23 | B21 | B20 | B17 | B7; emitSIMDBase(VtrnOpcode | (ElmtSize << ElmtShift), Dd, 0, Dd + 1, UseQRegs, IsFloatTy); } } void AssemblerARM32::vmulqf(const Operand *OpQd, const Operand *OpQn, const Operand *OpQm) { // VMUL (floating-point) - ARM section A8.8.351, encoding A1: // vmul.f32 <Qd>, <Qn>, <Qm> // // 111100110D00nnn0ddd01101MqM1mmm0 where Dddd=Qd, Nnnn=Qn, and Mmmm=Qm. assert(OpQd->getType() == IceType_v4f32 && "vmulqf expects type <4 x float>"); constexpr const char *Vmulqf = "vmulqf"; constexpr IValueT VmulqfOpcode = B24 | B11 | B8 | B4; constexpr bool IsFloatTy = true; emitSIMDqqqBase(VmulqfOpcode, OpQd, OpQn, OpQm, IsFloatTy, Vmulqf); } void AssemblerARM32::vmvnq(const Operand *OpQd, const Operand *OpQm) { // VMVN (integer) - ARM section A8.8.354, encoding A1: // vmvn <Qd>, <Qm> // // 111100111D110000dddd01011QM0mmmm where Dddd=Qd, Mmmm=Qm, and 1=Q. // TODO(jpp) xxx: unify constexpr const char *Vmvn = "vmvn"; constexpr IValueT VmvnOpcode = B24 | B23 | B21 | B20 | B10 | B8 | B7; const IValueT Qd = encodeQRegister(OpQd, "Qd", Vmvn); constexpr IValueT Qn = 0; const IValueT Qm = encodeQRegister(OpQm, "Qm", Vmvn); constexpr bool UseQRegs = true; constexpr bool IsFloat = false; emitSIMDBase(VmvnOpcode, mapQRegToDReg(Qd), mapQRegToDReg(Qn), mapQRegToDReg(Qm), UseQRegs, IsFloat); } void AssemblerARM32::vmovlq(const Operand *OpQd, const Operand *OpQn, const Operand *OpQm) { // Pseudo-instruction to copy the first source operand and insert the lower // half of the second operand into the lower half of the destination. // VMOV (register) - ARMv7-A/R section A8.6.327, encoding A1: // VMOV<c> <Dd>, <Dm> // // 111100111D110000ddd001011QM0mmm0 where Dddd=Qd, Mmmm=Qm, and Q=0. constexpr const char *Vmov = "vmov"; const IValueT Dd = mapQRegToDReg(encodeQRegister(OpQd, "Qd", Vmov)); const IValueT Dn = mapQRegToDReg(encodeQRegister(OpQn, "Qn", Vmov)); const IValueT Dm = mapQRegToDReg(encodeQRegister(OpQm, "Qm", Vmov)); constexpr bool UseQRegs = false; constexpr bool IsFloat = false; const IValueT VmovOpcode = B25 | B21 | B8 | B4; if (Dd != Dm) emitSIMDBase(VmovOpcode, Dd, Dm, Dm, UseQRegs, IsFloat); if (Dd + 1 != Dn + 1) emitSIMDBase(VmovOpcode, Dd + 1, Dn + 1, Dn + 1, UseQRegs, IsFloat); } void AssemblerARM32::vmovhq(const Operand *OpQd, const Operand *OpQn, const Operand *OpQm) { // Pseudo-instruction to copy the first source operand and insert the high // half of the second operand into the high half of the destination. // VMOV (register) - ARMv7-A/R section A8.6.327, encoding A1: // VMOV<c> <Dd>, <Dm> // // 111100111D110000ddd001011QM0mmm0 where Dddd=Qd, Mmmm=Qm, and Q=0. constexpr const char *Vmov = "vmov"; const IValueT Dd = mapQRegToDReg(encodeQRegister(OpQd, "Qd", Vmov)); const IValueT Dn = mapQRegToDReg(encodeQRegister(OpQn, "Qn", Vmov)); const IValueT Dm = mapQRegToDReg(encodeQRegister(OpQm, "Qm", Vmov)); constexpr bool UseQRegs = false; constexpr bool IsFloat = false; const IValueT VmovOpcode = B25 | B21 | B8 | B4; if (Dd != Dn) emitSIMDBase(VmovOpcode, Dd, Dn, Dn, UseQRegs, IsFloat); if (Dd + 1 != Dm + 1) emitSIMDBase(VmovOpcode, Dd + 1, Dm + 1, Dm + 1, UseQRegs, IsFloat); } void AssemblerARM32::vmovhlq(const Operand *OpQd, const Operand *OpQn, const Operand *OpQm) { // Pseudo-instruction to copy the first source operand and insert the high // half of the second operand into the lower half of the destination. // VMOV (register) - ARMv7-A/R section A8.6.327, encoding A1: // VMOV<c> <Dd>, <Dm> // // 111100111D110000ddd001011QM0mmm0 where Dddd=Qd, Mmmm=Qm, and Q=0. constexpr const char *Vmov = "vmov"; const IValueT Dd = mapQRegToDReg(encodeQRegister(OpQd, "Qd", Vmov)); const IValueT Dn = mapQRegToDReg(encodeQRegister(OpQn, "Qn", Vmov)); const IValueT Dm = mapQRegToDReg(encodeQRegister(OpQm, "Qm", Vmov)); constexpr bool UseQRegs = false; constexpr bool IsFloat = false; const IValueT VmovOpcode = B25 | B21 | B8 | B4; if (Dd != Dm + 1) emitSIMDBase(VmovOpcode, Dd, Dm + 1, Dm + 1, UseQRegs, IsFloat); if (Dd + 1 != Dn + 1) emitSIMDBase(VmovOpcode, Dd + 1, Dn + 1, Dn + 1, UseQRegs, IsFloat); } void AssemblerARM32::vmovlhq(const Operand *OpQd, const Operand *OpQn, const Operand *OpQm) { // Pseudo-instruction to copy the first source operand and insert the lower // half of the second operand into the high half of the destination. // VMOV (register) - ARMv7-A/R section A8.6.327, encoding A1: // VMOV<c> <Dd>, <Dm> // // 111100111D110000ddd001011QM0mmm0 where Dddd=Qd, Mmmm=Qm, and Q=0. constexpr const char *Vmov = "vmov"; const IValueT Dd = mapQRegToDReg(encodeQRegister(OpQd, "Qd", Vmov)); const IValueT Dn = mapQRegToDReg(encodeQRegister(OpQn, "Qn", Vmov)); const IValueT Dm = mapQRegToDReg(encodeQRegister(OpQm, "Qm", Vmov)); constexpr bool UseQRegs = false; constexpr bool IsFloat = false; const IValueT VmovOpcode = B25 | B21 | B8 | B4; if (Dd + 1 != Dm) emitSIMDBase(VmovOpcode, Dd + 1, Dm, Dm, UseQRegs, IsFloat); if (Dd != Dn) emitSIMDBase(VmovOpcode, Dd, Dn, Dn, UseQRegs, IsFloat); } void AssemblerARM32::vnegqs(Type ElmtTy, const Operand *OpQd, const Operand *OpQm) { // VNEG - ARM section A8.8.355, encoding A1: // vneg.<dt> <Qd>, <Qm> // // 111111111D11ss01dddd0F111QM0mmmm where Dddd=Qd, and Mmmm=Qm, and: // * dt=s8 -> 00=ss, 0=F // * dt=s16 -> 01=ss, 0=F // * dt=s32 -> 10=ss, 0=F // * dt=s32 -> 10=ss, 1=F constexpr const char *Vneg = "vneg"; constexpr IValueT VnegOpcode = B24 | B23 | B21 | B20 | B16 | B9 | B8 | B7; const IValueT Qd = encodeQRegister(OpQd, "Qd", Vneg); constexpr IValueT Qn = 0; const IValueT Qm = encodeQRegister(OpQm, "Qm", Vneg); constexpr bool UseQRegs = true; constexpr IValueT ElmtShift = 18; const IValueT ElmtSize = encodeElmtType(ElmtTy); assert(Utils::IsUint(2, ElmtSize)); emitSIMDBase(VnegOpcode | (ElmtSize << ElmtShift), mapQRegToDReg(Qd), mapQRegToDReg(Qn), mapQRegToDReg(Qm), UseQRegs, isFloatingType(ElmtTy)); } void AssemblerARM32::vorrq(const Operand *OpQd, const Operand *OpQm, const Operand *OpQn) { // VORR (register) - ARM section A8.8.360, encoding A1: // vorr <Qd>, <Qn>, <Qm> // // 111100100D10nnn0ddd00001N1M1mmm0 where Dddd=OpQd, Nnnn=OpQm, and Mmmm=OpQm. constexpr const char *Vorrq = "vorrq"; constexpr IValueT VorrqOpcode = B21 | B8 | B4; constexpr Type ElmtTy = IceType_i8; emitSIMDqqq(VorrqOpcode, ElmtTy, OpQd, OpQm, OpQn, Vorrq); } void AssemblerARM32::vstrd(const Operand *OpDd, const Operand *OpAddress, CondARM32::Cond Cond, const TargetInfo &TInfo) { // VSTR - ARM section A8.8.413, encoding A1: // vstr<c> <Dd>, [<Rn>{, #+/-<Imm>}] // // cccc1101UD00nnnndddd1011iiiiiiii where cccc=Cond, nnnn=Rn, Ddddd=Rd, // iiiiiiii=abs(Imm >> 2), and U=1 if Imm>=0. constexpr const char *Vstrd = "vstrd"; IValueT Dd = encodeDRegister(OpDd, "Dd", Vstrd); assert(CondARM32::isDefined(Cond)); IValueT Address; IValueT AddressEncoding = encodeAddress(OpAddress, Address, TInfo, RotatedImm8Div4Address); (void)AddressEncoding; assert(AddressEncoding == EncodedAsImmRegOffset); IValueT Encoding = B27 | B26 | B24 | B11 | B9 | B8 | (encodeCondition(Cond) << kConditionShift) | (getYInRegYXXXX(Dd) << 22) | (getXXXXInRegYXXXX(Dd) << 12) | Address; emitInst(Encoding); } void AssemblerARM32::vstrq(const Operand *OpQd, const Operand *OpAddress, CondARM32::Cond Cond, const TargetInfo &TInfo) { // This is a pseudo-instruction which stores 64-bit data into a quadword // vector register. It is implemented by storing into the lower doubleword. // VSTR - ARM section A8.8.413, encoding A1: // vstr<c> <Dd>, [<Rn>{, #+/-<Imm>}] // // cccc1101UD00nnnndddd1011iiiiiiii where cccc=Cond, nnnn=Rn, Ddddd=Rd, // iiiiiiii=abs(Imm >> 2), and U=1 if Imm>=0. constexpr const char *Vstrd = "vstrd"; IValueT Dd = mapQRegToDReg(encodeQRegister(OpQd, "Dd", Vstrd)); assert(CondARM32::isDefined(Cond)); IValueT Address; IValueT AddressEncoding = encodeAddress(OpAddress, Address, TInfo, RotatedImm8Div4Address); (void)AddressEncoding; assert(AddressEncoding == EncodedAsImmRegOffset); IValueT Encoding = B27 | B26 | B24 | B11 | B9 | B8 | (encodeCondition(Cond) << kConditionShift) | (getYInRegYXXXX(Dd) << 22) | (getXXXXInRegYXXXX(Dd) << 12) | Address; emitInst(Encoding); } void AssemblerARM32::vstrs(const Operand *OpSd, const Operand *OpAddress, CondARM32::Cond Cond, const TargetInfo &TInfo) { // VSTR - ARM section A8.8.413, encoding A2: // vstr<c> <Sd>, [<Rn>{, #+/-<imm>]] // // cccc1101UD01nnnndddd1010iiiiiiii where cccc=Cond, nnnn=Rn, ddddD=Sd, // iiiiiiii=abs(Opcode), and U=1 if Opcode >= 0; constexpr const char *Vstrs = "vstrs"; IValueT Sd = encodeSRegister(OpSd, "Sd", Vstrs); assert(CondARM32::isDefined(Cond)); IValueT Address; IValueT AddressEncoding = encodeAddress(OpAddress, Address, TInfo, RotatedImm8Div4Address); (void)AddressEncoding; assert(AddressEncoding == EncodedAsImmRegOffset); IValueT Encoding = B27 | B26 | B24 | B11 | B9 | (encodeCondition(Cond) << kConditionShift) | (getYInRegXXXXY(Sd) << 22) | (getXXXXInRegXXXXY(Sd) << 12) | Address; emitInst(Encoding); } void AssemblerARM32::vst1qr(size_t ElmtSize, const Operand *OpQd, const Operand *OpAddress, const TargetInfo &TInfo) { // VST1 (multiple single elements) - ARM section A8.8.404, encoding A1: // vst1.<size> <Qd>, [<Rn>] // // 111101000D00nnnnddd0ttttssaammmm where tttt=DRegListSize2, Dddd=Qd, // nnnn=Rn, aa=0 (use default alignment), size=ElmtSize, and ss is the // encoding of ElmtSize. constexpr const char *Vst1qr = "vst1qr"; const IValueT Qd = encodeQRegister(OpQd, "Qd", Vst1qr); const IValueT Dd = mapQRegToDReg(Qd); IValueT Address; if (encodeAddress(OpAddress, Address, TInfo, NoImmOffsetAddress) != EncodedAsImmRegOffset) llvm::report_fatal_error(std::string(Vst1qr) + ": malform memory address"); const IValueT Rn = mask(Address, kRnShift, 4); constexpr IValueT Rm = RegARM32::Reg_pc; constexpr IValueT Opcode = B26; constexpr IValueT Align = 0; // use default alignment. emitVMem1Op(Opcode, Dd, Rn, Rm, DRegListSize2, ElmtSize, Align, Vst1qr); } void AssemblerARM32::vst1(size_t ElmtSize, const Operand *OpQd, const Operand *OpAddress, const TargetInfo &TInfo) { // This is a pseudo-instruction for storing a single element of a quadword // vector. For 64-bit the lower doubleword vector is stored. if (ElmtSize == 64) { return vstrq(OpQd, OpAddress, Ice::CondARM32::AL, TInfo); } // VST1 (single element from one lane) - ARMv7-A/R section A8.6.392, encoding // A1: // VST1<c>.<size> <list>, [<Rn>{@<align>}], <Rm> // // 111101001D00nnnnddd0ss00aaaammmm where Dddd=Qd, nnnn=Rn, // aaaa=0 (use default alignment), size=ElmtSize, and ss is the // encoding of ElmtSize. constexpr const char *Vst1qr = "vst1qr"; const IValueT Qd = encodeQRegister(OpQd, "Qd", Vst1qr); const IValueT Dd = mapQRegToDReg(Qd); IValueT Address; if (encodeAddress(OpAddress, Address, TInfo, NoImmOffsetAddress) != EncodedAsImmRegOffset) llvm::report_fatal_error(std::string(Vst1qr) + ": malform memory address"); const IValueT Rn = mask(Address, kRnShift, 4); constexpr IValueT Rm = RegARM32::Reg_pc; constexpr IValueT Opcode = B26 | B23; constexpr IValueT Align = 0; // use default alignment. emitVMem1Op(Opcode, Dd, Rn, Rm, ElmtSize, Align, Vst1qr); } void AssemblerARM32::vsubs(const Operand *OpSd, const Operand *OpSn, const Operand *OpSm, CondARM32::Cond Cond) { // VSUB (floating-point) - ARM section A8.8.415, encoding A2: // vsub<c>.f32 <Sd>, <Sn>, <Sm> // // cccc11100D11nnnndddd101sN1M0mmmm where cccc=Cond, s=0, ddddD=Rd, nnnnN=Rn, // and mmmmM=Rm. constexpr const char *Vsubs = "vsubs"; constexpr IValueT VsubsOpcode = B21 | B20 | B6; emitVFPsss(Cond, VsubsOpcode, OpSd, OpSn, OpSm, Vsubs); } void AssemblerARM32::vsubd(const Operand *OpDd, const Operand *OpDn, const Operand *OpDm, CondARM32::Cond Cond) { // VSUB (floating-point) - ARM section A8.8.415, encoding A2: // vsub<c>.f64 <Dd>, <Dn>, <Dm> // // cccc11100D11nnnndddd101sN1M0mmmm where cccc=Cond, s=1, Ddddd=Rd, Nnnnn=Rn, // and Mmmmm=Rm. constexpr const char *Vsubd = "vsubd"; constexpr IValueT VsubdOpcode = B21 | B20 | B6; emitVFPddd(Cond, VsubdOpcode, OpDd, OpDn, OpDm, Vsubd); } void AssemblerARM32::vqaddqi(Type ElmtTy, const Operand *OpQd, const Operand *OpQm, const Operand *OpQn) { // VQADD (integer) - ARM section A8.6.369, encoding A1: // vqadd<c><q>.s<size> {<Qd>,} <Qn>, <Qm> // // 111100100Dssnnn0ddd00000N1M1mmm0 where Dddd=OpQd, Nnnn=OpQn, Mmmm=OpQm, // size is 8, 16, 32, or 64. assert(isScalarIntegerType(ElmtTy) && "vqaddqi expects vector with integer element type"); constexpr const char *Vqaddqi = "vqaddqi"; constexpr IValueT VqaddqiOpcode = B4; emitSIMDqqq(VqaddqiOpcode, ElmtTy, OpQd, OpQm, OpQn, Vqaddqi); } void AssemblerARM32::vqaddqu(Type ElmtTy, const Operand *OpQd, const Operand *OpQm, const Operand *OpQn) { // VQADD (integer) - ARM section A8.6.369, encoding A1: // vqadd<c><q>.s<size> {<Qd>,} <Qn>, <Qm> // // 111100110Dssnnn0ddd00000N1M1mmm0 where Dddd=OpQd, Nnnn=OpQn, Mmmm=OpQm, // size is 8, 16, 32, or 64. assert(isScalarIntegerType(ElmtTy) && "vqaddqu expects vector with integer element type"); constexpr const char *Vqaddqu = "vqaddqu"; constexpr IValueT VqaddquOpcode = B24 | B4; emitSIMDqqq(VqaddquOpcode, ElmtTy, OpQd, OpQm, OpQn, Vqaddqu); } void AssemblerARM32::vqsubqi(Type ElmtTy, const Operand *OpQd, const Operand *OpQm, const Operand *OpQn) { // VQSUB (integer) - ARM section A8.6.369, encoding A1: // vqsub<c><q>.s<size> {<Qd>,} <Qn>, <Qm> // // 111100100Dssnnn0ddd00010N1M1mmm0 where Dddd=OpQd, Nnnn=OpQn, Mmmm=OpQm, // size is 8, 16, 32, or 64. assert(isScalarIntegerType(ElmtTy) && "vqsubqi expects vector with integer element type"); constexpr const char *Vqsubqi = "vqsubqi"; constexpr IValueT VqsubqiOpcode = B9 | B4; emitSIMDqqq(VqsubqiOpcode, ElmtTy, OpQd, OpQm, OpQn, Vqsubqi); } void AssemblerARM32::vqsubqu(Type ElmtTy, const Operand *OpQd, const Operand *OpQm, const Operand *OpQn) { // VQSUB (integer) - ARM section A8.6.369, encoding A1: // vqsub<c><q>.s<size> {<Qd>,} <Qn>, <Qm> // // 111100110Dssnnn0ddd00010N1M1mmm0 where Dddd=OpQd, Nnnn=OpQn, Mmmm=OpQm, // size is 8, 16, 32, or 64. assert(isScalarIntegerType(ElmtTy) && "vqsubqu expects vector with integer element type"); constexpr const char *Vqsubqu = "vqsubqu"; constexpr IValueT VqsubquOpcode = B24 | B9 | B4; emitSIMDqqq(VqsubquOpcode, ElmtTy, OpQd, OpQm, OpQn, Vqsubqu); } void AssemblerARM32::vsubqi(Type ElmtTy, const Operand *OpQd, const Operand *OpQm, const Operand *OpQn) { // VSUB (integer) - ARM section A8.8.414, encoding A1: // vsub.<dt> <Qd>, <Qn>, <Qm> // // 111100110Dssnnn0ddd01000N1M0mmm0 where Dddd=OpQd, Nnnn=OpQm, Mmmm=OpQm, // and dt in [i8, i16, i32, i64] where ss is the index. assert(isScalarIntegerType(ElmtTy) && "vsubqi expects vector with integer element type"); constexpr const char *Vsubqi = "vsubqi"; constexpr IValueT VsubqiOpcode = B24 | B11; emitSIMDqqq(VsubqiOpcode, ElmtTy, OpQd, OpQm, OpQn, Vsubqi); } void AssemblerARM32::vqmovn2(Type DestElmtTy, const Operand *OpQd, const Operand *OpQm, const Operand *OpQn, bool Unsigned, bool Saturating) { // Pseudo-instruction for packing two quadword vectors into one quadword // vector, narrowing each element using saturation or truncation. // VQMOVN - ARMv7-A/R section A8.6.361, encoding A1: // V{Q}MOVN{U}N<c>.<type><size> <Dd>, <Qm> // // 111100111D11ss10dddd0010opM0mmm0 where Ddddd=OpQd, op = 10, Mmmm=OpQm, // ss is 00 (16-bit), 01 (32-bit), or 10 (64-bit). assert(DestElmtTy != IceType_i64 && "vmovn doesn't allow i64 destination vector elements!"); constexpr const char *Vqmovn = "vqmovn"; constexpr bool UseQRegs = false; constexpr bool IsFloatTy = false; const IValueT Qd = encodeQRegister(OpQd, "Qd", Vqmovn); const IValueT Qm = encodeQRegister(OpQm, "Qm", Vqmovn); const IValueT Qn = encodeQRegister(OpQn, "Qn", Vqmovn); const IValueT Dd = mapQRegToDReg(Qd); const IValueT Dm = mapQRegToDReg(Qm); const IValueT Dn = mapQRegToDReg(Qn); IValueT VqmovnOpcode = B25 | B24 | B23 | B21 | B20 | B17 | B9 | (Saturating ? (Unsigned ? B6 : B7) : 0); constexpr IValueT ElmtShift = 18; VqmovnOpcode |= (encodeElmtType(DestElmtTy) << ElmtShift); if (Qm != Qd) { // Narrow second source operand to upper half of destination. emitSIMDBase(VqmovnOpcode, Dd + 1, 0, Dn, UseQRegs, IsFloatTy); // Narrow first source operand to lower half of destination. emitSIMDBase(VqmovnOpcode, Dd + 0, 0, Dm, UseQRegs, IsFloatTy); } else if (Qn != Qd) { // Narrow first source operand to lower half of destination. emitSIMDBase(VqmovnOpcode, Dd + 0, 0, Dm, UseQRegs, IsFloatTy); // Narrow second source operand to upper half of destination. emitSIMDBase(VqmovnOpcode, Dd + 1, 0, Dn, UseQRegs, IsFloatTy); } else { // Narrow first source operand to lower half of destination. emitSIMDBase(VqmovnOpcode, Dd, 0, Dm, UseQRegs, IsFloatTy); // VMOV Dd, Dm // 111100100D10mmmmdddd0001MQM1mmmm const IValueT VmovOpcode = B25 | B21 | B8 | B4; emitSIMDBase(VmovOpcode, Dd + 1, Dd, Dd, UseQRegs, IsFloatTy); } } void AssemblerARM32::vsubqf(const Operand *OpQd, const Operand *OpQn, const Operand *OpQm) { // VSUB (floating-point) - ARM section A8.8.415, Encoding A1: // vsub.f32 <Qd>, <Qn>, <Qm> // // 111100100D10nnn0ddd01101N1M0mmm0 where Dddd=Qd, Nnnn=Qn, and Mmmm=Qm. assert(OpQd->getType() == IceType_v4f32 && "vsubqf expects type <4 x float>"); constexpr const char *Vsubqf = "vsubqf"; constexpr IValueT VsubqfOpcode = B21 | B11 | B8; emitSIMDqqq(VsubqfOpcode, IceType_f32, OpQd, OpQn, OpQm, Vsubqf); } void AssemblerARM32::emitVStackOp(CondARM32::Cond Cond, IValueT Opcode, const Variable *OpBaseReg, SizeT NumConsecRegs) { const IValueT BaseReg = getEncodedSRegNum(OpBaseReg); const IValueT DLastBit = mask(BaseReg, 0, 1); // Last bit of base register. const IValueT Rd = mask(BaseReg, 1, 4); // Top 4 bits of base register. assert(0 < NumConsecRegs); (void)VpushVpopMaxConsecRegs; assert(NumConsecRegs <= VpushVpopMaxConsecRegs); assert((BaseReg + NumConsecRegs) <= RegARM32::getNumSRegs()); assert(CondARM32::isDefined(Cond)); const IValueT Encoding = Opcode | (Cond << kConditionShift) | DLastBit | (Rd << kRdShift) | NumConsecRegs; emitInst(Encoding); } void AssemblerARM32::vpop(const Variable *OpBaseReg, SizeT NumConsecRegs, CondARM32::Cond Cond) { // Note: Current implementation assumes that OpBaseReg is defined using S // registers. It doesn't implement the D register form. // // VPOP - ARM section A8.8.367, encoding A2: // vpop<c> <RegList> // // cccc11001D111101dddd1010iiiiiiii where cccc=Cond, ddddD=BaseReg, and // iiiiiiii=NumConsecRegs. constexpr IValueT VpopOpcode = B27 | B26 | B23 | B21 | B20 | B19 | B18 | B16 | B11 | B9; emitVStackOp(Cond, VpopOpcode, OpBaseReg, NumConsecRegs); } void AssemblerARM32::vpush(const Variable *OpBaseReg, SizeT NumConsecRegs, CondARM32::Cond Cond) { // Note: Current implementation assumes that OpBaseReg is defined using S // registers. It doesn't implement the D register form. // // VPUSH - ARM section A8.8.368, encoding A2: // vpush<c> <RegList> // // cccc11010D101101dddd1010iiiiiiii where cccc=Cond, ddddD=BaseReg, and // iiiiiiii=NumConsecRegs. constexpr IValueT VpushOpcode = B27 | B26 | B24 | B21 | B19 | B18 | B16 | B11 | B9; emitVStackOp(Cond, VpushOpcode, OpBaseReg, NumConsecRegs); } void AssemblerARM32::vshlqi(Type ElmtTy, const Operand *OpQd, const Operand *OpQm, const Operand *OpQn) { // VSHL - ARM section A8.8.396, encoding A1: // vshl Qd, Qm, Qn // // 1111001U0Dssnnnndddd0100NQM0mmmm where Ddddd=Qd, Mmmmm=Qm, Nnnnn=Qn, 0=U, // 1=Q assert(isScalarIntegerType(ElmtTy) && "vshl expects vector with integer element type"); constexpr const char *Vshl = "vshl"; constexpr IValueT VshlOpcode = B10 | B6; emitSIMDqqq(VshlOpcode, ElmtTy, OpQd, OpQn, OpQm, Vshl); } void AssemblerARM32::vshlqc(Type ElmtTy, const Operand *OpQd, const Operand *OpQm, const ConstantInteger32 *Imm6) { // VSHL - ARM section A8.8.395, encoding A1: // vshl Qd, Qm, #Imm // // 1111001U1Diiiiiidddd0101LQM1mmmm where Ddddd=Qd, Mmmmm=Qm, iiiiii=Imm6, // 0=U, 1=Q, 0=L. assert(isScalarIntegerType(ElmtTy) && "vshl expects vector with integer element type"); constexpr const char *Vshl = "vshl"; constexpr IValueT VshlOpcode = B23 | B10 | B8 | B4; emitSIMDShiftqqc(VshlOpcode, OpQd, OpQm, encodeSIMDShiftImm6(ST_Vshl, ElmtTy, Imm6), Vshl); } void AssemblerARM32::vshrqc(Type ElmtTy, const Operand *OpQd, const Operand *OpQm, const ConstantInteger32 *Imm6, InstARM32::FPSign Sign) { // VSHR - ARM section A8.8.398, encoding A1: // vshr Qd, Qm, #Imm // // 1111001U1Diiiiiidddd0101LQM1mmmm where Ddddd=Qd, Mmmmm=Qm, iiiiii=Imm6, // U=Unsigned, Q=1, L=0. assert(isScalarIntegerType(ElmtTy) && "vshr expects vector with integer element type"); constexpr const char *Vshr = "vshr"; const IValueT VshrOpcode = (Sign == InstARM32::FS_Unsigned ? B24 : 0) | B23 | B4; emitSIMDShiftqqc(VshrOpcode, OpQd, OpQm, encodeSIMDShiftImm6(ST_Vshr, ElmtTy, Imm6), Vshr); } void AssemblerARM32::vshlqu(Type ElmtTy, const Operand *OpQd, const Operand *OpQm, const Operand *OpQn) { // VSHL - ARM section A8.8.396, encoding A1: // vshl Qd, Qm, Qn // // 1111001U0Dssnnnndddd0100NQM0mmmm where Ddddd=Qd, Mmmmm=Qm, Nnnnn=Qn, 1=U, // 1=Q assert(isScalarIntegerType(ElmtTy) && "vshl expects vector with integer element type"); constexpr const char *Vshl = "vshl"; constexpr IValueT VshlOpcode = B24 | B10 | B6; emitSIMDqqq(VshlOpcode, ElmtTy, OpQd, OpQn, OpQm, Vshl); } void AssemblerARM32::vsqrtd(const Operand *OpDd, const Operand *OpDm, CondARM32::Cond Cond) { // VSQRT - ARM section A8.8.401, encoding A1: // vsqrt<c>.f64 <Dd>, <Dm> // // cccc11101D110001dddd101111M0mmmm where cccc=Cond, Ddddd=Sd, and Mmmmm=Sm. constexpr const char *Vsqrtd = "vsqrtd"; IValueT Dd = encodeDRegister(OpDd, "Dd", Vsqrtd); IValueT Dm = encodeDRegister(OpDm, "Dm", Vsqrtd); constexpr IValueT VsqrtdOpcode = B23 | B21 | B20 | B16 | B7 | B6; constexpr IValueT D0 = 0; emitVFPddd(Cond, VsqrtdOpcode, Dd, D0, Dm); } void AssemblerARM32::vsqrts(const Operand *OpSd, const Operand *OpSm, CondARM32::Cond Cond) { // VSQRT - ARM section A8.8.401, encoding A1: // vsqrt<c>.f32 <Sd>, <Sm> // // cccc11101D110001dddd101011M0mmmm where cccc=Cond, ddddD=Sd, and mmmmM=Sm. constexpr const char *Vsqrts = "vsqrts"; IValueT Sd = encodeSRegister(OpSd, "Sd", Vsqrts); IValueT Sm = encodeSRegister(OpSm, "Sm", Vsqrts); constexpr IValueT VsqrtsOpcode = B23 | B21 | B20 | B16 | B7 | B6; constexpr IValueT S0 = 0; emitVFPsss(Cond, VsqrtsOpcode, Sd, S0, Sm); } } // end of namespace ARM32 } // end of namespace Ice