//===- subzero/src/IceBitVector.h - Inline bit vector. ----------*- C++ -*-===// // // The Subzero Code Generator // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// \brief Defines and implements a bit vector classes. /// /// SmallBitVector is a drop in replacement for llvm::SmallBitVector. It uses /// inline storage, at the expense of limited, static size. /// /// BitVector is a allocator aware version of llvm::BitVector. Its /// implementation was copied ipsis literis from llvm. /// //===----------------------------------------------------------------------===// #ifndef SUBZERO_SRC_ICEBITVECTOR_H #define SUBZERO_SRC_ICEBITVECTOR_H #include "IceMemory.h" #include "IceOperand.h" #include "llvm/Support/MathExtras.h" #include <algorithm> #include <cassert> #include <climits> #include <memory> #include <type_traits> #include <utility> namespace Ice { class SmallBitVector { public: using ElementType = uint64_t; static constexpr SizeT BitIndexSize = 6; // log2(NumBitsPerPos); static constexpr SizeT NumBitsPerPos = sizeof(ElementType) * CHAR_BIT; static_assert(1 << BitIndexSize == NumBitsPerPos, "Invalid BitIndexSize."); SmallBitVector(const SmallBitVector &BV) { *this = BV; } SmallBitVector &operator=(const SmallBitVector &BV) { if (&BV != this) { resize(BV.size()); memcpy(Bits, BV.Bits, sizeof(Bits)); } return *this; } SmallBitVector() { reset(); } explicit SmallBitVector(SizeT S) : SmallBitVector() { assert(S <= MaxBits); resize(S); } class Reference { Reference() = delete; public: Reference(const Reference &) = default; Reference &operator=(const Reference &Rhs) { return *this = (bool)Rhs; } Reference &operator=(bool t) { if (t) { *Data |= _1 << Bit; } else { *Data &= ~(_1 << Bit); } return *this; } operator bool() const { return (*Data & (_1 << Bit)) != 0; } private: friend class SmallBitVector; Reference(ElementType *D, SizeT B) : Data(D), Bit(B) { assert(B < NumBitsPerPos); } ElementType *const Data; const SizeT Bit; }; Reference operator[](unsigned Idx) { assert(Idx < size()); return Reference(Bits + (Idx >> BitIndexSize), Idx & ((_1 << BitIndexSize) - 1)); } bool operator[](unsigned Idx) const { assert(Idx < size()); return Bits[Idx >> BitIndexSize] & (_1 << (Idx & ((_1 << BitIndexSize) - 1))); } int find_first() const { return find_first<0>(); } int find_next(unsigned Prev) const { return find_next<0>(Prev); } bool any() const { for (SizeT i = 0; i < BitsElements; ++i) { if (Bits[i]) { return true; } } return false; } SizeT size() const { return Size; } void resize(SizeT Size) { assert(Size <= MaxBits); this->Size = Size; } void reserve(SizeT Size) { assert(Size <= MaxBits); (void)Size; } void set(unsigned Idx) { (*this)[Idx] = true; } void set() { for (SizeT ii = 0; ii < size(); ++ii) { (*this)[ii] = true; } } SizeT count() const { SizeT Count = 0; for (SizeT i = 0; i < BitsElements; ++i) { Count += llvm::countPopulation(Bits[i]); } return Count; } SmallBitVector operator&(const SmallBitVector &Rhs) const { assert(size() == Rhs.size()); SmallBitVector Ret(std::max(size(), Rhs.size())); for (SizeT i = 0; i < BitsElements; ++i) { Ret.Bits[i] = Bits[i] & Rhs.Bits[i]; } return Ret; } SmallBitVector operator~() const { SmallBitVector Ret = *this; Ret.invert<0>(); return Ret; } SmallBitVector &operator|=(const SmallBitVector &Rhs) { assert(size() == Rhs.size()); resize(std::max(size(), Rhs.size())); for (SizeT i = 0; i < BitsElements; ++i) { Bits[i] |= Rhs.Bits[i]; } return *this; } SmallBitVector operator|(const SmallBitVector &Rhs) const { assert(size() == Rhs.size()); SmallBitVector Ret(std::max(size(), Rhs.size())); for (SizeT i = 0; i < BitsElements; ++i) { Ret.Bits[i] = Bits[i] | Rhs.Bits[i]; } return Ret; } void reset() { memset(Bits, 0, sizeof(Bits)); } void reset(const SmallBitVector &Mask) { for (const auto V : RegNumBVIter(Mask)) { (*this)[unsigned(V)] = false; } } private: // _1 is the constant 1 of type ElementType. static constexpr ElementType _1 = ElementType(1); static constexpr SizeT BitsElements = 2; ElementType Bits[BitsElements]; // MaxBits is defined here because it needs Bits to be defined. static constexpr SizeT MaxBits = sizeof(SmallBitVector::Bits) * CHAR_BIT; static_assert(sizeof(SmallBitVector::Bits) == 16, "Bits must be 16 bytes wide."); SizeT Size = 0; template <SizeT Pos> typename std::enable_if<Pos == BitsElements, int>::type find_first() const { return -1; } template <SizeT Pos> typename std::enable_if < Pos<BitsElements, int>::type find_first() const { if (Bits[Pos] != 0) { return NumBitsPerPos * Pos + llvm::countTrailingZeros(Bits[Pos]); } return find_first<Pos + 1>(); } template <SizeT Pos> typename std::enable_if<Pos == BitsElements, int>::type find_next(unsigned) const { return -1; } template <SizeT Pos> typename std::enable_if < Pos<BitsElements, int>::type find_next(unsigned Prev) const { if (Prev + 1 < (Pos + 1) * NumBitsPerPos) { const ElementType Mask = (ElementType(1) << ((Prev + 1) - Pos * NumBitsPerPos)) - 1; const ElementType B = Bits[Pos] & ~Mask; if (B != 0) { return NumBitsPerPos * Pos + llvm::countTrailingZeros(B); } Prev = (1 + Pos) * NumBitsPerPos - 1; } return find_next<Pos + 1>(Prev); } template <SizeT Pos> typename std::enable_if<Pos == BitsElements, void>::type invert() {} template <SizeT Pos> typename std::enable_if < Pos<BitsElements, void>::type invert() { if (size() < Pos * NumBitsPerPos) { Bits[Pos] = 0; } else if ((Pos + 1) * NumBitsPerPos < size()) { Bits[Pos] ^= ~ElementType(0); } else { const ElementType Mask = (ElementType(1) << (size() - (Pos * NumBitsPerPos))) - 1; Bits[Pos] ^= Mask; } invert<Pos + 1>(); } }; template <template <typename> class AT> class BitVectorTmpl { typedef unsigned long BitWord; using Allocator = AT<BitWord>; enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT }; static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32, "Unsupported word size"); BitWord *Bits; // Actual bits. unsigned Size; // Size of bitvector in bits. unsigned Capacity; // Size of allocated memory in BitWord. Allocator Alloc; uint64_t alignTo(uint64_t Value, uint64_t Align) { #ifdef PNACL_LLVM return llvm::RoundUpToAlignment(Value, Align); #else // !PNACL_LLVM return llvm::alignTo(Value, Align); #endif // !PNACL_LLVM } public: typedef unsigned size_type; // Encapsulation of a single bit. class reference { friend class BitVectorTmpl; BitWord *WordRef; unsigned BitPos; reference(); // Undefined public: reference(BitVectorTmpl &b, unsigned Idx) { WordRef = &b.Bits[Idx / BITWORD_SIZE]; BitPos = Idx % BITWORD_SIZE; } reference(const reference &) = default; reference &operator=(reference t) { *this = bool(t); return *this; } reference &operator=(bool t) { if (t) *WordRef |= BitWord(1) << BitPos; else *WordRef &= ~(BitWord(1) << BitPos); return *this; } operator bool() const { return ((*WordRef) & (BitWord(1) << BitPos)) ? true : false; } }; /// BitVectorTmpl default ctor - Creates an empty bitvector. BitVectorTmpl(Allocator A = Allocator()) : Size(0), Capacity(0), Alloc(std::move(A)) { Bits = nullptr; } /// BitVectorTmpl ctor - Creates a bitvector of specified number of bits. All /// bits are initialized to the specified value. explicit BitVectorTmpl(unsigned s, bool t = false, Allocator A = Allocator()) : Size(s), Alloc(std::move(A)) { Capacity = NumBitWords(s); Bits = Alloc.allocate(Capacity); init_words(Bits, Capacity, t); if (t) clear_unused_bits(); } /// BitVectorTmpl copy ctor. BitVectorTmpl(const BitVectorTmpl &RHS) : Size(RHS.size()), Alloc(RHS.Alloc) { if (Size == 0) { Bits = nullptr; Capacity = 0; return; } Capacity = NumBitWords(RHS.size()); Bits = Alloc.allocate(Capacity); std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord)); } BitVectorTmpl(BitVectorTmpl &&RHS) : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity), Alloc(std::move(RHS.Alloc)) { RHS.Bits = nullptr; } ~BitVectorTmpl() { if (Bits != nullptr) { Alloc.deallocate(Bits, Capacity); } } /// empty - Tests whether there are no bits in this bitvector. bool empty() const { return Size == 0; } /// size - Returns the number of bits in this bitvector. size_type size() const { return Size; } /// count - Returns the number of bits which are set. size_type count() const { unsigned NumBits = 0; for (unsigned i = 0; i < NumBitWords(size()); ++i) NumBits += llvm::countPopulation(Bits[i]); return NumBits; } /// any - Returns true if any bit is set. bool any() const { for (unsigned i = 0; i < NumBitWords(size()); ++i) if (Bits[i] != 0) return true; return false; } /// all - Returns true if all bits are set. bool all() const { for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i) if (Bits[i] != ~0UL) return false; // If bits remain check that they are ones. The unused bits are always zero. if (unsigned Remainder = Size % BITWORD_SIZE) return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1; return true; } /// none - Returns true if none of the bits are set. bool none() const { return !any(); } /// find_first - Returns the index of the first set bit, -1 if none /// of the bits are set. int find_first() const { for (unsigned i = 0; i < NumBitWords(size()); ++i) if (Bits[i] != 0) return i * BITWORD_SIZE + llvm::countTrailingZeros(Bits[i]); return -1; } /// find_next - Returns the index of the next set bit following the /// "Prev" bit. Returns -1 if the next set bit is not found. int find_next(unsigned Prev) const { ++Prev; if (Prev >= Size) return -1; unsigned WordPos = Prev / BITWORD_SIZE; unsigned BitPos = Prev % BITWORD_SIZE; BitWord Copy = Bits[WordPos]; // Mask off previous bits. Copy &= ~0UL << BitPos; if (Copy != 0) return WordPos * BITWORD_SIZE + llvm::countTrailingZeros(Copy); // Check subsequent words. for (unsigned i = WordPos + 1; i < NumBitWords(size()); ++i) if (Bits[i] != 0) return i * BITWORD_SIZE + llvm::countTrailingZeros(Bits[i]); return -1; } /// clear - Clear all bits. void clear() { Size = 0; } /// resize - Grow or shrink the bitvector. void resize(unsigned N, bool t = false) { if (N > Capacity * BITWORD_SIZE) { unsigned OldCapacity = Capacity; grow(N); init_words(&Bits[OldCapacity], (Capacity - OldCapacity), t); } // Set any old unused bits that are now included in the BitVectorTmpl. This // may set bits that are not included in the new vector, but we will clear // them back out below. if (N > Size) set_unused_bits(t); // Update the size, and clear out any bits that are now unused unsigned OldSize = Size; Size = N; if (t || N < OldSize) clear_unused_bits(); } void reserve(unsigned N) { if (N > Capacity * BITWORD_SIZE) grow(N); } // Set, reset, flip BitVectorTmpl &set() { init_words(Bits, Capacity, true); clear_unused_bits(); return *this; } BitVectorTmpl &set(unsigned Idx) { assert(Bits && "Bits never allocated"); Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE); return *this; } /// set - Efficiently set a range of bits in [I, E) BitVectorTmpl &set(unsigned I, unsigned E) { assert(I <= E && "Attempted to set backwards range!"); assert(E <= size() && "Attempted to set out-of-bounds range!"); if (I == E) return *this; if (I / BITWORD_SIZE == E / BITWORD_SIZE) { BitWord EMask = 1UL << (E % BITWORD_SIZE); BitWord IMask = 1UL << (I % BITWORD_SIZE); BitWord Mask = EMask - IMask; Bits[I / BITWORD_SIZE] |= Mask; return *this; } BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); Bits[I / BITWORD_SIZE] |= PrefixMask; I = alignTo(I, BITWORD_SIZE); for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) Bits[I / BITWORD_SIZE] = ~0UL; BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; if (I < E) Bits[I / BITWORD_SIZE] |= PostfixMask; return *this; } BitVectorTmpl &reset() { init_words(Bits, Capacity, false); return *this; } BitVectorTmpl &reset(unsigned Idx) { Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE)); return *this; } /// reset - Efficiently reset a range of bits in [I, E) BitVectorTmpl &reset(unsigned I, unsigned E) { assert(I <= E && "Attempted to reset backwards range!"); assert(E <= size() && "Attempted to reset out-of-bounds range!"); if (I == E) return *this; if (I / BITWORD_SIZE == E / BITWORD_SIZE) { BitWord EMask = 1UL << (E % BITWORD_SIZE); BitWord IMask = 1UL << (I % BITWORD_SIZE); BitWord Mask = EMask - IMask; Bits[I / BITWORD_SIZE] &= ~Mask; return *this; } BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); Bits[I / BITWORD_SIZE] &= ~PrefixMask; I = alignTo(I, BITWORD_SIZE); for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) Bits[I / BITWORD_SIZE] = 0UL; BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; if (I < E) Bits[I / BITWORD_SIZE] &= ~PostfixMask; return *this; } BitVectorTmpl &flip() { for (unsigned i = 0; i < NumBitWords(size()); ++i) Bits[i] = ~Bits[i]; clear_unused_bits(); return *this; } BitVectorTmpl &flip(unsigned Idx) { Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE); return *this; } // Indexing. reference operator[](unsigned Idx) { assert(Idx < Size && "Out-of-bounds Bit access."); return reference(*this, Idx); } bool operator[](unsigned Idx) const { assert(Idx < Size && "Out-of-bounds Bit access."); BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE); return (Bits[Idx / BITWORD_SIZE] & Mask) != 0; } bool test(unsigned Idx) const { return (*this)[Idx]; } /// Test if any common bits are set. bool anyCommon(const BitVectorTmpl &RHS) const { unsigned ThisWords = NumBitWords(size()); unsigned RHSWords = NumBitWords(RHS.size()); for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i) if (Bits[i] & RHS.Bits[i]) return true; return false; } // Comparison operators. bool operator==(const BitVectorTmpl &RHS) const { unsigned ThisWords = NumBitWords(size()); unsigned RHSWords = NumBitWords(RHS.size()); unsigned i; for (i = 0; i != std::min(ThisWords, RHSWords); ++i) if (Bits[i] != RHS.Bits[i]) return false; // Verify that any extra words are all zeros. if (i != ThisWords) { for (; i != ThisWords; ++i) if (Bits[i]) return false; } else if (i != RHSWords) { for (; i != RHSWords; ++i) if (RHS.Bits[i]) return false; } return true; } bool operator!=(const BitVectorTmpl &RHS) const { return !(*this == RHS); } /// Intersection, union, disjoint union. BitVectorTmpl &operator&=(const BitVectorTmpl &RHS) { unsigned ThisWords = NumBitWords(size()); unsigned RHSWords = NumBitWords(RHS.size()); unsigned i; for (i = 0; i != std::min(ThisWords, RHSWords); ++i) Bits[i] &= RHS.Bits[i]; // Any bits that are just in this bitvector become zero, because they aren't // in the RHS bit vector. Any words only in RHS are ignored because they // are already zero in the LHS. for (; i != ThisWords; ++i) Bits[i] = 0; return *this; } /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS. BitVectorTmpl &reset(const BitVectorTmpl &RHS) { unsigned ThisWords = NumBitWords(size()); unsigned RHSWords = NumBitWords(RHS.size()); unsigned i; for (i = 0; i != std::min(ThisWords, RHSWords); ++i) Bits[i] &= ~RHS.Bits[i]; return *this; } /// test - Check if (This - RHS) is zero. /// This is the same as reset(RHS) and any(). bool test(const BitVectorTmpl &RHS) const { unsigned ThisWords = NumBitWords(size()); unsigned RHSWords = NumBitWords(RHS.size()); unsigned i; for (i = 0; i != std::min(ThisWords, RHSWords); ++i) if ((Bits[i] & ~RHS.Bits[i]) != 0) return true; for (; i != ThisWords; ++i) if (Bits[i] != 0) return true; return false; } BitVectorTmpl &operator|=(const BitVectorTmpl &RHS) { if (size() < RHS.size()) resize(RHS.size()); for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) Bits[i] |= RHS.Bits[i]; return *this; } BitVectorTmpl &operator^=(const BitVectorTmpl &RHS) { if (size() < RHS.size()) resize(RHS.size()); for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) Bits[i] ^= RHS.Bits[i]; return *this; } // Assignment operator. const BitVectorTmpl &operator=(const BitVectorTmpl &RHS) { if (this == &RHS) return *this; Size = RHS.size(); unsigned RHSWords = NumBitWords(Size); if (Size <= Capacity * BITWORD_SIZE) { if (Size) std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord)); clear_unused_bits(); return *this; } // Currently, BitVectorTmpl is only used by liveness analysis. With the // following assert, we make sure BitVectorTmpls grow in a single step from // 0 to their final capacity, rather than growing slowly and "leaking" // memory in the process. assert(Capacity == 0); // Grow the bitvector to have enough elements. const auto OldCapacity = Capacity; Capacity = RHSWords; assert(Capacity > 0 && "negative capacity?"); BitWord *NewBits = Alloc.allocate(Capacity); std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord)); // Destroy the old bits. Alloc.deallocate(Bits, OldCapacity); Bits = NewBits; return *this; } const BitVectorTmpl &operator=(BitVectorTmpl &&RHS) { if (this == &RHS) return *this; Alloc.deallocate(Bits, Capacity); Bits = RHS.Bits; Size = RHS.Size; Capacity = RHS.Capacity; RHS.Bits = nullptr; return *this; } void swap(BitVectorTmpl &RHS) { std::swap(Bits, RHS.Bits); std::swap(Size, RHS.Size); std::swap(Capacity, RHS.Capacity); } //===--------------------------------------------------------------------===// // Portable bit mask operations. //===--------------------------------------------------------------------===// // // These methods all operate on arrays of uint32_t, each holding 32 bits. The // fixed word size makes it easier to work with literal bit vector constants // in portable code. // // The LSB in each word is the lowest numbered bit. The size of a portable // bit mask is always a whole multiple of 32 bits. If no bit mask size is // given, the bit mask is assumed to cover the entire BitVectorTmpl. /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize. /// This computes "*this |= Mask". void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { applyMask<true, false>(Mask, MaskWords); } /// clearBitsInMask - Clear any bits in this vector that are set in Mask. /// Don't resize. This computes "*this &= ~Mask". void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { applyMask<false, false>(Mask, MaskWords); } /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask. /// Don't resize. This computes "*this |= ~Mask". void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { applyMask<true, true>(Mask, MaskWords); } /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask. /// Don't resize. This computes "*this &= Mask". void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { applyMask<false, true>(Mask, MaskWords); } private: unsigned NumBitWords(unsigned S) const { return (S + BITWORD_SIZE - 1) / BITWORD_SIZE; } // Set the unused bits in the high words. void set_unused_bits(bool t = true) { // Set high words first. unsigned UsedWords = NumBitWords(Size); if (Capacity > UsedWords) init_words(&Bits[UsedWords], (Capacity - UsedWords), t); // Then set any stray high bits of the last used word. unsigned ExtraBits = Size % BITWORD_SIZE; if (ExtraBits) { BitWord ExtraBitMask = ~0UL << ExtraBits; if (t) Bits[UsedWords - 1] |= ExtraBitMask; else Bits[UsedWords - 1] &= ~ExtraBitMask; } } // Clear the unused bits in the high words. void clear_unused_bits() { set_unused_bits(false); } void grow(unsigned NewSize) { const auto OldCapacity = Capacity; Capacity = std::max(NumBitWords(NewSize), Capacity * 2); assert(Capacity > 0 && "realloc-ing zero space"); auto *NewBits = Alloc.allocate(Capacity); std::memcpy(Bits, NewBits, OldCapacity * sizeof(BitWord)); Alloc.deallocate(Bits, OldCapacity); Bits = NewBits; clear_unused_bits(); } void init_words(BitWord *B, unsigned NumWords, bool t) { memset(B, 0 - (int)t, NumWords * sizeof(BitWord)); } template <bool AddBits, bool InvertMask> void applyMask(const uint32_t *Mask, unsigned MaskWords) { static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size."); MaskWords = std::min(MaskWords, (size() + 31) / 32); const unsigned Scale = BITWORD_SIZE / 32; unsigned i; for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) { BitWord BW = Bits[i]; // This inner loop should unroll completely when BITWORD_SIZE > 32. for (unsigned b = 0; b != BITWORD_SIZE; b += 32) { uint32_t M = *Mask++; if (InvertMask) M = ~M; if (AddBits) BW |= BitWord(M) << b; else BW &= ~(BitWord(M) << b); } Bits[i] = BW; } for (unsigned b = 0; MaskWords; b += 32, --MaskWords) { uint32_t M = *Mask++; if (InvertMask) M = ~M; if (AddBits) Bits[i] |= BitWord(M) << b; else Bits[i] &= ~(BitWord(M) << b); } if (AddBits) clear_unused_bits(); } }; using BitVector = BitVectorTmpl<CfgLocalAllocator>; } // end of namespace Ice namespace std { /// Implement std::swap in terms of BitVectorTmpl swap. template <template <typename> class AT> inline void swap(Ice::BitVectorTmpl<AT> &LHS, Ice::BitVectorTmpl<AT> &RHS) { LHS.swap(RHS); } } #endif // SUBZERO_SRC_ICEBITVECTOR_H