//===- subzero/src/IceUtils.h - Utility functions ---------------*- C++ -*-===// // // The Subzero Code Generator // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// \brief Defines some utility functions. /// //===----------------------------------------------------------------------===// #ifndef SUBZERO_SRC_ICEUTILS_H #define SUBZERO_SRC_ICEUTILS_H #include <climits> #include <cmath> // std::signbit() namespace Ice { namespace Utils { /// Allows copying from types of unrelated sizes. This method was introduced to /// enable the strict aliasing optimizations of GCC 4.4. Basically, GCC /// mindlessly relies on obscure details in the C++ standard that make /// reinterpret_cast virtually useless. template <typename D, typename S> inline D bitCopy(const S &Source) { static_assert(sizeof(D) <= sizeof(S), "bitCopy between incompatible type widths"); static_assert(!std::is_pointer<S>::value, ""); D Destination; // This use of memcpy is safe: source and destination cannot overlap. memcpy(&Destination, reinterpret_cast<const void *>(&Source), sizeof(D)); return Destination; } /// Check whether an N-bit two's-complement representation can hold value. template <typename T> inline bool IsInt(int N, T value) { assert((0 < N) && (static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(value)))); T limit = static_cast<T>(1) << (N - 1); return (-limit <= value) && (value < limit); } template <typename T> inline bool IsUint(int N, T value) { assert((0 < N) && (static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(value)))); T limit = static_cast<T>(1) << N; return (0 <= value) && (value < limit); } /// Check whether the magnitude of value fits in N bits, i.e., whether an /// (N+1)-bit sign-magnitude representation can hold value. template <typename T> inline bool IsAbsoluteUint(int N, T Value) { assert((0 < N) && (static_cast<unsigned int>(N) < (CHAR_BIT * sizeof(Value)))); if (Value < 0) Value = -Value; return IsUint(N, Value); } /// Return true if the addition X + Y will cause integer overflow for integers /// of type T. template <typename T> inline bool WouldOverflowAdd(T X, T Y) { return ((X > 0 && Y > 0 && (X > std::numeric_limits<T>::max() - Y)) || (X < 0 && Y < 0 && (X < std::numeric_limits<T>::min() - Y))); } /// Adds x to y and stores the result in sum. Returns true if the addition /// overflowed. inline bool add_overflow(uint32_t x, uint32_t y, uint32_t *sum) { static_assert(std::is_same<uint32_t, unsigned>::value, "Must match type"); #if __has_builtin(__builtin_uadd_overflow) return __builtin_uadd_overflow(x, y, sum); #else *sum = x + y; return WouldOverflowAdd(x, y); #endif } /// Return true if X is already aligned by N, where N is a power of 2. template <typename T> inline bool IsAligned(T X, intptr_t N) { assert(llvm::isPowerOf2_64(N)); return (X & (N - 1)) == 0; } /// Return Value adjusted to the next highest multiple of Alignment. inline uint32_t applyAlignment(uint32_t Value, uint32_t Alignment) { assert(llvm::isPowerOf2_32(Alignment)); return (Value + Alignment - 1) & -Alignment; } /// Return amount which must be added to adjust Pos to the next highest /// multiple of Align. inline uint64_t OffsetToAlignment(uint64_t Pos, uint64_t Align) { assert(llvm::isPowerOf2_64(Align)); uint64_t Mod = Pos & (Align - 1); if (Mod == 0) return 0; return Align - Mod; } /// Rotate the value bit pattern to the left by shift bits. /// Precondition: 0 <= shift < 32 inline uint32_t rotateLeft32(uint32_t value, uint32_t shift) { if (shift == 0) return value; return (value << shift) | (value >> (32 - shift)); } /// Rotate the value bit pattern to the right by shift bits. inline uint32_t rotateRight32(uint32_t value, uint32_t shift) { if (shift == 0) return value; return (value >> shift) | (value << (32 - shift)); } /// Returns true if Val is +0.0. It requires T to be a floating point type. template <typename T> bool isPositiveZero(T Val) { static_assert(std::is_floating_point<T>::value, "Input type must be floating point"); return Val == 0 && !std::signbit(Val); } /// Resize a vector (or other suitable container) to a particular size, and also /// reserve possibly a larger size to avoid repeatedly recopying as the /// container grows. It uses a strategy of doubling capacity up to a certain /// point, after which it bumps the capacity by a fixed amount. template <typename Container> inline void reserveAndResize(Container &V, uint32_t Size, uint32_t ChunkSizeBits = 10) { #if __has_builtin(__builtin_clz) // Don't call reserve() if Size==0. if (Size > 0) { uint32_t Mask; if (Size <= (1 << ChunkSizeBits)) { // For smaller sizes, reserve the smallest power of 2 greater than or // equal to Size. Mask = ((1 << (CHAR_BIT * sizeof(uint32_t) - __builtin_clz(Size))) - 1) - 1; } else { // For larger sizes, round up to the smallest multiple of 1<<ChunkSizeBits // greater than or equal to Size. Mask = (1 << ChunkSizeBits) - 1; } V.reserve((Size + Mask) & ~Mask); } #endif V.resize(Size); } /// An RAII class to ensure that a boolean flag is restored to its previous /// value upon function exit. /// /// Used in places like RandomizationPoolingPause and generating target helper /// calls. class BoolFlagSaver { BoolFlagSaver() = delete; BoolFlagSaver(const BoolFlagSaver &) = delete; BoolFlagSaver &operator=(const BoolFlagSaver &) = delete; public: BoolFlagSaver(bool &F, bool NewValue) : OldValue(F), Flag(F) { F = NewValue; } ~BoolFlagSaver() { Flag = OldValue; } private: const bool OldValue; bool &Flag; }; } // end of namespace Utils } // end of namespace Ice #endif // SUBZERO_SRC_ICEUTILS_H