/* * Pinmuxed GPIO support for SuperH. * Copy from linux kernel driver/sh/pfc.c * * Copyright (C) 2008 Magnus Damm * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <common.h> #include <asm/bitops.h> #include <asm/io.h> #include <sh_pfc.h> static struct pinmux_info *gpioc; #define pfc_phys_to_virt(p, a) ((void *)a) static int enum_in_range(pinmux_enum_t enum_id, struct pinmux_range *r) { if (enum_id < r->begin) return 0; if (enum_id > r->end) return 0; return 1; } static unsigned long gpio_read_raw_reg(void *mapped_reg, unsigned long reg_width) { switch (reg_width) { case 8: return readb(mapped_reg); case 16: return readw(mapped_reg); case 32: return readl(mapped_reg); } BUG(); return 0; } static void gpio_write_raw_reg(void *mapped_reg, unsigned long reg_width, unsigned long data) { switch (reg_width) { case 8: writeb(data, mapped_reg); return; case 16: writew(data, mapped_reg); return; case 32: writel(data, mapped_reg); return; } BUG(); } static int gpio_read_bit(struct pinmux_data_reg *dr, unsigned long offset, unsigned long in_pos) { unsigned long pos; pos = dr->reg_width - (in_pos + 1); debug("read_bit: addr = %lx, pos = %ld, r_width = %ld\n", dr->reg + offset, pos, dr->reg_width); return (gpio_read_raw_reg(dr->mapped_reg + offset, dr->reg_width) >> pos) & 1; } static void gpio_write_bit(struct pinmux_data_reg *dr, unsigned long in_pos, unsigned long value) { unsigned long pos; pos = dr->reg_width - (in_pos + 1); debug("write_bit addr = %lx, value = %d, pos = %ld, " "r_width = %ld\n", dr->reg, !!value, pos, dr->reg_width); if (value) __set_bit(pos, &dr->reg_shadow); else __clear_bit(pos, &dr->reg_shadow); gpio_write_raw_reg(dr->mapped_reg, dr->reg_width, dr->reg_shadow); } static void config_reg_helper(struct pinmux_info *gpioc, struct pinmux_cfg_reg *crp, unsigned long in_pos, #if 0 void __iomem **mapped_regp, #else void **mapped_regp, #endif unsigned long *maskp, unsigned long *posp) { int k; *mapped_regp = pfc_phys_to_virt(gpioc, crp->reg); if (crp->field_width) { *maskp = (1 << crp->field_width) - 1; *posp = crp->reg_width - ((in_pos + 1) * crp->field_width); } else { *maskp = (1 << crp->var_field_width[in_pos]) - 1; *posp = crp->reg_width; for (k = 0; k <= in_pos; k++) *posp -= crp->var_field_width[k]; } } static int read_config_reg(struct pinmux_info *gpioc, struct pinmux_cfg_reg *crp, unsigned long field) { void *mapped_reg; unsigned long mask, pos; config_reg_helper(gpioc, crp, field, &mapped_reg, &mask, &pos); debug("read_reg: addr = %lx, field = %ld, " "r_width = %ld, f_width = %ld\n", crp->reg, field, crp->reg_width, crp->field_width); return (gpio_read_raw_reg(mapped_reg, crp->reg_width) >> pos) & mask; } static void write_config_reg(struct pinmux_info *gpioc, struct pinmux_cfg_reg *crp, unsigned long field, unsigned long value) { void *mapped_reg; unsigned long mask, pos, data; config_reg_helper(gpioc, crp, field, &mapped_reg, &mask, &pos); debug("write_reg addr = %lx, value = %ld, field = %ld, " "r_width = %ld, f_width = %ld\n", crp->reg, value, field, crp->reg_width, crp->field_width); mask = ~(mask << pos); value = value << pos; data = gpio_read_raw_reg(mapped_reg, crp->reg_width); data &= mask; data |= value; if (gpioc->unlock_reg) gpio_write_raw_reg(pfc_phys_to_virt(gpioc, gpioc->unlock_reg), 32, ~data); gpio_write_raw_reg(mapped_reg, crp->reg_width, data); } static int setup_data_reg(struct pinmux_info *gpioc, unsigned gpio) { struct pinmux_gpio *gpiop = &gpioc->gpios[gpio]; struct pinmux_data_reg *data_reg; int k, n; if (!enum_in_range(gpiop->enum_id, &gpioc->data)) return -1; k = 0; while (1) { data_reg = gpioc->data_regs + k; if (!data_reg->reg_width) break; data_reg->mapped_reg = pfc_phys_to_virt(gpioc, data_reg->reg); for (n = 0; n < data_reg->reg_width; n++) { if (data_reg->enum_ids[n] == gpiop->enum_id) { gpiop->flags &= ~PINMUX_FLAG_DREG; gpiop->flags |= (k << PINMUX_FLAG_DREG_SHIFT); gpiop->flags &= ~PINMUX_FLAG_DBIT; gpiop->flags |= (n << PINMUX_FLAG_DBIT_SHIFT); return 0; } } k++; } BUG(); return -1; } static void setup_data_regs(struct pinmux_info *gpioc) { struct pinmux_data_reg *drp; int k; for (k = gpioc->first_gpio; k <= gpioc->last_gpio; k++) setup_data_reg(gpioc, k); k = 0; while (1) { drp = gpioc->data_regs + k; if (!drp->reg_width) break; drp->reg_shadow = gpio_read_raw_reg(drp->mapped_reg, drp->reg_width); k++; } } static int get_data_reg(struct pinmux_info *gpioc, unsigned gpio, struct pinmux_data_reg **drp, int *bitp) { struct pinmux_gpio *gpiop = &gpioc->gpios[gpio]; int k, n; if (!enum_in_range(gpiop->enum_id, &gpioc->data)) return -1; k = (gpiop->flags & PINMUX_FLAG_DREG) >> PINMUX_FLAG_DREG_SHIFT; n = (gpiop->flags & PINMUX_FLAG_DBIT) >> PINMUX_FLAG_DBIT_SHIFT; *drp = gpioc->data_regs + k; *bitp = n; return 0; } static int get_config_reg(struct pinmux_info *gpioc, pinmux_enum_t enum_id, struct pinmux_cfg_reg **crp, int *fieldp, int *valuep, unsigned long **cntp) { struct pinmux_cfg_reg *config_reg; unsigned long r_width, f_width, curr_width, ncomb; int k, m, n, pos, bit_pos; k = 0; while (1) { config_reg = gpioc->cfg_regs + k; r_width = config_reg->reg_width; f_width = config_reg->field_width; if (!r_width) break; pos = 0; m = 0; for (bit_pos = 0; bit_pos < r_width; bit_pos += curr_width) { if (f_width) curr_width = f_width; else curr_width = config_reg->var_field_width[m]; ncomb = 1 << curr_width; for (n = 0; n < ncomb; n++) { if (config_reg->enum_ids[pos + n] == enum_id) { *crp = config_reg; *fieldp = m; *valuep = n; *cntp = &config_reg->cnt[m]; return 0; } } pos += ncomb; m++; } k++; } return -1; } static int get_gpio_enum_id(struct pinmux_info *gpioc, unsigned gpio, int pos, pinmux_enum_t *enum_idp) { pinmux_enum_t enum_id = gpioc->gpios[gpio].enum_id; pinmux_enum_t *data = gpioc->gpio_data; int k; if (!enum_in_range(enum_id, &gpioc->data)) { if (!enum_in_range(enum_id, &gpioc->mark)) { debug("non data/mark enum_id for gpio %d\n", gpio); return -1; } } if (pos) { *enum_idp = data[pos + 1]; return pos + 1; } for (k = 0; k < gpioc->gpio_data_size; k++) { if (data[k] == enum_id) { *enum_idp = data[k + 1]; return k + 1; } } debug("cannot locate data/mark enum_id for gpio %d\n", gpio); return -1; } enum { GPIO_CFG_DRYRUN, GPIO_CFG_REQ, GPIO_CFG_FREE }; static int pinmux_config_gpio(struct pinmux_info *gpioc, unsigned gpio, int pinmux_type, int cfg_mode) { struct pinmux_cfg_reg *cr = NULL; pinmux_enum_t enum_id; struct pinmux_range *range; int in_range, pos, field, value; unsigned long *cntp; switch (pinmux_type) { case PINMUX_TYPE_FUNCTION: range = NULL; break; case PINMUX_TYPE_OUTPUT: range = &gpioc->output; break; case PINMUX_TYPE_INPUT: range = &gpioc->input; break; case PINMUX_TYPE_INPUT_PULLUP: range = &gpioc->input_pu; break; case PINMUX_TYPE_INPUT_PULLDOWN: range = &gpioc->input_pd; break; default: goto out_err; } pos = 0; enum_id = 0; field = 0; value = 0; while (1) { pos = get_gpio_enum_id(gpioc, gpio, pos, &enum_id); if (pos <= 0) goto out_err; if (!enum_id) break; /* first check if this is a function enum */ in_range = enum_in_range(enum_id, &gpioc->function); if (!in_range) { /* not a function enum */ if (range) { /* * other range exists, so this pin is * a regular GPIO pin that now is being * bound to a specific direction. * * for this case we only allow function enums * and the enums that match the other range. */ in_range = enum_in_range(enum_id, range); /* * special case pass through for fixed * input-only or output-only pins without * function enum register association. */ if (in_range && enum_id == range->force) continue; } else { /* * no other range exists, so this pin * must then be of the function type. * * allow function type pins to select * any combination of function/in/out * in their MARK lists. */ in_range = 1; } } if (!in_range) continue; if (get_config_reg(gpioc, enum_id, &cr, &field, &value, &cntp) != 0) goto out_err; switch (cfg_mode) { case GPIO_CFG_DRYRUN: if (!*cntp || (read_config_reg(gpioc, cr, field) != value)) continue; break; case GPIO_CFG_REQ: write_config_reg(gpioc, cr, field, value); *cntp = *cntp + 1; break; case GPIO_CFG_FREE: *cntp = *cntp - 1; break; } } return 0; out_err: return -1; } #if 0 static DEFINE_SPINLOCK(gpio_lock); static struct pinmux_info *chip_to_pinmux(struct gpio_chip *chip) { return container_of(chip, struct pinmux_info, chip); } #endif static int sh_gpio_request(unsigned offset) { struct pinmux_data_reg *dummy; int i, ret, pinmux_type; ret = -1; if (!gpioc) goto err_out; if ((gpioc->gpios[offset].flags & PINMUX_FLAG_TYPE) != PINMUX_TYPE_NONE) goto err_out; /* setup pin function here if no data is associated with pin */ if (get_data_reg(gpioc, offset, &dummy, &i) != 0) pinmux_type = PINMUX_TYPE_FUNCTION; else pinmux_type = PINMUX_TYPE_GPIO; if (pinmux_type == PINMUX_TYPE_FUNCTION) { if (pinmux_config_gpio(gpioc, offset, pinmux_type, GPIO_CFG_DRYRUN) != 0) goto err_out; if (pinmux_config_gpio(gpioc, offset, pinmux_type, GPIO_CFG_REQ) != 0) BUG(); } gpioc->gpios[offset].flags &= ~PINMUX_FLAG_TYPE; gpioc->gpios[offset].flags |= pinmux_type; ret = 0; err_out: return ret; } static void sh_gpio_free(unsigned offset) { int pinmux_type; if (!gpioc) return; pinmux_type = gpioc->gpios[offset].flags & PINMUX_FLAG_TYPE; pinmux_config_gpio(gpioc, offset, pinmux_type, GPIO_CFG_FREE); gpioc->gpios[offset].flags &= ~PINMUX_FLAG_TYPE; gpioc->gpios[offset].flags |= PINMUX_TYPE_NONE; } static int pinmux_direction(struct pinmux_info *gpioc, unsigned gpio, int new_pinmux_type) { int pinmux_type; int ret = -1; if (!gpioc) goto err_out; pinmux_type = gpioc->gpios[gpio].flags & PINMUX_FLAG_TYPE; switch (pinmux_type) { case PINMUX_TYPE_GPIO: break; case PINMUX_TYPE_OUTPUT: case PINMUX_TYPE_INPUT: case PINMUX_TYPE_INPUT_PULLUP: case PINMUX_TYPE_INPUT_PULLDOWN: pinmux_config_gpio(gpioc, gpio, pinmux_type, GPIO_CFG_FREE); break; default: goto err_out; } if (pinmux_config_gpio(gpioc, gpio, new_pinmux_type, GPIO_CFG_DRYRUN) != 0) goto err_out; if (pinmux_config_gpio(gpioc, gpio, new_pinmux_type, GPIO_CFG_REQ) != 0) BUG(); gpioc->gpios[gpio].flags &= ~PINMUX_FLAG_TYPE; gpioc->gpios[gpio].flags |= new_pinmux_type; ret = 0; err_out: return ret; } static int sh_gpio_direction_input(unsigned offset) { return pinmux_direction(gpioc, offset, PINMUX_TYPE_INPUT); } static void sh_gpio_set_value(struct pinmux_info *gpioc, unsigned gpio, int value) { struct pinmux_data_reg *dr = NULL; int bit = 0; if (!gpioc || get_data_reg(gpioc, gpio, &dr, &bit) != 0) BUG(); else gpio_write_bit(dr, bit, value); } static int sh_gpio_direction_output(unsigned offset, int value) { sh_gpio_set_value(gpioc, offset, value); return pinmux_direction(gpioc, offset, PINMUX_TYPE_OUTPUT); } static int sh_gpio_get_value(struct pinmux_info *gpioc, unsigned gpio) { struct pinmux_data_reg *dr = NULL; int bit = 0, offset = 0; if (!gpioc || get_data_reg(gpioc, gpio, &dr, &bit) != 0) return -1; #if defined(CONFIG_RCAR_GEN3) if ((gpioc->gpios[gpio].flags & PINMUX_FLAG_TYPE) == PINMUX_TYPE_INPUT) offset += 4; #endif return gpio_read_bit(dr, offset, bit); } static int sh_gpio_get(unsigned offset) { return sh_gpio_get_value(gpioc, offset); } static void sh_gpio_set(unsigned offset, int value) { sh_gpio_set_value(gpioc, offset, value); } int register_pinmux(struct pinmux_info *pip) { if (pip != NULL) { gpioc = pip; debug("%s deregistering\n", pip->name); setup_data_regs(gpioc); } return 0; } int unregister_pinmux(struct pinmux_info *pip) { debug("%s deregistering\n", pip->name); if (gpioc != pip) return -1; gpioc = NULL; return 0; } int gpio_request(unsigned gpio, const char *label) { sh_gpio_request(gpio); return 0; } int gpio_free(unsigned gpio) { sh_gpio_free(gpio); return 0; } int gpio_direction_input(unsigned gpio) { return sh_gpio_direction_input(gpio); } int gpio_direction_output(unsigned gpio, int value) { return sh_gpio_direction_output(gpio, value); } void gpio_set_value(unsigned gpio, int value) { sh_gpio_set(gpio, value); } int gpio_get_value(unsigned gpio) { return sh_gpio_get(gpio); }