// SPDX-License-Identifier: GPL-2.0+ /* * Chromium OS cros_ec driver - sandbox emulation * * Copyright (c) 2013 The Chromium OS Authors. */ #include <common.h> #include <cros_ec.h> #include <dm.h> #include <ec_commands.h> #include <errno.h> #include <hash.h> #include <malloc.h> #include <os.h> #include <u-boot/sha256.h> #include <spi.h> #include <asm/state.h> #include <asm/sdl.h> #include <linux/input.h> /* * Ultimately it shold be possible to connect an Chrome OS EC emulation * to U-Boot and remove all of this code. But this provides a test * environment for bringing up chromeos_sandbox and demonstrating its * utility. * * This emulation includes the following: * * 1. Emulation of the keyboard, by converting keypresses received from SDL * into key scan data, passed back from the EC as key scan messages. The * key layout is read from the device tree. * * 2. Emulation of vboot context - so this can be read/written as required. * * 3. Save/restore of EC state, so that the vboot context, flash memory * contents and current image can be preserved across boots. This is important * since the EC is supposed to continue running even if the AP resets. * * 4. Some event support, in particular allowing Escape to be pressed on boot * to enter recovery mode. The EC passes this to U-Boot through the normal * event message. * * 5. Flash read/write/erase support, so that software sync works. The * protect messages are supported but no protection is implemented. * * 6. Hashing of the EC image, again to support software sync. * * Other features can be added, although a better path is probably to link * the EC image in with U-Boot (Vic has demonstrated a prototype for this). */ #define KEYBOARD_ROWS 8 #define KEYBOARD_COLS 13 /* A single entry of the key matrix */ struct ec_keymatrix_entry { int row; /* key matrix row */ int col; /* key matrix column */ int keycode; /* corresponding linux key code */ }; /** * struct ec_state - Information about the EC state * * @vbnv_context: Vboot context data stored by EC * @ec_config: FDT config information about the EC (e.g. flashmap) * @flash_data: Contents of flash memory * @flash_data_len: Size of flash memory * @current_image: Current image the EC is running * @matrix_count: Number of keys to decode in matrix * @matrix: Information about keyboard matrix * @keyscan: Current keyscan information (bit set for each row/column pressed) * @recovery_req: Keyboard recovery requested */ struct ec_state { uint8_t vbnv_context[EC_VBNV_BLOCK_SIZE]; struct fdt_cros_ec ec_config; uint8_t *flash_data; int flash_data_len; enum ec_current_image current_image; int matrix_count; struct ec_keymatrix_entry *matrix; /* the key matrix info */ uint8_t keyscan[KEYBOARD_COLS]; bool recovery_req; } s_state, *g_state; /** * cros_ec_read_state() - read the sandbox EC state from the state file * * If data is available, then blob and node will provide access to it. If * not this function sets up an empty EC. * * @param blob: Pointer to device tree blob, or NULL if no data to read * @param node: Node offset to read from */ static int cros_ec_read_state(const void *blob, int node) { struct ec_state *ec = &s_state; const char *prop; int len; /* Set everything to defaults */ ec->current_image = EC_IMAGE_RO; if (!blob) return 0; /* Read the data if available */ ec->current_image = fdtdec_get_int(blob, node, "current-image", EC_IMAGE_RO); prop = fdt_getprop(blob, node, "vbnv-context", &len); if (prop && len == sizeof(ec->vbnv_context)) memcpy(ec->vbnv_context, prop, len); prop = fdt_getprop(blob, node, "flash-data", &len); if (prop) { ec->flash_data_len = len; ec->flash_data = os_malloc(len); if (!ec->flash_data) return -ENOMEM; memcpy(ec->flash_data, prop, len); debug("%s: Loaded EC flash data size %#x\n", __func__, len); } return 0; } /** * cros_ec_write_state() - Write out our state to the state file * * The caller will ensure that there is a node ready for the state. The node * may already contain the old state, in which case it is overridden. * * @param blob: Device tree blob holding state * @param node: Node to write our state into */ static int cros_ec_write_state(void *blob, int node) { struct ec_state *ec = g_state; /* We are guaranteed enough space to write basic properties */ fdt_setprop_u32(blob, node, "current-image", ec->current_image); fdt_setprop(blob, node, "vbnv-context", ec->vbnv_context, sizeof(ec->vbnv_context)); return state_setprop(node, "flash-data", ec->flash_data, ec->ec_config.flash.length); } SANDBOX_STATE_IO(cros_ec, "google,cros-ec", cros_ec_read_state, cros_ec_write_state); /** * Return the number of bytes used in the specified image. * * This is the actual size of code+data in the image, as opposed to the * amount of space reserved in flash for that image. This code is similar to * that used by the real EC code base. * * @param ec Current emulated EC state * @param entry Flash map entry containing the image to check * @return actual image size in bytes, 0 if the image contains no content or * error. */ static int get_image_used(struct ec_state *ec, struct fmap_entry *entry) { int size; /* * Scan backwards looking for 0xea byte, which is by definition the * last byte of the image. See ec.lds.S for how this is inserted at * the end of the image. */ for (size = entry->length - 1; size > 0 && ec->flash_data[entry->offset + size] != 0xea; size--) ; return size ? size + 1 : 0; /* 0xea byte IS part of the image */ } /** * Read the key matrix from the device tree * * Keymap entries in the fdt take the form of 0xRRCCKKKK where * RR=Row CC=Column KKKK=Key Code * * @param ec Current emulated EC state * @param node Keyboard node of device tree containing keyscan information * @return 0 if ok, -1 on error */ static int keyscan_read_fdt_matrix(struct ec_state *ec, ofnode node) { const u32 *cell; int upto; int len; cell = ofnode_get_property(node, "linux,keymap", &len); ec->matrix_count = len / 4; ec->matrix = calloc(ec->matrix_count, sizeof(*ec->matrix)); if (!ec->matrix) { debug("%s: Out of memory for key matrix\n", __func__); return -1; } /* Now read the data */ for (upto = 0; upto < ec->matrix_count; upto++) { struct ec_keymatrix_entry *matrix = &ec->matrix[upto]; u32 word; word = fdt32_to_cpu(*cell++); matrix->row = word >> 24; matrix->col = (word >> 16) & 0xff; matrix->keycode = word & 0xffff; /* Hard-code some sanity limits for now */ if (matrix->row >= KEYBOARD_ROWS || matrix->col >= KEYBOARD_COLS) { debug("%s: Matrix pos out of range (%d,%d)\n", __func__, matrix->row, matrix->col); return -1; } } if (upto != ec->matrix_count) { debug("%s: Read mismatch from key matrix\n", __func__); return -1; } return 0; } /** * Return the next keyscan message contents * * @param ec Current emulated EC state * @param scan Place to put keyscan bytes for the keyscan message (must hold * enough space for a full keyscan) * @return number of bytes of valid scan data */ static int cros_ec_keyscan(struct ec_state *ec, uint8_t *scan) { const struct ec_keymatrix_entry *matrix; int bytes = KEYBOARD_COLS; int key[8]; /* allow up to 8 keys to be pressed at once */ int count; int i; memset(ec->keyscan, '\0', bytes); count = sandbox_sdl_scan_keys(key, ARRAY_SIZE(key)); /* Look up keycode in matrix */ for (i = 0, matrix = ec->matrix; i < ec->matrix_count; i++, matrix++) { bool found; int j; for (found = false, j = 0; j < count; j++) { if (matrix->keycode == key[j]) found = true; } if (found) { debug("%d: %d,%d\n", matrix->keycode, matrix->row, matrix->col); ec->keyscan[matrix->col] |= 1 << matrix->row; } } memcpy(scan, ec->keyscan, bytes); return bytes; } /** * Process an emulated EC command * * @param ec Current emulated EC state * @param req_hdr Pointer to request header * @param req_data Pointer to body of request * @param resp_hdr Pointer to place to put response header * @param resp_data Pointer to place to put response data, if any * @return length of response data, or 0 for no response data, or -1 on error */ static int process_cmd(struct ec_state *ec, struct ec_host_request *req_hdr, const void *req_data, struct ec_host_response *resp_hdr, void *resp_data) { int len; /* TODO(sjg@chromium.org): Check checksums */ debug("EC command %#0x\n", req_hdr->command); switch (req_hdr->command) { case EC_CMD_HELLO: { const struct ec_params_hello *req = req_data; struct ec_response_hello *resp = resp_data; resp->out_data = req->in_data + 0x01020304; len = sizeof(*resp); break; } case EC_CMD_GET_VERSION: { struct ec_response_get_version *resp = resp_data; strcpy(resp->version_string_ro, "sandbox_ro"); strcpy(resp->version_string_rw, "sandbox_rw"); resp->current_image = ec->current_image; debug("Current image %d\n", resp->current_image); len = sizeof(*resp); break; } case EC_CMD_VBNV_CONTEXT: { const struct ec_params_vbnvcontext *req = req_data; struct ec_response_vbnvcontext *resp = resp_data; switch (req->op) { case EC_VBNV_CONTEXT_OP_READ: memcpy(resp->block, ec->vbnv_context, sizeof(resp->block)); len = sizeof(*resp); break; case EC_VBNV_CONTEXT_OP_WRITE: memcpy(ec->vbnv_context, resp->block, sizeof(resp->block)); len = 0; break; default: printf(" ** Unknown vbnv_context command %#02x\n", req->op); return -1; } break; } case EC_CMD_REBOOT_EC: { const struct ec_params_reboot_ec *req = req_data; printf("Request reboot type %d\n", req->cmd); switch (req->cmd) { case EC_REBOOT_DISABLE_JUMP: len = 0; break; case EC_REBOOT_JUMP_RW: ec->current_image = EC_IMAGE_RW; len = 0; break; default: puts(" ** Unknown type"); return -1; } break; } case EC_CMD_HOST_EVENT_GET_B: { struct ec_response_host_event_mask *resp = resp_data; resp->mask = 0; if (ec->recovery_req) { resp->mask |= EC_HOST_EVENT_MASK( EC_HOST_EVENT_KEYBOARD_RECOVERY); } len = sizeof(*resp); break; } case EC_CMD_VBOOT_HASH: { const struct ec_params_vboot_hash *req = req_data; struct ec_response_vboot_hash *resp = resp_data; struct fmap_entry *entry; int ret, size; entry = &ec->ec_config.region[EC_FLASH_REGION_RW]; switch (req->cmd) { case EC_VBOOT_HASH_RECALC: case EC_VBOOT_HASH_GET: size = SHA256_SUM_LEN; len = get_image_used(ec, entry); ret = hash_block("sha256", ec->flash_data + entry->offset, len, resp->hash_digest, &size); if (ret) { printf(" ** hash_block() failed\n"); return -1; } resp->status = EC_VBOOT_HASH_STATUS_DONE; resp->hash_type = EC_VBOOT_HASH_TYPE_SHA256; resp->digest_size = size; resp->reserved0 = 0; resp->offset = entry->offset; resp->size = len; len = sizeof(*resp); break; default: printf(" ** EC_CMD_VBOOT_HASH: Unknown command %d\n", req->cmd); return -1; } break; } case EC_CMD_FLASH_PROTECT: { const struct ec_params_flash_protect *req = req_data; struct ec_response_flash_protect *resp = resp_data; uint32_t expect = EC_FLASH_PROTECT_ALL_NOW | EC_FLASH_PROTECT_ALL_AT_BOOT; printf("mask=%#x, flags=%#x\n", req->mask, req->flags); if (req->flags == expect || req->flags == 0) { resp->flags = req->flags ? EC_FLASH_PROTECT_ALL_NOW : 0; resp->valid_flags = EC_FLASH_PROTECT_ALL_NOW; resp->writable_flags = 0; len = sizeof(*resp); } else { puts(" ** unexpected flash protect request\n"); return -1; } break; } case EC_CMD_FLASH_REGION_INFO: { const struct ec_params_flash_region_info *req = req_data; struct ec_response_flash_region_info *resp = resp_data; struct fmap_entry *entry; switch (req->region) { case EC_FLASH_REGION_RO: case EC_FLASH_REGION_RW: case EC_FLASH_REGION_WP_RO: entry = &ec->ec_config.region[req->region]; resp->offset = entry->offset; resp->size = entry->length; len = sizeof(*resp); printf("EC flash region %d: offset=%#x, size=%#x\n", req->region, resp->offset, resp->size); break; default: printf("** Unknown flash region %d\n", req->region); return -1; } break; } case EC_CMD_FLASH_ERASE: { const struct ec_params_flash_erase *req = req_data; memset(ec->flash_data + req->offset, ec->ec_config.flash_erase_value, req->size); len = 0; break; } case EC_CMD_FLASH_WRITE: { const struct ec_params_flash_write *req = req_data; memcpy(ec->flash_data + req->offset, req + 1, req->size); len = 0; break; } case EC_CMD_MKBP_STATE: len = cros_ec_keyscan(ec, resp_data); break; case EC_CMD_ENTERING_MODE: len = 0; break; default: printf(" ** Unknown EC command %#02x\n", req_hdr->command); return -1; } return len; } int cros_ec_sandbox_packet(struct udevice *udev, int out_bytes, int in_bytes) { struct cros_ec_dev *dev = dev_get_uclass_priv(udev); struct ec_state *ec = dev_get_priv(dev->dev); struct ec_host_request *req_hdr = (struct ec_host_request *)dev->dout; const void *req_data = req_hdr + 1; struct ec_host_response *resp_hdr = (struct ec_host_response *)dev->din; void *resp_data = resp_hdr + 1; int len; len = process_cmd(ec, req_hdr, req_data, resp_hdr, resp_data); if (len < 0) return len; resp_hdr->struct_version = 3; resp_hdr->result = EC_RES_SUCCESS; resp_hdr->data_len = len; resp_hdr->reserved = 0; len += sizeof(*resp_hdr); resp_hdr->checksum = 0; resp_hdr->checksum = (uint8_t) -cros_ec_calc_checksum((const uint8_t *)resp_hdr, len); return in_bytes; } void cros_ec_check_keyboard(struct cros_ec_dev *dev) { struct ec_state *ec = dev_get_priv(dev->dev); ulong start; printf("Press keys for EC to detect on reset (ESC=recovery)..."); start = get_timer(0); while (get_timer(start) < 1000) ; putc('\n'); if (!sandbox_sdl_key_pressed(KEY_ESC)) { ec->recovery_req = true; printf(" - EC requests recovery\n"); } } int cros_ec_probe(struct udevice *dev) { struct ec_state *ec = dev->priv; struct cros_ec_dev *cdev = dev->uclass_priv; struct udevice *keyb_dev; ofnode node; int err; memcpy(ec, &s_state, sizeof(*ec)); err = cros_ec_decode_ec_flash(dev, &ec->ec_config); if (err) { debug("%s: Cannot device EC flash\n", __func__); return err; } node = ofnode_null(); for (device_find_first_child(dev, &keyb_dev); keyb_dev; device_find_next_child(&keyb_dev)) { if (device_get_uclass_id(keyb_dev) == UCLASS_KEYBOARD) { node = dev_ofnode(keyb_dev); break; } } if (!ofnode_valid(node)) { debug("%s: No cros_ec keyboard found\n", __func__); } else if (keyscan_read_fdt_matrix(ec, node)) { debug("%s: Could not read key matrix\n", __func__); return -1; } /* If we loaded EC data, check that the length matches */ if (ec->flash_data && ec->flash_data_len != ec->ec_config.flash.length) { printf("EC data length is %x, expected %x, discarding data\n", ec->flash_data_len, ec->ec_config.flash.length); os_free(ec->flash_data); ec->flash_data = NULL; } /* Otherwise allocate the memory */ if (!ec->flash_data) { ec->flash_data_len = ec->ec_config.flash.length; ec->flash_data = os_malloc(ec->flash_data_len); if (!ec->flash_data) return -ENOMEM; } cdev->dev = dev; g_state = ec; return cros_ec_register(dev); } struct dm_cros_ec_ops cros_ec_ops = { .packet = cros_ec_sandbox_packet, }; static const struct udevice_id cros_ec_ids[] = { { .compatible = "google,cros-ec-sandbox" }, { } }; U_BOOT_DRIVER(cros_ec_sandbox) = { .name = "cros_ec_sandbox", .id = UCLASS_CROS_EC, .of_match = cros_ec_ids, .probe = cros_ec_probe, .priv_auto_alloc_size = sizeof(struct ec_state), .ops = &cros_ec_ops, };