/* * generic mmc spi driver * * Copyright (C) 2010 Thomas Chou <thomas@wytron.com.tw> * Licensed under the GPL-2 or later. */ #include <common.h> #include <errno.h> #include <malloc.h> #include <part.h> #include <mmc.h> #include <spi.h> #include <crc.h> #include <linux/crc7.h> #include <asm/byteorder.h> /* MMC/SD in SPI mode reports R1 status always */ #define R1_SPI_IDLE (1 << 0) #define R1_SPI_ERASE_RESET (1 << 1) #define R1_SPI_ILLEGAL_COMMAND (1 << 2) #define R1_SPI_COM_CRC (1 << 3) #define R1_SPI_ERASE_SEQ (1 << 4) #define R1_SPI_ADDRESS (1 << 5) #define R1_SPI_PARAMETER (1 << 6) /* R1 bit 7 is always zero, reuse this bit for error */ #define R1_SPI_ERROR (1 << 7) /* Response tokens used to ack each block written: */ #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f) #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1) #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1) #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1) /* Read and write blocks start with these tokens and end with crc; * on error, read tokens act like a subset of R2_SPI_* values. */ #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */ #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */ #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */ /* MMC SPI commands start with a start bit "0" and a transmit bit "1" */ #define MMC_SPI_CMD(x) (0x40 | (x & 0x3f)) /* bus capability */ #define MMC_SPI_VOLTAGE (MMC_VDD_32_33 | MMC_VDD_33_34) #define MMC_SPI_MIN_CLOCK 400000 /* 400KHz to meet MMC spec */ /* timeout value */ #define CTOUT 8 #define RTOUT 3000000 /* 1 sec */ #define WTOUT 3000000 /* 1 sec */ static uint mmc_spi_sendcmd(struct mmc *mmc, ushort cmdidx, u32 cmdarg) { struct spi_slave *spi = mmc->priv; u8 cmdo[7]; u8 r1; int i; cmdo[0] = 0xff; cmdo[1] = MMC_SPI_CMD(cmdidx); cmdo[2] = cmdarg >> 24; cmdo[3] = cmdarg >> 16; cmdo[4] = cmdarg >> 8; cmdo[5] = cmdarg; cmdo[6] = (crc7(0, &cmdo[1], 5) << 1) | 0x01; spi_xfer(spi, sizeof(cmdo) * 8, cmdo, NULL, 0); for (i = 0; i < CTOUT; i++) { spi_xfer(spi, 1 * 8, NULL, &r1, 0); if (i && (r1 & 0x80) == 0) /* r1 response */ break; } debug("%s:cmd%d resp%d %x\n", __func__, cmdidx, i, r1); return r1; } static uint mmc_spi_readdata(struct mmc *mmc, void *xbuf, u32 bcnt, u32 bsize) { struct spi_slave *spi = mmc->priv; u8 *buf = xbuf; u8 r1; u16 crc; int i; while (bcnt--) { for (i = 0; i < RTOUT; i++) { spi_xfer(spi, 1 * 8, NULL, &r1, 0); if (r1 != 0xff) /* data token */ break; } debug("%s:tok%d %x\n", __func__, i, r1); if (r1 == SPI_TOKEN_SINGLE) { spi_xfer(spi, bsize * 8, NULL, buf, 0); spi_xfer(spi, 2 * 8, NULL, &crc, 0); #ifdef CONFIG_MMC_SPI_CRC_ON if (be_to_cpu16(crc16_ccitt(0, buf, bsize)) != crc) { debug("%s: CRC error\n", mmc->cfg->name); r1 = R1_SPI_COM_CRC; break; } #endif r1 = 0; } else { r1 = R1_SPI_ERROR; break; } buf += bsize; } return r1; } static uint mmc_spi_writedata(struct mmc *mmc, const void *xbuf, u32 bcnt, u32 bsize, int multi) { struct spi_slave *spi = mmc->priv; const u8 *buf = xbuf; u8 r1; u16 crc; u8 tok[2]; int i; tok[0] = 0xff; tok[1] = multi ? SPI_TOKEN_MULTI_WRITE : SPI_TOKEN_SINGLE; while (bcnt--) { #ifdef CONFIG_MMC_SPI_CRC_ON crc = cpu_to_be16(crc16_ccitt(0, (u8 *)buf, bsize)); #endif spi_xfer(spi, 2 * 8, tok, NULL, 0); spi_xfer(spi, bsize * 8, buf, NULL, 0); spi_xfer(spi, 2 * 8, &crc, NULL, 0); for (i = 0; i < CTOUT; i++) { spi_xfer(spi, 1 * 8, NULL, &r1, 0); if ((r1 & 0x10) == 0) /* response token */ break; } debug("%s:tok%d %x\n", __func__, i, r1); if (SPI_MMC_RESPONSE_CODE(r1) == SPI_RESPONSE_ACCEPTED) { for (i = 0; i < WTOUT; i++) { /* wait busy */ spi_xfer(spi, 1 * 8, NULL, &r1, 0); if (i && r1 == 0xff) { r1 = 0; break; } } if (i == WTOUT) { debug("%s:wtout %x\n", __func__, r1); r1 = R1_SPI_ERROR; break; } } else { debug("%s: err %x\n", __func__, r1); r1 = R1_SPI_COM_CRC; break; } buf += bsize; } if (multi && bcnt == -1) { /* stop multi write */ tok[1] = SPI_TOKEN_STOP_TRAN; spi_xfer(spi, 2 * 8, tok, NULL, 0); for (i = 0; i < WTOUT; i++) { /* wait busy */ spi_xfer(spi, 1 * 8, NULL, &r1, 0); if (i && r1 == 0xff) { r1 = 0; break; } } if (i == WTOUT) { debug("%s:wstop %x\n", __func__, r1); r1 = R1_SPI_ERROR; } } return r1; } static int mmc_spi_request(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data) { struct spi_slave *spi = mmc->priv; u8 r1; int i; int ret = 0; debug("%s:cmd%d %x %x\n", __func__, cmd->cmdidx, cmd->resp_type, cmd->cmdarg); spi_claim_bus(spi); spi_cs_activate(spi); r1 = mmc_spi_sendcmd(mmc, cmd->cmdidx, cmd->cmdarg); if (r1 == 0xff) { /* no response */ ret = -ENOMEDIUM; goto done; } else if (r1 & R1_SPI_COM_CRC) { ret = -ECOMM; goto done; } else if (r1 & ~R1_SPI_IDLE) { /* other errors */ ret = -ETIMEDOUT; goto done; } else if (cmd->resp_type == MMC_RSP_R2) { r1 = mmc_spi_readdata(mmc, cmd->response, 1, 16); for (i = 0; i < 4; i++) cmd->response[i] = be32_to_cpu(cmd->response[i]); debug("r128 %x %x %x %x\n", cmd->response[0], cmd->response[1], cmd->response[2], cmd->response[3]); } else if (!data) { switch (cmd->cmdidx) { case SD_CMD_APP_SEND_OP_COND: case MMC_CMD_SEND_OP_COND: cmd->response[0] = (r1 & R1_SPI_IDLE) ? 0 : OCR_BUSY; break; case SD_CMD_SEND_IF_COND: case MMC_CMD_SPI_READ_OCR: spi_xfer(spi, 4 * 8, NULL, cmd->response, 0); cmd->response[0] = be32_to_cpu(cmd->response[0]); debug("r32 %x\n", cmd->response[0]); break; case MMC_CMD_SEND_STATUS: spi_xfer(spi, 1 * 8, NULL, cmd->response, 0); cmd->response[0] = (cmd->response[0] & 0xff) ? MMC_STATUS_ERROR : MMC_STATUS_RDY_FOR_DATA; break; } } else { debug("%s:data %x %x %x\n", __func__, data->flags, data->blocks, data->blocksize); if (data->flags == MMC_DATA_READ) r1 = mmc_spi_readdata(mmc, data->dest, data->blocks, data->blocksize); else if (data->flags == MMC_DATA_WRITE) r1 = mmc_spi_writedata(mmc, data->src, data->blocks, data->blocksize, (cmd->cmdidx == MMC_CMD_WRITE_MULTIPLE_BLOCK)); if (r1 & R1_SPI_COM_CRC) ret = -ECOMM; else if (r1) /* other errors */ ret = -ETIMEDOUT; } done: spi_cs_deactivate(spi); spi_release_bus(spi); return ret; } static int mmc_spi_set_ios(struct mmc *mmc) { struct spi_slave *spi = mmc->priv; debug("%s: clock %u\n", __func__, mmc->clock); if (mmc->clock) spi_set_speed(spi, mmc->clock); return 0; } static int mmc_spi_init_p(struct mmc *mmc) { struct spi_slave *spi = mmc->priv; spi_set_speed(spi, MMC_SPI_MIN_CLOCK); spi_claim_bus(spi); /* cs deactivated for 100+ clock */ spi_xfer(spi, 18 * 8, NULL, NULL, 0); spi_release_bus(spi); return 0; } static const struct mmc_ops mmc_spi_ops = { .send_cmd = mmc_spi_request, .set_ios = mmc_spi_set_ios, .init = mmc_spi_init_p, }; static struct mmc_config mmc_spi_cfg = { .name = "MMC_SPI", .ops = &mmc_spi_ops, .host_caps = MMC_MODE_SPI, .voltages = MMC_SPI_VOLTAGE, .f_min = MMC_SPI_MIN_CLOCK, .part_type = PART_TYPE_DOS, .b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT, }; struct mmc *mmc_spi_init(uint bus, uint cs, uint speed, uint mode) { struct mmc *mmc; struct spi_slave *spi; spi = spi_setup_slave(bus, cs, speed, mode); if (spi == NULL) return NULL; mmc_spi_cfg.f_max = speed; mmc = mmc_create(&mmc_spi_cfg, spi); if (mmc == NULL) { spi_free_slave(spi); return NULL; } return mmc; }