// SPDX-License-Identifier: GPL-2.0+ /* * LPC32xx MLC NAND flash controller driver * * (C) Copyright 2014 3ADEV <http://3adev.com> * Written by Albert ARIBAUD <albert.aribaud@3adev.fr> * * NOTE: * * The MLC NAND flash controller provides hardware Reed-Solomon ECC * covering in- and out-of-band data together. Therefore, in- and out- * of-band data must be written together in order to have a valid ECC. * * Consequently, pages with meaningful in-band data are written with * blank (all-ones) out-of-band data and a valid ECC, and any later * out-of-band data write will void the ECC. * * Therefore, code which reads such late-written out-of-band data * should not rely on the ECC validity. */ #include <common.h> #include <nand.h> #include <linux/errno.h> #include <asm/io.h> #include <nand.h> #include <asm/arch/clk.h> #include <asm/arch/sys_proto.h> /* * MLC NAND controller registers. */ struct lpc32xx_nand_mlc_registers { u8 buff[32768]; /* controller's serial data buffer */ u8 data[32768]; /* NAND's raw data buffer */ u32 cmd; u32 addr; u32 ecc_enc_reg; u32 ecc_dec_reg; u32 ecc_auto_enc_reg; u32 ecc_auto_dec_reg; u32 rpr; u32 wpr; u32 rubp; u32 robp; u32 sw_wp_add_low; u32 sw_wp_add_hig; u32 icr; u32 time_reg; u32 irq_mr; u32 irq_sr; u32 lock_pr; u32 isr; u32 ceh; }; /* LOCK_PR register defines */ #define LOCK_PR_UNLOCK_KEY 0x0000A25E /* Magic unlock value */ /* ICR defines */ #define ICR_LARGE_BLOCKS 0x00000004 /* configure for 2KB blocks */ #define ICR_ADDR4 0x00000002 /* configure for 4-word addrs */ /* CEH defines */ #define CEH_NORMAL_CE 0x00000001 /* do not force CE ON */ /* ISR register defines */ #define ISR_NAND_READY 0x00000001 #define ISR_CONTROLLER_READY 0x00000002 #define ISR_ECC_READY 0x00000004 #define ISR_DECODER_ERRORS(s) ((((s) >> 4) & 3)+1) #define ISR_DECODER_FAILURE 0x00000040 #define ISR_DECODER_ERROR 0x00000008 /* time-out for NAND chip / controller loops, in us */ #define LPC32X_NAND_TIMEOUT 5000 /* * There is a single instance of the NAND MLC controller */ static struct lpc32xx_nand_mlc_registers __iomem *lpc32xx_nand_mlc_registers = (struct lpc32xx_nand_mlc_registers __iomem *)MLC_NAND_BASE; #define clkdiv(v, w, o) (((1+(clk/v)) & w) << o) /** * OOB data in each small page are 6 'free' then 10 ECC bytes. * To make things easier, when reading large pages, the four pages' * 'free' OOB bytes are grouped in the first 24 bytes of the OOB buffer, * while the the four ECC bytes are groupe in its last 40 bytes. * * The struct below represents how free vs ecc oob bytes are stored * in the buffer. * * Note: the OOB bytes contain the bad block marker at offsets 0 and 1. */ struct lpc32xx_oob { struct { uint8_t free_oob_bytes[6]; } free[4]; struct { uint8_t ecc_oob_bytes[10]; } ecc[4]; }; /* * Initialize the controller */ static void lpc32xx_nand_init(void) { unsigned int clk; /* Configure controller for no software write protection, x8 bus width, large block device, and 4 address words */ /* unlock controller registers with magic key */ writel(LOCK_PR_UNLOCK_KEY, &lpc32xx_nand_mlc_registers->lock_pr); /* enable large blocks and large NANDs */ writel(ICR_LARGE_BLOCKS | ICR_ADDR4, &lpc32xx_nand_mlc_registers->icr); /* Make sure MLC interrupts are disabled */ writel(0, &lpc32xx_nand_mlc_registers->irq_mr); /* Normal chip enable operation */ writel(CEH_NORMAL_CE, &lpc32xx_nand_mlc_registers->ceh); /* Setup NAND timing */ clk = get_hclk_clk_rate(); writel( clkdiv(CONFIG_LPC32XX_NAND_MLC_TCEA_DELAY, 0x03, 24) | clkdiv(CONFIG_LPC32XX_NAND_MLC_BUSY_DELAY, 0x1F, 19) | clkdiv(CONFIG_LPC32XX_NAND_MLC_NAND_TA, 0x07, 16) | clkdiv(CONFIG_LPC32XX_NAND_MLC_RD_HIGH, 0x0F, 12) | clkdiv(CONFIG_LPC32XX_NAND_MLC_RD_LOW, 0x0F, 8) | clkdiv(CONFIG_LPC32XX_NAND_MLC_WR_HIGH, 0x0F, 4) | clkdiv(CONFIG_LPC32XX_NAND_MLC_WR_LOW, 0x0F, 0), &lpc32xx_nand_mlc_registers->time_reg); } #if !defined(CONFIG_SPL_BUILD) /** * lpc32xx_cmd_ctrl - write command to either cmd or data register */ static void lpc32xx_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) { if (cmd == NAND_CMD_NONE) return; if (ctrl & NAND_CLE) writeb(cmd & 0Xff, &lpc32xx_nand_mlc_registers->cmd); else if (ctrl & NAND_ALE) writeb(cmd & 0Xff, &lpc32xx_nand_mlc_registers->addr); } /** * lpc32xx_read_byte - read a byte from the NAND * @mtd: MTD device structure */ static uint8_t lpc32xx_read_byte(struct mtd_info *mtd) { return readb(&lpc32xx_nand_mlc_registers->data); } /** * lpc32xx_dev_ready - test if NAND device (actually controller) is ready * @mtd: MTD device structure * @mode: mode to set the ECC HW to. */ static int lpc32xx_dev_ready(struct mtd_info *mtd) { /* means *controller* ready for us */ int status = readl(&lpc32xx_nand_mlc_registers->isr); return status & ISR_CONTROLLER_READY; } /** * ECC layout -- this is needed whatever ECC mode we are using. * In a 2KB (4*512B) page, R/S codes occupy 40 (4*10) bytes. * To make U-Boot's life easier, we pack 'useable' OOB at the * front and R/S ECC at the back. */ static struct nand_ecclayout lpc32xx_largepage_ecclayout = { .eccbytes = 40, .eccpos = {24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, }, .oobfree = { /* bytes 0 and 1 are used for the bad block marker */ { .offset = 2, .length = 22 }, } }; /** * lpc32xx_read_page_hwecc - read in- and out-of-band data with ECC * @mtd: mtd info structure * @chip: nand chip info structure * @buf: buffer to store read data * @oob_required: caller requires OOB data read to chip->oob_poi * @page: page number to read * * Use large block Auto Decode Read Mode(1) as described in User Manual * section 8.6.2.1. * * The initial Read Mode and Read Start commands are sent by the caller. * * ECC will be false if out-of-band data has been updated since in-band * data was initially written. */ static int lpc32xx_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { unsigned int i, status, timeout, err, max_bitflips = 0; struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; /* go through all four small pages */ for (i = 0; i < 4; i++) { /* start auto decode (reads 528 NAND bytes) */ writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg); /* wait for controller to return to ready state */ for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { status = readl(&lpc32xx_nand_mlc_registers->isr); if (status & ISR_CONTROLLER_READY) break; udelay(1); } /* if decoder failed, return failure */ if (status & ISR_DECODER_FAILURE) return -1; /* keep count of maximum bitflips performed */ if (status & ISR_DECODER_ERROR) { err = ISR_DECODER_ERRORS(status); if (err > max_bitflips) max_bitflips = err; } /* copy first 512 bytes into buffer */ memcpy(buf+512*i, lpc32xx_nand_mlc_registers->buff, 512); /* copy next 6 bytes at front of OOB buffer */ memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6); /* copy last 10 bytes (R/S ECC) at back of OOB buffer */ memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->buff, 10); } return max_bitflips; } /** * lpc32xx_read_page_raw - read raw (in-band, out-of-band and ECC) data * @mtd: mtd info structure * @chip: nand chip info structure * @buf: buffer to store read data * @oob_required: caller requires OOB data read to chip->oob_poi * @page: page number to read * * Read NAND directly; can read pages with invalid ECC. */ static int lpc32xx_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { unsigned int i, status, timeout; struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; /* when we get here we've already had the Read Mode(1) */ /* go through all four small pages */ for (i = 0; i < 4; i++) { /* wait for NAND to return to ready state */ for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { status = readl(&lpc32xx_nand_mlc_registers->isr); if (status & ISR_NAND_READY) break; udelay(1); } /* if NAND stalled, return failure */ if (!(status & ISR_NAND_READY)) return -1; /* copy first 512 bytes into buffer */ memcpy(buf+512*i, lpc32xx_nand_mlc_registers->data, 512); /* copy next 6 bytes at front of OOB buffer */ memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->data, 6); /* copy last 10 bytes (R/S ECC) at back of OOB buffer */ memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->data, 10); } return 0; } /** * lpc32xx_read_oob - read out-of-band data * @mtd: mtd info structure * @chip: nand chip info structure * @page: page number to read * * Read out-of-band data. User Manual section 8.6.4 suggests using Read * Mode(3) which the controller will turn into a Read Mode(1) internally * but nand_base.c will turn Mode(3) into Mode(0), so let's use Mode(0) * directly. * * ECC covers in- and out-of-band data and was written when out-of-band * data was blank. Therefore, if the out-of-band being read here is not * blank, then the ECC will be false and the read will return bitflips, * even in case of ECC failure where we will return 5 bitflips. The * caller should be prepared to handle this. */ static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) { unsigned int i, status, timeout, err, max_bitflips = 0; struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; /* No command was sent before calling read_oob() so send one */ chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); /* go through all four small pages */ for (i = 0; i < 4; i++) { /* start auto decode (reads 528 NAND bytes) */ writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg); /* wait for controller to return to ready state */ for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { status = readl(&lpc32xx_nand_mlc_registers->isr); if (status & ISR_CONTROLLER_READY) break; udelay(1); } /* if decoder failure, count 'one too many' bitflips */ if (status & ISR_DECODER_FAILURE) max_bitflips = 5; /* keep count of maximum bitflips performed */ if (status & ISR_DECODER_ERROR) { err = ISR_DECODER_ERRORS(status); if (err > max_bitflips) max_bitflips = err; } /* set read pointer to OOB area */ writel(0, &lpc32xx_nand_mlc_registers->robp); /* copy next 6 bytes at front of OOB buffer */ memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6); /* copy next 10 bytes (R/S ECC) at back of OOB buffer */ memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->buff, 10); } return max_bitflips; } /** * lpc32xx_write_page_hwecc - write in- and out-of-band data with ECC * @mtd: mtd info structure * @chip: nand chip info structure * @buf: data buffer * @oob_required: must write chip->oob_poi to OOB * * Use large block Auto Encode as per User Manual section 8.6.4. * * The initial Write Serial Input and final Auto Program commands are * sent by the caller. */ static int lpc32xx_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { unsigned int i, status, timeout; struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; /* when we get here we've already had the SEQIN */ for (i = 0; i < 4; i++) { /* start encode (expects 518 writes to buff) */ writel(0, &lpc32xx_nand_mlc_registers->ecc_enc_reg); /* copy first 512 bytes from buffer */ memcpy(&lpc32xx_nand_mlc_registers->buff, buf+512*i, 512); /* copy next 6 bytes from OOB buffer -- excluding ECC */ memcpy(&lpc32xx_nand_mlc_registers->buff, &oob->free[i], 6); /* wait for ECC to return to ready state */ for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { status = readl(&lpc32xx_nand_mlc_registers->isr); if (status & ISR_ECC_READY) break; udelay(1); } /* if ECC stalled, return failure */ if (!(status & ISR_ECC_READY)) return -1; /* Trigger auto encode (writes 528 bytes to NAND) */ writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_enc_reg); /* wait for controller to return to ready state */ for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { status = readl(&lpc32xx_nand_mlc_registers->isr); if (status & ISR_CONTROLLER_READY) break; udelay(1); } /* if controller stalled, return error */ if (!(status & ISR_CONTROLLER_READY)) return -1; } return 0; } /** * lpc32xx_write_page_raw - write raw (in-band, out-of-band and ECC) data * @mtd: mtd info structure * @chip: nand chip info structure * @buf: buffer to store read data * @oob_required: caller requires OOB data read to chip->oob_poi * @page: page number to read * * Use large block write but without encode. * * The initial Write Serial Input and final Auto Program commands are * sent by the caller. * * This function will write the full out-of-band data, including the * ECC area. Therefore, it can write pages with valid *or* invalid ECC. */ static int lpc32xx_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { unsigned int i; struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; /* when we get here we've already had the Read Mode(1) */ for (i = 0; i < 4; i++) { /* copy first 512 bytes from buffer */ memcpy(lpc32xx_nand_mlc_registers->buff, buf+512*i, 512); /* copy next 6 bytes into OOB buffer -- excluding ECC */ memcpy(lpc32xx_nand_mlc_registers->buff, &oob->free[i], 6); /* copy next 10 bytes into OOB buffer -- that is 'ECC' */ memcpy(lpc32xx_nand_mlc_registers->buff, &oob->ecc[i], 10); } return 0; } /** * lpc32xx_write_oob - write out-of-band data * @mtd: mtd info structure * @chip: nand chip info structure * @page: page number to read * * Since ECC covers in- and out-of-band data, writing out-of-band data * with ECC will render the page ECC wrong -- or, if the page was blank, * then it will produce a good ECC but a later in-band data write will * render it wrong. * * Therefore, do not compute or write any ECC, and always return success. * * This implies that we do four writes, since non-ECC out-of-band data * are not contiguous in a large page. */ static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) { /* update oob on all 4 subpages in sequence */ unsigned int i, status, timeout; struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi; for (i = 0; i < 4; i++) { /* start data input */ chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x200+0x210*i, page); /* copy 6 non-ECC out-of-band bytes directly into NAND */ memcpy(lpc32xx_nand_mlc_registers->data, &oob->free[i], 6); /* program page */ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); /* wait for NAND to return to ready state */ for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { status = readl(&lpc32xx_nand_mlc_registers->isr); if (status & ISR_NAND_READY) break; udelay(1); } /* if NAND stalled, return error */ if (!(status & ISR_NAND_READY)) return -1; } return 0; } /** * lpc32xx_waitfunc - wait until a command is done * @mtd: MTD device structure * @chip: NAND chip structure * * Wait for controller and FLASH to both be ready. */ static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) { int status; unsigned int timeout; /* wait until both controller and NAND are ready */ for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { status = readl(&lpc32xx_nand_mlc_registers->isr); if ((status & (ISR_CONTROLLER_READY || ISR_NAND_READY)) == (ISR_CONTROLLER_READY || ISR_NAND_READY)) break; udelay(1); } /* if controller or NAND stalled, return error */ if ((status & (ISR_CONTROLLER_READY || ISR_NAND_READY)) != (ISR_CONTROLLER_READY || ISR_NAND_READY)) return -1; /* write NAND status command */ writel(NAND_CMD_STATUS, &lpc32xx_nand_mlc_registers->cmd); /* read back status and return it */ return readb(&lpc32xx_nand_mlc_registers->data); } /* * We are self-initializing, so we need our own chip struct */ static struct nand_chip lpc32xx_chip; /* * Initialize the controller */ void board_nand_init(void) { struct mtd_info *mtd = nand_to_mtd(&lpc32xx_chip); int ret; /* Set all BOARDSPECIFIC (actually core-specific) fields */ lpc32xx_chip.IO_ADDR_R = &lpc32xx_nand_mlc_registers->buff; lpc32xx_chip.IO_ADDR_W = &lpc32xx_nand_mlc_registers->buff; lpc32xx_chip.cmd_ctrl = lpc32xx_cmd_ctrl; /* do not set init_size: nand_base.c will read sizes from chip */ lpc32xx_chip.dev_ready = lpc32xx_dev_ready; /* do not set setup_read_retry: this is NAND-chip-specific */ /* do not set chip_delay: we have dev_ready defined. */ lpc32xx_chip.options |= NAND_NO_SUBPAGE_WRITE; /* Set needed ECC fields */ lpc32xx_chip.ecc.mode = NAND_ECC_HW; lpc32xx_chip.ecc.layout = &lpc32xx_largepage_ecclayout; lpc32xx_chip.ecc.size = 512; lpc32xx_chip.ecc.bytes = 10; lpc32xx_chip.ecc.strength = 4; lpc32xx_chip.ecc.read_page = lpc32xx_read_page_hwecc; lpc32xx_chip.ecc.read_page_raw = lpc32xx_read_page_raw; lpc32xx_chip.ecc.write_page = lpc32xx_write_page_hwecc; lpc32xx_chip.ecc.write_page_raw = lpc32xx_write_page_raw; lpc32xx_chip.ecc.read_oob = lpc32xx_read_oob; lpc32xx_chip.ecc.write_oob = lpc32xx_write_oob; lpc32xx_chip.waitfunc = lpc32xx_waitfunc; lpc32xx_chip.read_byte = lpc32xx_read_byte; /* FIXME: NEEDED? */ /* BBT options: read from last two pages */ lpc32xx_chip.bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_LASTBLOCK | NAND_BBT_SCANLASTPAGE | NAND_BBT_SCAN2NDPAGE | NAND_BBT_WRITE; /* Initialize NAND interface */ lpc32xx_nand_init(); /* identify chip */ ret = nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_CHIPS, NULL); if (ret) { pr_err("nand_scan_ident returned %i", ret); return; } /* finish scanning the chip */ ret = nand_scan_tail(mtd); if (ret) { pr_err("nand_scan_tail returned %i", ret); return; } /* chip is good, register it */ ret = nand_register(0, mtd); if (ret) pr_err("nand_register returned %i", ret); } #else /* defined(CONFIG_SPL_BUILD) */ void nand_init(void) { /* enable NAND controller */ lpc32xx_mlc_nand_init(); /* initialize NAND controller */ lpc32xx_nand_init(); } void nand_deselect(void) { /* nothing to do, but SPL requires this function */ } static int read_single_page(uint8_t *dest, int page, struct lpc32xx_oob *oob) { int status, i, timeout, err, max_bitflips = 0; /* enter read mode */ writel(NAND_CMD_READ0, &lpc32xx_nand_mlc_registers->cmd); /* send column (lsb then MSB) and page (lsb to MSB) */ writel(0, &lpc32xx_nand_mlc_registers->addr); writel(0, &lpc32xx_nand_mlc_registers->addr); writel(page & 0xff, &lpc32xx_nand_mlc_registers->addr); writel((page>>8) & 0xff, &lpc32xx_nand_mlc_registers->addr); writel((page>>16) & 0xff, &lpc32xx_nand_mlc_registers->addr); /* start reading */ writel(NAND_CMD_READSTART, &lpc32xx_nand_mlc_registers->cmd); /* large page auto decode read */ for (i = 0; i < 4; i++) { /* start auto decode (reads 528 NAND bytes) */ writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg); /* wait for controller to return to ready state */ for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) { status = readl(&lpc32xx_nand_mlc_registers->isr); if (status & ISR_CONTROLLER_READY) break; udelay(1); } /* if controller stalled, return error */ if (!(status & ISR_CONTROLLER_READY)) return -1; /* if decoder failure, return error */ if (status & ISR_DECODER_FAILURE) return -1; /* keep count of maximum bitflips performed */ if (status & ISR_DECODER_ERROR) { err = ISR_DECODER_ERRORS(status); if (err > max_bitflips) max_bitflips = err; } /* copy first 512 bytes into buffer */ memcpy(dest+i*512, lpc32xx_nand_mlc_registers->buff, 512); /* copy next 6 bytes bytes into OOB buffer */ memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6); } return max_bitflips; } /* * Load U-Boot signed image. * This loads an image from NAND, skipping bad blocks. * A block is declared bad if at least one of its readable pages has * a bad block marker in its OOB at position 0. * If all pages ion a block are unreadable, the block is considered * bad (i.e., assumed not to be part of the image) and skipped. * * IMPORTANT NOTE: * * If the first block of the image is fully unreadable, it will be * ignored and skipped as if it had been marked bad. If it was not * actually marked bad at the time of writing the image, the resulting * image loaded will lack a header and magic number. It could thus be * considered as a raw, headerless, image and SPL might erroneously * jump into it. * * In order to avoid this risk, LPC32XX-based boards which use this * driver MUST define CONFIG_SPL_PANIC_ON_RAW_IMAGE. */ #define BYTES_PER_PAGE 2048 #define PAGES_PER_BLOCK 64 #define BYTES_PER_BLOCK (BYTES_PER_PAGE * PAGES_PER_BLOCK) #define PAGES_PER_CHIP_MAX 524288 int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst) { int bytes_left = size; int pages_left = DIV_ROUND_UP(size, BYTES_PER_PAGE); int blocks_left = DIV_ROUND_UP(size, BYTES_PER_BLOCK); int block = 0; int page = offs / BYTES_PER_PAGE; /* perform reads block by block */ while (blocks_left) { /* compute first page number to read */ void *block_page_dst = dst; /* read at most one block, possibly less */ int block_bytes_left = bytes_left; if (block_bytes_left > BYTES_PER_BLOCK) block_bytes_left = BYTES_PER_BLOCK; /* keep track of good, failed, and "bad" pages */ int block_pages_good = 0; int block_pages_bad = 0; int block_pages_err = 0; /* we shall read a full block of pages, maybe less */ int block_pages_left = pages_left; if (block_pages_left > PAGES_PER_BLOCK) block_pages_left = PAGES_PER_BLOCK; int block_pages = block_pages_left; int block_page = page; /* while pages are left and the block is not known as bad */ while ((block_pages > 0) && (block_pages_bad == 0)) { /* we will read OOB, too, for bad block markers */ struct lpc32xx_oob oob; /* read page */ int res = read_single_page(block_page_dst, block_page, &oob); /* count readable pages */ if (res >= 0) { /* this page is good */ block_pages_good++; /* this page is bad */ if ((oob.free[0].free_oob_bytes[0] != 0xff) | (oob.free[0].free_oob_bytes[1] != 0xff)) block_pages_bad++; } else /* count errors */ block_pages_err++; /* we're done with this page */ block_page++; block_page_dst += BYTES_PER_PAGE; if (block_pages) block_pages--; } /* a fully unreadable block is considered bad */ if (block_pages_good == 0) block_pages_bad = block_pages_err; /* errors are fatal only in good blocks */ if ((block_pages_err > 0) && (block_pages_bad == 0)) return -1; /* we keep reads only of good blocks */ if (block_pages_bad == 0) { dst += block_bytes_left; bytes_left -= block_bytes_left; pages_left -= block_pages_left; blocks_left--; } /* good or bad, we're done with this block */ block++; page += PAGES_PER_BLOCK; } /* report success */ return 0; } #endif /* CONFIG_SPL_BUILD */