// SPDX-License-Identifier: GPL-2.0+ /* * LPC32xx SLC NAND flash controller driver * * (C) Copyright 2015 Vladimir Zapolskiy <vz@mleia.com> * * Hardware ECC support original source code * Copyright (C) 2008 by NXP Semiconductors * Author: Kevin Wells * * Copyright (c) 2015 Tyco Fire Protection Products. */ #include <common.h> #include <nand.h> #include <linux/mtd/nand_ecc.h> #include <linux/errno.h> #include <asm/io.h> #include <asm/arch/config.h> #include <asm/arch/clk.h> #include <asm/arch/sys_proto.h> #include <asm/arch/dma.h> #include <asm/arch/cpu.h> #if defined(CONFIG_DMA_LPC32XX) && defined(CONFIG_SPL_BUILD) #warning "DMA support in SPL image is not tested" #endif struct lpc32xx_nand_slc_regs { u32 data; u32 addr; u32 cmd; u32 stop; u32 ctrl; u32 cfg; u32 stat; u32 int_stat; u32 ien; u32 isr; u32 icr; u32 tac; u32 tc; u32 ecc; u32 dma_data; }; /* CFG register */ #define CFG_CE_LOW (1 << 5) #define CFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */ #define CFG_ECC_EN (1 << 3) /* ECC enable bit */ #define CFG_DMA_BURST (1 << 2) /* DMA burst bit */ #define CFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */ /* CTRL register */ #define CTRL_SW_RESET (1 << 2) #define CTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */ #define CTRL_DMA_START (1 << 0) /* Start DMA channel bit */ /* STAT register */ #define STAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */ #define STAT_NAND_READY (1 << 0) /* INT_STAT register */ #define INT_STAT_TC (1 << 1) #define INT_STAT_RDY (1 << 0) /* TAC register bits, be aware of overflows */ #define TAC_W_RDY(n) (max_t(uint32_t, (n), 0xF) << 28) #define TAC_W_WIDTH(n) (max_t(uint32_t, (n), 0xF) << 24) #define TAC_W_HOLD(n) (max_t(uint32_t, (n), 0xF) << 20) #define TAC_W_SETUP(n) (max_t(uint32_t, (n), 0xF) << 16) #define TAC_R_RDY(n) (max_t(uint32_t, (n), 0xF) << 12) #define TAC_R_WIDTH(n) (max_t(uint32_t, (n), 0xF) << 8) #define TAC_R_HOLD(n) (max_t(uint32_t, (n), 0xF) << 4) #define TAC_R_SETUP(n) (max_t(uint32_t, (n), 0xF) << 0) /* NAND ECC Layout for small page NAND devices * Note: For large page devices, the default layouts are used. */ static struct nand_ecclayout lpc32xx_nand_oob_16 = { .eccbytes = 6, .eccpos = {10, 11, 12, 13, 14, 15}, .oobfree = { {.offset = 0, . length = 4}, {.offset = 6, . length = 4} } }; #if defined(CONFIG_DMA_LPC32XX) #define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / CONFIG_SYS_NAND_ECCSIZE) /* * DMA Descriptors * For Large Block: 17 descriptors = ((16 Data and ECC Read) + 1 Spare Area) * For Small Block: 5 descriptors = ((4 Data and ECC Read) + 1 Spare Area) */ static struct lpc32xx_dmac_ll dmalist[ECCSTEPS * 2 + 1]; static u32 ecc_buffer[8]; /* MAX ECC size */ static unsigned int dmachan = (unsigned int)-1; /* Invalid channel */ /* * Helper macro for the DMA client (i.e. NAND SLC): * - to write the next DMA linked list item address * (see arch/include/asm/arch-lpc32xx/dma.h). * - to assign the DMA data register to DMA source or destination address. * - to assign the ECC register to DMA source or destination address. */ #define lpc32xx_dmac_next_lli(x) ((u32)x) #define lpc32xx_dmac_set_dma_data() ((u32)&lpc32xx_nand_slc_regs->dma_data) #define lpc32xx_dmac_set_ecc() ((u32)&lpc32xx_nand_slc_regs->ecc) #endif static struct lpc32xx_nand_slc_regs __iomem *lpc32xx_nand_slc_regs = (struct lpc32xx_nand_slc_regs __iomem *)SLC_NAND_BASE; static void lpc32xx_nand_init(void) { uint32_t hclk = get_hclk_clk_rate(); /* Reset SLC NAND controller */ writel(CTRL_SW_RESET, &lpc32xx_nand_slc_regs->ctrl); /* 8-bit bus, no DMA, no ECC, ordinary CE signal */ writel(0, &lpc32xx_nand_slc_regs->cfg); /* Interrupts disabled and cleared */ writel(0, &lpc32xx_nand_slc_regs->ien); writel(INT_STAT_TC | INT_STAT_RDY, &lpc32xx_nand_slc_regs->icr); /* Configure NAND flash timings */ writel(TAC_W_RDY(CONFIG_LPC32XX_NAND_SLC_WDR_CLKS) | TAC_W_WIDTH(hclk / CONFIG_LPC32XX_NAND_SLC_WWIDTH) | TAC_W_HOLD(hclk / CONFIG_LPC32XX_NAND_SLC_WHOLD) | TAC_W_SETUP(hclk / CONFIG_LPC32XX_NAND_SLC_WSETUP) | TAC_R_RDY(CONFIG_LPC32XX_NAND_SLC_RDR_CLKS) | TAC_R_WIDTH(hclk / CONFIG_LPC32XX_NAND_SLC_RWIDTH) | TAC_R_HOLD(hclk / CONFIG_LPC32XX_NAND_SLC_RHOLD) | TAC_R_SETUP(hclk / CONFIG_LPC32XX_NAND_SLC_RSETUP), &lpc32xx_nand_slc_regs->tac); } static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) { debug("ctrl: 0x%08x, cmd: 0x%08x\n", ctrl, cmd); if (ctrl & NAND_NCE) setbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_CE_LOW); else clrbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_CE_LOW); if (cmd == NAND_CMD_NONE) return; if (ctrl & NAND_CLE) writel(cmd & 0xFF, &lpc32xx_nand_slc_regs->cmd); else if (ctrl & NAND_ALE) writel(cmd & 0xFF, &lpc32xx_nand_slc_regs->addr); } static int lpc32xx_nand_dev_ready(struct mtd_info *mtd) { return readl(&lpc32xx_nand_slc_regs->stat) & STAT_NAND_READY; } #if defined(CONFIG_DMA_LPC32XX) /* * Prepares DMA descriptors for NAND RD/WR operations * If the size is < 256 Bytes then it is assumed to be * an OOB transfer */ static void lpc32xx_nand_dma_configure(struct nand_chip *chip, const u8 *buffer, int size, int read) { u32 i, dmasrc, ctrl, ecc_ctrl, oob_ctrl, dmadst; struct lpc32xx_dmac_ll *dmalist_cur; struct lpc32xx_dmac_ll *dmalist_cur_ecc; /* * CTRL descriptor entry for reading ECC * Copy Multiple times to sync DMA with Flash Controller */ ecc_ctrl = 0x5 | DMAC_CHAN_SRC_BURST_1 | DMAC_CHAN_DEST_BURST_1 | DMAC_CHAN_SRC_WIDTH_32 | DMAC_CHAN_DEST_WIDTH_32 | DMAC_CHAN_DEST_AHB1; /* CTRL descriptor entry for reading/writing Data */ ctrl = (CONFIG_SYS_NAND_ECCSIZE / 4) | DMAC_CHAN_SRC_BURST_4 | DMAC_CHAN_DEST_BURST_4 | DMAC_CHAN_SRC_WIDTH_32 | DMAC_CHAN_DEST_WIDTH_32 | DMAC_CHAN_DEST_AHB1; /* CTRL descriptor entry for reading/writing Spare Area */ oob_ctrl = (CONFIG_SYS_NAND_OOBSIZE / 4) | DMAC_CHAN_SRC_BURST_4 | DMAC_CHAN_DEST_BURST_4 | DMAC_CHAN_SRC_WIDTH_32 | DMAC_CHAN_DEST_WIDTH_32 | DMAC_CHAN_DEST_AHB1; if (read) { dmasrc = lpc32xx_dmac_set_dma_data(); dmadst = (u32)buffer; ctrl |= DMAC_CHAN_DEST_AUTOINC; } else { dmadst = lpc32xx_dmac_set_dma_data(); dmasrc = (u32)buffer; ctrl |= DMAC_CHAN_SRC_AUTOINC; } /* * Write Operation Sequence for Small Block NAND * ---------------------------------------------------------- * 1. X'fer 256 bytes of data from Memory to Flash. * 2. Copy generated ECC data from Register to Spare Area * 3. X'fer next 256 bytes of data from Memory to Flash. * 4. Copy generated ECC data from Register to Spare Area. * 5. X'fer 16 byets of Spare area from Memory to Flash. * Read Operation Sequence for Small Block NAND * ---------------------------------------------------------- * 1. X'fer 256 bytes of data from Flash to Memory. * 2. Copy generated ECC data from Register to ECC calc Buffer. * 3. X'fer next 256 bytes of data from Flash to Memory. * 4. Copy generated ECC data from Register to ECC calc Buffer. * 5. X'fer 16 bytes of Spare area from Flash to Memory. * Write Operation Sequence for Large Block NAND * ---------------------------------------------------------- * 1. Steps(1-4) of Write Operations repeate for four times * which generates 16 DMA descriptors to X'fer 2048 bytes of * data & 32 bytes of ECC data. * 2. X'fer 64 bytes of Spare area from Memory to Flash. * Read Operation Sequence for Large Block NAND * ---------------------------------------------------------- * 1. Steps(1-4) of Read Operations repeate for four times * which generates 16 DMA descriptors to X'fer 2048 bytes of * data & 32 bytes of ECC data. * 2. X'fer 64 bytes of Spare area from Flash to Memory. */ for (i = 0; i < size/CONFIG_SYS_NAND_ECCSIZE; i++) { dmalist_cur = &dmalist[i * 2]; dmalist_cur_ecc = &dmalist[(i * 2) + 1]; dmalist_cur->dma_src = (read ? (dmasrc) : (dmasrc + (i*256))); dmalist_cur->dma_dest = (read ? (dmadst + (i*256)) : dmadst); dmalist_cur->next_lli = lpc32xx_dmac_next_lli(dmalist_cur_ecc); dmalist_cur->next_ctrl = ctrl; dmalist_cur_ecc->dma_src = lpc32xx_dmac_set_ecc(); dmalist_cur_ecc->dma_dest = (u32)&ecc_buffer[i]; dmalist_cur_ecc->next_lli = lpc32xx_dmac_next_lli(&dmalist[(i * 2) + 2]); dmalist_cur_ecc->next_ctrl = ecc_ctrl; } if (i) { /* Data only transfer */ dmalist_cur_ecc = &dmalist[(i * 2) - 1]; dmalist_cur_ecc->next_lli = 0; dmalist_cur_ecc->next_ctrl |= DMAC_CHAN_INT_TC_EN; return; } /* OOB only transfer */ if (read) { dmasrc = lpc32xx_dmac_set_dma_data(); dmadst = (u32)buffer; oob_ctrl |= DMAC_CHAN_DEST_AUTOINC; } else { dmadst = lpc32xx_dmac_set_dma_data(); dmasrc = (u32)buffer; oob_ctrl |= DMAC_CHAN_SRC_AUTOINC; } /* Read/ Write Spare Area Data To/From Flash */ dmalist_cur = &dmalist[i * 2]; dmalist_cur->dma_src = dmasrc; dmalist_cur->dma_dest = dmadst; dmalist_cur->next_lli = 0; dmalist_cur->next_ctrl = (oob_ctrl | DMAC_CHAN_INT_TC_EN); } static void lpc32xx_nand_xfer(struct mtd_info *mtd, const u8 *buf, int len, int read) { struct nand_chip *chip = mtd_to_nand(mtd); u32 config; int ret; /* DMA Channel Configuration */ config = (read ? DMAC_CHAN_FLOW_D_P2M : DMAC_CHAN_FLOW_D_M2P) | (read ? DMAC_DEST_PERIP(0) : DMAC_DEST_PERIP(DMA_PERID_NAND1)) | (read ? DMAC_SRC_PERIP(DMA_PERID_NAND1) : DMAC_SRC_PERIP(0)) | DMAC_CHAN_ENABLE; /* Prepare DMA descriptors */ lpc32xx_nand_dma_configure(chip, buf, len, read); /* Setup SLC controller and start transfer */ if (read) setbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_DMA_DIR); else /* NAND_ECC_WRITE */ clrbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_DMA_DIR); setbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_DMA_BURST); /* Write length for new transfers */ if (!((readl(&lpc32xx_nand_slc_regs->stat) & STAT_DMA_FIFO) | readl(&lpc32xx_nand_slc_regs->tc))) { int tmp = (len != mtd->oobsize) ? mtd->oobsize : 0; writel(len + tmp, &lpc32xx_nand_slc_regs->tc); } setbits_le32(&lpc32xx_nand_slc_regs->ctrl, CTRL_DMA_START); /* Start DMA transfers */ ret = lpc32xx_dma_start_xfer(dmachan, dmalist, config); if (unlikely(ret < 0)) BUG(); /* Wait for NAND to be ready */ while (!lpc32xx_nand_dev_ready(mtd)) ; /* Wait till DMA transfer is DONE */ if (lpc32xx_dma_wait_status(dmachan)) pr_err("NAND DMA transfer error!\r\n"); /* Stop DMA & HW ECC */ clrbits_le32(&lpc32xx_nand_slc_regs->ctrl, CTRL_DMA_START); clrbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_DMA_DIR | CFG_DMA_BURST | CFG_ECC_EN | CFG_DMA_ECC); } static u32 slc_ecc_copy_to_buffer(u8 *spare, const u32 *ecc, int count) { int i; for (i = 0; i < (count * CONFIG_SYS_NAND_ECCBYTES); i += CONFIG_SYS_NAND_ECCBYTES) { u32 ce = ecc[i / CONFIG_SYS_NAND_ECCBYTES]; ce = ~(ce << 2) & 0xFFFFFF; spare[i+2] = (u8)(ce & 0xFF); ce >>= 8; spare[i+1] = (u8)(ce & 0xFF); ce >>= 8; spare[i] = (u8)(ce & 0xFF); } return 0; } static int lpc32xx_ecc_calculate(struct mtd_info *mtd, const uint8_t *dat, uint8_t *ecc_code) { return slc_ecc_copy_to_buffer(ecc_code, ecc_buffer, ECCSTEPS); } /* * Enables and prepares SLC NAND controller * for doing data transfers with H/W ECC enabled. */ static void lpc32xx_hwecc_enable(struct mtd_info *mtd, int mode) { /* Clear ECC */ writel(CTRL_ECC_CLEAR, &lpc32xx_nand_slc_regs->ctrl); /* Setup SLC controller for H/W ECC operations */ setbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_ECC_EN | CFG_DMA_ECC); } /* * lpc32xx_correct_data - [NAND Interface] Detect and correct bit error(s) * mtd: MTD block structure * dat: raw data read from the chip * read_ecc: ECC from the chip * calc_ecc: the ECC calculated from raw data * * Detect and correct a 1 bit error for 256 byte block */ int lpc32xx_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { unsigned int i; int ret1, ret2 = 0; u_char *r = read_ecc; u_char *c = calc_ecc; u16 data_offset = 0; for (i = 0 ; i < ECCSTEPS ; i++) { r += CONFIG_SYS_NAND_ECCBYTES; c += CONFIG_SYS_NAND_ECCBYTES; data_offset += CONFIG_SYS_NAND_ECCSIZE; ret1 = nand_correct_data(mtd, dat + data_offset, r, c); if (ret1 < 0) return -EBADMSG; else ret2 += ret1; } return ret2; } #endif #if defined(CONFIG_DMA_LPC32XX) static void lpc32xx_dma_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { lpc32xx_nand_xfer(mtd, buf, len, 1); } #else static void lpc32xx_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { while (len-- > 0) *buf++ = readl(&lpc32xx_nand_slc_regs->data); } #endif static uint8_t lpc32xx_read_byte(struct mtd_info *mtd) { return readl(&lpc32xx_nand_slc_regs->data); } #if defined(CONFIG_DMA_LPC32XX) static void lpc32xx_dma_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { lpc32xx_nand_xfer(mtd, buf, len, 0); } #else static void lpc32xx_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { while (len-- > 0) writel(*buf++, &lpc32xx_nand_slc_regs->data); } #endif static void lpc32xx_write_byte(struct mtd_info *mtd, uint8_t byte) { writel(byte, &lpc32xx_nand_slc_regs->data); } #if defined(CONFIG_DMA_LPC32XX) /* Reuse the logic from "nand_read_page_hwecc()" */ static int lpc32xx_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { int i; int stat; uint8_t *p = buf; uint8_t *ecc_calc = chip->buffers->ecccalc; uint8_t *ecc_code = chip->buffers->ecccode; uint32_t *eccpos = chip->ecc.layout->eccpos; unsigned int max_bitflips = 0; /* * As per the "LPC32x0 and LPC32x0/01 User manual" table 173 notes * and section 9.7, the NAND SLC & DMA allowed single DMA transaction * of a page size using DMA controller scatter/gather mode through * linked list; the ECC read is done without any software intervention. */ lpc32xx_hwecc_enable(mtd, NAND_ECC_READ); lpc32xx_dma_read_buf(mtd, p, chip->ecc.size * chip->ecc.steps); lpc32xx_ecc_calculate(mtd, p, &ecc_calc[0]); lpc32xx_dma_read_buf(mtd, chip->oob_poi, mtd->oobsize); for (i = 0; i < chip->ecc.total; i++) ecc_code[i] = chip->oob_poi[eccpos[i]]; stat = chip->ecc.correct(mtd, p, &ecc_code[0], &ecc_calc[0]); if (stat < 0) mtd->ecc_stats.failed++; else { mtd->ecc_stats.corrected += stat; max_bitflips = max_t(unsigned int, max_bitflips, stat); } return max_bitflips; } /* Reuse the logic from "nand_write_page_hwecc()" */ static int lpc32xx_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { int i; uint8_t *ecc_calc = chip->buffers->ecccalc; const uint8_t *p = buf; uint32_t *eccpos = chip->ecc.layout->eccpos; /* * As per the "LPC32x0 and LPC32x0/01 User manual" table 173 notes * and section 9.7, the NAND SLC & DMA allowed single DMA transaction * of a page size using DMA controller scatter/gather mode through * linked list; the ECC read is done without any software intervention. */ lpc32xx_hwecc_enable(mtd, NAND_ECC_WRITE); lpc32xx_dma_write_buf(mtd, p, chip->ecc.size * chip->ecc.steps); lpc32xx_ecc_calculate(mtd, p, &ecc_calc[0]); for (i = 0; i < chip->ecc.total; i++) chip->oob_poi[eccpos[i]] = ecc_calc[i]; lpc32xx_dma_write_buf(mtd, chip->oob_poi, mtd->oobsize); return 0; } #endif /* * LPC32xx has only one SLC NAND controller, don't utilize * CONFIG_SYS_NAND_SELF_INIT to be able to reuse this function * both in SPL NAND and U-Boot images. */ int board_nand_init(struct nand_chip *lpc32xx_chip) { #if defined(CONFIG_DMA_LPC32XX) int ret; /* Acquire a channel for our use */ ret = lpc32xx_dma_get_channel(); if (unlikely(ret < 0)) { pr_info("Unable to get free DMA channel for NAND transfers\n"); return -1; } dmachan = (unsigned int)ret; #endif lpc32xx_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl; lpc32xx_chip->dev_ready = lpc32xx_nand_dev_ready; /* * The implementation of these functions is quite common, but * they MUST be defined, because access to data register * is strictly 32-bit aligned. */ lpc32xx_chip->read_byte = lpc32xx_read_byte; lpc32xx_chip->write_byte = lpc32xx_write_byte; #if defined(CONFIG_DMA_LPC32XX) /* Hardware ECC calculation is supported when DMA driver is selected */ lpc32xx_chip->ecc.mode = NAND_ECC_HW; lpc32xx_chip->read_buf = lpc32xx_dma_read_buf; lpc32xx_chip->write_buf = lpc32xx_dma_write_buf; lpc32xx_chip->ecc.calculate = lpc32xx_ecc_calculate; lpc32xx_chip->ecc.correct = lpc32xx_correct_data; lpc32xx_chip->ecc.hwctl = lpc32xx_hwecc_enable; lpc32xx_chip->chip_delay = 2000; lpc32xx_chip->ecc.read_page = lpc32xx_read_page_hwecc; lpc32xx_chip->ecc.write_page = lpc32xx_write_page_hwecc; lpc32xx_chip->options |= NAND_NO_SUBPAGE_WRITE; #else /* * Hardware ECC calculation is not supported by the driver, * because it requires DMA support, see LPC32x0 User Manual, * note after SLC_ECC register description (UM10326, p.198) */ lpc32xx_chip->ecc.mode = NAND_ECC_SOFT; /* * The implementation of these functions is quite common, but * they MUST be defined, because access to data register * is strictly 32-bit aligned. */ lpc32xx_chip->read_buf = lpc32xx_read_buf; lpc32xx_chip->write_buf = lpc32xx_write_buf; #endif /* * These values are predefined * for both small and large page NAND flash devices. */ lpc32xx_chip->ecc.size = CONFIG_SYS_NAND_ECCSIZE; lpc32xx_chip->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES; lpc32xx_chip->ecc.strength = 1; if (CONFIG_SYS_NAND_PAGE_SIZE != NAND_LARGE_BLOCK_PAGE_SIZE) lpc32xx_chip->ecc.layout = &lpc32xx_nand_oob_16; #if defined(CONFIG_SYS_NAND_USE_FLASH_BBT) lpc32xx_chip->bbt_options |= NAND_BBT_USE_FLASH; #endif /* Initialize NAND interface */ lpc32xx_nand_init(); return 0; }