// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2014-2015, Antmicro Ltd <www.antmicro.com> * Copyright (c) 2015, AW-SOM Technologies <www.aw-som.com> */ #include <asm/arch/clock.h> #include <asm/io.h> #include <common.h> #include <config.h> #include <nand.h> #include <linux/ctype.h> /* registers */ #define NFC_CTL 0x00000000 #define NFC_ST 0x00000004 #define NFC_INT 0x00000008 #define NFC_TIMING_CTL 0x0000000C #define NFC_TIMING_CFG 0x00000010 #define NFC_ADDR_LOW 0x00000014 #define NFC_ADDR_HIGH 0x00000018 #define NFC_SECTOR_NUM 0x0000001C #define NFC_CNT 0x00000020 #define NFC_CMD 0x00000024 #define NFC_RCMD_SET 0x00000028 #define NFC_WCMD_SET 0x0000002C #define NFC_IO_DATA 0x00000030 #define NFC_ECC_CTL 0x00000034 #define NFC_ECC_ST 0x00000038 #define NFC_DEBUG 0x0000003C #define NFC_ECC_CNT0 0x00000040 #define NFC_ECC_CNT1 0x00000044 #define NFC_ECC_CNT2 0x00000048 #define NFC_ECC_CNT3 0x0000004C #define NFC_USER_DATA_BASE 0x00000050 #define NFC_EFNAND_STATUS 0x00000090 #define NFC_SPARE_AREA 0x000000A0 #define NFC_PATTERN_ID 0x000000A4 #define NFC_RAM0_BASE 0x00000400 #define NFC_RAM1_BASE 0x00000800 #define NFC_CTL_EN (1 << 0) #define NFC_CTL_RESET (1 << 1) #define NFC_CTL_RAM_METHOD (1 << 14) #define NFC_CTL_PAGE_SIZE_MASK (0xf << 8) #define NFC_CTL_PAGE_SIZE(a) ((fls(a) - 11) << 8) #define NFC_ECC_EN (1 << 0) #define NFC_ECC_PIPELINE (1 << 3) #define NFC_ECC_EXCEPTION (1 << 4) #define NFC_ECC_BLOCK_SIZE (1 << 5) #define NFC_ECC_RANDOM_EN (1 << 9) #define NFC_ECC_RANDOM_DIRECTION (1 << 10) #define NFC_ADDR_NUM_OFFSET 16 #define NFC_SEND_ADDR (1 << 19) #define NFC_ACCESS_DIR (1 << 20) #define NFC_DATA_TRANS (1 << 21) #define NFC_SEND_CMD1 (1 << 22) #define NFC_WAIT_FLAG (1 << 23) #define NFC_SEND_CMD2 (1 << 24) #define NFC_SEQ (1 << 25) #define NFC_DATA_SWAP_METHOD (1 << 26) #define NFC_ROW_AUTO_INC (1 << 27) #define NFC_SEND_CMD3 (1 << 28) #define NFC_SEND_CMD4 (1 << 29) #define NFC_RAW_CMD (0 << 30) #define NFC_ECC_CMD (1 << 30) #define NFC_PAGE_CMD (2 << 30) #define NFC_ST_CMD_INT_FLAG (1 << 1) #define NFC_ST_DMA_INT_FLAG (1 << 2) #define NFC_ST_CMD_FIFO_STAT (1 << 3) #define NFC_READ_CMD_OFFSET 0 #define NFC_RANDOM_READ_CMD0_OFFSET 8 #define NFC_RANDOM_READ_CMD1_OFFSET 16 #define NFC_CMD_RNDOUTSTART 0xE0 #define NFC_CMD_RNDOUT 0x05 #define NFC_CMD_READSTART 0x30 struct nfc_config { int page_size; int ecc_strength; int ecc_size; int addr_cycles; int nseeds; bool randomize; bool valid; }; /* minimal "boot0" style NAND support for Allwinner A20 */ /* random seed used by linux */ const uint16_t random_seed[128] = { 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72, 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436, 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d, 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130, 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56, 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55, 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb, 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17, 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62, 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064, 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126, 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e, 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3, 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b, 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d, 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db, }; #define DEFAULT_TIMEOUT_US 100000 static int check_value_inner(int offset, int expected_bits, int timeout_us, int negation) { do { int val = readl(offset) & expected_bits; if (negation ? !val : val) return 1; udelay(1); } while (--timeout_us); return 0; } static inline int check_value(int offset, int expected_bits, int timeout_us) { return check_value_inner(offset, expected_bits, timeout_us, 0); } static inline int check_value_negated(int offset, int unexpected_bits, int timeout_us) { return check_value_inner(offset, unexpected_bits, timeout_us, 1); } static int nand_wait_cmd_fifo_empty(void) { if (!check_value_negated(SUNXI_NFC_BASE + NFC_ST, NFC_ST_CMD_FIFO_STAT, DEFAULT_TIMEOUT_US)) { printf("nand: timeout waiting for empty cmd FIFO\n"); return -ETIMEDOUT; } return 0; } static int nand_wait_int(void) { if (!check_value(SUNXI_NFC_BASE + NFC_ST, NFC_ST_CMD_INT_FLAG, DEFAULT_TIMEOUT_US)) { printf("nand: timeout waiting for interruption\n"); return -ETIMEDOUT; } return 0; } static int nand_exec_cmd(u32 cmd) { int ret; ret = nand_wait_cmd_fifo_empty(); if (ret) return ret; writel(NFC_ST_CMD_INT_FLAG, SUNXI_NFC_BASE + NFC_ST); writel(cmd, SUNXI_NFC_BASE + NFC_CMD); return nand_wait_int(); } void nand_init(void) { uint32_t val; board_nand_init(); val = readl(SUNXI_NFC_BASE + NFC_CTL); /* enable and reset CTL */ writel(val | NFC_CTL_EN | NFC_CTL_RESET, SUNXI_NFC_BASE + NFC_CTL); if (!check_value_negated(SUNXI_NFC_BASE + NFC_CTL, NFC_CTL_RESET, DEFAULT_TIMEOUT_US)) { printf("Couldn't initialize nand\n"); } /* reset NAND */ nand_exec_cmd(NFC_SEND_CMD1 | NFC_WAIT_FLAG | NAND_CMD_RESET); } static void nand_apply_config(const struct nfc_config *conf) { u32 val; nand_wait_cmd_fifo_empty(); val = readl(SUNXI_NFC_BASE + NFC_CTL); val &= ~NFC_CTL_PAGE_SIZE_MASK; writel(val | NFC_CTL_RAM_METHOD | NFC_CTL_PAGE_SIZE(conf->page_size), SUNXI_NFC_BASE + NFC_CTL); writel(conf->ecc_size, SUNXI_NFC_BASE + NFC_CNT); writel(conf->page_size, SUNXI_NFC_BASE + NFC_SPARE_AREA); } static int nand_load_page(const struct nfc_config *conf, u32 offs) { int page = offs / conf->page_size; writel((NFC_CMD_RNDOUTSTART << NFC_RANDOM_READ_CMD1_OFFSET) | (NFC_CMD_RNDOUT << NFC_RANDOM_READ_CMD0_OFFSET) | (NFC_CMD_READSTART << NFC_READ_CMD_OFFSET), SUNXI_NFC_BASE + NFC_RCMD_SET); writel(((page & 0xFFFF) << 16), SUNXI_NFC_BASE + NFC_ADDR_LOW); writel((page >> 16) & 0xFF, SUNXI_NFC_BASE + NFC_ADDR_HIGH); return nand_exec_cmd(NFC_SEND_CMD1 | NFC_SEND_CMD2 | NFC_RAW_CMD | NFC_SEND_ADDR | NFC_WAIT_FLAG | ((conf->addr_cycles - 1) << NFC_ADDR_NUM_OFFSET)); } static int nand_change_column(u16 column) { int ret; writel((NFC_CMD_RNDOUTSTART << NFC_RANDOM_READ_CMD1_OFFSET) | (NFC_CMD_RNDOUT << NFC_RANDOM_READ_CMD0_OFFSET) | (NFC_CMD_RNDOUTSTART << NFC_READ_CMD_OFFSET), SUNXI_NFC_BASE + NFC_RCMD_SET); writel(column, SUNXI_NFC_BASE + NFC_ADDR_LOW); ret = nand_exec_cmd(NFC_SEND_CMD1 | NFC_SEND_CMD2 | NFC_RAW_CMD | (1 << NFC_ADDR_NUM_OFFSET) | NFC_SEND_ADDR | NFC_CMD_RNDOUT); if (ret) return ret; /* Ensure tCCS has passed before reading data */ udelay(1); return 0; } static const int ecc_bytes[] = {32, 46, 54, 60, 74, 88, 102, 110, 116}; static int nand_read_page(const struct nfc_config *conf, u32 offs, void *dest, int len) { int nsectors = len / conf->ecc_size; u16 rand_seed = 0; int oob_chunk_sz = ecc_bytes[conf->ecc_strength]; int page = offs / conf->page_size; u32 ecc_st; int i; if (offs % conf->page_size || len % conf->ecc_size || len > conf->page_size || len < 0) return -EINVAL; /* Choose correct seed if randomized */ if (conf->randomize) rand_seed = random_seed[page % conf->nseeds]; /* Retrieve data from SRAM (PIO) */ for (i = 0; i < nsectors; i++) { int data_off = i * conf->ecc_size; int oob_off = conf->page_size + (i * oob_chunk_sz); u8 *data = dest + data_off; /* Clear ECC status and restart ECC engine */ writel(0, SUNXI_NFC_BASE + NFC_ECC_ST); writel((rand_seed << 16) | (conf->ecc_strength << 12) | (conf->randomize ? NFC_ECC_RANDOM_EN : 0) | (conf->ecc_size == 512 ? NFC_ECC_BLOCK_SIZE : 0) | NFC_ECC_EN | NFC_ECC_EXCEPTION, SUNXI_NFC_BASE + NFC_ECC_CTL); /* Move the data in SRAM */ nand_change_column(data_off); writel(conf->ecc_size, SUNXI_NFC_BASE + NFC_CNT); nand_exec_cmd(NFC_DATA_TRANS); /* * Let the ECC engine consume the ECC bytes and possibly correct * the data. */ nand_change_column(oob_off); nand_exec_cmd(NFC_DATA_TRANS | NFC_ECC_CMD); /* Get the ECC status */ ecc_st = readl(SUNXI_NFC_BASE + NFC_ECC_ST); /* ECC error detected. */ if (ecc_st & 0xffff) return -EIO; /* * Return 1 if the first chunk is empty (needed for * configuration detection). */ if (!i && (ecc_st & 0x10000)) return 1; /* Retrieve the data from SRAM */ memcpy_fromio(data, SUNXI_NFC_BASE + NFC_RAM0_BASE, conf->ecc_size); /* Stop the ECC engine */ writel(readl(SUNXI_NFC_BASE + NFC_ECC_CTL) & ~NFC_ECC_EN, SUNXI_NFC_BASE + NFC_ECC_CTL); if (data_off + conf->ecc_size >= len) break; } return 0; } static int nand_max_ecc_strength(struct nfc_config *conf) { int max_oobsize, max_ecc_bytes; int nsectors = conf->page_size / conf->ecc_size; int i; /* * ECC strength is limited by the size of the OOB area which is * correlated with the page size. */ switch (conf->page_size) { case 2048: max_oobsize = 64; break; case 4096: max_oobsize = 256; break; case 8192: max_oobsize = 640; break; case 16384: max_oobsize = 1664; break; default: return -EINVAL; } max_ecc_bytes = max_oobsize / nsectors; for (i = 0; i < ARRAY_SIZE(ecc_bytes); i++) { if (ecc_bytes[i] > max_ecc_bytes) break; } if (!i) return -EINVAL; return i - 1; } static int nand_detect_ecc_config(struct nfc_config *conf, u32 offs, void *dest) { /* NAND with pages > 4k will likely require 1k sector size. */ int min_ecc_size = conf->page_size > 4096 ? 1024 : 512; int page = offs / conf->page_size; int ret; /* * In most cases, 1k sectors are preferred over 512b ones, start * testing this config first. */ for (conf->ecc_size = 1024; conf->ecc_size >= min_ecc_size; conf->ecc_size >>= 1) { int max_ecc_strength = nand_max_ecc_strength(conf); nand_apply_config(conf); /* * We are starting from the maximum ECC strength because * most of the time NAND vendors provide an OOB area that * barely meets the ECC requirements. */ for (conf->ecc_strength = max_ecc_strength; conf->ecc_strength >= 0; conf->ecc_strength--) { conf->randomize = false; if (nand_change_column(0)) return -EIO; /* * Only read the first sector to speedup detection. */ ret = nand_read_page(conf, offs, dest, conf->ecc_size); if (!ret) { return 0; } else if (ret > 0) { /* * If page is empty we can't deduce anything * about the ECC config => stop the detection. */ return -EINVAL; } conf->randomize = true; conf->nseeds = ARRAY_SIZE(random_seed); do { if (nand_change_column(0)) return -EIO; if (!nand_read_page(conf, offs, dest, conf->ecc_size)) return 0; /* * Find the next ->nseeds value that would * change the randomizer seed for the page * we're trying to read. */ while (conf->nseeds >= 16) { int seed = page % conf->nseeds; conf->nseeds >>= 1; if (seed != page % conf->nseeds) break; } } while (conf->nseeds >= 16); } } return -EINVAL; } static int nand_detect_config(struct nfc_config *conf, u32 offs, void *dest) { if (conf->valid) return 0; /* * Modern NANDs are more likely than legacy ones, so we start testing * with 5 address cycles. */ for (conf->addr_cycles = 5; conf->addr_cycles >= 4; conf->addr_cycles--) { int max_page_size = conf->addr_cycles == 4 ? 2048 : 16384; /* * Ignoring 1k pages cause I'm not even sure this case exist * in the real world. */ for (conf->page_size = 2048; conf->page_size <= max_page_size; conf->page_size <<= 1) { if (nand_load_page(conf, offs)) return -1; if (!nand_detect_ecc_config(conf, offs, dest)) { conf->valid = true; return 0; } } } return -EINVAL; } static int nand_read_buffer(struct nfc_config *conf, uint32_t offs, unsigned int size, void *dest) { int first_seed = 0, page, ret; size = ALIGN(size, conf->page_size); page = offs / conf->page_size; if (conf->randomize) first_seed = page % conf->nseeds; for (; size; size -= conf->page_size) { if (nand_load_page(conf, offs)) return -1; ret = nand_read_page(conf, offs, dest, conf->page_size); /* * The ->nseeds value should be equal to the number of pages * in an eraseblock. Since we don't know this information in * advance we might have picked a wrong value. */ if (ret < 0 && conf->randomize) { int cur_seed = page % conf->nseeds; /* * We already tried all the seed values => we are * facing a real corruption. */ if (cur_seed < first_seed) return -EIO; /* Try to adjust ->nseeds and read the page again... */ conf->nseeds = cur_seed; if (nand_change_column(0)) return -EIO; /* ... it still fails => it's a real corruption. */ if (nand_read_page(conf, offs, dest, conf->page_size)) return -EIO; } else if (ret && conf->randomize) { memset(dest, 0xff, conf->page_size); } page++; offs += conf->page_size; dest += conf->page_size; } return 0; } int nand_spl_load_image(uint32_t offs, unsigned int size, void *dest) { static struct nfc_config conf = { }; int ret; ret = nand_detect_config(&conf, offs, dest); if (ret) return ret; return nand_read_buffer(&conf, offs, size, dest); } void nand_deselect(void) { struct sunxi_ccm_reg *const ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; clrbits_le32(&ccm->ahb_gate0, (CLK_GATE_OPEN << AHB_GATE_OFFSET_NAND0)); #ifdef CONFIG_MACH_SUN9I clrbits_le32(&ccm->ahb_gate1, (1 << AHB_GATE_OFFSET_DMA)); #else clrbits_le32(&ccm->ahb_gate0, (1 << AHB_GATE_OFFSET_DMA)); #endif clrbits_le32(&ccm->nand0_clk_cfg, CCM_NAND_CTRL_ENABLE | AHB_DIV_1); }