/* * linux/drivers/mtd/onenand/onenand_base.c * * Copyright (C) 2005-2007 Samsung Electronics * Kyungmin Park <kyungmin.park@samsung.com> * * Credits: * Adrian Hunter <ext-adrian.hunter@nokia.com>: * auto-placement support, read-while load support, various fixes * Copyright (C) Nokia Corporation, 2007 * * Rohit Hagargundgi <h.rohit at samsung.com>, * Amul Kumar Saha <amul.saha@samsung.com>: * Flex-OneNAND support * Copyright (C) Samsung Electronics, 2009 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <common.h> #include <watchdog.h> #include <linux/compat.h> #include <linux/mtd/mtd.h> #include "linux/mtd/flashchip.h" #include <linux/mtd/onenand.h> #include <asm/io.h> #include <linux/errno.h> #include <malloc.h> /* It should access 16-bit instead of 8-bit */ static void *memcpy_16(void *dst, const void *src, unsigned int len) { void *ret = dst; short *d = dst; const short *s = src; len >>= 1; while (len-- > 0) *d++ = *s++; return ret; } /** * onenand_oob_128 - oob info for Flex-Onenand with 4KB page * For now, we expose only 64 out of 80 ecc bytes */ static struct nand_ecclayout onenand_oob_128 = { .eccbytes = 64, .eccpos = { 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 104, 105 }, .oobfree = { {2, 4}, {18, 4}, {34, 4}, {50, 4}, {66, 4}, {82, 4}, {98, 4}, {114, 4} } }; /** * onenand_oob_64 - oob info for large (2KB) page */ static struct nand_ecclayout onenand_oob_64 = { .eccbytes = 20, .eccpos = { 8, 9, 10, 11, 12, 24, 25, 26, 27, 28, 40, 41, 42, 43, 44, 56, 57, 58, 59, 60, }, .oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2}, {34, 3}, {46, 2}, {50, 3}, {62, 2} } }; /** * onenand_oob_32 - oob info for middle (1KB) page */ static struct nand_ecclayout onenand_oob_32 = { .eccbytes = 10, .eccpos = { 8, 9, 10, 11, 12, 24, 25, 26, 27, 28, }, .oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2} } }; /* * Warning! This array is used with the memcpy_16() function, thus * it must be aligned to 2 bytes. GCC can make this array unaligned * as the array is made of unsigned char, which memcpy16() doesn't * like and will cause unaligned access. */ static const unsigned char __aligned(2) ffchars[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */ }; /** * onenand_readw - [OneNAND Interface] Read OneNAND register * @param addr address to read * * Read OneNAND register */ static unsigned short onenand_readw(void __iomem * addr) { return readw(addr); } /** * onenand_writew - [OneNAND Interface] Write OneNAND register with value * @param value value to write * @param addr address to write * * Write OneNAND register with value */ static void onenand_writew(unsigned short value, void __iomem * addr) { writew(value, addr); } /** * onenand_block_address - [DEFAULT] Get block address * @param device the device id * @param block the block * @return translated block address if DDP, otherwise same * * Setup Start Address 1 Register (F100h) */ static int onenand_block_address(struct onenand_chip *this, int block) { /* Device Flash Core select, NAND Flash Block Address */ if (block & this->density_mask) return ONENAND_DDP_CHIP1 | (block ^ this->density_mask); return block; } /** * onenand_bufferram_address - [DEFAULT] Get bufferram address * @param device the device id * @param block the block * @return set DBS value if DDP, otherwise 0 * * Setup Start Address 2 Register (F101h) for DDP */ static int onenand_bufferram_address(struct onenand_chip *this, int block) { /* Device BufferRAM Select */ if (block & this->density_mask) return ONENAND_DDP_CHIP1; return ONENAND_DDP_CHIP0; } /** * onenand_page_address - [DEFAULT] Get page address * @param page the page address * @param sector the sector address * @return combined page and sector address * * Setup Start Address 8 Register (F107h) */ static int onenand_page_address(int page, int sector) { /* Flash Page Address, Flash Sector Address */ int fpa, fsa; fpa = page & ONENAND_FPA_MASK; fsa = sector & ONENAND_FSA_MASK; return ((fpa << ONENAND_FPA_SHIFT) | fsa); } /** * onenand_buffer_address - [DEFAULT] Get buffer address * @param dataram1 DataRAM index * @param sectors the sector address * @param count the number of sectors * @return the start buffer value * * Setup Start Buffer Register (F200h) */ static int onenand_buffer_address(int dataram1, int sectors, int count) { int bsa, bsc; /* BufferRAM Sector Address */ bsa = sectors & ONENAND_BSA_MASK; if (dataram1) bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */ else bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */ /* BufferRAM Sector Count */ bsc = count & ONENAND_BSC_MASK; return ((bsa << ONENAND_BSA_SHIFT) | bsc); } /** * flexonenand_block - Return block number for flash address * @param this - OneNAND device structure * @param addr - Address for which block number is needed */ static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr) { unsigned int boundary, blk, die = 0; if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) { die = 1; addr -= this->diesize[0]; } boundary = this->boundary[die]; blk = addr >> (this->erase_shift - 1); if (blk > boundary) blk = (blk + boundary + 1) >> 1; blk += die ? this->density_mask : 0; return blk; } unsigned int onenand_block(struct onenand_chip *this, loff_t addr) { if (!FLEXONENAND(this)) return addr >> this->erase_shift; return flexonenand_block(this, addr); } /** * flexonenand_addr - Return address of the block * @this: OneNAND device structure * @block: Block number on Flex-OneNAND * * Return address of the block */ static loff_t flexonenand_addr(struct onenand_chip *this, int block) { loff_t ofs = 0; int die = 0, boundary; if (ONENAND_IS_DDP(this) && block >= this->density_mask) { block -= this->density_mask; die = 1; ofs = this->diesize[0]; } boundary = this->boundary[die]; ofs += (loff_t) block << (this->erase_shift - 1); if (block > (boundary + 1)) ofs += (loff_t) (block - boundary - 1) << (this->erase_shift - 1); return ofs; } loff_t onenand_addr(struct onenand_chip *this, int block) { if (!FLEXONENAND(this)) return (loff_t) block << this->erase_shift; return flexonenand_addr(this, block); } /** * flexonenand_region - [Flex-OneNAND] Return erase region of addr * @param mtd MTD device structure * @param addr address whose erase region needs to be identified */ int flexonenand_region(struct mtd_info *mtd, loff_t addr) { int i; for (i = 0; i < mtd->numeraseregions; i++) if (addr < mtd->eraseregions[i].offset) break; return i - 1; } /** * onenand_get_density - [DEFAULT] Get OneNAND density * @param dev_id OneNAND device ID * * Get OneNAND density from device ID */ static inline int onenand_get_density(int dev_id) { int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT; return (density & ONENAND_DEVICE_DENSITY_MASK); } /** * onenand_command - [DEFAULT] Send command to OneNAND device * @param mtd MTD device structure * @param cmd the command to be sent * @param addr offset to read from or write to * @param len number of bytes to read or write * * Send command to OneNAND device. This function is used for middle/large page * devices (1KB/2KB Bytes per page) */ static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len) { struct onenand_chip *this = mtd->priv; int value; int block, page; /* Now we use page size operation */ int sectors = 0, count = 0; /* Address translation */ switch (cmd) { case ONENAND_CMD_UNLOCK: case ONENAND_CMD_LOCK: case ONENAND_CMD_LOCK_TIGHT: case ONENAND_CMD_UNLOCK_ALL: block = -1; page = -1; break; case FLEXONENAND_CMD_PI_ACCESS: /* addr contains die index */ block = addr * this->density_mask; page = -1; break; case ONENAND_CMD_ERASE: case ONENAND_CMD_BUFFERRAM: block = onenand_block(this, addr); page = -1; break; case FLEXONENAND_CMD_READ_PI: cmd = ONENAND_CMD_READ; block = addr * this->density_mask; page = 0; break; default: block = onenand_block(this, addr); page = (int) (addr - onenand_addr(this, block)) >> this->page_shift; page &= this->page_mask; break; } /* NOTE: The setting order of the registers is very important! */ if (cmd == ONENAND_CMD_BUFFERRAM) { /* Select DataRAM for DDP */ value = onenand_bufferram_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); if (ONENAND_IS_4KB_PAGE(this)) ONENAND_SET_BUFFERRAM0(this); else /* Switch to the next data buffer */ ONENAND_SET_NEXT_BUFFERRAM(this); return 0; } if (block != -1) { /* Write 'DFS, FBA' of Flash */ value = onenand_block_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); /* Select DataRAM for DDP */ value = onenand_bufferram_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); } if (page != -1) { int dataram; switch (cmd) { case FLEXONENAND_CMD_RECOVER_LSB: case ONENAND_CMD_READ: case ONENAND_CMD_READOOB: if (ONENAND_IS_4KB_PAGE(this)) dataram = ONENAND_SET_BUFFERRAM0(this); else dataram = ONENAND_SET_NEXT_BUFFERRAM(this); break; default: dataram = ONENAND_CURRENT_BUFFERRAM(this); break; } /* Write 'FPA, FSA' of Flash */ value = onenand_page_address(page, sectors); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8); /* Write 'BSA, BSC' of DataRAM */ value = onenand_buffer_address(dataram, sectors, count); this->write_word(value, this->base + ONENAND_REG_START_BUFFER); } /* Interrupt clear */ this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT); /* Write command */ this->write_word(cmd, this->base + ONENAND_REG_COMMAND); return 0; } /** * onenand_read_ecc - return ecc status * @param this onenand chip structure */ static int onenand_read_ecc(struct onenand_chip *this) { int ecc, i; if (!FLEXONENAND(this)) return this->read_word(this->base + ONENAND_REG_ECC_STATUS); for (i = 0; i < 4; i++) { ecc = this->read_word(this->base + ((ONENAND_REG_ECC_STATUS + i) << 1)); if (likely(!ecc)) continue; if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR) return ONENAND_ECC_2BIT_ALL; } return 0; } /** * onenand_wait - [DEFAULT] wait until the command is done * @param mtd MTD device structure * @param state state to select the max. timeout value * * Wait for command done. This applies to all OneNAND command * Read can take up to 30us, erase up to 2ms and program up to 350us * according to general OneNAND specs */ static int onenand_wait(struct mtd_info *mtd, int state) { struct onenand_chip *this = mtd->priv; unsigned int interrupt = 0; unsigned int ctrl; /* Wait at most 20ms ... */ u32 timeo = (CONFIG_SYS_HZ * 20) / 1000; u32 time_start = get_timer(0); do { WATCHDOG_RESET(); if (get_timer(time_start) > timeo) return -EIO; interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); } while ((interrupt & ONENAND_INT_MASTER) == 0); ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); if (interrupt & ONENAND_INT_READ) { int ecc = onenand_read_ecc(this); if (ecc & ONENAND_ECC_2BIT_ALL) { printk("onenand_wait: ECC error = 0x%04x\n", ecc); return -EBADMSG; } } if (ctrl & ONENAND_CTRL_ERROR) { printk("onenand_wait: controller error = 0x%04x\n", ctrl); if (ctrl & ONENAND_CTRL_LOCK) printk("onenand_wait: it's locked error = 0x%04x\n", ctrl); return -EIO; } return 0; } /** * onenand_bufferram_offset - [DEFAULT] BufferRAM offset * @param mtd MTD data structure * @param area BufferRAM area * @return offset given area * * Return BufferRAM offset given area */ static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area) { struct onenand_chip *this = mtd->priv; if (ONENAND_CURRENT_BUFFERRAM(this)) { if (area == ONENAND_DATARAM) return mtd->writesize; if (area == ONENAND_SPARERAM) return mtd->oobsize; } return 0; } /** * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area * @param mtd MTD data structure * @param area BufferRAM area * @param buffer the databuffer to put/get data * @param offset offset to read from or write to * @param count number of bytes to read/write * * Read the BufferRAM area */ static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area, unsigned char *buffer, int offset, size_t count) { struct onenand_chip *this = mtd->priv; void __iomem *bufferram; bufferram = this->base + area; bufferram += onenand_bufferram_offset(mtd, area); memcpy_16(buffer, bufferram + offset, count); return 0; } /** * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode * @param mtd MTD data structure * @param area BufferRAM area * @param buffer the databuffer to put/get data * @param offset offset to read from or write to * @param count number of bytes to read/write * * Read the BufferRAM area with Sync. Burst Mode */ static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area, unsigned char *buffer, int offset, size_t count) { struct onenand_chip *this = mtd->priv; void __iomem *bufferram; bufferram = this->base + area; bufferram += onenand_bufferram_offset(mtd, area); this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ); memcpy_16(buffer, bufferram + offset, count); this->mmcontrol(mtd, 0); return 0; } /** * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area * @param mtd MTD data structure * @param area BufferRAM area * @param buffer the databuffer to put/get data * @param offset offset to read from or write to * @param count number of bytes to read/write * * Write the BufferRAM area */ static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area, const unsigned char *buffer, int offset, size_t count) { struct onenand_chip *this = mtd->priv; void __iomem *bufferram; bufferram = this->base + area; bufferram += onenand_bufferram_offset(mtd, area); memcpy_16(bufferram + offset, buffer, count); return 0; } /** * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode * @param mtd MTD data structure * @param addr address to check * @return blockpage address * * Get blockpage address at 2x program mode */ static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr) { struct onenand_chip *this = mtd->priv; int blockpage, block, page; /* Calculate the even block number */ block = (int) (addr >> this->erase_shift) & ~1; /* Is it the odd plane? */ if (addr & this->writesize) block++; page = (int) (addr >> (this->page_shift + 1)) & this->page_mask; blockpage = (block << 7) | page; return blockpage; } /** * onenand_check_bufferram - [GENERIC] Check BufferRAM information * @param mtd MTD data structure * @param addr address to check * @return 1 if there are valid data, otherwise 0 * * Check bufferram if there is data we required */ static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr) { struct onenand_chip *this = mtd->priv; int blockpage, found = 0; unsigned int i; if (ONENAND_IS_2PLANE(this)) blockpage = onenand_get_2x_blockpage(mtd, addr); else blockpage = (int) (addr >> this->page_shift); /* Is there valid data? */ i = ONENAND_CURRENT_BUFFERRAM(this); if (this->bufferram[i].blockpage == blockpage) found = 1; else { /* Check another BufferRAM */ i = ONENAND_NEXT_BUFFERRAM(this); if (this->bufferram[i].blockpage == blockpage) { ONENAND_SET_NEXT_BUFFERRAM(this); found = 1; } } if (found && ONENAND_IS_DDP(this)) { /* Select DataRAM for DDP */ int block = onenand_block(this, addr); int value = onenand_bufferram_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); } return found; } /** * onenand_update_bufferram - [GENERIC] Update BufferRAM information * @param mtd MTD data structure * @param addr address to update * @param valid valid flag * * Update BufferRAM information */ static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr, int valid) { struct onenand_chip *this = mtd->priv; int blockpage; unsigned int i; if (ONENAND_IS_2PLANE(this)) blockpage = onenand_get_2x_blockpage(mtd, addr); else blockpage = (int)(addr >> this->page_shift); /* Invalidate another BufferRAM */ i = ONENAND_NEXT_BUFFERRAM(this); if (this->bufferram[i].blockpage == blockpage) this->bufferram[i].blockpage = -1; /* Update BufferRAM */ i = ONENAND_CURRENT_BUFFERRAM(this); if (valid) this->bufferram[i].blockpage = blockpage; else this->bufferram[i].blockpage = -1; return 0; } /** * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information * @param mtd MTD data structure * @param addr start address to invalidate * @param len length to invalidate * * Invalidate BufferRAM information */ static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr, unsigned int len) { struct onenand_chip *this = mtd->priv; int i; loff_t end_addr = addr + len; /* Invalidate BufferRAM */ for (i = 0; i < MAX_BUFFERRAM; i++) { loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift; if (buf_addr >= addr && buf_addr < end_addr) this->bufferram[i].blockpage = -1; } } /** * onenand_get_device - [GENERIC] Get chip for selected access * @param mtd MTD device structure * @param new_state the state which is requested * * Get the device and lock it for exclusive access */ static void onenand_get_device(struct mtd_info *mtd, int new_state) { /* Do nothing */ } /** * onenand_release_device - [GENERIC] release chip * @param mtd MTD device structure * * Deselect, release chip lock and wake up anyone waiting on the device */ static void onenand_release_device(struct mtd_info *mtd) { /* Do nothing */ } /** * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer * @param mtd MTD device structure * @param buf destination address * @param column oob offset to read from * @param thislen oob length to read */ static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column, int thislen) { struct onenand_chip *this = mtd->priv; struct nand_oobfree *free; int readcol = column; int readend = column + thislen; int lastgap = 0; unsigned int i; uint8_t *oob_buf = this->oob_buf; free = this->ecclayout->oobfree; for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length; i++, free++) { if (readcol >= lastgap) readcol += free->offset - lastgap; if (readend >= lastgap) readend += free->offset - lastgap; lastgap = free->offset + free->length; } this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize); free = this->ecclayout->oobfree; for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length; i++, free++) { int free_end = free->offset + free->length; if (free->offset < readend && free_end > readcol) { int st = max_t(int,free->offset,readcol); int ed = min_t(int,free_end,readend); int n = ed - st; memcpy(buf, oob_buf + st, n); buf += n; } else if (column == 0) break; } return 0; } /** * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data * @param mtd MTD device structure * @param addr address to recover * @param status return value from onenand_wait * * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has * lower page address and MSB page has higher page address in paired pages. * If power off occurs during MSB page program, the paired LSB page data can * become corrupt. LSB page recovery read is a way to read LSB page though page * data are corrupted. When uncorrectable error occurs as a result of LSB page * read after power up, issue LSB page recovery read. */ static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status) { struct onenand_chip *this = mtd->priv; int i; /* Recovery is only for Flex-OneNAND */ if (!FLEXONENAND(this)) return status; /* check if we failed due to uncorrectable error */ if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR) return status; /* check if address lies in MLC region */ i = flexonenand_region(mtd, addr); if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift)) return status; printk("onenand_recover_lsb:" "Attempting to recover from uncorrectable read\n"); /* Issue the LSB page recovery command */ this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize); return this->wait(mtd, FL_READING); } /** * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band * @param mtd MTD device structure * @param from offset to read from * @param ops oob operation description structure * * OneNAND read main and/or out-of-band data */ static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { struct onenand_chip *this = mtd->priv; struct mtd_ecc_stats stats; size_t len = ops->len; size_t ooblen = ops->ooblen; u_char *buf = ops->datbuf; u_char *oobbuf = ops->oobbuf; int read = 0, column, thislen; int oobread = 0, oobcolumn, thisooblen, oobsize; int ret = 0, boundary = 0; int writesize = this->writesize; pr_debug("onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len); if (ops->mode == MTD_OPS_AUTO_OOB) oobsize = this->ecclayout->oobavail; else oobsize = mtd->oobsize; oobcolumn = from & (mtd->oobsize - 1); /* Do not allow reads past end of device */ if ((from + len) > mtd->size) { printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n"); ops->retlen = 0; ops->oobretlen = 0; return -EINVAL; } stats = mtd->ecc_stats; /* Read-while-load method */ /* Note: We can't use this feature in MLC */ /* Do first load to bufferRAM */ if (read < len) { if (!onenand_check_bufferram(mtd, from)) { this->main_buf = buf; this->command(mtd, ONENAND_CMD_READ, from, writesize); ret = this->wait(mtd, FL_READING); if (unlikely(ret)) ret = onenand_recover_lsb(mtd, from, ret); onenand_update_bufferram(mtd, from, !ret); if (ret == -EBADMSG) ret = 0; } } thislen = min_t(int, writesize, len - read); column = from & (writesize - 1); if (column + thislen > writesize) thislen = writesize - column; while (!ret) { /* If there is more to load then start next load */ from += thislen; if (!ONENAND_IS_4KB_PAGE(this) && read + thislen < len) { this->main_buf = buf + thislen; this->command(mtd, ONENAND_CMD_READ, from, writesize); /* * Chip boundary handling in DDP * Now we issued chip 1 read and pointed chip 1 * bufferam so we have to point chip 0 bufferam. */ if (ONENAND_IS_DDP(this) && unlikely(from == (this->chipsize >> 1))) { this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2); boundary = 1; } else boundary = 0; ONENAND_SET_PREV_BUFFERRAM(this); } /* While load is going, read from last bufferRAM */ this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen); /* Read oob area if needed */ if (oobbuf) { thisooblen = oobsize - oobcolumn; thisooblen = min_t(int, thisooblen, ooblen - oobread); if (ops->mode == MTD_OPS_AUTO_OOB) onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen); else this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen); oobread += thisooblen; oobbuf += thisooblen; oobcolumn = 0; } if (ONENAND_IS_4KB_PAGE(this) && (read + thislen < len)) { this->command(mtd, ONENAND_CMD_READ, from, writesize); ret = this->wait(mtd, FL_READING); if (unlikely(ret)) ret = onenand_recover_lsb(mtd, from, ret); onenand_update_bufferram(mtd, from, !ret); if (mtd_is_eccerr(ret)) ret = 0; } /* See if we are done */ read += thislen; if (read == len) break; /* Set up for next read from bufferRAM */ if (unlikely(boundary)) this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2); if (!ONENAND_IS_4KB_PAGE(this)) ONENAND_SET_NEXT_BUFFERRAM(this); buf += thislen; thislen = min_t(int, writesize, len - read); column = 0; if (!ONENAND_IS_4KB_PAGE(this)) { /* Now wait for load */ ret = this->wait(mtd, FL_READING); onenand_update_bufferram(mtd, from, !ret); if (mtd_is_eccerr(ret)) ret = 0; } } /* * Return success, if no ECC failures, else -EBADMSG * fs driver will take care of that, because * retlen == desired len and result == -EBADMSG */ ops->retlen = read; ops->oobretlen = oobread; if (ret) return ret; if (mtd->ecc_stats.failed - stats.failed) return -EBADMSG; /* return max bitflips per ecc step; ONENANDs correct 1 bit only */ return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0; } /** * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band * @param mtd MTD device structure * @param from offset to read from * @param ops oob operation description structure * * OneNAND read out-of-band data from the spare area */ static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { struct onenand_chip *this = mtd->priv; struct mtd_ecc_stats stats; int read = 0, thislen, column, oobsize; size_t len = ops->ooblen; unsigned int mode = ops->mode; u_char *buf = ops->oobbuf; int ret = 0, readcmd; from += ops->ooboffs; pr_debug("onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len); /* Initialize return length value */ ops->oobretlen = 0; if (mode == MTD_OPS_AUTO_OOB) oobsize = this->ecclayout->oobavail; else oobsize = mtd->oobsize; column = from & (mtd->oobsize - 1); if (unlikely(column >= oobsize)) { printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n"); return -EINVAL; } /* Do not allow reads past end of device */ if (unlikely(from >= mtd->size || column + len > ((mtd->size >> this->page_shift) - (from >> this->page_shift)) * oobsize)) { printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n"); return -EINVAL; } stats = mtd->ecc_stats; readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; while (read < len) { thislen = oobsize - column; thislen = min_t(int, thislen, len); this->spare_buf = buf; this->command(mtd, readcmd, from, mtd->oobsize); onenand_update_bufferram(mtd, from, 0); ret = this->wait(mtd, FL_READING); if (unlikely(ret)) ret = onenand_recover_lsb(mtd, from, ret); if (ret && ret != -EBADMSG) { printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret); break; } if (mode == MTD_OPS_AUTO_OOB) onenand_transfer_auto_oob(mtd, buf, column, thislen); else this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen); read += thislen; if (read == len) break; buf += thislen; /* Read more? */ if (read < len) { /* Page size */ from += mtd->writesize; column = 0; } } ops->oobretlen = read; if (ret) return ret; if (mtd->ecc_stats.failed - stats.failed) return -EBADMSG; return 0; } /** * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc * @param mtd MTD device structure * @param from offset to read from * @param len number of bytes to read * @param retlen pointer to variable to store the number of read bytes * @param buf the databuffer to put data * * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL */ int onenand_read(struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf) { struct mtd_oob_ops ops = { .len = len, .ooblen = 0, .datbuf = buf, .oobbuf = NULL, }; int ret; onenand_get_device(mtd, FL_READING); ret = onenand_read_ops_nolock(mtd, from, &ops); onenand_release_device(mtd); *retlen = ops.retlen; return ret; } /** * onenand_read_oob - [MTD Interface] OneNAND read out-of-band * @param mtd MTD device structure * @param from offset to read from * @param ops oob operations description structure * * OneNAND main and/or out-of-band */ int onenand_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { int ret; switch (ops->mode) { case MTD_OPS_PLACE_OOB: case MTD_OPS_AUTO_OOB: break; case MTD_OPS_RAW: /* Not implemented yet */ default: return -EINVAL; } onenand_get_device(mtd, FL_READING); if (ops->datbuf) ret = onenand_read_ops_nolock(mtd, from, ops); else ret = onenand_read_oob_nolock(mtd, from, ops); onenand_release_device(mtd); return ret; } /** * onenand_bbt_wait - [DEFAULT] wait until the command is done * @param mtd MTD device structure * @param state state to select the max. timeout value * * Wait for command done. */ static int onenand_bbt_wait(struct mtd_info *mtd, int state) { struct onenand_chip *this = mtd->priv; unsigned int interrupt; unsigned int ctrl; /* Wait at most 20ms ... */ u32 timeo = (CONFIG_SYS_HZ * 20) / 1000; u32 time_start = get_timer(0); do { WATCHDOG_RESET(); if (get_timer(time_start) > timeo) return ONENAND_BBT_READ_FATAL_ERROR; interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); } while ((interrupt & ONENAND_INT_MASTER) == 0); /* To get correct interrupt status in timeout case */ interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); if (interrupt & ONENAND_INT_READ) { int ecc = onenand_read_ecc(this); if (ecc & ONENAND_ECC_2BIT_ALL) { printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x" ", controller = 0x%04x\n", ecc, ctrl); return ONENAND_BBT_READ_ERROR; } } else { printk(KERN_ERR "onenand_bbt_wait: read timeout!" "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt); return ONENAND_BBT_READ_FATAL_ERROR; } /* Initial bad block case: 0x2400 or 0x0400 */ if (ctrl & ONENAND_CTRL_ERROR) { printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl); return ONENAND_BBT_READ_ERROR; } return 0; } /** * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan * @param mtd MTD device structure * @param from offset to read from * @param ops oob operation description structure * * OneNAND read out-of-band data from the spare area for bbt scan */ int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { struct onenand_chip *this = mtd->priv; int read = 0, thislen, column; int ret = 0, readcmd; size_t len = ops->ooblen; u_char *buf = ops->oobbuf; pr_debug("onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len); readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; /* Initialize return value */ ops->oobretlen = 0; /* Do not allow reads past end of device */ if (unlikely((from + len) > mtd->size)) { printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n"); return ONENAND_BBT_READ_FATAL_ERROR; } /* Grab the lock and see if the device is available */ onenand_get_device(mtd, FL_READING); column = from & (mtd->oobsize - 1); while (read < len) { thislen = mtd->oobsize - column; thislen = min_t(int, thislen, len); this->spare_buf = buf; this->command(mtd, readcmd, from, mtd->oobsize); onenand_update_bufferram(mtd, from, 0); ret = this->bbt_wait(mtd, FL_READING); if (unlikely(ret)) ret = onenand_recover_lsb(mtd, from, ret); if (ret) break; this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen); read += thislen; if (read == len) break; buf += thislen; /* Read more? */ if (read < len) { /* Update Page size */ from += this->writesize; column = 0; } } /* Deselect and wake up anyone waiting on the device */ onenand_release_device(mtd); ops->oobretlen = read; return ret; } #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE /** * onenand_verify_oob - [GENERIC] verify the oob contents after a write * @param mtd MTD device structure * @param buf the databuffer to verify * @param to offset to read from */ static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to) { struct onenand_chip *this = mtd->priv; u_char *oob_buf = this->oob_buf; int status, i, readcmd; readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; this->command(mtd, readcmd, to, mtd->oobsize); onenand_update_bufferram(mtd, to, 0); status = this->wait(mtd, FL_READING); if (status) return status; this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize); for (i = 0; i < mtd->oobsize; i++) if (buf[i] != 0xFF && buf[i] != oob_buf[i]) return -EBADMSG; return 0; } /** * onenand_verify - [GENERIC] verify the chip contents after a write * @param mtd MTD device structure * @param buf the databuffer to verify * @param addr offset to read from * @param len number of bytes to read and compare */ static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len) { struct onenand_chip *this = mtd->priv; void __iomem *dataram; int ret = 0; int thislen, column; while (len != 0) { thislen = min_t(int, this->writesize, len); column = addr & (this->writesize - 1); if (column + thislen > this->writesize) thislen = this->writesize - column; this->command(mtd, ONENAND_CMD_READ, addr, this->writesize); onenand_update_bufferram(mtd, addr, 0); ret = this->wait(mtd, FL_READING); if (ret) return ret; onenand_update_bufferram(mtd, addr, 1); dataram = this->base + ONENAND_DATARAM; dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM); if (memcmp(buf, dataram + column, thislen)) return -EBADMSG; len -= thislen; buf += thislen; addr += thislen; } return 0; } #else #define onenand_verify(...) (0) #define onenand_verify_oob(...) (0) #endif #define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0) /** * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer * @param mtd MTD device structure * @param oob_buf oob buffer * @param buf source address * @param column oob offset to write to * @param thislen oob length to write */ static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf, const u_char *buf, int column, int thislen) { struct onenand_chip *this = mtd->priv; struct nand_oobfree *free; int writecol = column; int writeend = column + thislen; int lastgap = 0; unsigned int i; free = this->ecclayout->oobfree; for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length; i++, free++) { if (writecol >= lastgap) writecol += free->offset - lastgap; if (writeend >= lastgap) writeend += free->offset - lastgap; lastgap = free->offset + free->length; } free = this->ecclayout->oobfree; for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length; i++, free++) { int free_end = free->offset + free->length; if (free->offset < writeend && free_end > writecol) { int st = max_t(int,free->offset,writecol); int ed = min_t(int,free_end,writeend); int n = ed - st; memcpy(oob_buf + st, buf, n); buf += n; } else if (column == 0) break; } return 0; } /** * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band * @param mtd MTD device structure * @param to offset to write to * @param ops oob operation description structure * * Write main and/or oob with ECC */ static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { struct onenand_chip *this = mtd->priv; int written = 0, column, thislen, subpage; int oobwritten = 0, oobcolumn, thisooblen, oobsize; size_t len = ops->len; size_t ooblen = ops->ooblen; const u_char *buf = ops->datbuf; const u_char *oob = ops->oobbuf; u_char *oobbuf; int ret = 0; pr_debug("onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len); /* Initialize retlen, in case of early exit */ ops->retlen = 0; ops->oobretlen = 0; /* Reject writes, which are not page aligned */ if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) { printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n"); return -EINVAL; } if (ops->mode == MTD_OPS_AUTO_OOB) oobsize = this->ecclayout->oobavail; else oobsize = mtd->oobsize; oobcolumn = to & (mtd->oobsize - 1); column = to & (mtd->writesize - 1); /* Loop until all data write */ while (written < len) { u_char *wbuf = (u_char *) buf; thislen = min_t(int, mtd->writesize - column, len - written); thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten); this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen); /* Partial page write */ subpage = thislen < mtd->writesize; if (subpage) { memset(this->page_buf, 0xff, mtd->writesize); memcpy(this->page_buf + column, buf, thislen); wbuf = this->page_buf; } this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize); if (oob) { oobbuf = this->oob_buf; /* We send data to spare ram with oobsize * * to prevent byte access */ memset(oobbuf, 0xff, mtd->oobsize); if (ops->mode == MTD_OPS_AUTO_OOB) onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen); else memcpy(oobbuf + oobcolumn, oob, thisooblen); oobwritten += thisooblen; oob += thisooblen; oobcolumn = 0; } else oobbuf = (u_char *) ffchars; this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize); this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize); ret = this->wait(mtd, FL_WRITING); /* In partial page write we don't update bufferram */ onenand_update_bufferram(mtd, to, !ret && !subpage); if (ONENAND_IS_2PLANE(this)) { ONENAND_SET_BUFFERRAM1(this); onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage); } if (ret) { printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret); break; } /* Only check verify write turn on */ ret = onenand_verify(mtd, buf, to, thislen); if (ret) { printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret); break; } written += thislen; if (written == len) break; column = 0; to += thislen; buf += thislen; } ops->retlen = written; return ret; } /** * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band * @param mtd MTD device structure * @param to offset to write to * @param len number of bytes to write * @param retlen pointer to variable to store the number of written bytes * @param buf the data to write * @param mode operation mode * * OneNAND write out-of-band */ static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { struct onenand_chip *this = mtd->priv; int column, ret = 0, oobsize; int written = 0, oobcmd; u_char *oobbuf; size_t len = ops->ooblen; const u_char *buf = ops->oobbuf; unsigned int mode = ops->mode; to += ops->ooboffs; pr_debug("onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len); /* Initialize retlen, in case of early exit */ ops->oobretlen = 0; if (mode == MTD_OPS_AUTO_OOB) oobsize = this->ecclayout->oobavail; else oobsize = mtd->oobsize; column = to & (mtd->oobsize - 1); if (unlikely(column >= oobsize)) { printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n"); return -EINVAL; } /* For compatibility with NAND: Do not allow write past end of page */ if (unlikely(column + len > oobsize)) { printk(KERN_ERR "onenand_write_oob_nolock: " "Attempt to write past end of page\n"); return -EINVAL; } /* Do not allow reads past end of device */ if (unlikely(to >= mtd->size || column + len > ((mtd->size >> this->page_shift) - (to >> this->page_shift)) * oobsize)) { printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n"); return -EINVAL; } oobbuf = this->oob_buf; oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB; /* Loop until all data write */ while (written < len) { int thislen = min_t(int, oobsize, len - written); this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize); /* We send data to spare ram with oobsize * to prevent byte access */ memset(oobbuf, 0xff, mtd->oobsize); if (mode == MTD_OPS_AUTO_OOB) onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen); else memcpy(oobbuf + column, buf, thislen); this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize); if (ONENAND_IS_4KB_PAGE(this)) { /* Set main area of DataRAM to 0xff*/ memset(this->page_buf, 0xff, mtd->writesize); this->write_bufferram(mtd, 0, ONENAND_DATARAM, this->page_buf, 0, mtd->writesize); } this->command(mtd, oobcmd, to, mtd->oobsize); onenand_update_bufferram(mtd, to, 0); if (ONENAND_IS_2PLANE(this)) { ONENAND_SET_BUFFERRAM1(this); onenand_update_bufferram(mtd, to + this->writesize, 0); } ret = this->wait(mtd, FL_WRITING); if (ret) { printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret); break; } ret = onenand_verify_oob(mtd, oobbuf, to); if (ret) { printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret); break; } written += thislen; if (written == len) break; to += mtd->writesize; buf += thislen; column = 0; } ops->oobretlen = written; return ret; } /** * onenand_write - [MTD Interface] compability function for onenand_write_ecc * @param mtd MTD device structure * @param to offset to write to * @param len number of bytes to write * @param retlen pointer to variable to store the number of written bytes * @param buf the data to write * * Write with ECC */ int onenand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf) { struct mtd_oob_ops ops = { .len = len, .ooblen = 0, .datbuf = (u_char *) buf, .oobbuf = NULL, }; int ret; onenand_get_device(mtd, FL_WRITING); ret = onenand_write_ops_nolock(mtd, to, &ops); onenand_release_device(mtd); *retlen = ops.retlen; return ret; } /** * onenand_write_oob - [MTD Interface] OneNAND write out-of-band * @param mtd MTD device structure * @param to offset to write to * @param ops oob operation description structure * * OneNAND write main and/or out-of-band */ int onenand_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { int ret; switch (ops->mode) { case MTD_OPS_PLACE_OOB: case MTD_OPS_AUTO_OOB: break; case MTD_OPS_RAW: /* Not implemented yet */ default: return -EINVAL; } onenand_get_device(mtd, FL_WRITING); if (ops->datbuf) ret = onenand_write_ops_nolock(mtd, to, ops); else ret = onenand_write_oob_nolock(mtd, to, ops); onenand_release_device(mtd); return ret; } /** * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad * @param mtd MTD device structure * @param ofs offset from device start * @param allowbbt 1, if its allowed to access the bbt area * * Check, if the block is bad, Either by reading the bad block table or * calling of the scan function. */ static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt) { struct onenand_chip *this = mtd->priv; struct bbm_info *bbm = this->bbm; /* Return info from the table */ return bbm->isbad_bbt(mtd, ofs, allowbbt); } /** * onenand_erase - [MTD Interface] erase block(s) * @param mtd MTD device structure * @param instr erase instruction * * Erase one ore more blocks */ int onenand_erase(struct mtd_info *mtd, struct erase_info *instr) { struct onenand_chip *this = mtd->priv; unsigned int block_size; loff_t addr = instr->addr; unsigned int len = instr->len; int ret = 0, i; struct mtd_erase_region_info *region = NULL; unsigned int region_end = 0; pr_debug("onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) addr, len); if (FLEXONENAND(this)) { /* Find the eraseregion of this address */ i = flexonenand_region(mtd, addr); region = &mtd->eraseregions[i]; block_size = region->erasesize; region_end = region->offset + region->erasesize * region->numblocks; /* Start address within region must align on block boundary. * Erase region's start offset is always block start address. */ if (unlikely((addr - region->offset) & (block_size - 1))) { pr_debug("onenand_erase:" " Unaligned address\n"); return -EINVAL; } } else { block_size = 1 << this->erase_shift; /* Start address must align on block boundary */ if (unlikely(addr & (block_size - 1))) { pr_debug("onenand_erase:" "Unaligned address\n"); return -EINVAL; } } /* Length must align on block boundary */ if (unlikely(len & (block_size - 1))) { pr_debug("onenand_erase: Length not block aligned\n"); return -EINVAL; } /* Grab the lock and see if the device is available */ onenand_get_device(mtd, FL_ERASING); /* Loop throught the pages */ instr->state = MTD_ERASING; while (len) { /* Check if we have a bad block, we do not erase bad blocks */ if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) { printk(KERN_WARNING "onenand_erase: attempt to erase" " a bad block at addr 0x%08x\n", (unsigned int) addr); instr->state = MTD_ERASE_FAILED; goto erase_exit; } this->command(mtd, ONENAND_CMD_ERASE, addr, block_size); onenand_invalidate_bufferram(mtd, addr, block_size); ret = this->wait(mtd, FL_ERASING); /* Check, if it is write protected */ if (ret) { if (ret == -EPERM) pr_debug("onenand_erase: " "Device is write protected!!!\n"); else pr_debug("onenand_erase: " "Failed erase, block %d\n", onenand_block(this, addr)); instr->state = MTD_ERASE_FAILED; instr->fail_addr = addr; goto erase_exit; } len -= block_size; addr += block_size; if (addr == region_end) { if (!len) break; region++; block_size = region->erasesize; region_end = region->offset + region->erasesize * region->numblocks; if (len & (block_size - 1)) { /* This has been checked at MTD * partitioning level. */ printk("onenand_erase: Unaligned address\n"); goto erase_exit; } } } instr->state = MTD_ERASE_DONE; erase_exit: ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO; /* Do call back function */ if (!ret) mtd_erase_callback(instr); /* Deselect and wake up anyone waiting on the device */ onenand_release_device(mtd); return ret; } /** * onenand_sync - [MTD Interface] sync * @param mtd MTD device structure * * Sync is actually a wait for chip ready function */ void onenand_sync(struct mtd_info *mtd) { pr_debug("onenand_sync: called\n"); /* Grab the lock and see if the device is available */ onenand_get_device(mtd, FL_SYNCING); /* Release it and go back */ onenand_release_device(mtd); } /** * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad * @param mtd MTD device structure * @param ofs offset relative to mtd start * * Check whether the block is bad */ int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs) { int ret; /* Check for invalid offset */ if (ofs > mtd->size) return -EINVAL; onenand_get_device(mtd, FL_READING); ret = onenand_block_isbad_nolock(mtd,ofs, 0); onenand_release_device(mtd); return ret; } /** * onenand_default_block_markbad - [DEFAULT] mark a block bad * @param mtd MTD device structure * @param ofs offset from device start * * This is the default implementation, which can be overridden by * a hardware specific driver. */ static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) { struct onenand_chip *this = mtd->priv; struct bbm_info *bbm = this->bbm; u_char buf[2] = {0, 0}; struct mtd_oob_ops ops = { .mode = MTD_OPS_PLACE_OOB, .ooblen = 2, .oobbuf = buf, .ooboffs = 0, }; int block; /* Get block number */ block = onenand_block(this, ofs); if (bbm->bbt) bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); /* We write two bytes, so we dont have to mess with 16 bit access */ ofs += mtd->oobsize + (bbm->badblockpos & ~0x01); return onenand_write_oob_nolock(mtd, ofs, &ops); } /** * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad * @param mtd MTD device structure * @param ofs offset relative to mtd start * * Mark the block as bad */ int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs) { struct onenand_chip *this = mtd->priv; int ret; ret = onenand_block_isbad(mtd, ofs); if (ret) { /* If it was bad already, return success and do nothing */ if (ret > 0) return 0; return ret; } onenand_get_device(mtd, FL_WRITING); ret = this->block_markbad(mtd, ofs); onenand_release_device(mtd); return ret; } /** * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s) * @param mtd MTD device structure * @param ofs offset relative to mtd start * @param len number of bytes to lock or unlock * @param cmd lock or unlock command * * Lock or unlock one or more blocks */ static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd) { struct onenand_chip *this = mtd->priv; int start, end, block, value, status; start = onenand_block(this, ofs); end = onenand_block(this, ofs + len); /* Continuous lock scheme */ if (this->options & ONENAND_HAS_CONT_LOCK) { /* Set start block address */ this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS); /* Set end block address */ this->write_word(end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS); /* Write unlock command */ this->command(mtd, cmd, 0, 0); /* There's no return value */ this->wait(mtd, FL_UNLOCKING); /* Sanity check */ while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) & ONENAND_CTRL_ONGO) continue; /* Check lock status */ status = this->read_word(this->base + ONENAND_REG_WP_STATUS); if (!(status & ONENAND_WP_US)) printk(KERN_ERR "wp status = 0x%x\n", status); return 0; } /* Block lock scheme */ for (block = start; block < end; block++) { /* Set block address */ value = onenand_block_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); /* Select DataRAM for DDP */ value = onenand_bufferram_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); /* Set start block address */ this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS); /* Write unlock command */ this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0); /* There's no return value */ this->wait(mtd, FL_UNLOCKING); /* Sanity check */ while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) & ONENAND_CTRL_ONGO) continue; /* Check lock status */ status = this->read_word(this->base + ONENAND_REG_WP_STATUS); if (!(status & ONENAND_WP_US)) printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status); } return 0; } #ifdef ONENAND_LINUX /** * onenand_lock - [MTD Interface] Lock block(s) * @param mtd MTD device structure * @param ofs offset relative to mtd start * @param len number of bytes to unlock * * Lock one or more blocks */ static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len) { int ret; onenand_get_device(mtd, FL_LOCKING); ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK); onenand_release_device(mtd); return ret; } /** * onenand_unlock - [MTD Interface] Unlock block(s) * @param mtd MTD device structure * @param ofs offset relative to mtd start * @param len number of bytes to unlock * * Unlock one or more blocks */ static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len) { int ret; onenand_get_device(mtd, FL_LOCKING); ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); onenand_release_device(mtd); return ret; } #endif /** * onenand_check_lock_status - [OneNAND Interface] Check lock status * @param this onenand chip data structure * * Check lock status */ static int onenand_check_lock_status(struct onenand_chip *this) { unsigned int value, block, status; unsigned int end; end = this->chipsize >> this->erase_shift; for (block = 0; block < end; block++) { /* Set block address */ value = onenand_block_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); /* Select DataRAM for DDP */ value = onenand_bufferram_address(this, block); this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); /* Set start block address */ this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS); /* Check lock status */ status = this->read_word(this->base + ONENAND_REG_WP_STATUS); if (!(status & ONENAND_WP_US)) { printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status); return 0; } } return 1; } /** * onenand_unlock_all - [OneNAND Interface] unlock all blocks * @param mtd MTD device structure * * Unlock all blocks */ static void onenand_unlock_all(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; loff_t ofs = 0; size_t len = mtd->size; if (this->options & ONENAND_HAS_UNLOCK_ALL) { /* Set start block address */ this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS); /* Write unlock command */ this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0); /* There's no return value */ this->wait(mtd, FL_LOCKING); /* Sanity check */ while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) & ONENAND_CTRL_ONGO) continue; /* Check lock status */ if (onenand_check_lock_status(this)) return; /* Workaround for all block unlock in DDP */ if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) { /* All blocks on another chip */ ofs = this->chipsize >> 1; len = this->chipsize >> 1; } } onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); } /** * onenand_check_features - Check and set OneNAND features * @param mtd MTD data structure * * Check and set OneNAND features * - lock scheme * - two plane */ static void onenand_check_features(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; unsigned int density, process; /* Lock scheme depends on density and process */ density = onenand_get_density(this->device_id); process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT; /* Lock scheme */ switch (density) { case ONENAND_DEVICE_DENSITY_4Gb: if (ONENAND_IS_DDP(this)) this->options |= ONENAND_HAS_2PLANE; else this->options |= ONENAND_HAS_4KB_PAGE; case ONENAND_DEVICE_DENSITY_2Gb: /* 2Gb DDP don't have 2 plane */ if (!ONENAND_IS_DDP(this)) this->options |= ONENAND_HAS_2PLANE; this->options |= ONENAND_HAS_UNLOCK_ALL; case ONENAND_DEVICE_DENSITY_1Gb: /* A-Die has all block unlock */ if (process) this->options |= ONENAND_HAS_UNLOCK_ALL; break; default: /* Some OneNAND has continuous lock scheme */ if (!process) this->options |= ONENAND_HAS_CONT_LOCK; break; } if (ONENAND_IS_MLC(this)) this->options |= ONENAND_HAS_4KB_PAGE; if (ONENAND_IS_4KB_PAGE(this)) this->options &= ~ONENAND_HAS_2PLANE; if (FLEXONENAND(this)) { this->options &= ~ONENAND_HAS_CONT_LOCK; this->options |= ONENAND_HAS_UNLOCK_ALL; } if (this->options & ONENAND_HAS_CONT_LOCK) printk(KERN_DEBUG "Lock scheme is Continuous Lock\n"); if (this->options & ONENAND_HAS_UNLOCK_ALL) printk(KERN_DEBUG "Chip support all block unlock\n"); if (this->options & ONENAND_HAS_2PLANE) printk(KERN_DEBUG "Chip has 2 plane\n"); if (this->options & ONENAND_HAS_4KB_PAGE) printk(KERN_DEBUG "Chip has 4KiB pagesize\n"); } /** * onenand_print_device_info - Print device ID * @param device device ID * * Print device ID */ char *onenand_print_device_info(int device, int version) { int vcc, demuxed, ddp, density, flexonenand; char *dev_info = malloc(80); char *p = dev_info; vcc = device & ONENAND_DEVICE_VCC_MASK; demuxed = device & ONENAND_DEVICE_IS_DEMUX; ddp = device & ONENAND_DEVICE_IS_DDP; density = onenand_get_density(device); flexonenand = device & DEVICE_IS_FLEXONENAND; p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)", demuxed ? "" : "Muxed ", flexonenand ? "Flex-" : "", ddp ? "(DDP)" : "", (16 << density), vcc ? "2.65/3.3" : "1.8", device); sprintf(p, "\nOneNAND version = 0x%04x", version); printk("%s\n", dev_info); return dev_info; } static const struct onenand_manufacturers onenand_manuf_ids[] = { {ONENAND_MFR_NUMONYX, "Numonyx"}, {ONENAND_MFR_SAMSUNG, "Samsung"}, }; /** * onenand_check_maf - Check manufacturer ID * @param manuf manufacturer ID * * Check manufacturer ID */ static int onenand_check_maf(int manuf) { int size = ARRAY_SIZE(onenand_manuf_ids); int i; #ifdef ONENAND_DEBUG char *name; #endif for (i = 0; i < size; i++) if (manuf == onenand_manuf_ids[i].id) break; #ifdef ONENAND_DEBUG if (i < size) name = onenand_manuf_ids[i].name; else name = "Unknown"; printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf); #endif return i == size; } /** * flexonenand_get_boundary - Reads the SLC boundary * @param onenand_info - onenand info structure * * Fill up boundary[] field in onenand_chip **/ static int flexonenand_get_boundary(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; unsigned int die, bdry; int syscfg, locked; /* Disable ECC */ syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1); for (die = 0; die < this->dies; die++) { this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0); this->wait(mtd, FL_SYNCING); this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); this->wait(mtd, FL_READING); bdry = this->read_word(this->base + ONENAND_DATARAM); if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3) locked = 0; else locked = 1; this->boundary[die] = bdry & FLEXONENAND_PI_MASK; this->command(mtd, ONENAND_CMD_RESET, 0, 0); this->wait(mtd, FL_RESETING); printk(KERN_INFO "Die %d boundary: %d%s\n", die, this->boundary[die], locked ? "(Locked)" : "(Unlocked)"); } /* Enable ECC */ this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); return 0; } /** * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info * boundary[], diesize[], mtd->size, mtd->erasesize, * mtd->eraseregions * @param mtd - MTD device structure */ static void flexonenand_get_size(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; int die, i, eraseshift, density; int blksperdie, maxbdry; loff_t ofs; density = onenand_get_density(this->device_id); blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift); blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0; maxbdry = blksperdie - 1; eraseshift = this->erase_shift - 1; mtd->numeraseregions = this->dies << 1; /* This fills up the device boundary */ flexonenand_get_boundary(mtd); die = 0; ofs = 0; i = -1; for (; die < this->dies; die++) { if (!die || this->boundary[die-1] != maxbdry) { i++; mtd->eraseregions[i].offset = ofs; mtd->eraseregions[i].erasesize = 1 << eraseshift; mtd->eraseregions[i].numblocks = this->boundary[die] + 1; ofs += mtd->eraseregions[i].numblocks << eraseshift; eraseshift++; } else { mtd->numeraseregions -= 1; mtd->eraseregions[i].numblocks += this->boundary[die] + 1; ofs += (this->boundary[die] + 1) << (eraseshift - 1); } if (this->boundary[die] != maxbdry) { i++; mtd->eraseregions[i].offset = ofs; mtd->eraseregions[i].erasesize = 1 << eraseshift; mtd->eraseregions[i].numblocks = maxbdry ^ this->boundary[die]; ofs += mtd->eraseregions[i].numblocks << eraseshift; eraseshift--; } else mtd->numeraseregions -= 1; } /* Expose MLC erase size except when all blocks are SLC */ mtd->erasesize = 1 << this->erase_shift; if (mtd->numeraseregions == 1) mtd->erasesize >>= 1; printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions); for (i = 0; i < mtd->numeraseregions; i++) printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x," " numblocks: %04u]\n", mtd->eraseregions[i].offset, mtd->eraseregions[i].erasesize, mtd->eraseregions[i].numblocks); for (die = 0, mtd->size = 0; die < this->dies; die++) { this->diesize[die] = (loff_t) (blksperdie << this->erase_shift); this->diesize[die] -= (loff_t) (this->boundary[die] + 1) << (this->erase_shift - 1); mtd->size += this->diesize[die]; } } /** * flexonenand_check_blocks_erased - Check if blocks are erased * @param mtd_info - mtd info structure * @param start - first erase block to check * @param end - last erase block to check * * Converting an unerased block from MLC to SLC * causes byte values to change. Since both data and its ECC * have changed, reads on the block give uncorrectable error. * This might lead to the block being detected as bad. * * Avoid this by ensuring that the block to be converted is * erased. */ static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end) { struct onenand_chip *this = mtd->priv; int i, ret; int block; struct mtd_oob_ops ops = { .mode = MTD_OPS_PLACE_OOB, .ooboffs = 0, .ooblen = mtd->oobsize, .datbuf = NULL, .oobbuf = this->oob_buf, }; loff_t addr; printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end); for (block = start; block <= end; block++) { addr = flexonenand_addr(this, block); if (onenand_block_isbad_nolock(mtd, addr, 0)) continue; /* * Since main area write results in ECC write to spare, * it is sufficient to check only ECC bytes for change. */ ret = onenand_read_oob_nolock(mtd, addr, &ops); if (ret) return ret; for (i = 0; i < mtd->oobsize; i++) if (this->oob_buf[i] != 0xff) break; if (i != mtd->oobsize) { printk(KERN_WARNING "Block %d not erased.\n", block); return 1; } } return 0; } /** * flexonenand_set_boundary - Writes the SLC boundary * @param mtd - mtd info structure */ int flexonenand_set_boundary(struct mtd_info *mtd, int die, int boundary, int lock) { struct onenand_chip *this = mtd->priv; int ret, density, blksperdie, old, new, thisboundary; loff_t addr; if (die >= this->dies) return -EINVAL; if (boundary == this->boundary[die]) return 0; density = onenand_get_density(this->device_id); blksperdie = ((16 << density) << 20) >> this->erase_shift; blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0; if (boundary >= blksperdie) { printk("flexonenand_set_boundary:" "Invalid boundary value. " "Boundary not changed.\n"); return -EINVAL; } /* Check if converting blocks are erased */ old = this->boundary[die] + (die * this->density_mask); new = boundary + (die * this->density_mask); ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new)); if (ret) { printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n"); return ret; } this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0); this->wait(mtd, FL_SYNCING); /* Check is boundary is locked */ this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); ret = this->wait(mtd, FL_READING); thisboundary = this->read_word(this->base + ONENAND_DATARAM); if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) { printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n"); goto out; } printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n", die, boundary, lock ? "(Locked)" : "(Unlocked)"); boundary &= FLEXONENAND_PI_MASK; boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT); addr = die ? this->diesize[0] : 0; this->command(mtd, ONENAND_CMD_ERASE, addr, 0); ret = this->wait(mtd, FL_ERASING); if (ret) { printk("flexonenand_set_boundary:" "Failed PI erase for Die %d\n", die); goto out; } this->write_word(boundary, this->base + ONENAND_DATARAM); this->command(mtd, ONENAND_CMD_PROG, addr, 0); ret = this->wait(mtd, FL_WRITING); if (ret) { printk("flexonenand_set_boundary:" "Failed PI write for Die %d\n", die); goto out; } this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0); ret = this->wait(mtd, FL_WRITING); out: this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND); this->wait(mtd, FL_RESETING); if (!ret) /* Recalculate device size on boundary change*/ flexonenand_get_size(mtd); return ret; } /** * onenand_chip_probe - [OneNAND Interface] Probe the OneNAND chip * @param mtd MTD device structure * * OneNAND detection method: * Compare the the values from command with ones from register */ static int onenand_chip_probe(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; int bram_maf_id, bram_dev_id, maf_id, dev_id; int syscfg; /* Save system configuration 1 */ syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); /* Clear Sync. Burst Read mode to read BootRAM */ this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1); /* Send the command for reading device ID from BootRAM */ this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM); /* Read manufacturer and device IDs from BootRAM */ bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0); bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2); /* Reset OneNAND to read default register values */ this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM); /* Wait reset */ if (this->wait(mtd, FL_RESETING)) return -ENXIO; /* Restore system configuration 1 */ this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); /* Check manufacturer ID */ if (onenand_check_maf(bram_maf_id)) return -ENXIO; /* Read manufacturer and device IDs from Register */ maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID); dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); /* Check OneNAND device */ if (maf_id != bram_maf_id || dev_id != bram_dev_id) return -ENXIO; return 0; } /** * onenand_probe - [OneNAND Interface] Probe the OneNAND device * @param mtd MTD device structure * * OneNAND detection method: * Compare the the values from command with ones from register */ int onenand_probe(struct mtd_info *mtd) { struct onenand_chip *this = mtd->priv; int dev_id, ver_id; int density; int ret; ret = this->chip_probe(mtd); if (ret) return ret; /* Read device IDs from Register */ dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID); this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY); /* Flash device information */ mtd->name = onenand_print_device_info(dev_id, ver_id); this->device_id = dev_id; this->version_id = ver_id; /* Check OneNAND features */ onenand_check_features(mtd); density = onenand_get_density(dev_id); if (FLEXONENAND(this)) { this->dies = ONENAND_IS_DDP(this) ? 2 : 1; /* Maximum possible erase regions */ mtd->numeraseregions = this->dies << 1; mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info) * (this->dies << 1)); if (!mtd->eraseregions) return -ENOMEM; } /* * For Flex-OneNAND, chipsize represents maximum possible device size. * mtd->size represents the actual device size. */ this->chipsize = (16 << density) << 20; /* OneNAND page size & block size */ /* The data buffer size is equal to page size */ mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE); /* We use the full BufferRAM */ if (ONENAND_IS_4KB_PAGE(this)) mtd->writesize <<= 1; mtd->oobsize = mtd->writesize >> 5; /* Pagers per block is always 64 in OneNAND */ mtd->erasesize = mtd->writesize << 6; /* * Flex-OneNAND SLC area has 64 pages per block. * Flex-OneNAND MLC area has 128 pages per block. * Expose MLC erase size to find erase_shift and page_mask. */ if (FLEXONENAND(this)) mtd->erasesize <<= 1; this->erase_shift = ffs(mtd->erasesize) - 1; this->page_shift = ffs(mtd->writesize) - 1; this->ppb_shift = (this->erase_shift - this->page_shift); this->page_mask = (mtd->erasesize / mtd->writesize) - 1; /* Set density mask. it is used for DDP */ if (ONENAND_IS_DDP(this)) this->density_mask = this->chipsize >> (this->erase_shift + 1); /* It's real page size */ this->writesize = mtd->writesize; /* REVIST: Multichip handling */ if (FLEXONENAND(this)) flexonenand_get_size(mtd); else mtd->size = this->chipsize; mtd->flags = MTD_CAP_NANDFLASH; mtd->_erase = onenand_erase; mtd->_read = onenand_read; mtd->_write = onenand_write; mtd->_read_oob = onenand_read_oob; mtd->_write_oob = onenand_write_oob; mtd->_sync = onenand_sync; mtd->_block_isbad = onenand_block_isbad; mtd->_block_markbad = onenand_block_markbad; mtd->writebufsize = mtd->writesize; return 0; } /** * onenand_scan - [OneNAND Interface] Scan for the OneNAND device * @param mtd MTD device structure * @param maxchips Number of chips to scan for * * This fills out all the not initialized function pointers * with the defaults. * The flash ID is read and the mtd/chip structures are * filled with the appropriate values. */ int onenand_scan(struct mtd_info *mtd, int maxchips) { int i; struct onenand_chip *this = mtd->priv; if (!this->read_word) this->read_word = onenand_readw; if (!this->write_word) this->write_word = onenand_writew; if (!this->command) this->command = onenand_command; if (!this->wait) this->wait = onenand_wait; if (!this->bbt_wait) this->bbt_wait = onenand_bbt_wait; if (!this->read_bufferram) this->read_bufferram = onenand_read_bufferram; if (!this->write_bufferram) this->write_bufferram = onenand_write_bufferram; if (!this->chip_probe) this->chip_probe = onenand_chip_probe; if (!this->block_markbad) this->block_markbad = onenand_default_block_markbad; if (!this->scan_bbt) this->scan_bbt = onenand_default_bbt; if (onenand_probe(mtd)) return -ENXIO; /* Set Sync. Burst Read after probing */ if (this->mmcontrol) { printk(KERN_INFO "OneNAND Sync. Burst Read support\n"); this->read_bufferram = onenand_sync_read_bufferram; } /* Allocate buffers, if necessary */ if (!this->page_buf) { this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL); if (!this->page_buf) { printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n"); return -ENOMEM; } this->options |= ONENAND_PAGEBUF_ALLOC; } if (!this->oob_buf) { this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL); if (!this->oob_buf) { printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n"); if (this->options & ONENAND_PAGEBUF_ALLOC) { this->options &= ~ONENAND_PAGEBUF_ALLOC; kfree(this->page_buf); } return -ENOMEM; } this->options |= ONENAND_OOBBUF_ALLOC; } this->state = FL_READY; /* * Allow subpage writes up to oobsize. */ switch (mtd->oobsize) { case 128: this->ecclayout = &onenand_oob_128; mtd->subpage_sft = 0; break; case 64: this->ecclayout = &onenand_oob_64; mtd->subpage_sft = 2; break; case 32: this->ecclayout = &onenand_oob_32; mtd->subpage_sft = 1; break; default: printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n", mtd->oobsize); mtd->subpage_sft = 0; /* To prevent kernel oops */ this->ecclayout = &onenand_oob_32; break; } this->subpagesize = mtd->writesize >> mtd->subpage_sft; /* * The number of bytes available for a client to place data into * the out of band area */ this->ecclayout->oobavail = 0; for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && this->ecclayout->oobfree[i].length; i++) this->ecclayout->oobavail += this->ecclayout->oobfree[i].length; mtd->oobavail = this->ecclayout->oobavail; mtd->ecclayout = this->ecclayout; /* Unlock whole block */ onenand_unlock_all(mtd); return this->scan_bbt(mtd); } /** * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device * @param mtd MTD device structure */ void onenand_release(struct mtd_info *mtd) { }