// SPDX-License-Identifier: GPL-2.0+ /* * Atheros AR71xx / AR9xxx GMAC driver * * Copyright (C) 2016 Marek Vasut <marex@denx.de> */ #include <common.h> #include <dm.h> #include <errno.h> #include <miiphy.h> #include <malloc.h> #include <linux/compiler.h> #include <linux/err.h> #include <linux/mii.h> #include <wait_bit.h> #include <asm/io.h> #include <mach/ath79.h> DECLARE_GLOBAL_DATA_PTR; enum ag7xxx_model { AG7XXX_MODEL_AG933X, AG7XXX_MODEL_AG934X, }; /* MAC Configuration 1 */ #define AG7XXX_ETH_CFG1 0x00 #define AG7XXX_ETH_CFG1_SOFT_RST BIT(31) #define AG7XXX_ETH_CFG1_RX_RST BIT(19) #define AG7XXX_ETH_CFG1_TX_RST BIT(18) #define AG7XXX_ETH_CFG1_LOOPBACK BIT(8) #define AG7XXX_ETH_CFG1_RX_EN BIT(2) #define AG7XXX_ETH_CFG1_TX_EN BIT(0) /* MAC Configuration 2 */ #define AG7XXX_ETH_CFG2 0x04 #define AG7XXX_ETH_CFG2_IF_1000 BIT(9) #define AG7XXX_ETH_CFG2_IF_10_100 BIT(8) #define AG7XXX_ETH_CFG2_IF_SPEED_MASK (3 << 8) #define AG7XXX_ETH_CFG2_HUGE_FRAME_EN BIT(5) #define AG7XXX_ETH_CFG2_LEN_CHECK BIT(4) #define AG7XXX_ETH_CFG2_PAD_CRC_EN BIT(2) #define AG7XXX_ETH_CFG2_FDX BIT(0) /* MII Configuration */ #define AG7XXX_ETH_MII_MGMT_CFG 0x20 #define AG7XXX_ETH_MII_MGMT_CFG_RESET BIT(31) /* MII Command */ #define AG7XXX_ETH_MII_MGMT_CMD 0x24 #define AG7XXX_ETH_MII_MGMT_CMD_READ 0x1 /* MII Address */ #define AG7XXX_ETH_MII_MGMT_ADDRESS 0x28 #define AG7XXX_ETH_MII_MGMT_ADDRESS_SHIFT 8 /* MII Control */ #define AG7XXX_ETH_MII_MGMT_CTRL 0x2c /* MII Status */ #define AG7XXX_ETH_MII_MGMT_STATUS 0x30 /* MII Indicators */ #define AG7XXX_ETH_MII_MGMT_IND 0x34 #define AG7XXX_ETH_MII_MGMT_IND_INVALID BIT(2) #define AG7XXX_ETH_MII_MGMT_IND_BUSY BIT(0) /* STA Address 1 & 2 */ #define AG7XXX_ETH_ADDR1 0x40 #define AG7XXX_ETH_ADDR2 0x44 /* ETH Configuration 0 - 5 */ #define AG7XXX_ETH_FIFO_CFG_0 0x48 #define AG7XXX_ETH_FIFO_CFG_1 0x4c #define AG7XXX_ETH_FIFO_CFG_2 0x50 #define AG7XXX_ETH_FIFO_CFG_3 0x54 #define AG7XXX_ETH_FIFO_CFG_4 0x58 #define AG7XXX_ETH_FIFO_CFG_5 0x5c /* DMA Transfer Control for Queue 0 */ #define AG7XXX_ETH_DMA_TX_CTRL 0x180 #define AG7XXX_ETH_DMA_TX_CTRL_TXE BIT(0) /* Descriptor Address for Queue 0 Tx */ #define AG7XXX_ETH_DMA_TX_DESC 0x184 /* DMA Tx Status */ #define AG7XXX_ETH_DMA_TX_STATUS 0x188 /* Rx Control */ #define AG7XXX_ETH_DMA_RX_CTRL 0x18c #define AG7XXX_ETH_DMA_RX_CTRL_RXE BIT(0) /* Pointer to Rx Descriptor */ #define AG7XXX_ETH_DMA_RX_DESC 0x190 /* Rx Status */ #define AG7XXX_ETH_DMA_RX_STATUS 0x194 /* Custom register at 0x18070000 */ #define AG7XXX_GMAC_ETH_CFG 0x00 #define AG7XXX_ETH_CFG_SW_PHY_ADDR_SWAP BIT(8) #define AG7XXX_ETH_CFG_SW_PHY_SWAP BIT(7) #define AG7XXX_ETH_CFG_SW_ONLY_MODE BIT(6) #define AG7XXX_ETH_CFG_GE0_ERR_EN BIT(5) #define AG7XXX_ETH_CFG_MII_GE0_SLAVE BIT(4) #define AG7XXX_ETH_CFG_MII_GE0_MASTER BIT(3) #define AG7XXX_ETH_CFG_GMII_GE0 BIT(2) #define AG7XXX_ETH_CFG_MII_GE0 BIT(1) #define AG7XXX_ETH_CFG_RGMII_GE0 BIT(0) #define CONFIG_TX_DESCR_NUM 8 #define CONFIG_RX_DESCR_NUM 8 #define CONFIG_ETH_BUFSIZE 2048 #define TX_TOTAL_BUFSIZE (CONFIG_ETH_BUFSIZE * CONFIG_TX_DESCR_NUM) #define RX_TOTAL_BUFSIZE (CONFIG_ETH_BUFSIZE * CONFIG_RX_DESCR_NUM) /* DMA descriptor. */ struct ag7xxx_dma_desc { u32 data_addr; #define AG7XXX_DMADESC_IS_EMPTY BIT(31) #define AG7XXX_DMADESC_FTPP_OVERRIDE_OFFSET 16 #define AG7XXX_DMADESC_PKT_SIZE_OFFSET 0 #define AG7XXX_DMADESC_PKT_SIZE_MASK 0xfff u32 config; u32 next_desc; u32 _pad[5]; }; struct ar7xxx_eth_priv { struct ag7xxx_dma_desc tx_mac_descrtable[CONFIG_TX_DESCR_NUM]; struct ag7xxx_dma_desc rx_mac_descrtable[CONFIG_RX_DESCR_NUM]; char txbuffs[TX_TOTAL_BUFSIZE] __aligned(ARCH_DMA_MINALIGN); char rxbuffs[RX_TOTAL_BUFSIZE] __aligned(ARCH_DMA_MINALIGN); void __iomem *regs; void __iomem *phyregs; struct eth_device *dev; struct phy_device *phydev; struct mii_dev *bus; u32 interface; u32 tx_currdescnum; u32 rx_currdescnum; enum ag7xxx_model model; }; /* * Switch and MDIO access */ static int ag7xxx_switch_read(struct mii_dev *bus, int addr, int reg, u16 *val) { struct ar7xxx_eth_priv *priv = bus->priv; void __iomem *regs = priv->phyregs; int ret; writel(0x0, regs + AG7XXX_ETH_MII_MGMT_CMD); writel((addr << AG7XXX_ETH_MII_MGMT_ADDRESS_SHIFT) | reg, regs + AG7XXX_ETH_MII_MGMT_ADDRESS); writel(AG7XXX_ETH_MII_MGMT_CMD_READ, regs + AG7XXX_ETH_MII_MGMT_CMD); ret = wait_for_bit_le32(regs + AG7XXX_ETH_MII_MGMT_IND, AG7XXX_ETH_MII_MGMT_IND_BUSY, 0, 1000, 0); if (ret) return ret; *val = readl(regs + AG7XXX_ETH_MII_MGMT_STATUS) & 0xffff; writel(0x0, regs + AG7XXX_ETH_MII_MGMT_CMD); return 0; } static int ag7xxx_switch_write(struct mii_dev *bus, int addr, int reg, u16 val) { struct ar7xxx_eth_priv *priv = bus->priv; void __iomem *regs = priv->phyregs; int ret; writel((addr << AG7XXX_ETH_MII_MGMT_ADDRESS_SHIFT) | reg, regs + AG7XXX_ETH_MII_MGMT_ADDRESS); writel(val, regs + AG7XXX_ETH_MII_MGMT_CTRL); ret = wait_for_bit_le32(regs + AG7XXX_ETH_MII_MGMT_IND, AG7XXX_ETH_MII_MGMT_IND_BUSY, 0, 1000, 0); return ret; } static int ag7xxx_switch_reg_read(struct mii_dev *bus, int reg, u32 *val) { struct ar7xxx_eth_priv *priv = bus->priv; u32 phy_addr; u32 reg_addr; u32 phy_temp; u32 reg_temp; u16 rv = 0; int ret; if (priv->model == AG7XXX_MODEL_AG933X) { phy_addr = 0x1f; reg_addr = 0x10; } else if (priv->model == AG7XXX_MODEL_AG934X) { phy_addr = 0x18; reg_addr = 0x00; } else return -EINVAL; ret = ag7xxx_switch_write(bus, phy_addr, reg_addr, reg >> 9); if (ret) return ret; phy_temp = ((reg >> 6) & 0x7) | 0x10; reg_temp = (reg >> 1) & 0x1e; *val = 0; ret = ag7xxx_switch_read(bus, phy_temp, reg_temp | 0, &rv); if (ret < 0) return ret; *val |= rv; ret = ag7xxx_switch_read(bus, phy_temp, reg_temp | 1, &rv); if (ret < 0) return ret; *val |= (rv << 16); return 0; } static int ag7xxx_switch_reg_write(struct mii_dev *bus, int reg, u32 val) { struct ar7xxx_eth_priv *priv = bus->priv; u32 phy_addr; u32 reg_addr; u32 phy_temp; u32 reg_temp; int ret; if (priv->model == AG7XXX_MODEL_AG933X) { phy_addr = 0x1f; reg_addr = 0x10; } else if (priv->model == AG7XXX_MODEL_AG934X) { phy_addr = 0x18; reg_addr = 0x00; } else return -EINVAL; ret = ag7xxx_switch_write(bus, phy_addr, reg_addr, reg >> 9); if (ret) return ret; phy_temp = ((reg >> 6) & 0x7) | 0x10; reg_temp = (reg >> 1) & 0x1e; /* * The switch on AR933x has some special register behavior, which * expects particular write order of their nibbles: * 0x40 ..... MSB first, LSB second * 0x50 ..... MSB first, LSB second * 0x98 ..... LSB first, MSB second * others ... don't care */ if ((priv->model == AG7XXX_MODEL_AG933X) && (reg == 0x98)) { ret = ag7xxx_switch_write(bus, phy_temp, reg_temp | 0, val & 0xffff); if (ret < 0) return ret; ret = ag7xxx_switch_write(bus, phy_temp, reg_temp | 1, val >> 16); if (ret < 0) return ret; } else { ret = ag7xxx_switch_write(bus, phy_temp, reg_temp | 1, val >> 16); if (ret < 0) return ret; ret = ag7xxx_switch_write(bus, phy_temp, reg_temp | 0, val & 0xffff); if (ret < 0) return ret; } return 0; } static int ag7xxx_mdio_rw(struct mii_dev *bus, int addr, int reg, u32 val) { u32 data; unsigned long start; int ret; /* No idea if this is long enough or too long */ int timeout_ms = 1000; /* Dummy read followed by PHY read/write command. */ ret = ag7xxx_switch_reg_read(bus, 0x98, &data); if (ret < 0) return ret; data = val | (reg << 16) | (addr << 21) | BIT(30) | BIT(31); ret = ag7xxx_switch_reg_write(bus, 0x98, data); if (ret < 0) return ret; start = get_timer(0); /* Wait for operation to finish */ do { ret = ag7xxx_switch_reg_read(bus, 0x98, &data); if (ret < 0) return ret; if (get_timer(start) > timeout_ms) return -ETIMEDOUT; } while (data & BIT(31)); return data & 0xffff; } static int ag7xxx_mdio_read(struct mii_dev *bus, int addr, int devad, int reg) { return ag7xxx_mdio_rw(bus, addr, reg, BIT(27)); } static int ag7xxx_mdio_write(struct mii_dev *bus, int addr, int devad, int reg, u16 val) { int ret; ret = ag7xxx_mdio_rw(bus, addr, reg, val); if (ret < 0) return ret; return 0; } /* * DMA ring handlers */ static void ag7xxx_dma_clean_tx(struct udevice *dev) { struct ar7xxx_eth_priv *priv = dev_get_priv(dev); struct ag7xxx_dma_desc *curr, *next; u32 start, end; int i; for (i = 0; i < CONFIG_TX_DESCR_NUM; i++) { curr = &priv->tx_mac_descrtable[i]; next = &priv->tx_mac_descrtable[(i + 1) % CONFIG_TX_DESCR_NUM]; curr->data_addr = virt_to_phys(&priv->txbuffs[i * CONFIG_ETH_BUFSIZE]); curr->config = AG7XXX_DMADESC_IS_EMPTY; curr->next_desc = virt_to_phys(next); } priv->tx_currdescnum = 0; /* Cache: Flush descriptors, don't care about buffers. */ start = (u32)(&priv->tx_mac_descrtable[0]); end = start + sizeof(priv->tx_mac_descrtable); flush_dcache_range(start, end); } static void ag7xxx_dma_clean_rx(struct udevice *dev) { struct ar7xxx_eth_priv *priv = dev_get_priv(dev); struct ag7xxx_dma_desc *curr, *next; u32 start, end; int i; for (i = 0; i < CONFIG_RX_DESCR_NUM; i++) { curr = &priv->rx_mac_descrtable[i]; next = &priv->rx_mac_descrtable[(i + 1) % CONFIG_RX_DESCR_NUM]; curr->data_addr = virt_to_phys(&priv->rxbuffs[i * CONFIG_ETH_BUFSIZE]); curr->config = AG7XXX_DMADESC_IS_EMPTY; curr->next_desc = virt_to_phys(next); } priv->rx_currdescnum = 0; /* Cache: Flush+Invalidate descriptors, Invalidate buffers. */ start = (u32)(&priv->rx_mac_descrtable[0]); end = start + sizeof(priv->rx_mac_descrtable); flush_dcache_range(start, end); invalidate_dcache_range(start, end); start = (u32)&priv->rxbuffs; end = start + sizeof(priv->rxbuffs); invalidate_dcache_range(start, end); } /* * Ethernet I/O */ static int ag7xxx_eth_send(struct udevice *dev, void *packet, int length) { struct ar7xxx_eth_priv *priv = dev_get_priv(dev); struct ag7xxx_dma_desc *curr; u32 start, end; curr = &priv->tx_mac_descrtable[priv->tx_currdescnum]; /* Cache: Invalidate descriptor. */ start = (u32)curr; end = start + sizeof(*curr); invalidate_dcache_range(start, end); if (!(curr->config & AG7XXX_DMADESC_IS_EMPTY)) { printf("ag7xxx: Out of TX DMA descriptors!\n"); return -EPERM; } /* Copy the packet into the data buffer. */ memcpy(phys_to_virt(curr->data_addr), packet, length); curr->config = length & AG7XXX_DMADESC_PKT_SIZE_MASK; /* Cache: Flush descriptor, Flush buffer. */ start = (u32)curr; end = start + sizeof(*curr); flush_dcache_range(start, end); start = (u32)phys_to_virt(curr->data_addr); end = start + length; flush_dcache_range(start, end); /* Load the DMA descriptor and start TX DMA. */ writel(AG7XXX_ETH_DMA_TX_CTRL_TXE, priv->regs + AG7XXX_ETH_DMA_TX_CTRL); /* Switch to next TX descriptor. */ priv->tx_currdescnum = (priv->tx_currdescnum + 1) % CONFIG_TX_DESCR_NUM; return 0; } static int ag7xxx_eth_recv(struct udevice *dev, int flags, uchar **packetp) { struct ar7xxx_eth_priv *priv = dev_get_priv(dev); struct ag7xxx_dma_desc *curr; u32 start, end, length; curr = &priv->rx_mac_descrtable[priv->rx_currdescnum]; /* Cache: Invalidate descriptor. */ start = (u32)curr; end = start + sizeof(*curr); invalidate_dcache_range(start, end); /* No packets received. */ if (curr->config & AG7XXX_DMADESC_IS_EMPTY) return -EAGAIN; length = curr->config & AG7XXX_DMADESC_PKT_SIZE_MASK; /* Cache: Invalidate buffer. */ start = (u32)phys_to_virt(curr->data_addr); end = start + length; invalidate_dcache_range(start, end); /* Receive one packet and return length. */ *packetp = phys_to_virt(curr->data_addr); return length; } static int ag7xxx_eth_free_pkt(struct udevice *dev, uchar *packet, int length) { struct ar7xxx_eth_priv *priv = dev_get_priv(dev); struct ag7xxx_dma_desc *curr; u32 start, end; curr = &priv->rx_mac_descrtable[priv->rx_currdescnum]; curr->config = AG7XXX_DMADESC_IS_EMPTY; /* Cache: Flush descriptor. */ start = (u32)curr; end = start + sizeof(*curr); flush_dcache_range(start, end); /* Switch to next RX descriptor. */ priv->rx_currdescnum = (priv->rx_currdescnum + 1) % CONFIG_RX_DESCR_NUM; return 0; } static int ag7xxx_eth_start(struct udevice *dev) { struct ar7xxx_eth_priv *priv = dev_get_priv(dev); /* FIXME: Check if link up */ /* Clear the DMA rings. */ ag7xxx_dma_clean_tx(dev); ag7xxx_dma_clean_rx(dev); /* Load DMA descriptors and start the RX DMA. */ writel(virt_to_phys(&priv->tx_mac_descrtable[priv->tx_currdescnum]), priv->regs + AG7XXX_ETH_DMA_TX_DESC); writel(virt_to_phys(&priv->rx_mac_descrtable[priv->rx_currdescnum]), priv->regs + AG7XXX_ETH_DMA_RX_DESC); writel(AG7XXX_ETH_DMA_RX_CTRL_RXE, priv->regs + AG7XXX_ETH_DMA_RX_CTRL); return 0; } static void ag7xxx_eth_stop(struct udevice *dev) { struct ar7xxx_eth_priv *priv = dev_get_priv(dev); /* Stop the TX DMA. */ writel(0, priv->regs + AG7XXX_ETH_DMA_TX_CTRL); wait_for_bit_le32(priv->regs + AG7XXX_ETH_DMA_TX_CTRL, ~0, 0, 1000, 0); /* Stop the RX DMA. */ writel(0, priv->regs + AG7XXX_ETH_DMA_RX_CTRL); wait_for_bit_le32(priv->regs + AG7XXX_ETH_DMA_RX_CTRL, ~0, 0, 1000, 0); } /* * Hardware setup */ static int ag7xxx_eth_write_hwaddr(struct udevice *dev) { struct eth_pdata *pdata = dev_get_platdata(dev); struct ar7xxx_eth_priv *priv = dev_get_priv(dev); unsigned char *mac = pdata->enetaddr; u32 macid_lo, macid_hi; macid_hi = mac[3] | (mac[2] << 8) | (mac[1] << 16) | (mac[0] << 24); macid_lo = (mac[5] << 16) | (mac[4] << 24); writel(macid_lo, priv->regs + AG7XXX_ETH_ADDR1); writel(macid_hi, priv->regs + AG7XXX_ETH_ADDR2); return 0; } static void ag7xxx_hw_setup(struct udevice *dev) { struct ar7xxx_eth_priv *priv = dev_get_priv(dev); u32 speed; setbits_be32(priv->regs + AG7XXX_ETH_CFG1, AG7XXX_ETH_CFG1_RX_RST | AG7XXX_ETH_CFG1_TX_RST | AG7XXX_ETH_CFG1_SOFT_RST); mdelay(10); writel(AG7XXX_ETH_CFG1_RX_EN | AG7XXX_ETH_CFG1_TX_EN, priv->regs + AG7XXX_ETH_CFG1); if (priv->interface == PHY_INTERFACE_MODE_RMII) speed = AG7XXX_ETH_CFG2_IF_10_100; else speed = AG7XXX_ETH_CFG2_IF_1000; clrsetbits_be32(priv->regs + AG7XXX_ETH_CFG2, AG7XXX_ETH_CFG2_IF_SPEED_MASK, speed | AG7XXX_ETH_CFG2_PAD_CRC_EN | AG7XXX_ETH_CFG2_LEN_CHECK); writel(0xfff0000, priv->regs + AG7XXX_ETH_FIFO_CFG_1); writel(0x1fff, priv->regs + AG7XXX_ETH_FIFO_CFG_2); writel(0x1f00, priv->regs + AG7XXX_ETH_FIFO_CFG_0); setbits_be32(priv->regs + AG7XXX_ETH_FIFO_CFG_4, 0x3ffff); writel(0x10ffff, priv->regs + AG7XXX_ETH_FIFO_CFG_1); writel(0xaaa0555, priv->regs + AG7XXX_ETH_FIFO_CFG_2); writel(0x7eccf, priv->regs + AG7XXX_ETH_FIFO_CFG_5); writel(0x1f00140, priv->regs + AG7XXX_ETH_FIFO_CFG_3); } static int ag7xxx_mii_get_div(void) { ulong freq = get_bus_freq(0); switch (freq / 1000000) { case 150: return 0x7; case 175: return 0x5; case 200: return 0x4; case 210: return 0x9; case 220: return 0x9; default: return 0x7; } } static int ag7xxx_mii_setup(struct udevice *dev) { struct ar7xxx_eth_priv *priv = dev_get_priv(dev); int i, ret, div = ag7xxx_mii_get_div(); u32 reg; if (priv->model == AG7XXX_MODEL_AG933X) { /* Unit 0 is PHY-less on AR9331, see datasheet Figure 2-3 */ if (priv->interface == PHY_INTERFACE_MODE_RMII) return 0; } if (priv->model == AG7XXX_MODEL_AG934X) { writel(AG7XXX_ETH_MII_MGMT_CFG_RESET | 0x4, priv->regs + AG7XXX_ETH_MII_MGMT_CFG); writel(0x4, priv->regs + AG7XXX_ETH_MII_MGMT_CFG); return 0; } for (i = 0; i < 10; i++) { writel(AG7XXX_ETH_MII_MGMT_CFG_RESET | div, priv->regs + AG7XXX_ETH_MII_MGMT_CFG); writel(div, priv->regs + AG7XXX_ETH_MII_MGMT_CFG); /* Check the switch */ ret = ag7xxx_switch_reg_read(priv->bus, 0x10c, ®); if (ret) continue; if (reg != 0x18007fff) continue; return 0; } return -EINVAL; } static int ag933x_phy_setup_wan(struct udevice *dev) { struct ar7xxx_eth_priv *priv = dev_get_priv(dev); /* Configure switch port 4 (GMAC0) */ return ag7xxx_mdio_write(priv->bus, 4, 0, MII_BMCR, 0x9000); } static int ag933x_phy_setup_lan(struct udevice *dev) { struct ar7xxx_eth_priv *priv = dev_get_priv(dev); int i, ret; u32 reg; /* Reset the switch */ ret = ag7xxx_switch_reg_read(priv->bus, 0, ®); if (ret) return ret; reg |= BIT(31); ret = ag7xxx_switch_reg_write(priv->bus, 0, reg); if (ret) return ret; do { ret = ag7xxx_switch_reg_read(priv->bus, 0, ®); if (ret) return ret; } while (reg & BIT(31)); /* Configure switch ports 0...3 (GMAC1) */ for (i = 0; i < 4; i++) { ret = ag7xxx_mdio_write(priv->bus, 0x4, 0, MII_BMCR, 0x9000); if (ret) return ret; } /* Enable CPU port */ ret = ag7xxx_switch_reg_write(priv->bus, 0x78, BIT(8)); if (ret) return ret; for (i = 0; i < 4; i++) { ret = ag7xxx_switch_reg_write(priv->bus, i * 0x100, BIT(9)); if (ret) return ret; } /* QM Control */ ret = ag7xxx_switch_reg_write(priv->bus, 0x38, 0xc000050e); if (ret) return ret; /* Disable Atheros header */ ret = ag7xxx_switch_reg_write(priv->bus, 0x104, 0x4004); if (ret) return ret; /* Tag priority mapping */ ret = ag7xxx_switch_reg_write(priv->bus, 0x70, 0xfa50); if (ret) return ret; /* Enable ARP packets to the CPU */ ret = ag7xxx_switch_reg_read(priv->bus, 0x5c, ®); if (ret) return ret; reg |= 0x100000; ret = ag7xxx_switch_reg_write(priv->bus, 0x5c, reg); if (ret) return ret; return 0; } static int ag933x_phy_setup_reset_set(struct udevice *dev, int port) { struct ar7xxx_eth_priv *priv = dev_get_priv(dev); int ret; ret = ag7xxx_mdio_write(priv->bus, port, 0, MII_ADVERTISE, ADVERTISE_ALL | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); if (ret) return ret; if (priv->model == AG7XXX_MODEL_AG934X) { ret = ag7xxx_mdio_write(priv->bus, port, 0, MII_CTRL1000, ADVERTISE_1000FULL); if (ret) return ret; } return ag7xxx_mdio_write(priv->bus, port, 0, MII_BMCR, BMCR_ANENABLE | BMCR_RESET); } static int ag933x_phy_setup_reset_fin(struct udevice *dev, int port) { struct ar7xxx_eth_priv *priv = dev_get_priv(dev); int ret; do { ret = ag7xxx_mdio_read(priv->bus, port, 0, MII_BMCR); if (ret < 0) return ret; mdelay(10); } while (ret & BMCR_RESET); return 0; } static int ag933x_phy_setup_common(struct udevice *dev) { struct ar7xxx_eth_priv *priv = dev_get_priv(dev); int i, ret, phymax; if (priv->model == AG7XXX_MODEL_AG933X) phymax = 4; else if (priv->model == AG7XXX_MODEL_AG934X) phymax = 5; else return -EINVAL; if (priv->interface == PHY_INTERFACE_MODE_RMII) { ret = ag933x_phy_setup_reset_set(dev, phymax); if (ret) return ret; ret = ag933x_phy_setup_reset_fin(dev, phymax); if (ret) return ret; /* Read out link status */ ret = ag7xxx_mdio_read(priv->bus, phymax, 0, MII_MIPSCR); if (ret < 0) return ret; return 0; } /* Switch ports */ for (i = 0; i < phymax; i++) { ret = ag933x_phy_setup_reset_set(dev, i); if (ret) return ret; } for (i = 0; i < phymax; i++) { ret = ag933x_phy_setup_reset_fin(dev, i); if (ret) return ret; } for (i = 0; i < phymax; i++) { /* Read out link status */ ret = ag7xxx_mdio_read(priv->bus, i, 0, MII_MIPSCR); if (ret < 0) return ret; } return 0; } static int ag934x_phy_setup(struct udevice *dev) { struct ar7xxx_eth_priv *priv = dev_get_priv(dev); int i, ret; u32 reg; ret = ag7xxx_switch_reg_write(priv->bus, 0x624, 0x7f7f7f7f); if (ret) return ret; ret = ag7xxx_switch_reg_write(priv->bus, 0x10, 0x40000000); if (ret) return ret; ret = ag7xxx_switch_reg_write(priv->bus, 0x4, 0x07600000); if (ret) return ret; ret = ag7xxx_switch_reg_write(priv->bus, 0xc, 0x01000000); if (ret) return ret; ret = ag7xxx_switch_reg_write(priv->bus, 0x7c, 0x0000007e); if (ret) return ret; /* AR8327/AR8328 v1.0 fixup */ ret = ag7xxx_switch_reg_read(priv->bus, 0, ®); if (ret) return ret; if ((reg & 0xffff) == 0x1201) { for (i = 0; i < 5; i++) { ret = ag7xxx_mdio_write(priv->bus, i, 0, 0x1d, 0x0); if (ret) return ret; ret = ag7xxx_mdio_write(priv->bus, i, 0, 0x1e, 0x02ea); if (ret) return ret; ret = ag7xxx_mdio_write(priv->bus, i, 0, 0x1d, 0x3d); if (ret) return ret; ret = ag7xxx_mdio_write(priv->bus, i, 0, 0x1e, 0x68a0); if (ret) return ret; } } ret = ag7xxx_switch_reg_read(priv->bus, 0x66c, ®); if (ret) return ret; reg &= ~0x70000; ret = ag7xxx_switch_reg_write(priv->bus, 0x66c, reg); if (ret) return ret; return 0; } static int ag7xxx_mac_probe(struct udevice *dev) { struct ar7xxx_eth_priv *priv = dev_get_priv(dev); int ret; ag7xxx_hw_setup(dev); ret = ag7xxx_mii_setup(dev); if (ret) return ret; ag7xxx_eth_write_hwaddr(dev); if (priv->model == AG7XXX_MODEL_AG933X) { if (priv->interface == PHY_INTERFACE_MODE_RMII) ret = ag933x_phy_setup_wan(dev); else ret = ag933x_phy_setup_lan(dev); } else if (priv->model == AG7XXX_MODEL_AG934X) { ret = ag934x_phy_setup(dev); } else { return -EINVAL; } if (ret) return ret; return ag933x_phy_setup_common(dev); } static int ag7xxx_mdio_probe(struct udevice *dev) { struct ar7xxx_eth_priv *priv = dev_get_priv(dev); struct mii_dev *bus = mdio_alloc(); if (!bus) return -ENOMEM; bus->read = ag7xxx_mdio_read; bus->write = ag7xxx_mdio_write; snprintf(bus->name, sizeof(bus->name), dev->name); bus->priv = (void *)priv; return mdio_register(bus); } static int ag7xxx_get_phy_iface_offset(struct udevice *dev) { int offset; offset = fdtdec_lookup_phandle(gd->fdt_blob, dev_of_offset(dev), "phy"); if (offset <= 0) { debug("%s: PHY OF node not found (ret=%i)\n", __func__, offset); return -EINVAL; } offset = fdt_parent_offset(gd->fdt_blob, offset); if (offset <= 0) { debug("%s: PHY OF node parent MDIO bus not found (ret=%i)\n", __func__, offset); return -EINVAL; } offset = fdt_parent_offset(gd->fdt_blob, offset); if (offset <= 0) { debug("%s: PHY MDIO OF node parent MAC not found (ret=%i)\n", __func__, offset); return -EINVAL; } return offset; } static int ag7xxx_eth_probe(struct udevice *dev) { struct eth_pdata *pdata = dev_get_platdata(dev); struct ar7xxx_eth_priv *priv = dev_get_priv(dev); void __iomem *iobase, *phyiobase; int ret, phyreg; /* Decoding of convoluted PHY wiring on Atheros MIPS. */ ret = ag7xxx_get_phy_iface_offset(dev); if (ret <= 0) return ret; phyreg = fdtdec_get_int(gd->fdt_blob, ret, "reg", -1); iobase = map_physmem(pdata->iobase, 0x200, MAP_NOCACHE); phyiobase = map_physmem(phyreg, 0x200, MAP_NOCACHE); debug("%s, iobase=%p, phyiobase=%p, priv=%p\n", __func__, iobase, phyiobase, priv); priv->regs = iobase; priv->phyregs = phyiobase; priv->interface = pdata->phy_interface; priv->model = dev_get_driver_data(dev); ret = ag7xxx_mdio_probe(dev); if (ret) return ret; priv->bus = miiphy_get_dev_by_name(dev->name); ret = ag7xxx_mac_probe(dev); debug("%s, ret=%d\n", __func__, ret); return ret; } static int ag7xxx_eth_remove(struct udevice *dev) { struct ar7xxx_eth_priv *priv = dev_get_priv(dev); free(priv->phydev); mdio_unregister(priv->bus); mdio_free(priv->bus); return 0; } static const struct eth_ops ag7xxx_eth_ops = { .start = ag7xxx_eth_start, .send = ag7xxx_eth_send, .recv = ag7xxx_eth_recv, .free_pkt = ag7xxx_eth_free_pkt, .stop = ag7xxx_eth_stop, .write_hwaddr = ag7xxx_eth_write_hwaddr, }; static int ag7xxx_eth_ofdata_to_platdata(struct udevice *dev) { struct eth_pdata *pdata = dev_get_platdata(dev); const char *phy_mode; int ret; pdata->iobase = devfdt_get_addr(dev); pdata->phy_interface = -1; /* Decoding of convoluted PHY wiring on Atheros MIPS. */ ret = ag7xxx_get_phy_iface_offset(dev); if (ret <= 0) return ret; phy_mode = fdt_getprop(gd->fdt_blob, ret, "phy-mode", NULL); if (phy_mode) pdata->phy_interface = phy_get_interface_by_name(phy_mode); if (pdata->phy_interface == -1) { debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode); return -EINVAL; } return 0; } static const struct udevice_id ag7xxx_eth_ids[] = { { .compatible = "qca,ag933x-mac", .data = AG7XXX_MODEL_AG933X }, { .compatible = "qca,ag934x-mac", .data = AG7XXX_MODEL_AG934X }, { } }; U_BOOT_DRIVER(eth_ag7xxx) = { .name = "eth_ag7xxx", .id = UCLASS_ETH, .of_match = ag7xxx_eth_ids, .ofdata_to_platdata = ag7xxx_eth_ofdata_to_platdata, .probe = ag7xxx_eth_probe, .remove = ag7xxx_eth_remove, .ops = &ag7xxx_eth_ops, .priv_auto_alloc_size = sizeof(struct ar7xxx_eth_priv), .platdata_auto_alloc_size = sizeof(struct eth_pdata), .flags = DM_FLAG_ALLOC_PRIV_DMA, };