// SPDX-License-Identifier: GPL-2.0 /* * Designware master SPI core controller driver * * Copyright (C) 2014 Stefan Roese <sr@denx.de> * * Very loosely based on the Linux driver: * drivers/spi/spi-dw.c, which is: * Copyright (c) 2009, Intel Corporation. */ #include <asm-generic/gpio.h> #include <common.h> #include <clk.h> #include <dm.h> #include <errno.h> #include <malloc.h> #include <spi.h> #include <fdtdec.h> #include <linux/compat.h> #include <linux/iopoll.h> #include <asm/io.h> DECLARE_GLOBAL_DATA_PTR; /* Register offsets */ #define DW_SPI_CTRL0 0x00 #define DW_SPI_CTRL1 0x04 #define DW_SPI_SSIENR 0x08 #define DW_SPI_MWCR 0x0c #define DW_SPI_SER 0x10 #define DW_SPI_BAUDR 0x14 #define DW_SPI_TXFLTR 0x18 #define DW_SPI_RXFLTR 0x1c #define DW_SPI_TXFLR 0x20 #define DW_SPI_RXFLR 0x24 #define DW_SPI_SR 0x28 #define DW_SPI_IMR 0x2c #define DW_SPI_ISR 0x30 #define DW_SPI_RISR 0x34 #define DW_SPI_TXOICR 0x38 #define DW_SPI_RXOICR 0x3c #define DW_SPI_RXUICR 0x40 #define DW_SPI_MSTICR 0x44 #define DW_SPI_ICR 0x48 #define DW_SPI_DMACR 0x4c #define DW_SPI_DMATDLR 0x50 #define DW_SPI_DMARDLR 0x54 #define DW_SPI_IDR 0x58 #define DW_SPI_VERSION 0x5c #define DW_SPI_DR 0x60 /* Bit fields in CTRLR0 */ #define SPI_DFS_OFFSET 0 #define SPI_FRF_OFFSET 4 #define SPI_FRF_SPI 0x0 #define SPI_FRF_SSP 0x1 #define SPI_FRF_MICROWIRE 0x2 #define SPI_FRF_RESV 0x3 #define SPI_MODE_OFFSET 6 #define SPI_SCPH_OFFSET 6 #define SPI_SCOL_OFFSET 7 #define SPI_TMOD_OFFSET 8 #define SPI_TMOD_MASK (0x3 << SPI_TMOD_OFFSET) #define SPI_TMOD_TR 0x0 /* xmit & recv */ #define SPI_TMOD_TO 0x1 /* xmit only */ #define SPI_TMOD_RO 0x2 /* recv only */ #define SPI_TMOD_EPROMREAD 0x3 /* eeprom read mode */ #define SPI_SLVOE_OFFSET 10 #define SPI_SRL_OFFSET 11 #define SPI_CFS_OFFSET 12 /* Bit fields in SR, 7 bits */ #define SR_MASK GENMASK(6, 0) /* cover 7 bits */ #define SR_BUSY BIT(0) #define SR_TF_NOT_FULL BIT(1) #define SR_TF_EMPT BIT(2) #define SR_RF_NOT_EMPT BIT(3) #define SR_RF_FULL BIT(4) #define SR_TX_ERR BIT(5) #define SR_DCOL BIT(6) #define RX_TIMEOUT 1000 /* timeout in ms */ struct dw_spi_platdata { s32 frequency; /* Default clock frequency, -1 for none */ void __iomem *regs; }; struct dw_spi_priv { void __iomem *regs; unsigned int freq; /* Default frequency */ unsigned int mode; struct clk clk; unsigned long bus_clk_rate; struct gpio_desc cs_gpio; /* External chip-select gpio */ int bits_per_word; u8 cs; /* chip select pin */ u8 tmode; /* TR/TO/RO/EEPROM */ u8 type; /* SPI/SSP/MicroWire */ int len; u32 fifo_len; /* depth of the FIFO buffer */ void *tx; void *tx_end; void *rx; void *rx_end; }; static inline u32 dw_read(struct dw_spi_priv *priv, u32 offset) { return __raw_readl(priv->regs + offset); } static inline void dw_write(struct dw_spi_priv *priv, u32 offset, u32 val) { __raw_writel(val, priv->regs + offset); } static int request_gpio_cs(struct udevice *bus) { #if defined(CONFIG_DM_GPIO) && !defined(CONFIG_SPL_BUILD) struct dw_spi_priv *priv = dev_get_priv(bus); int ret; /* External chip select gpio line is optional */ ret = gpio_request_by_name(bus, "cs-gpio", 0, &priv->cs_gpio, 0); if (ret == -ENOENT) return 0; if (ret < 0) { printf("Error: %d: Can't get %s gpio!\n", ret, bus->name); return ret; } if (dm_gpio_is_valid(&priv->cs_gpio)) { dm_gpio_set_dir_flags(&priv->cs_gpio, GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE); } debug("%s: used external gpio for CS management\n", __func__); #endif return 0; } static int dw_spi_ofdata_to_platdata(struct udevice *bus) { struct dw_spi_platdata *plat = bus->platdata; const void *blob = gd->fdt_blob; int node = dev_of_offset(bus); plat->regs = (struct dw_spi *)devfdt_get_addr(bus); /* Use 500KHz as a suitable default */ plat->frequency = fdtdec_get_int(blob, node, "spi-max-frequency", 500000); debug("%s: regs=%p max-frequency=%d\n", __func__, plat->regs, plat->frequency); return request_gpio_cs(bus); } static inline void spi_enable_chip(struct dw_spi_priv *priv, int enable) { dw_write(priv, DW_SPI_SSIENR, (enable ? 1 : 0)); } /* Restart the controller, disable all interrupts, clean rx fifo */ static void spi_hw_init(struct dw_spi_priv *priv) { spi_enable_chip(priv, 0); dw_write(priv, DW_SPI_IMR, 0xff); spi_enable_chip(priv, 1); /* * Try to detect the FIFO depth if not set by interface driver, * the depth could be from 2 to 256 from HW spec */ if (!priv->fifo_len) { u32 fifo; for (fifo = 1; fifo < 256; fifo++) { dw_write(priv, DW_SPI_TXFLTR, fifo); if (fifo != dw_read(priv, DW_SPI_TXFLTR)) break; } priv->fifo_len = (fifo == 1) ? 0 : fifo; dw_write(priv, DW_SPI_TXFLTR, 0); } debug("%s: fifo_len=%d\n", __func__, priv->fifo_len); } /* * We define dw_spi_get_clk function as 'weak' as some targets * (like SOCFPGA_GEN5 and SOCFPGA_ARRIA10) don't use standard clock API * and implement dw_spi_get_clk their own way in their clock manager. */ __weak int dw_spi_get_clk(struct udevice *bus, ulong *rate) { struct dw_spi_priv *priv = dev_get_priv(bus); int ret; ret = clk_get_by_index(bus, 0, &priv->clk); if (ret) return ret; ret = clk_enable(&priv->clk); if (ret && ret != -ENOSYS && ret != -ENOTSUPP) return ret; *rate = clk_get_rate(&priv->clk); if (!*rate) goto err_rate; debug("%s: get spi controller clk via device tree: %lu Hz\n", __func__, *rate); return 0; err_rate: clk_disable(&priv->clk); clk_free(&priv->clk); return -EINVAL; } static int dw_spi_probe(struct udevice *bus) { struct dw_spi_platdata *plat = dev_get_platdata(bus); struct dw_spi_priv *priv = dev_get_priv(bus); int ret; priv->regs = plat->regs; priv->freq = plat->frequency; ret = dw_spi_get_clk(bus, &priv->bus_clk_rate); if (ret) return ret; /* Currently only bits_per_word == 8 supported */ priv->bits_per_word = 8; priv->tmode = 0; /* Tx & Rx */ /* Basic HW init */ spi_hw_init(priv); return 0; } /* Return the max entries we can fill into tx fifo */ static inline u32 tx_max(struct dw_spi_priv *priv) { u32 tx_left, tx_room, rxtx_gap; tx_left = (priv->tx_end - priv->tx) / (priv->bits_per_word >> 3); tx_room = priv->fifo_len - dw_read(priv, DW_SPI_TXFLR); /* * Another concern is about the tx/rx mismatch, we * thought about using (priv->fifo_len - rxflr - txflr) as * one maximum value for tx, but it doesn't cover the * data which is out of tx/rx fifo and inside the * shift registers. So a control from sw point of * view is taken. */ rxtx_gap = ((priv->rx_end - priv->rx) - (priv->tx_end - priv->tx)) / (priv->bits_per_word >> 3); return min3(tx_left, tx_room, (u32)(priv->fifo_len - rxtx_gap)); } /* Return the max entries we should read out of rx fifo */ static inline u32 rx_max(struct dw_spi_priv *priv) { u32 rx_left = (priv->rx_end - priv->rx) / (priv->bits_per_word >> 3); return min_t(u32, rx_left, dw_read(priv, DW_SPI_RXFLR)); } static void dw_writer(struct dw_spi_priv *priv) { u32 max = tx_max(priv); u16 txw = 0; while (max--) { /* Set the tx word if the transfer's original "tx" is not null */ if (priv->tx_end - priv->len) { if (priv->bits_per_word == 8) txw = *(u8 *)(priv->tx); else txw = *(u16 *)(priv->tx); } dw_write(priv, DW_SPI_DR, txw); debug("%s: tx=0x%02x\n", __func__, txw); priv->tx += priv->bits_per_word >> 3; } } static void dw_reader(struct dw_spi_priv *priv) { u32 max = rx_max(priv); u16 rxw; while (max--) { rxw = dw_read(priv, DW_SPI_DR); debug("%s: rx=0x%02x\n", __func__, rxw); /* Care about rx if the transfer's original "rx" is not null */ if (priv->rx_end - priv->len) { if (priv->bits_per_word == 8) *(u8 *)(priv->rx) = rxw; else *(u16 *)(priv->rx) = rxw; } priv->rx += priv->bits_per_word >> 3; } } static int poll_transfer(struct dw_spi_priv *priv) { do { dw_writer(priv); dw_reader(priv); } while (priv->rx_end > priv->rx); return 0; } static void external_cs_manage(struct udevice *dev, bool on) { #if defined(CONFIG_DM_GPIO) && !defined(CONFIG_SPL_BUILD) struct dw_spi_priv *priv = dev_get_priv(dev->parent); if (!dm_gpio_is_valid(&priv->cs_gpio)) return; dm_gpio_set_value(&priv->cs_gpio, on ? 1 : 0); #endif } static int dw_spi_xfer(struct udevice *dev, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct udevice *bus = dev->parent; struct dw_spi_priv *priv = dev_get_priv(bus); const u8 *tx = dout; u8 *rx = din; int ret = 0; u32 cr0 = 0; u32 val; u32 cs; /* spi core configured to do 8 bit transfers */ if (bitlen % 8) { debug("Non byte aligned SPI transfer.\n"); return -1; } /* Start the transaction if necessary. */ if (flags & SPI_XFER_BEGIN) external_cs_manage(dev, false); cr0 = (priv->bits_per_word - 1) | (priv->type << SPI_FRF_OFFSET) | (priv->mode << SPI_MODE_OFFSET) | (priv->tmode << SPI_TMOD_OFFSET); if (rx && tx) priv->tmode = SPI_TMOD_TR; else if (rx) priv->tmode = SPI_TMOD_RO; else /* * In transmit only mode (SPI_TMOD_TO) input FIFO never gets * any data which breaks our logic in poll_transfer() above. */ priv->tmode = SPI_TMOD_TR; cr0 &= ~SPI_TMOD_MASK; cr0 |= (priv->tmode << SPI_TMOD_OFFSET); priv->len = bitlen >> 3; debug("%s: rx=%p tx=%p len=%d [bytes]\n", __func__, rx, tx, priv->len); priv->tx = (void *)tx; priv->tx_end = priv->tx + priv->len; priv->rx = rx; priv->rx_end = priv->rx + priv->len; /* Disable controller before writing control registers */ spi_enable_chip(priv, 0); debug("%s: cr0=%08x\n", __func__, cr0); /* Reprogram cr0 only if changed */ if (dw_read(priv, DW_SPI_CTRL0) != cr0) dw_write(priv, DW_SPI_CTRL0, cr0); /* * Configure the desired SS (slave select 0...3) in the controller * The DW SPI controller will activate and deactivate this CS * automatically. So no cs_activate() etc is needed in this driver. */ cs = spi_chip_select(dev); dw_write(priv, DW_SPI_SER, 1 << cs); /* Enable controller after writing control registers */ spi_enable_chip(priv, 1); /* Start transfer in a polling loop */ ret = poll_transfer(priv); /* * Wait for current transmit operation to complete. * Otherwise if some data still exists in Tx FIFO it can be * silently flushed, i.e. dropped on disabling of the controller, * which happens when writing 0 to DW_SPI_SSIENR which happens * in the beginning of new transfer. */ if (readl_poll_timeout(priv->regs + DW_SPI_SR, val, (val & SR_TF_EMPT) && !(val & SR_BUSY), RX_TIMEOUT * 1000)) { ret = -ETIMEDOUT; } /* Stop the transaction if necessary */ if (flags & SPI_XFER_END) external_cs_manage(dev, true); return ret; } static int dw_spi_set_speed(struct udevice *bus, uint speed) { struct dw_spi_platdata *plat = bus->platdata; struct dw_spi_priv *priv = dev_get_priv(bus); u16 clk_div; if (speed > plat->frequency) speed = plat->frequency; /* Disable controller before writing control registers */ spi_enable_chip(priv, 0); /* clk_div doesn't support odd number */ clk_div = priv->bus_clk_rate / speed; clk_div = (clk_div + 1) & 0xfffe; dw_write(priv, DW_SPI_BAUDR, clk_div); /* Enable controller after writing control registers */ spi_enable_chip(priv, 1); priv->freq = speed; debug("%s: regs=%p speed=%d clk_div=%d\n", __func__, priv->regs, priv->freq, clk_div); return 0; } static int dw_spi_set_mode(struct udevice *bus, uint mode) { struct dw_spi_priv *priv = dev_get_priv(bus); /* * Can't set mode yet. Since this depends on if rx, tx, or * rx & tx is requested. So we have to defer this to the * real transfer function. */ priv->mode = mode; debug("%s: regs=%p, mode=%d\n", __func__, priv->regs, priv->mode); return 0; } static const struct dm_spi_ops dw_spi_ops = { .xfer = dw_spi_xfer, .set_speed = dw_spi_set_speed, .set_mode = dw_spi_set_mode, /* * cs_info is not needed, since we require all chip selects to be * in the device tree explicitly */ }; static const struct udevice_id dw_spi_ids[] = { { .compatible = "snps,dw-apb-ssi" }, { } }; U_BOOT_DRIVER(dw_spi) = { .name = "dw_spi", .id = UCLASS_SPI, .of_match = dw_spi_ids, .ops = &dw_spi_ops, .ofdata_to_platdata = dw_spi_ofdata_to_platdata, .platdata_auto_alloc_size = sizeof(struct dw_spi_platdata), .priv_auto_alloc_size = sizeof(struct dw_spi_priv), .probe = dw_spi_probe, };