// SPDX-License-Identifier: GPL-2.0 /* * NVIDIA Tegra SPI controller (T114 and later) * * Copyright (c) 2010-2013 NVIDIA Corporation */ #include <common.h> #include <dm.h> #include <asm/io.h> #include <asm/arch/clock.h> #include <asm/arch-tegra/clk_rst.h> #include <spi.h> #include "tegra_spi.h" /* COMMAND1 */ #define SPI_CMD1_GO BIT(31) #define SPI_CMD1_M_S BIT(30) #define SPI_CMD1_MODE_MASK GENMASK(1, 0) #define SPI_CMD1_MODE_SHIFT 28 #define SPI_CMD1_CS_SEL_MASK GENMASK(1, 0) #define SPI_CMD1_CS_SEL_SHIFT 26 #define SPI_CMD1_CS_POL_INACTIVE3 BIT(25) #define SPI_CMD1_CS_POL_INACTIVE2 BIT(24) #define SPI_CMD1_CS_POL_INACTIVE1 BIT(23) #define SPI_CMD1_CS_POL_INACTIVE0 BIT(22) #define SPI_CMD1_CS_SW_HW BIT(21) #define SPI_CMD1_CS_SW_VAL BIT(20) #define SPI_CMD1_IDLE_SDA_MASK GENMASK(1, 0) #define SPI_CMD1_IDLE_SDA_SHIFT 18 #define SPI_CMD1_BIDIR BIT(17) #define SPI_CMD1_LSBI_FE BIT(16) #define SPI_CMD1_LSBY_FE BIT(15) #define SPI_CMD1_BOTH_EN_BIT BIT(14) #define SPI_CMD1_BOTH_EN_BYTE BIT(13) #define SPI_CMD1_RX_EN BIT(12) #define SPI_CMD1_TX_EN BIT(11) #define SPI_CMD1_PACKED BIT(5) #define SPI_CMD1_BIT_LEN_MASK GENMASK(4, 0) #define SPI_CMD1_BIT_LEN_SHIFT 0 /* COMMAND2 */ #define SPI_CMD2_TX_CLK_TAP_DELAY BIT(6) #define SPI_CMD2_TX_CLK_TAP_DELAY_MASK GENMASK(11, 6) #define SPI_CMD2_RX_CLK_TAP_DELAY BIT(0) #define SPI_CMD2_RX_CLK_TAP_DELAY_MASK GENMASK(5, 0) /* TRANSFER STATUS */ #define SPI_XFER_STS_RDY BIT(30) /* FIFO STATUS */ #define SPI_FIFO_STS_CS_INACTIVE BIT(31) #define SPI_FIFO_STS_FRAME_END BIT(30) #define SPI_FIFO_STS_RX_FIFO_FLUSH BIT(15) #define SPI_FIFO_STS_TX_FIFO_FLUSH BIT(14) #define SPI_FIFO_STS_ERR BIT(8) #define SPI_FIFO_STS_TX_FIFO_OVF BIT(7) #define SPI_FIFO_STS_TX_FIFO_UNR BIT(6) #define SPI_FIFO_STS_RX_FIFO_OVF BIT(5) #define SPI_FIFO_STS_RX_FIFO_UNR BIT(4) #define SPI_FIFO_STS_TX_FIFO_FULL BIT(3) #define SPI_FIFO_STS_TX_FIFO_EMPTY BIT(2) #define SPI_FIFO_STS_RX_FIFO_FULL BIT(1) #define SPI_FIFO_STS_RX_FIFO_EMPTY BIT(0) #define SPI_TIMEOUT 1000 #define TEGRA_SPI_MAX_FREQ 52000000 struct spi_regs { u32 command1; /* 000:SPI_COMMAND1 register */ u32 command2; /* 004:SPI_COMMAND2 register */ u32 timing1; /* 008:SPI_CS_TIM1 register */ u32 timing2; /* 00c:SPI_CS_TIM2 register */ u32 xfer_status;/* 010:SPI_TRANS_STATUS register */ u32 fifo_status;/* 014:SPI_FIFO_STATUS register */ u32 tx_data; /* 018:SPI_TX_DATA register */ u32 rx_data; /* 01c:SPI_RX_DATA register */ u32 dma_ctl; /* 020:SPI_DMA_CTL register */ u32 dma_blk; /* 024:SPI_DMA_BLK register */ u32 rsvd[56]; /* 028-107 reserved */ u32 tx_fifo; /* 108:SPI_FIFO1 register */ u32 rsvd2[31]; /* 10c-187 reserved */ u32 rx_fifo; /* 188:SPI_FIFO2 register */ u32 spare_ctl; /* 18c:SPI_SPARE_CTRL register */ }; struct tegra114_spi_priv { struct spi_regs *regs; unsigned int freq; unsigned int mode; int periph_id; int valid; int last_transaction_us; }; static int tegra114_spi_ofdata_to_platdata(struct udevice *bus) { struct tegra_spi_platdata *plat = bus->platdata; plat->base = dev_read_addr(bus); plat->periph_id = clock_decode_periph_id(bus); if (plat->periph_id == PERIPH_ID_NONE) { debug("%s: could not decode periph id %d\n", __func__, plat->periph_id); return -FDT_ERR_NOTFOUND; } /* Use 500KHz as a suitable default */ plat->frequency = dev_read_u32_default(bus, "spi-max-frequency", 500000); plat->deactivate_delay_us = dev_read_u32_default(bus, "spi-deactivate-delay", 0); debug("%s: base=%#08lx, periph_id=%d, max-frequency=%d, deactivate_delay=%d\n", __func__, plat->base, plat->periph_id, plat->frequency, plat->deactivate_delay_us); return 0; } static int tegra114_spi_probe(struct udevice *bus) { struct tegra_spi_platdata *plat = dev_get_platdata(bus); struct tegra114_spi_priv *priv = dev_get_priv(bus); struct spi_regs *regs; ulong rate; priv->regs = (struct spi_regs *)plat->base; regs = priv->regs; priv->last_transaction_us = timer_get_us(); priv->freq = plat->frequency; priv->periph_id = plat->periph_id; /* * Change SPI clock to correct frequency, PLLP_OUT0 source, falling * back to the oscillator if that is too fast. */ rate = clock_start_periph_pll(priv->periph_id, CLOCK_ID_PERIPH, priv->freq); if (rate > priv->freq + 100000) { rate = clock_start_periph_pll(priv->periph_id, CLOCK_ID_OSC, priv->freq); if (rate != priv->freq) { printf("Warning: SPI '%s' requested clock %u, actual clock %lu\n", bus->name, priv->freq, rate); } } udelay(plat->deactivate_delay_us); /* Clear stale status here */ setbits_le32(®s->fifo_status, SPI_FIFO_STS_ERR | SPI_FIFO_STS_TX_FIFO_OVF | SPI_FIFO_STS_TX_FIFO_UNR | SPI_FIFO_STS_RX_FIFO_OVF | SPI_FIFO_STS_RX_FIFO_UNR | SPI_FIFO_STS_TX_FIFO_FULL | SPI_FIFO_STS_TX_FIFO_EMPTY | SPI_FIFO_STS_RX_FIFO_FULL | SPI_FIFO_STS_RX_FIFO_EMPTY); debug("%s: FIFO STATUS = %08x\n", __func__, readl(®s->fifo_status)); setbits_le32(&priv->regs->command1, SPI_CMD1_M_S | SPI_CMD1_CS_SW_HW | (priv->mode << SPI_CMD1_MODE_SHIFT) | SPI_CMD1_CS_SW_VAL); debug("%s: COMMAND1 = %08x\n", __func__, readl(®s->command1)); return 0; } /** * Activate the CS by driving it LOW * * @param slave Pointer to spi_slave to which controller has to * communicate with */ static void spi_cs_activate(struct udevice *dev) { struct udevice *bus = dev->parent; struct tegra_spi_platdata *pdata = dev_get_platdata(bus); struct tegra114_spi_priv *priv = dev_get_priv(bus); /* If it's too soon to do another transaction, wait */ if (pdata->deactivate_delay_us && priv->last_transaction_us) { ulong delay_us; /* The delay completed so far */ delay_us = timer_get_us() - priv->last_transaction_us; if (delay_us < pdata->deactivate_delay_us) udelay(pdata->deactivate_delay_us - delay_us); } clrbits_le32(&priv->regs->command1, SPI_CMD1_CS_SW_VAL); } /** * Deactivate the CS by driving it HIGH * * @param slave Pointer to spi_slave to which controller has to * communicate with */ static void spi_cs_deactivate(struct udevice *dev) { struct udevice *bus = dev->parent; struct tegra_spi_platdata *pdata = dev_get_platdata(bus); struct tegra114_spi_priv *priv = dev_get_priv(bus); setbits_le32(&priv->regs->command1, SPI_CMD1_CS_SW_VAL); /* Remember time of this transaction so we can honour the bus delay */ if (pdata->deactivate_delay_us) priv->last_transaction_us = timer_get_us(); debug("Deactivate CS, bus '%s'\n", bus->name); } static int tegra114_spi_xfer(struct udevice *dev, unsigned int bitlen, const void *data_out, void *data_in, unsigned long flags) { struct udevice *bus = dev->parent; struct tegra114_spi_priv *priv = dev_get_priv(bus); struct spi_regs *regs = priv->regs; u32 reg, tmpdout, tmpdin = 0; const u8 *dout = data_out; u8 *din = data_in; int num_bytes; int ret; debug("%s: slave %u:%u dout %p din %p bitlen %u\n", __func__, bus->seq, spi_chip_select(dev), dout, din, bitlen); if (bitlen % 8) return -1; num_bytes = bitlen / 8; ret = 0; if (flags & SPI_XFER_BEGIN) spi_cs_activate(dev); /* clear all error status bits */ reg = readl(®s->fifo_status); writel(reg, ®s->fifo_status); clrsetbits_le32(®s->command1, SPI_CMD1_CS_SW_VAL, SPI_CMD1_RX_EN | SPI_CMD1_TX_EN | SPI_CMD1_LSBY_FE | (spi_chip_select(dev) << SPI_CMD1_CS_SEL_SHIFT)); /* set xfer size to 1 block (32 bits) */ writel(0, ®s->dma_blk); /* handle data in 32-bit chunks */ while (num_bytes > 0) { int bytes; int tm, i; tmpdout = 0; bytes = (num_bytes > 4) ? 4 : num_bytes; if (dout != NULL) { for (i = 0; i < bytes; ++i) tmpdout = (tmpdout << 8) | dout[i]; dout += bytes; } num_bytes -= bytes; /* clear ready bit */ setbits_le32(®s->xfer_status, SPI_XFER_STS_RDY); clrsetbits_le32(®s->command1, SPI_CMD1_BIT_LEN_MASK << SPI_CMD1_BIT_LEN_SHIFT, (bytes * 8 - 1) << SPI_CMD1_BIT_LEN_SHIFT); writel(tmpdout, ®s->tx_fifo); setbits_le32(®s->command1, SPI_CMD1_GO); /* * Wait for SPI transmit FIFO to empty, or to time out. * The RX FIFO status will be read and cleared last */ for (tm = 0; tm < SPI_TIMEOUT; ++tm) { u32 fifo_status, xfer_status; xfer_status = readl(®s->xfer_status); if (!(xfer_status & SPI_XFER_STS_RDY)) continue; fifo_status = readl(®s->fifo_status); if (fifo_status & SPI_FIFO_STS_ERR) { debug("%s: got a fifo error: ", __func__); if (fifo_status & SPI_FIFO_STS_TX_FIFO_OVF) debug("tx FIFO overflow "); if (fifo_status & SPI_FIFO_STS_TX_FIFO_UNR) debug("tx FIFO underrun "); if (fifo_status & SPI_FIFO_STS_RX_FIFO_OVF) debug("rx FIFO overflow "); if (fifo_status & SPI_FIFO_STS_RX_FIFO_UNR) debug("rx FIFO underrun "); if (fifo_status & SPI_FIFO_STS_TX_FIFO_FULL) debug("tx FIFO full "); if (fifo_status & SPI_FIFO_STS_TX_FIFO_EMPTY) debug("tx FIFO empty "); if (fifo_status & SPI_FIFO_STS_RX_FIFO_FULL) debug("rx FIFO full "); if (fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY) debug("rx FIFO empty "); debug("\n"); break; } if (!(fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY)) { tmpdin = readl(®s->rx_fifo); /* swap bytes read in */ if (din != NULL) { for (i = bytes - 1; i >= 0; --i) { din[i] = tmpdin & 0xff; tmpdin >>= 8; } din += bytes; } /* We can exit when we've had both RX and TX */ break; } } if (tm >= SPI_TIMEOUT) ret = tm; /* clear ACK RDY, etc. bits */ writel(readl(®s->fifo_status), ®s->fifo_status); } if (flags & SPI_XFER_END) spi_cs_deactivate(dev); debug("%s: transfer ended. Value=%08x, fifo_status = %08x\n", __func__, tmpdin, readl(®s->fifo_status)); if (ret) { printf("%s: timeout during SPI transfer, tm %d\n", __func__, ret); return -1; } return ret; } static int tegra114_spi_set_speed(struct udevice *bus, uint speed) { struct tegra_spi_platdata *plat = bus->platdata; struct tegra114_spi_priv *priv = dev_get_priv(bus); if (speed > plat->frequency) speed = plat->frequency; priv->freq = speed; debug("%s: regs=%p, speed=%d\n", __func__, priv->regs, priv->freq); return 0; } static int tegra114_spi_set_mode(struct udevice *bus, uint mode) { struct tegra114_spi_priv *priv = dev_get_priv(bus); priv->mode = mode; debug("%s: regs=%p, mode=%d\n", __func__, priv->regs, priv->mode); return 0; } static const struct dm_spi_ops tegra114_spi_ops = { .xfer = tegra114_spi_xfer, .set_speed = tegra114_spi_set_speed, .set_mode = tegra114_spi_set_mode, /* * cs_info is not needed, since we require all chip selects to be * in the device tree explicitly */ }; static const struct udevice_id tegra114_spi_ids[] = { { .compatible = "nvidia,tegra114-spi" }, { } }; U_BOOT_DRIVER(tegra114_spi) = { .name = "tegra114_spi", .id = UCLASS_SPI, .of_match = tegra114_spi_ids, .ops = &tegra114_spi_ops, .ofdata_to_platdata = tegra114_spi_ofdata_to_platdata, .platdata_auto_alloc_size = sizeof(struct tegra_spi_platdata), .priv_auto_alloc_size = sizeof(struct tegra114_spi_priv), .probe = tegra114_spi_probe, };