// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2011-2013, NVIDIA Corporation. * Copyright 2014 Google Inc. */ #include <common.h> #include <display.h> #include <dm.h> #include <div64.h> #include <errno.h> #include <video_bridge.h> #include <asm/io.h> #include <asm/arch-tegra/dc.h> #include "display.h" #include "edid.h" #include "sor.h" #include "displayport.h" #define DO_FAST_LINK_TRAINING 1 struct tegra_dp_plat { ulong base; }; /** * struct tegra_dp_priv - private displayport driver info * * @dc_dev: Display controller device that is sending the video feed */ struct tegra_dp_priv { struct udevice *sor; struct udevice *dc_dev; struct dpaux_ctlr *regs; u8 revision; int enabled; }; struct tegra_dp_priv dp_data; static inline u32 tegra_dpaux_readl(struct tegra_dp_priv *dp, u32 reg) { return readl((u32 *)dp->regs + reg); } static inline void tegra_dpaux_writel(struct tegra_dp_priv *dp, u32 reg, u32 val) { writel(val, (u32 *)dp->regs + reg); } static inline u32 tegra_dc_dpaux_poll_register(struct tegra_dp_priv *dp, u32 reg, u32 mask, u32 exp_val, u32 poll_interval_us, u32 timeout_us) { u32 reg_val = 0; u32 temp = timeout_us; do { udelay(poll_interval_us); reg_val = tegra_dpaux_readl(dp, reg); if (timeout_us > poll_interval_us) timeout_us -= poll_interval_us; else break; } while ((reg_val & mask) != exp_val); if ((reg_val & mask) == exp_val) return 0; /* success */ debug("dpaux_poll_register 0x%x: timeout: (reg_val)0x%08x & (mask)0x%08x != (exp_val)0x%08x\n", reg, reg_val, mask, exp_val); return temp; } static inline int tegra_dpaux_wait_transaction(struct tegra_dp_priv *dp) { /* According to DP spec, each aux transaction needs to finish within 40ms. */ if (tegra_dc_dpaux_poll_register(dp, DPAUX_DP_AUXCTL, DPAUX_DP_AUXCTL_TRANSACTREQ_MASK, DPAUX_DP_AUXCTL_TRANSACTREQ_DONE, 100, DP_AUX_TIMEOUT_MS * 1000) != 0) { debug("dp: DPAUX transaction timeout\n"); return -1; } return 0; } static int tegra_dc_dpaux_write_chunk(struct tegra_dp_priv *dp, u32 cmd, u32 addr, u8 *data, u32 *size, u32 *aux_stat) { int i; u32 reg_val; u32 timeout_retries = DP_AUX_TIMEOUT_MAX_TRIES; u32 defer_retries = DP_AUX_DEFER_MAX_TRIES; u32 temp_data; if (*size > DP_AUX_MAX_BYTES) return -1; /* only write one chunk of data */ /* Make sure the command is write command */ switch (cmd) { case DPAUX_DP_AUXCTL_CMD_I2CWR: case DPAUX_DP_AUXCTL_CMD_MOTWR: case DPAUX_DP_AUXCTL_CMD_AUXWR: break; default: debug("dp: aux write cmd 0x%x is invalid\n", cmd); return -EINVAL; } tegra_dpaux_writel(dp, DPAUX_DP_AUXADDR, addr); for (i = 0; i < DP_AUX_MAX_BYTES / 4; ++i) { memcpy(&temp_data, data, 4); tegra_dpaux_writel(dp, DPAUX_DP_AUXDATA_WRITE_W(i), temp_data); data += 4; } reg_val = tegra_dpaux_readl(dp, DPAUX_DP_AUXCTL); reg_val &= ~DPAUX_DP_AUXCTL_CMD_MASK; reg_val |= cmd; reg_val &= ~DPAUX_DP_AUXCTL_CMDLEN_FIELD; reg_val |= ((*size - 1) << DPAUX_DP_AUXCTL_CMDLEN_SHIFT); while ((timeout_retries > 0) && (defer_retries > 0)) { if ((timeout_retries != DP_AUX_TIMEOUT_MAX_TRIES) || (defer_retries != DP_AUX_DEFER_MAX_TRIES)) udelay(1); reg_val |= DPAUX_DP_AUXCTL_TRANSACTREQ_PENDING; tegra_dpaux_writel(dp, DPAUX_DP_AUXCTL, reg_val); if (tegra_dpaux_wait_transaction(dp)) debug("dp: aux write transaction timeout\n"); *aux_stat = tegra_dpaux_readl(dp, DPAUX_DP_AUXSTAT); if ((*aux_stat & DPAUX_DP_AUXSTAT_TIMEOUT_ERROR_PENDING) || (*aux_stat & DPAUX_DP_AUXSTAT_RX_ERROR_PENDING) || (*aux_stat & DPAUX_DP_AUXSTAT_SINKSTAT_ERROR_PENDING) || (*aux_stat & DPAUX_DP_AUXSTAT_NO_STOP_ERROR_PENDING)) { if (timeout_retries-- > 0) { debug("dp: aux write retry (0x%x) -- %d\n", *aux_stat, timeout_retries); /* clear the error bits */ tegra_dpaux_writel(dp, DPAUX_DP_AUXSTAT, *aux_stat); continue; } else { debug("dp: aux write got error (0x%x)\n", *aux_stat); return -ETIMEDOUT; } } if ((*aux_stat & DPAUX_DP_AUXSTAT_REPLYTYPE_I2CDEFER) || (*aux_stat & DPAUX_DP_AUXSTAT_REPLYTYPE_DEFER)) { if (defer_retries-- > 0) { debug("dp: aux write defer (0x%x) -- %d\n", *aux_stat, defer_retries); /* clear the error bits */ tegra_dpaux_writel(dp, DPAUX_DP_AUXSTAT, *aux_stat); continue; } else { debug("dp: aux write defer exceeds max retries (0x%x)\n", *aux_stat); return -ETIMEDOUT; } } if ((*aux_stat & DPAUX_DP_AUXSTAT_REPLYTYPE_MASK) == DPAUX_DP_AUXSTAT_REPLYTYPE_ACK) { *size = ((*aux_stat) & DPAUX_DP_AUXSTAT_REPLY_M_MASK); return 0; } else { debug("dp: aux write failed (0x%x)\n", *aux_stat); return -EIO; } } /* Should never come to here */ return -EIO; } static int tegra_dc_dpaux_read_chunk(struct tegra_dp_priv *dp, u32 cmd, u32 addr, u8 *data, u32 *size, u32 *aux_stat) { u32 reg_val; u32 timeout_retries = DP_AUX_TIMEOUT_MAX_TRIES; u32 defer_retries = DP_AUX_DEFER_MAX_TRIES; if (*size > DP_AUX_MAX_BYTES) { debug("only read one chunk\n"); return -EIO; /* only read one chunk */ } /* Check to make sure the command is read command */ switch (cmd) { case DPAUX_DP_AUXCTL_CMD_I2CRD: case DPAUX_DP_AUXCTL_CMD_I2CREQWSTAT: case DPAUX_DP_AUXCTL_CMD_MOTRD: case DPAUX_DP_AUXCTL_CMD_AUXRD: break; default: debug("dp: aux read cmd 0x%x is invalid\n", cmd); return -EIO; } *aux_stat = tegra_dpaux_readl(dp, DPAUX_DP_AUXSTAT); if (!(*aux_stat & DPAUX_DP_AUXSTAT_HPD_STATUS_PLUGGED)) { debug("dp: HPD is not detected\n"); return -EIO; } tegra_dpaux_writel(dp, DPAUX_DP_AUXADDR, addr); reg_val = tegra_dpaux_readl(dp, DPAUX_DP_AUXCTL); reg_val &= ~DPAUX_DP_AUXCTL_CMD_MASK; reg_val |= cmd; reg_val &= ~DPAUX_DP_AUXCTL_CMDLEN_FIELD; reg_val |= ((*size - 1) << DPAUX_DP_AUXCTL_CMDLEN_SHIFT); while ((timeout_retries > 0) && (defer_retries > 0)) { if ((timeout_retries != DP_AUX_TIMEOUT_MAX_TRIES) || (defer_retries != DP_AUX_DEFER_MAX_TRIES)) udelay(DP_DPCP_RETRY_SLEEP_NS * 2); reg_val |= DPAUX_DP_AUXCTL_TRANSACTREQ_PENDING; tegra_dpaux_writel(dp, DPAUX_DP_AUXCTL, reg_val); if (tegra_dpaux_wait_transaction(dp)) debug("dp: aux read transaction timeout\n"); *aux_stat = tegra_dpaux_readl(dp, DPAUX_DP_AUXSTAT); if ((*aux_stat & DPAUX_DP_AUXSTAT_TIMEOUT_ERROR_PENDING) || (*aux_stat & DPAUX_DP_AUXSTAT_RX_ERROR_PENDING) || (*aux_stat & DPAUX_DP_AUXSTAT_SINKSTAT_ERROR_PENDING) || (*aux_stat & DPAUX_DP_AUXSTAT_NO_STOP_ERROR_PENDING)) { if (timeout_retries-- > 0) { debug("dp: aux read retry (0x%x) -- %d\n", *aux_stat, timeout_retries); /* clear the error bits */ tegra_dpaux_writel(dp, DPAUX_DP_AUXSTAT, *aux_stat); continue; /* retry */ } else { debug("dp: aux read got error (0x%x)\n", *aux_stat); return -ETIMEDOUT; } } if ((*aux_stat & DPAUX_DP_AUXSTAT_REPLYTYPE_I2CDEFER) || (*aux_stat & DPAUX_DP_AUXSTAT_REPLYTYPE_DEFER)) { if (defer_retries-- > 0) { debug("dp: aux read defer (0x%x) -- %d\n", *aux_stat, defer_retries); /* clear the error bits */ tegra_dpaux_writel(dp, DPAUX_DP_AUXSTAT, *aux_stat); continue; } else { debug("dp: aux read defer exceeds max retries (0x%x)\n", *aux_stat); return -ETIMEDOUT; } } if ((*aux_stat & DPAUX_DP_AUXSTAT_REPLYTYPE_MASK) == DPAUX_DP_AUXSTAT_REPLYTYPE_ACK) { int i; u32 temp_data[4]; for (i = 0; i < DP_AUX_MAX_BYTES / 4; ++i) temp_data[i] = tegra_dpaux_readl(dp, DPAUX_DP_AUXDATA_READ_W(i)); *size = ((*aux_stat) & DPAUX_DP_AUXSTAT_REPLY_M_MASK); memcpy(data, temp_data, *size); return 0; } else { debug("dp: aux read failed (0x%x\n", *aux_stat); return -EIO; } } /* Should never come to here */ debug("%s: can't\n", __func__); return -EIO; } static int tegra_dc_dpaux_read(struct tegra_dp_priv *dp, u32 cmd, u32 addr, u8 *data, u32 *size, u32 *aux_stat) { u32 finished = 0; u32 cur_size; int ret = 0; do { cur_size = *size - finished; if (cur_size > DP_AUX_MAX_BYTES) cur_size = DP_AUX_MAX_BYTES; ret = tegra_dc_dpaux_read_chunk(dp, cmd, addr, data, &cur_size, aux_stat); if (ret) break; /* cur_size should be the real size returned */ addr += cur_size; data += cur_size; finished += cur_size; } while (*size > finished); *size = finished; return ret; } static int tegra_dc_dp_dpcd_read(struct tegra_dp_priv *dp, u32 cmd, u8 *data_ptr) { u32 size = 1; u32 status = 0; int ret; ret = tegra_dc_dpaux_read_chunk(dp, DPAUX_DP_AUXCTL_CMD_AUXRD, cmd, data_ptr, &size, &status); if (ret) { debug("dp: Failed to read DPCD data. CMD 0x%x, Status 0x%x\n", cmd, status); } return ret; } static int tegra_dc_dp_dpcd_write(struct tegra_dp_priv *dp, u32 cmd, u8 data) { u32 size = 1; u32 status = 0; int ret; ret = tegra_dc_dpaux_write_chunk(dp, DPAUX_DP_AUXCTL_CMD_AUXWR, cmd, &data, &size, &status); if (ret) { debug("dp: Failed to write DPCD data. CMD 0x%x, Status 0x%x\n", cmd, status); } return ret; } static int tegra_dc_i2c_aux_read(struct tegra_dp_priv *dp, u32 i2c_addr, u8 addr, u8 *data, u32 size, u32 *aux_stat) { u32 finished = 0; int ret = 0; do { u32 cur_size = min((u32)DP_AUX_MAX_BYTES, size - finished); u32 len = 1; ret = tegra_dc_dpaux_write_chunk( dp, DPAUX_DP_AUXCTL_CMD_MOTWR, i2c_addr, &addr, &len, aux_stat); if (ret) { debug("%s: error sending address to read.\n", __func__); return ret; } ret = tegra_dc_dpaux_read_chunk( dp, DPAUX_DP_AUXCTL_CMD_I2CRD, i2c_addr, data, &cur_size, aux_stat); if (ret) { debug("%s: error reading data.\n", __func__); return ret; } /* cur_size should be the real size returned */ addr += cur_size; data += cur_size; finished += cur_size; } while (size > finished); return finished; } static void tegra_dc_dpaux_enable(struct tegra_dp_priv *dp) { /* clear interrupt */ tegra_dpaux_writel(dp, DPAUX_INTR_AUX, 0xffffffff); /* do not enable interrupt for now. Enable them when Isr in place */ tegra_dpaux_writel(dp, DPAUX_INTR_EN_AUX, 0x0); tegra_dpaux_writel(dp, DPAUX_HYBRID_PADCTL, DPAUX_HYBRID_PADCTL_AUX_DRVZ_OHM_50 | DPAUX_HYBRID_PADCTL_AUX_CMH_V0_70 | 0x18 << DPAUX_HYBRID_PADCTL_AUX_DRVI_SHIFT | DPAUX_HYBRID_PADCTL_AUX_INPUT_RCV_ENABLE); tegra_dpaux_writel(dp, DPAUX_HYBRID_SPARE, DPAUX_HYBRID_SPARE_PAD_PWR_POWERUP); } #ifdef DEBUG static void tegra_dc_dp_dump_link_cfg(struct tegra_dp_priv *dp, const struct tegra_dp_link_config *link_cfg) { debug("DP config: cfg_name cfg_value\n"); debug(" Lane Count %d\n", link_cfg->max_lane_count); debug(" SupportEnhancedFraming %s\n", link_cfg->support_enhanced_framing ? "Y" : "N"); debug(" Bandwidth %d\n", link_cfg->max_link_bw); debug(" bpp %d\n", link_cfg->bits_per_pixel); debug(" EnhancedFraming %s\n", link_cfg->enhanced_framing ? "Y" : "N"); debug(" Scramble_enabled %s\n", link_cfg->scramble_ena ? "Y" : "N"); debug(" LinkBW %d\n", link_cfg->link_bw); debug(" lane_count %d\n", link_cfg->lane_count); debug(" activespolarity %d\n", link_cfg->activepolarity); debug(" active_count %d\n", link_cfg->active_count); debug(" tu_size %d\n", link_cfg->tu_size); debug(" active_frac %d\n", link_cfg->active_frac); debug(" watermark %d\n", link_cfg->watermark); debug(" hblank_sym %d\n", link_cfg->hblank_sym); debug(" vblank_sym %d\n", link_cfg->vblank_sym); } #endif static int _tegra_dp_lower_link_config(struct tegra_dp_priv *dp, struct tegra_dp_link_config *cfg) { switch (cfg->link_bw) { case SOR_LINK_SPEED_G1_62: if (cfg->max_link_bw > SOR_LINK_SPEED_G1_62) cfg->link_bw = SOR_LINK_SPEED_G2_7; cfg->lane_count /= 2; break; case SOR_LINK_SPEED_G2_7: cfg->link_bw = SOR_LINK_SPEED_G1_62; break; case SOR_LINK_SPEED_G5_4: if (cfg->lane_count == 1) { cfg->link_bw = SOR_LINK_SPEED_G2_7; cfg->lane_count = cfg->max_lane_count; } else { cfg->lane_count /= 2; } break; default: debug("dp: Error link rate %d\n", cfg->link_bw); return -ENOLINK; } return (cfg->lane_count > 0) ? 0 : -ENOLINK; } /* * Calcuate if given cfg can meet the mode request. * Return 0 if mode is possible, -1 otherwise */ static int tegra_dc_dp_calc_config(struct tegra_dp_priv *dp, const struct display_timing *timing, struct tegra_dp_link_config *link_cfg) { const u32 link_rate = 27 * link_cfg->link_bw * 1000 * 1000; const u64 f = 100000; /* precision factor */ u32 num_linkclk_line; /* Number of link clocks per line */ u64 ratio_f; /* Ratio of incoming to outgoing data rate */ u64 frac_f; u64 activesym_f; /* Activesym per TU */ u64 activecount_f; u32 activecount; u32 activepolarity; u64 approx_value_f; u32 activefrac = 0; u64 accumulated_error_f = 0; u32 lowest_neg_activecount = 0; u32 lowest_neg_activepolarity = 0; u32 lowest_neg_tusize = 64; u32 num_symbols_per_line; u64 lowest_neg_activefrac = 0; u64 lowest_neg_error_f = 64 * f; u64 watermark_f; int i; int neg; if (!link_rate || !link_cfg->lane_count || !timing->pixelclock.typ || !link_cfg->bits_per_pixel) return -1; if ((u64)timing->pixelclock.typ * link_cfg->bits_per_pixel >= (u64)link_rate * 8 * link_cfg->lane_count) return -1; num_linkclk_line = (u32)(lldiv(link_rate * timing->hactive.typ, timing->pixelclock.typ)); ratio_f = (u64)timing->pixelclock.typ * link_cfg->bits_per_pixel * f; ratio_f /= 8; do_div(ratio_f, link_rate * link_cfg->lane_count); for (i = 64; i >= 32; --i) { activesym_f = ratio_f * i; activecount_f = lldiv(activesym_f, (u32)f) * f; frac_f = activesym_f - activecount_f; activecount = (u32)(lldiv(activecount_f, (u32)f)); if (frac_f < (lldiv(f, 2))) /* fraction < 0.5 */ activepolarity = 0; else { activepolarity = 1; frac_f = f - frac_f; } if (frac_f != 0) { /* warning: frac_f should be 64-bit */ frac_f = lldiv(f * f, frac_f); /* 1 / fraction */ if (frac_f > (15 * f)) activefrac = activepolarity ? 1 : 15; else activefrac = activepolarity ? (u32)lldiv(frac_f, (u32)f) + 1 : (u32)lldiv(frac_f, (u32)f); } if (activefrac == 1) activepolarity = 0; if (activepolarity == 1) approx_value_f = activefrac ? lldiv( (activecount_f + (activefrac * f - f) * f), (activefrac * f)) : activecount_f + f; else approx_value_f = activefrac ? activecount_f + lldiv(f, activefrac) : activecount_f; if (activesym_f < approx_value_f) { accumulated_error_f = num_linkclk_line * lldiv(approx_value_f - activesym_f, i); neg = 1; } else { accumulated_error_f = num_linkclk_line * lldiv(activesym_f - approx_value_f, i); neg = 0; } if ((neg && (lowest_neg_error_f > accumulated_error_f)) || (accumulated_error_f == 0)) { lowest_neg_error_f = accumulated_error_f; lowest_neg_tusize = i; lowest_neg_activecount = activecount; lowest_neg_activepolarity = activepolarity; lowest_neg_activefrac = activefrac; if (accumulated_error_f == 0) break; } } if (lowest_neg_activefrac == 0) { link_cfg->activepolarity = 0; link_cfg->active_count = lowest_neg_activepolarity ? lowest_neg_activecount : lowest_neg_activecount - 1; link_cfg->tu_size = lowest_neg_tusize; link_cfg->active_frac = 1; } else { link_cfg->activepolarity = lowest_neg_activepolarity; link_cfg->active_count = (u32)lowest_neg_activecount; link_cfg->tu_size = lowest_neg_tusize; link_cfg->active_frac = (u32)lowest_neg_activefrac; } watermark_f = lldiv(ratio_f * link_cfg->tu_size * (f - ratio_f), f); link_cfg->watermark = (u32)(lldiv(watermark_f + lowest_neg_error_f, f)) + link_cfg->bits_per_pixel / 4 - 1; num_symbols_per_line = (timing->hactive.typ * link_cfg->bits_per_pixel) / (8 * link_cfg->lane_count); if (link_cfg->watermark > 30) { debug("dp: sor setting: unable to get a good tusize, force watermark to 30\n"); link_cfg->watermark = 30; return -1; } else if (link_cfg->watermark > num_symbols_per_line) { debug("dp: sor setting: force watermark to the number of symbols in the line\n"); link_cfg->watermark = num_symbols_per_line; return -1; } /* * Refer to dev_disp.ref for more information. * # symbols/hblank = ((SetRasterBlankEnd.X + SetRasterSize.Width - * SetRasterBlankStart.X - 7) * link_clk / pclk) * - 3 * enhanced_framing - Y * where Y = (# lanes == 4) 3 : (# lanes == 2) ? 6 : 12 */ link_cfg->hblank_sym = (int)lldiv(((uint64_t)timing->hback_porch.typ + timing->hfront_porch.typ + timing->hsync_len.typ - 7) * link_rate, timing->pixelclock.typ) - 3 * link_cfg->enhanced_framing - (12 / link_cfg->lane_count); if (link_cfg->hblank_sym < 0) link_cfg->hblank_sym = 0; /* * Refer to dev_disp.ref for more information. * # symbols/vblank = ((SetRasterBlankStart.X - * SetRasterBlankEen.X - 25) * link_clk / pclk) * - Y - 1; * where Y = (# lanes == 4) 12 : (# lanes == 2) ? 21 : 39 */ link_cfg->vblank_sym = (int)lldiv(((uint64_t)timing->hactive.typ - 25) * link_rate, timing->pixelclock.typ) - (36 / link_cfg->lane_count) - 4; if (link_cfg->vblank_sym < 0) link_cfg->vblank_sym = 0; link_cfg->is_valid = 1; #ifdef DEBUG tegra_dc_dp_dump_link_cfg(dp, link_cfg); #endif return 0; } static int tegra_dc_dp_init_max_link_cfg( const struct display_timing *timing, struct tegra_dp_priv *dp, struct tegra_dp_link_config *link_cfg) { const int drive_current = 0x40404040; const int preemphasis = 0x0f0f0f0f; const int postcursor = 0; u8 dpcd_data; int ret; ret = tegra_dc_dp_dpcd_read(dp, DP_MAX_LANE_COUNT, &dpcd_data); if (ret) return ret; link_cfg->max_lane_count = dpcd_data & DP_MAX_LANE_COUNT_MASK; link_cfg->tps3_supported = (dpcd_data & DP_MAX_LANE_COUNT_TPS3_SUPPORTED_YES) ? 1 : 0; link_cfg->support_enhanced_framing = (dpcd_data & DP_MAX_LANE_COUNT_ENHANCED_FRAMING_YES) ? 1 : 0; ret = tegra_dc_dp_dpcd_read(dp, DP_MAX_DOWNSPREAD, &dpcd_data); if (ret) return ret; link_cfg->downspread = (dpcd_data & DP_MAX_DOWNSPREAD_VAL_0_5_PCT) ? 1 : 0; ret = tegra_dc_dp_dpcd_read(dp, NV_DPCD_TRAINING_AUX_RD_INTERVAL, &link_cfg->aux_rd_interval); if (ret) return ret; ret = tegra_dc_dp_dpcd_read(dp, DP_MAX_LINK_RATE, &link_cfg->max_link_bw); if (ret) return ret; /* * Set to a high value for link training and attach. * Will be re-programmed when dp is enabled. */ link_cfg->drive_current = drive_current; link_cfg->preemphasis = preemphasis; link_cfg->postcursor = postcursor; ret = tegra_dc_dp_dpcd_read(dp, DP_EDP_CONFIGURATION_CAP, &dpcd_data); if (ret) return ret; link_cfg->alt_scramber_reset_cap = (dpcd_data & DP_EDP_CONFIGURATION_CAP_ASC_RESET_YES) ? 1 : 0; link_cfg->only_enhanced_framing = (dpcd_data & DP_EDP_CONFIGURATION_CAP_FRAMING_CHANGE_YES) ? 1 : 0; link_cfg->lane_count = link_cfg->max_lane_count; link_cfg->link_bw = link_cfg->max_link_bw; link_cfg->enhanced_framing = link_cfg->support_enhanced_framing; link_cfg->frame_in_ms = (1000 / 60) + 1; tegra_dc_dp_calc_config(dp, timing, link_cfg); return 0; } static int tegra_dc_dp_set_assr(struct tegra_dp_priv *priv, struct udevice *sor, int ena) { int ret; u8 dpcd_data = ena ? DP_MAIN_LINK_CHANNEL_CODING_SET_ASC_RESET_ENABLE : DP_MAIN_LINK_CHANNEL_CODING_SET_ASC_RESET_DISABLE; ret = tegra_dc_dp_dpcd_write(priv, DP_EDP_CONFIGURATION_SET, dpcd_data); if (ret) return ret; /* Also reset the scrambler to 0xfffe */ tegra_dc_sor_set_internal_panel(sor, ena); return 0; } static int tegra_dp_set_link_bandwidth(struct tegra_dp_priv *dp, struct udevice *sor, u8 link_bw) { tegra_dc_sor_set_link_bandwidth(sor, link_bw); /* Sink side */ return tegra_dc_dp_dpcd_write(dp, DP_LINK_BW_SET, link_bw); } static int tegra_dp_set_lane_count(struct tegra_dp_priv *dp, const struct tegra_dp_link_config *link_cfg, struct udevice *sor) { u8 dpcd_data; int ret; /* check if panel support enhanched_framing */ dpcd_data = link_cfg->lane_count; if (link_cfg->enhanced_framing) dpcd_data |= DP_LANE_COUNT_SET_ENHANCEDFRAMING_T; ret = tegra_dc_dp_dpcd_write(dp, DP_LANE_COUNT_SET, dpcd_data); if (ret) return ret; tegra_dc_sor_set_lane_count(sor, link_cfg->lane_count); /* Also power down lanes that will not be used */ return 0; } static int tegra_dc_dp_link_trained(struct tegra_dp_priv *dp, const struct tegra_dp_link_config *cfg) { u32 lane; u8 mask; u8 data; int ret; for (lane = 0; lane < cfg->lane_count; ++lane) { ret = tegra_dc_dp_dpcd_read(dp, (lane / 2) ? DP_LANE2_3_STATUS : DP_LANE0_1_STATUS, &data); if (ret) return ret; mask = (lane & 1) ? NV_DPCD_STATUS_LANEXPLUS1_CR_DONE_YES | NV_DPCD_STATUS_LANEXPLUS1_CHN_EQ_DONE_YES | NV_DPCD_STATUS_LANEXPLUS1_SYMBOL_LOCKED_YES : DP_LANE_CR_DONE | DP_LANE_CHANNEL_EQ_DONE | DP_LANE_SYMBOL_LOCKED; if ((data & mask) != mask) return -1; } return 0; } static int tegra_dp_channel_eq_status(struct tegra_dp_priv *dp, const struct tegra_dp_link_config *cfg) { u32 cnt; u32 n_lanes = cfg->lane_count; u8 data; u8 ce_done = 1; int ret; for (cnt = 0; cnt < n_lanes / 2; cnt++) { ret = tegra_dc_dp_dpcd_read(dp, DP_LANE0_1_STATUS + cnt, &data); if (ret) return ret; if (n_lanes == 1) { ce_done = (data & (0x1 << NV_DPCD_STATUS_LANEX_CHN_EQ_DONE_SHIFT)) && (data & (0x1 << NV_DPCD_STATUS_LANEX_SYMBOL_LOCKED_SHFIT)); break; } else if (!(data & (0x1 << NV_DPCD_STATUS_LANEX_CHN_EQ_DONE_SHIFT)) || !(data & (0x1 << NV_DPCD_STATUS_LANEX_SYMBOL_LOCKED_SHFIT)) || !(data & (0x1 << NV_DPCD_STATUS_LANEXPLUS1_CHN_EQ_DONE_SHIFT)) || !(data & (0x1 << NV_DPCD_STATUS_LANEXPLUS1_SYMBOL_LOCKED_SHIFT))) return -EIO; } if (ce_done) { ret = tegra_dc_dp_dpcd_read(dp, DP_LANE_ALIGN_STATUS_UPDATED, &data); if (ret) return ret; if (!(data & NV_DPCD_LANE_ALIGN_STATUS_UPDATED_DONE_YES)) ce_done = 0; } return ce_done ? 0 : -EIO; } static int tegra_dp_clock_recovery_status(struct tegra_dp_priv *dp, const struct tegra_dp_link_config *cfg) { u32 cnt; u32 n_lanes = cfg->lane_count; u8 data_ptr; int ret; for (cnt = 0; cnt < n_lanes / 2; cnt++) { ret = tegra_dc_dp_dpcd_read(dp, (DP_LANE0_1_STATUS + cnt), &data_ptr); if (ret) return ret; if (n_lanes == 1) return (data_ptr & NV_DPCD_STATUS_LANEX_CR_DONE_YES) ? 1 : 0; else if (!(data_ptr & NV_DPCD_STATUS_LANEX_CR_DONE_YES) || !(data_ptr & (NV_DPCD_STATUS_LANEXPLUS1_CR_DONE_YES))) return 0; } return 1; } static int tegra_dp_lt_adjust(struct tegra_dp_priv *dp, u32 pe[4], u32 vs[4], u32 pc[4], u8 pc_supported, const struct tegra_dp_link_config *cfg) { size_t cnt; u8 data_ptr; u32 n_lanes = cfg->lane_count; int ret; for (cnt = 0; cnt < n_lanes / 2; cnt++) { ret = tegra_dc_dp_dpcd_read(dp, DP_ADJUST_REQUEST_LANE0_1 + cnt, &data_ptr); if (ret) return ret; pe[2 * cnt] = (data_ptr & NV_DPCD_ADJUST_REQ_LANEX_PE_MASK) >> NV_DPCD_ADJUST_REQ_LANEX_PE_SHIFT; vs[2 * cnt] = (data_ptr & NV_DPCD_ADJUST_REQ_LANEX_DC_MASK) >> NV_DPCD_ADJUST_REQ_LANEX_DC_SHIFT; pe[1 + 2 * cnt] = (data_ptr & NV_DPCD_ADJUST_REQ_LANEXPLUS1_PE_MASK) >> NV_DPCD_ADJUST_REQ_LANEXPLUS1_PE_SHIFT; vs[1 + 2 * cnt] = (data_ptr & NV_DPCD_ADJUST_REQ_LANEXPLUS1_DC_MASK) >> NV_DPCD_ADJUST_REQ_LANEXPLUS1_DC_SHIFT; } if (pc_supported) { ret = tegra_dc_dp_dpcd_read(dp, NV_DPCD_ADJUST_REQ_POST_CURSOR2, &data_ptr); if (ret) return ret; for (cnt = 0; cnt < n_lanes; cnt++) { pc[cnt] = (data_ptr >> NV_DPCD_ADJUST_REQ_POST_CURSOR2_LANE_SHIFT(cnt)) & NV_DPCD_ADJUST_REQ_POST_CURSOR2_LANE_MASK; } } return 0; } static void tegra_dp_wait_aux_training(struct tegra_dp_priv *dp, bool is_clk_recovery, const struct tegra_dp_link_config *cfg) { if (!cfg->aux_rd_interval) udelay(is_clk_recovery ? 200 : 500); else mdelay(cfg->aux_rd_interval * 4); } static void tegra_dp_tpg(struct tegra_dp_priv *dp, u32 tp, u32 n_lanes, const struct tegra_dp_link_config *cfg) { u8 data = (tp == training_pattern_disabled) ? (tp | NV_DPCD_TRAINING_PATTERN_SET_SC_DISABLED_F) : (tp | NV_DPCD_TRAINING_PATTERN_SET_SC_DISABLED_T); tegra_dc_sor_set_dp_linkctl(dp->sor, 1, tp, cfg); tegra_dc_dp_dpcd_write(dp, DP_TRAINING_PATTERN_SET, data); } static int tegra_dp_link_config(struct tegra_dp_priv *dp, const struct tegra_dp_link_config *link_cfg) { u8 dpcd_data; u32 retry; int ret; if (link_cfg->lane_count == 0) { debug("dp: error: lane count is 0. Can not set link config.\n"); return -ENOLINK; } /* Set power state if it is not in normal level */ ret = tegra_dc_dp_dpcd_read(dp, DP_SET_POWER, &dpcd_data); if (ret) return ret; if (dpcd_data == DP_SET_POWER_D3) { dpcd_data = DP_SET_POWER_D0; /* DP spec requires 3 retries */ for (retry = 3; retry > 0; --retry) { ret = tegra_dc_dp_dpcd_write(dp, DP_SET_POWER, dpcd_data); if (!ret) break; if (retry == 1) { debug("dp: Failed to set DP panel power\n"); return ret; } } } /* Enable ASSR if possible */ if (link_cfg->alt_scramber_reset_cap) { ret = tegra_dc_dp_set_assr(dp, dp->sor, 1); if (ret) return ret; } ret = tegra_dp_set_link_bandwidth(dp, dp->sor, link_cfg->link_bw); if (ret) { debug("dp: Failed to set link bandwidth\n"); return ret; } ret = tegra_dp_set_lane_count(dp, link_cfg, dp->sor); if (ret) { debug("dp: Failed to set lane count\n"); return ret; } tegra_dc_sor_set_dp_linkctl(dp->sor, 1, training_pattern_none, link_cfg); return 0; } static int tegra_dp_lower_link_config(struct tegra_dp_priv *dp, const struct display_timing *timing, struct tegra_dp_link_config *cfg) { struct tegra_dp_link_config tmp_cfg; int ret; tmp_cfg = *cfg; cfg->is_valid = 0; ret = _tegra_dp_lower_link_config(dp, cfg); if (!ret) ret = tegra_dc_dp_calc_config(dp, timing, cfg); if (!ret) ret = tegra_dp_link_config(dp, cfg); if (ret) goto fail; return 0; fail: *cfg = tmp_cfg; tegra_dp_link_config(dp, &tmp_cfg); return ret; } static int tegra_dp_lt_config(struct tegra_dp_priv *dp, u32 pe[4], u32 vs[4], u32 pc[4], const struct tegra_dp_link_config *cfg) { struct udevice *sor = dp->sor; u32 n_lanes = cfg->lane_count; u8 pc_supported = cfg->tps3_supported; u32 cnt; u32 val; for (cnt = 0; cnt < n_lanes; cnt++) { u32 mask = 0; u32 pe_reg, vs_reg, pc_reg; u32 shift = 0; switch (cnt) { case 0: mask = PR_LANE2_DP_LANE0_MASK; shift = PR_LANE2_DP_LANE0_SHIFT; break; case 1: mask = PR_LANE1_DP_LANE1_MASK; shift = PR_LANE1_DP_LANE1_SHIFT; break; case 2: mask = PR_LANE0_DP_LANE2_MASK; shift = PR_LANE0_DP_LANE2_SHIFT; break; case 3: mask = PR_LANE3_DP_LANE3_MASK; shift = PR_LANE3_DP_LANE3_SHIFT; break; default: debug("dp: incorrect lane cnt\n"); return -EINVAL; } pe_reg = tegra_dp_pe_regs[pc[cnt]][vs[cnt]][pe[cnt]]; vs_reg = tegra_dp_vs_regs[pc[cnt]][vs[cnt]][pe[cnt]]; pc_reg = tegra_dp_pc_regs[pc[cnt]][vs[cnt]][pe[cnt]]; tegra_dp_set_pe_vs_pc(sor, mask, pe_reg << shift, vs_reg << shift, pc_reg << shift, pc_supported); } tegra_dp_disable_tx_pu(dp->sor); udelay(20); for (cnt = 0; cnt < n_lanes; cnt++) { u32 max_vs_flag = tegra_dp_is_max_vs(pe[cnt], vs[cnt]); u32 max_pe_flag = tegra_dp_is_max_pe(pe[cnt], vs[cnt]); val = (vs[cnt] << NV_DPCD_TRAINING_LANEX_SET_DC_SHIFT) | (max_vs_flag ? NV_DPCD_TRAINING_LANEX_SET_DC_MAX_REACHED_T : NV_DPCD_TRAINING_LANEX_SET_DC_MAX_REACHED_F) | (pe[cnt] << NV_DPCD_TRAINING_LANEX_SET_PE_SHIFT) | (max_pe_flag ? NV_DPCD_TRAINING_LANEX_SET_PE_MAX_REACHED_T : NV_DPCD_TRAINING_LANEX_SET_PE_MAX_REACHED_F); tegra_dc_dp_dpcd_write(dp, (DP_TRAINING_LANE0_SET + cnt), val); } if (pc_supported) { for (cnt = 0; cnt < n_lanes / 2; cnt++) { u32 max_pc_flag0 = tegra_dp_is_max_pc(pc[cnt]); u32 max_pc_flag1 = tegra_dp_is_max_pc(pc[cnt + 1]); val = (pc[cnt] << NV_DPCD_LANEX_SET2_PC2_SHIFT) | (max_pc_flag0 ? NV_DPCD_LANEX_SET2_PC2_MAX_REACHED_T : NV_DPCD_LANEX_SET2_PC2_MAX_REACHED_F) | (pc[cnt + 1] << NV_DPCD_LANEXPLUS1_SET2_PC2_SHIFT) | (max_pc_flag1 ? NV_DPCD_LANEXPLUS1_SET2_PC2_MAX_REACHED_T : NV_DPCD_LANEXPLUS1_SET2_PC2_MAX_REACHED_F); tegra_dc_dp_dpcd_write(dp, NV_DPCD_TRAINING_LANE0_1_SET2 + cnt, val); } } return 0; } static int _tegra_dp_channel_eq(struct tegra_dp_priv *dp, u32 pe[4], u32 vs[4], u32 pc[4], u8 pc_supported, u32 n_lanes, const struct tegra_dp_link_config *cfg) { u32 retry_cnt; for (retry_cnt = 0; retry_cnt < 4; retry_cnt++) { int ret; if (retry_cnt) { ret = tegra_dp_lt_adjust(dp, pe, vs, pc, pc_supported, cfg); if (ret) return ret; tegra_dp_lt_config(dp, pe, vs, pc, cfg); } tegra_dp_wait_aux_training(dp, false, cfg); if (!tegra_dp_clock_recovery_status(dp, cfg)) { debug("dp: CR failed in channel EQ sequence!\n"); break; } if (!tegra_dp_channel_eq_status(dp, cfg)) return 0; } return -EIO; } static int tegra_dp_channel_eq(struct tegra_dp_priv *dp, u32 pe[4], u32 vs[4], u32 pc[4], const struct tegra_dp_link_config *cfg) { u32 n_lanes = cfg->lane_count; u8 pc_supported = cfg->tps3_supported; int ret; u32 tp_src = training_pattern_2; if (pc_supported) tp_src = training_pattern_3; tegra_dp_tpg(dp, tp_src, n_lanes, cfg); ret = _tegra_dp_channel_eq(dp, pe, vs, pc, pc_supported, n_lanes, cfg); tegra_dp_tpg(dp, training_pattern_disabled, n_lanes, cfg); return ret; } static int _tegra_dp_clk_recovery(struct tegra_dp_priv *dp, u32 pe[4], u32 vs[4], u32 pc[4], u8 pc_supported, u32 n_lanes, const struct tegra_dp_link_config *cfg) { u32 vs_temp[4]; u32 retry_cnt = 0; do { tegra_dp_lt_config(dp, pe, vs, pc, cfg); tegra_dp_wait_aux_training(dp, true, cfg); if (tegra_dp_clock_recovery_status(dp, cfg)) return 0; memcpy(vs_temp, vs, sizeof(vs_temp)); tegra_dp_lt_adjust(dp, pe, vs, pc, pc_supported, cfg); if (memcmp(vs_temp, vs, sizeof(vs_temp))) retry_cnt = 0; else ++retry_cnt; } while (retry_cnt < 5); return -EIO; } static int tegra_dp_clk_recovery(struct tegra_dp_priv *dp, u32 pe[4], u32 vs[4], u32 pc[4], const struct tegra_dp_link_config *cfg) { u32 n_lanes = cfg->lane_count; u8 pc_supported = cfg->tps3_supported; int err; tegra_dp_tpg(dp, training_pattern_1, n_lanes, cfg); err = _tegra_dp_clk_recovery(dp, pe, vs, pc, pc_supported, n_lanes, cfg); if (err < 0) tegra_dp_tpg(dp, training_pattern_disabled, n_lanes, cfg); return err; } static int tegra_dc_dp_full_link_training(struct tegra_dp_priv *dp, const struct display_timing *timing, struct tegra_dp_link_config *cfg) { struct udevice *sor = dp->sor; int err; u32 pe[4], vs[4], pc[4]; tegra_sor_precharge_lanes(sor, cfg); retry_cr: memset(pe, PREEMPHASIS_DISABLED, sizeof(pe)); memset(vs, DRIVECURRENT_LEVEL0, sizeof(vs)); memset(pc, POSTCURSOR2_LEVEL0, sizeof(pc)); err = tegra_dp_clk_recovery(dp, pe, vs, pc, cfg); if (err) { if (!tegra_dp_lower_link_config(dp, timing, cfg)) goto retry_cr; debug("dp: clk recovery failed\n"); goto fail; } err = tegra_dp_channel_eq(dp, pe, vs, pc, cfg); if (err) { if (!tegra_dp_lower_link_config(dp, timing, cfg)) goto retry_cr; debug("dp: channel equalization failed\n"); goto fail; } #ifdef DEBUG tegra_dc_dp_dump_link_cfg(dp, cfg); #endif return 0; fail: return err; } /* * All link training functions are ported from kernel dc driver. * See more details at drivers/video/tegra/dc/dp.c */ static int tegra_dc_dp_fast_link_training(struct tegra_dp_priv *dp, const struct tegra_dp_link_config *link_cfg, struct udevice *sor) { u8 link_bw; u8 lane_count; u16 data16; u32 data32; u32 size; u32 status; int j; u32 mask = 0xffff >> ((4 - link_cfg->lane_count) * 4); tegra_dc_sor_set_lane_parm(sor, link_cfg); tegra_dc_dp_dpcd_write(dp, DP_MAIN_LINK_CHANNEL_CODING_SET, DP_SET_ANSI_8B10B); /* Send TP1 */ tegra_dc_sor_set_dp_linkctl(sor, 1, training_pattern_1, link_cfg); tegra_dc_dp_dpcd_write(dp, DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_1); for (j = 0; j < link_cfg->lane_count; ++j) tegra_dc_dp_dpcd_write(dp, DP_TRAINING_LANE0_SET + j, 0x24); udelay(520); size = sizeof(data16); tegra_dc_dpaux_read(dp, DPAUX_DP_AUXCTL_CMD_AUXRD, DP_LANE0_1_STATUS, (u8 *)&data16, &size, &status); status = mask & 0x1111; if ((data16 & status) != status) { debug("dp: Link training error for TP1 (%#x, status %#x)\n", data16, status); return -EFAULT; } /* enable ASSR */ tegra_dc_dp_set_assr(dp, sor, link_cfg->scramble_ena); tegra_dc_sor_set_dp_linkctl(sor, 1, training_pattern_3, link_cfg); tegra_dc_dp_dpcd_write(dp, DP_TRAINING_PATTERN_SET, link_cfg->link_bw == 20 ? 0x23 : 0x22); for (j = 0; j < link_cfg->lane_count; ++j) tegra_dc_dp_dpcd_write(dp, DP_TRAINING_LANE0_SET + j, 0x24); udelay(520); size = sizeof(data32); tegra_dc_dpaux_read(dp, DPAUX_DP_AUXCTL_CMD_AUXRD, DP_LANE0_1_STATUS, (u8 *)&data32, &size, &status); if ((data32 & mask) != (0x7777 & mask)) { debug("dp: Link training error for TP2/3 (0x%x)\n", data32); return -EFAULT; } tegra_dc_sor_set_dp_linkctl(sor, 1, training_pattern_disabled, link_cfg); tegra_dc_dp_dpcd_write(dp, DP_TRAINING_PATTERN_SET, 0); if (tegra_dc_dp_link_trained(dp, link_cfg)) { tegra_dc_sor_read_link_config(sor, &link_bw, &lane_count); debug("Fast link training failed, link bw %d, lane # %d\n", link_bw, lane_count); return -EFAULT; } debug("Fast link training succeeded, link bw %d, lane %d\n", link_cfg->link_bw, link_cfg->lane_count); return 0; } static int tegra_dp_do_link_training(struct tegra_dp_priv *dp, struct tegra_dp_link_config *link_cfg, const struct display_timing *timing, struct udevice *sor) { u8 link_bw; u8 lane_count; int ret; if (DO_FAST_LINK_TRAINING) { ret = tegra_dc_dp_fast_link_training(dp, link_cfg, sor); if (ret) { debug("dp: fast link training failed\n"); } else { /* * set to a known-good drive setting if fast link * succeeded. Ignore any error. */ ret = tegra_dc_sor_set_voltage_swing(dp->sor, link_cfg); if (ret) debug("Failed to set voltage swing\n"); } } else { ret = -ENOSYS; } if (ret) { /* Try full link training then */ ret = tegra_dc_dp_full_link_training(dp, timing, link_cfg); if (ret) { debug("dp: full link training failed\n"); return ret; } } /* Everything is good; double check the link config */ tegra_dc_sor_read_link_config(sor, &link_bw, &lane_count); if ((link_cfg->link_bw == link_bw) && (link_cfg->lane_count == lane_count)) return 0; else return -EFAULT; } static int tegra_dc_dp_explore_link_cfg(struct tegra_dp_priv *dp, struct tegra_dp_link_config *link_cfg, struct udevice *sor, const struct display_timing *timing) { struct tegra_dp_link_config temp_cfg; if (!timing->pixelclock.typ || !timing->hactive.typ || !timing->vactive.typ) { debug("dp: error mode configuration"); return -EINVAL; } if (!link_cfg->max_link_bw || !link_cfg->max_lane_count) { debug("dp: error link configuration"); return -EINVAL; } link_cfg->is_valid = 0; memcpy(&temp_cfg, link_cfg, sizeof(temp_cfg)); temp_cfg.link_bw = temp_cfg.max_link_bw; temp_cfg.lane_count = temp_cfg.max_lane_count; /* * set to max link config */ if ((!tegra_dc_dp_calc_config(dp, timing, &temp_cfg)) && (!tegra_dp_link_config(dp, &temp_cfg)) && (!tegra_dp_do_link_training(dp, &temp_cfg, timing, sor))) /* the max link cfg is doable */ memcpy(link_cfg, &temp_cfg, sizeof(temp_cfg)); return link_cfg->is_valid ? 0 : -EFAULT; } static int tegra_dp_hpd_plug(struct tegra_dp_priv *dp) { const int vdd_to_hpd_delay_ms = 200; u32 val; ulong start; start = get_timer(0); do { val = tegra_dpaux_readl(dp, DPAUX_DP_AUXSTAT); if (val & DPAUX_DP_AUXSTAT_HPD_STATUS_PLUGGED) return 0; udelay(100); } while (get_timer(start) < vdd_to_hpd_delay_ms); return -EIO; } static int tegra_dc_dp_sink_out_of_sync(struct tegra_dp_priv *dp, u32 delay_ms) { u8 dpcd_data; int out_of_sync; int ret; debug("%s: delay=%d\n", __func__, delay_ms); mdelay(delay_ms); ret = tegra_dc_dp_dpcd_read(dp, DP_SINK_STATUS, &dpcd_data); if (ret) return ret; out_of_sync = !(dpcd_data & DP_SINK_STATUS_PORT0_IN_SYNC); if (out_of_sync) debug("SINK receive port 0 out of sync, data=%x\n", dpcd_data); else debug("SINK is in synchronization\n"); return out_of_sync; } static int tegra_dc_dp_check_sink(struct tegra_dp_priv *dp, struct tegra_dp_link_config *link_cfg, const struct display_timing *timing) { const int max_retry = 5; int delay_frame; int retries; /* * DP TCON may skip some main stream frames, thus we need to wait * some delay before reading the DPCD SINK STATUS register, starting * from 5 */ delay_frame = 5; retries = max_retry; do { int ret; if (!tegra_dc_dp_sink_out_of_sync(dp, link_cfg->frame_in_ms * delay_frame)) return 0; debug("%s: retries left %d\n", __func__, retries); if (!retries--) { printf("DP: Out of sync after %d retries\n", max_retry); return -EIO; } ret = tegra_dc_sor_detach(dp->dc_dev, dp->sor); if (ret) return ret; if (tegra_dc_dp_explore_link_cfg(dp, link_cfg, dp->sor, timing)) { debug("dp: %s: error to configure link\n", __func__); continue; } tegra_dc_sor_set_power_state(dp->sor, 1); tegra_dc_sor_attach(dp->dc_dev, dp->sor, link_cfg, timing); /* Increase delay_frame for next try in case the sink is skipping more frames */ delay_frame += 10; } while (1); } int tegra_dp_enable(struct udevice *dev, int panel_bpp, const struct display_timing *timing) { struct tegra_dp_priv *priv = dev_get_priv(dev); struct tegra_dp_link_config slink_cfg, *link_cfg = &slink_cfg; struct udevice *sor; int data; int retry; int ret; memset(link_cfg, '\0', sizeof(*link_cfg)); link_cfg->is_valid = 0; link_cfg->scramble_ena = 1; tegra_dc_dpaux_enable(priv); if (tegra_dp_hpd_plug(priv) < 0) { debug("dp: hpd plug failed\n"); return -EIO; } link_cfg->bits_per_pixel = panel_bpp; if (tegra_dc_dp_init_max_link_cfg(timing, priv, link_cfg)) { debug("dp: failed to init link configuration\n"); return -ENOLINK; } ret = uclass_first_device(UCLASS_VIDEO_BRIDGE, &sor); if (ret || !sor) { debug("dp: failed to find SOR device: ret=%d\n", ret); return ret; } priv->sor = sor; ret = tegra_dc_sor_enable_dp(sor, link_cfg); if (ret) return ret; tegra_dc_sor_set_panel_power(sor, 1); /* Write power on to DPCD */ data = DP_SET_POWER_D0; retry = 0; do { ret = tegra_dc_dp_dpcd_write(priv, DP_SET_POWER, data); } while ((retry++ < DP_POWER_ON_MAX_TRIES) && ret); if (ret || retry >= DP_POWER_ON_MAX_TRIES) { debug("dp: failed to power on panel (0x%x)\n", ret); return -ENETUNREACH; goto error_enable; } /* Confirm DP plugging status */ if (!(tegra_dpaux_readl(priv, DPAUX_DP_AUXSTAT) & DPAUX_DP_AUXSTAT_HPD_STATUS_PLUGGED)) { debug("dp: could not detect HPD\n"); return -ENXIO; } /* Check DP version */ if (tegra_dc_dp_dpcd_read(priv, DP_DPCD_REV, &priv->revision)) { debug("dp: failed to read the revision number from sink\n"); return -EIO; } if (tegra_dc_dp_explore_link_cfg(priv, link_cfg, sor, timing)) { debug("dp: error configuring link\n"); return -ENOMEDIUM; } tegra_dc_sor_set_power_state(sor, 1); ret = tegra_dc_sor_attach(priv->dc_dev, sor, link_cfg, timing); if (ret && ret != -EEXIST) return ret; /* * This takes a long time, but can apparently resolve a failure to * bring up the display correctly. */ if (0) { ret = tegra_dc_dp_check_sink(priv, link_cfg, timing); if (ret) return ret; } /* Power down the unused lanes to save power - a few hundred mW */ tegra_dc_sor_power_down_unused_lanes(sor, link_cfg); ret = video_bridge_set_backlight(sor, 80); if (ret) { debug("dp: failed to set backlight\n"); return ret; } priv->enabled = true; error_enable: return 0; } static int tegra_dp_ofdata_to_platdata(struct udevice *dev) { struct tegra_dp_plat *plat = dev_get_platdata(dev); plat->base = dev_read_addr(dev); return 0; } static int tegra_dp_read_edid(struct udevice *dev, u8 *buf, int buf_size) { struct tegra_dp_priv *priv = dev_get_priv(dev); const int tegra_edid_i2c_address = 0x50; u32 aux_stat = 0; tegra_dc_dpaux_enable(priv); return tegra_dc_i2c_aux_read(priv, tegra_edid_i2c_address, 0, buf, buf_size, &aux_stat); } static const struct dm_display_ops dp_tegra_ops = { .read_edid = tegra_dp_read_edid, .enable = tegra_dp_enable, }; static int dp_tegra_probe(struct udevice *dev) { struct tegra_dp_plat *plat = dev_get_platdata(dev); struct tegra_dp_priv *priv = dev_get_priv(dev); struct display_plat *disp_uc_plat = dev_get_uclass_platdata(dev); priv->regs = (struct dpaux_ctlr *)plat->base; priv->enabled = false; /* Remember the display controller that is sending us video */ priv->dc_dev = disp_uc_plat->src_dev; return 0; } static const struct udevice_id tegra_dp_ids[] = { { .compatible = "nvidia,tegra124-dpaux" }, { } }; U_BOOT_DRIVER(dp_tegra) = { .name = "dpaux_tegra", .id = UCLASS_DISPLAY, .of_match = tegra_dp_ids, .ofdata_to_platdata = tegra_dp_ofdata_to_platdata, .probe = dp_tegra_probe, .ops = &dp_tegra_ops, .priv_auto_alloc_size = sizeof(struct tegra_dp_priv), .platdata_auto_alloc_size = sizeof(struct tegra_dp_plat), };