// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. /** \mainpage V8 API Reference Guide * * V8 is Google's open source JavaScript engine. * * This set of documents provides reference material generated from the * V8 header file, include/v8.h. * * For other documentation see http://code.google.com/apis/v8/ */ #ifndef INCLUDE_V8_H_ #define INCLUDE_V8_H_ #include <stddef.h> #include <stdint.h> #include <stdio.h> #include <memory> #include <utility> #include <vector> #include "v8-version.h" // NOLINT(build/include) #include "v8config.h" // NOLINT(build/include) // We reserve the V8_* prefix for macros defined in V8 public API and // assume there are no name conflicts with the embedder's code. #ifdef V8_OS_WIN // Setup for Windows DLL export/import. When building the V8 DLL the // BUILDING_V8_SHARED needs to be defined. When building a program which uses // the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8 // static library or building a program which uses the V8 static library neither // BUILDING_V8_SHARED nor USING_V8_SHARED should be defined. #ifdef BUILDING_V8_SHARED # define V8_EXPORT __declspec(dllexport) #elif USING_V8_SHARED # define V8_EXPORT __declspec(dllimport) #else # define V8_EXPORT #endif // BUILDING_V8_SHARED #else // V8_OS_WIN // Setup for Linux shared library export. #if V8_HAS_ATTRIBUTE_VISIBILITY # ifdef BUILDING_V8_SHARED # define V8_EXPORT __attribute__ ((visibility("default"))) # else # define V8_EXPORT # endif #else # define V8_EXPORT #endif #endif // V8_OS_WIN /** * The v8 JavaScript engine. */ namespace v8 { class AccessorSignature; class Array; class ArrayBuffer; class BigInt; class BigIntObject; class Boolean; class BooleanObject; class Context; class Data; class Date; class External; class Function; class FunctionTemplate; class HeapProfiler; class ImplementationUtilities; class Int32; class Integer; class Isolate; template <class T> class Maybe; class Name; class Number; class NumberObject; class Object; class ObjectOperationDescriptor; class ObjectTemplate; class Platform; class Primitive; class Promise; class PropertyDescriptor; class Proxy; class RawOperationDescriptor; class Script; class SharedArrayBuffer; class Signature; class StartupData; class StackFrame; class StackTrace; class String; class StringObject; class Symbol; class SymbolObject; class PrimitiveArray; class Private; class Uint32; class Utils; class Value; class WasmCompiledModule; template <class T> class Local; template <class T> class MaybeLocal; template <class T> class Eternal; template<class T> class NonCopyablePersistentTraits; template<class T> class PersistentBase; template <class T, class M = NonCopyablePersistentTraits<T> > class Persistent; template <class T> class Global; template<class K, class V, class T> class PersistentValueMap; template <class K, class V, class T> class PersistentValueMapBase; template <class K, class V, class T> class GlobalValueMap; template<class V, class T> class PersistentValueVector; template<class T, class P> class WeakCallbackObject; class FunctionTemplate; class ObjectTemplate; template<typename T> class FunctionCallbackInfo; template<typename T> class PropertyCallbackInfo; class StackTrace; class StackFrame; class Isolate; class CallHandlerHelper; class EscapableHandleScope; template<typename T> class ReturnValue; namespace internal { class Arguments; class DeferredHandles; class Heap; class HeapObject; class Isolate; class LocalEmbedderHeapTracer; class NeverReadOnlySpaceObject; class Object; struct ScriptStreamingData; template<typename T> class CustomArguments; class PropertyCallbackArguments; class FunctionCallbackArguments; class GlobalHandles; namespace wasm { class NativeModule; class StreamingDecoder; } // namespace wasm /** * Configuration of tagging scheme. */ const int kApiPointerSize = sizeof(void*); // NOLINT const int kApiDoubleSize = sizeof(double); // NOLINT const int kApiIntSize = sizeof(int); // NOLINT const int kApiInt64Size = sizeof(int64_t); // NOLINT // Tag information for HeapObject. const int kHeapObjectTag = 1; const int kWeakHeapObjectTag = 3; const int kHeapObjectTagSize = 2; const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1; // Tag information for Smi. const int kSmiTag = 0; const int kSmiTagSize = 1; const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1; template <size_t tagged_ptr_size> struct SmiTagging; template <int kSmiShiftSize> V8_INLINE internal::Object* IntToSmi(int value) { int smi_shift_bits = kSmiTagSize + kSmiShiftSize; intptr_t tagged_value = (static_cast<intptr_t>(value) << smi_shift_bits) | kSmiTag; return reinterpret_cast<internal::Object*>(tagged_value); } // Smi constants for systems where tagged pointer is a 32-bit value. template <> struct SmiTagging<4> { enum { kSmiShiftSize = 0, kSmiValueSize = 31 }; static int SmiShiftSize() { return kSmiShiftSize; } static int SmiValueSize() { return kSmiValueSize; } V8_INLINE static int SmiToInt(const internal::Object* value) { int shift_bits = kSmiTagSize + kSmiShiftSize; // Throw away top 32 bits and shift down (requires >> to be sign extending). return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> shift_bits; } V8_INLINE static internal::Object* IntToSmi(int value) { return internal::IntToSmi<kSmiShiftSize>(value); } V8_INLINE static constexpr bool IsValidSmi(intptr_t value) { // To be representable as an tagged small integer, the two // most-significant bits of 'value' must be either 00 or 11 due to // sign-extension. To check this we add 01 to the two // most-significant bits, and check if the most-significant bit is 0 // // CAUTION: The original code below: // bool result = ((value + 0x40000000) & 0x80000000) == 0; // may lead to incorrect results according to the C language spec, and // in fact doesn't work correctly with gcc4.1.1 in some cases: The // compiler may produce undefined results in case of signed integer // overflow. The computation must be done w/ unsigned ints. return static_cast<uintptr_t>(value) + 0x40000000U < 0x80000000U; } }; // Smi constants for systems where tagged pointer is a 64-bit value. template <> struct SmiTagging<8> { enum { kSmiShiftSize = 31, kSmiValueSize = 32 }; static int SmiShiftSize() { return kSmiShiftSize; } static int SmiValueSize() { return kSmiValueSize; } V8_INLINE static int SmiToInt(const internal::Object* value) { int shift_bits = kSmiTagSize + kSmiShiftSize; // Shift down and throw away top 32 bits. return static_cast<int>(reinterpret_cast<intptr_t>(value) >> shift_bits); } V8_INLINE static internal::Object* IntToSmi(int value) { return internal::IntToSmi<kSmiShiftSize>(value); } V8_INLINE static constexpr bool IsValidSmi(intptr_t value) { // To be representable as a long smi, the value must be a 32-bit integer. return (value == static_cast<int32_t>(value)); } }; #if V8_COMPRESS_POINTERS static_assert( kApiPointerSize == kApiInt64Size, "Pointer compression can be enabled only for 64-bit architectures"); typedef SmiTagging<4> PlatformSmiTagging; #else typedef SmiTagging<kApiPointerSize> PlatformSmiTagging; #endif const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize; const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize; const int kSmiMinValue = (static_cast<unsigned int>(-1)) << (kSmiValueSize - 1); const int kSmiMaxValue = -(kSmiMinValue + 1); constexpr bool SmiValuesAre31Bits() { return kSmiValueSize == 31; } constexpr bool SmiValuesAre32Bits() { return kSmiValueSize == 32; } } // namespace internal namespace debug { class ConsoleCallArguments; } // namespace debug // --- Handles --- #define TYPE_CHECK(T, S) \ while (false) { \ *(static_cast<T* volatile*>(0)) = static_cast<S*>(0); \ } /** * An object reference managed by the v8 garbage collector. * * All objects returned from v8 have to be tracked by the garbage * collector so that it knows that the objects are still alive. Also, * because the garbage collector may move objects, it is unsafe to * point directly to an object. Instead, all objects are stored in * handles which are known by the garbage collector and updated * whenever an object moves. Handles should always be passed by value * (except in cases like out-parameters) and they should never be * allocated on the heap. * * There are two types of handles: local and persistent handles. * * Local handles are light-weight and transient and typically used in * local operations. They are managed by HandleScopes. That means that a * HandleScope must exist on the stack when they are created and that they are * only valid inside of the HandleScope active during their creation. * For passing a local handle to an outer HandleScope, an EscapableHandleScope * and its Escape() method must be used. * * Persistent handles can be used when storing objects across several * independent operations and have to be explicitly deallocated when they're no * longer used. * * It is safe to extract the object stored in the handle by * dereferencing the handle (for instance, to extract the Object* from * a Local<Object>); the value will still be governed by a handle * behind the scenes and the same rules apply to these values as to * their handles. */ template <class T> class Local { public: V8_INLINE Local() : val_(0) {} template <class S> V8_INLINE Local(Local<S> that) : val_(reinterpret_cast<T*>(*that)) { /** * This check fails when trying to convert between incompatible * handles. For example, converting from a Local<String> to a * Local<Number>. */ TYPE_CHECK(T, S); } /** * Returns true if the handle is empty. */ V8_INLINE bool IsEmpty() const { return val_ == 0; } /** * Sets the handle to be empty. IsEmpty() will then return true. */ V8_INLINE void Clear() { val_ = 0; } V8_INLINE T* operator->() const { return val_; } V8_INLINE T* operator*() const { return val_; } /** * Checks whether two handles are the same. * Returns true if both are empty, or if the objects * to which they refer are identical. * The handles' references are not checked. */ template <class S> V8_INLINE bool operator==(const Local<S>& that) const { internal::Object** a = reinterpret_cast<internal::Object**>(this->val_); internal::Object** b = reinterpret_cast<internal::Object**>(that.val_); if (a == 0) return b == 0; if (b == 0) return false; return *a == *b; } template <class S> V8_INLINE bool operator==( const PersistentBase<S>& that) const { internal::Object** a = reinterpret_cast<internal::Object**>(this->val_); internal::Object** b = reinterpret_cast<internal::Object**>(that.val_); if (a == 0) return b == 0; if (b == 0) return false; return *a == *b; } /** * Checks whether two handles are different. * Returns true if only one of the handles is empty, or if * the objects to which they refer are different. * The handles' references are not checked. */ template <class S> V8_INLINE bool operator!=(const Local<S>& that) const { return !operator==(that); } template <class S> V8_INLINE bool operator!=( const Persistent<S>& that) const { return !operator==(that); } /** * Cast a handle to a subclass, e.g. Local<Value> to Local<Object>. * This is only valid if the handle actually refers to a value of the * target type. */ template <class S> V8_INLINE static Local<T> Cast(Local<S> that) { #ifdef V8_ENABLE_CHECKS // If we're going to perform the type check then we have to check // that the handle isn't empty before doing the checked cast. if (that.IsEmpty()) return Local<T>(); #endif return Local<T>(T::Cast(*that)); } /** * Calling this is equivalent to Local<S>::Cast(). * In particular, this is only valid if the handle actually refers to a value * of the target type. */ template <class S> V8_INLINE Local<S> As() const { return Local<S>::Cast(*this); } /** * Create a local handle for the content of another handle. * The referee is kept alive by the local handle even when * the original handle is destroyed/disposed. */ V8_INLINE static Local<T> New(Isolate* isolate, Local<T> that); V8_INLINE static Local<T> New(Isolate* isolate, const PersistentBase<T>& that); private: friend class Utils; template<class F> friend class Eternal; template<class F> friend class PersistentBase; template<class F, class M> friend class Persistent; template<class F> friend class Local; template <class F> friend class MaybeLocal; template<class F> friend class FunctionCallbackInfo; template<class F> friend class PropertyCallbackInfo; friend class String; friend class Object; friend class Context; friend class Isolate; friend class Private; template<class F> friend class internal::CustomArguments; friend Local<Primitive> Undefined(Isolate* isolate); friend Local<Primitive> Null(Isolate* isolate); friend Local<Boolean> True(Isolate* isolate); friend Local<Boolean> False(Isolate* isolate); friend class HandleScope; friend class EscapableHandleScope; template <class F1, class F2, class F3> friend class PersistentValueMapBase; template<class F1, class F2> friend class PersistentValueVector; template <class F> friend class ReturnValue; explicit V8_INLINE Local(T* that) : val_(that) {} V8_INLINE static Local<T> New(Isolate* isolate, T* that); T* val_; }; #if !defined(V8_IMMINENT_DEPRECATION_WARNINGS) // Handle is an alias for Local for historical reasons. template <class T> using Handle = Local<T>; #endif /** * A MaybeLocal<> is a wrapper around Local<> that enforces a check whether * the Local<> is empty before it can be used. * * If an API method returns a MaybeLocal<>, the API method can potentially fail * either because an exception is thrown, or because an exception is pending, * e.g. because a previous API call threw an exception that hasn't been caught * yet, or because a TerminateExecution exception was thrown. In that case, an * empty MaybeLocal is returned. */ template <class T> class MaybeLocal { public: V8_INLINE MaybeLocal() : val_(nullptr) {} template <class S> V8_INLINE MaybeLocal(Local<S> that) : val_(reinterpret_cast<T*>(*that)) { TYPE_CHECK(T, S); } V8_INLINE bool IsEmpty() const { return val_ == nullptr; } /** * Converts this MaybeLocal<> to a Local<>. If this MaybeLocal<> is empty, * |false| is returned and |out| is left untouched. */ template <class S> V8_WARN_UNUSED_RESULT V8_INLINE bool ToLocal(Local<S>* out) const { out->val_ = IsEmpty() ? nullptr : this->val_; return !IsEmpty(); } /** * Converts this MaybeLocal<> to a Local<>. If this MaybeLocal<> is empty, * V8 will crash the process. */ V8_INLINE Local<T> ToLocalChecked(); /** * Converts this MaybeLocal<> to a Local<>, using a default value if this * MaybeLocal<> is empty. */ template <class S> V8_INLINE Local<S> FromMaybe(Local<S> default_value) const { return IsEmpty() ? default_value : Local<S>(val_); } private: T* val_; }; /** * Eternal handles are set-once handles that live for the lifetime of the * isolate. */ template <class T> class Eternal { public: V8_INLINE Eternal() : val_(nullptr) {} template <class S> V8_INLINE Eternal(Isolate* isolate, Local<S> handle) : val_(nullptr) { Set(isolate, handle); } // Can only be safely called if already set. V8_INLINE Local<T> Get(Isolate* isolate) const; V8_INLINE bool IsEmpty() const { return val_ == nullptr; } template<class S> V8_INLINE void Set(Isolate* isolate, Local<S> handle); private: T* val_; }; static const int kInternalFieldsInWeakCallback = 2; static const int kEmbedderFieldsInWeakCallback = 2; template <typename T> class WeakCallbackInfo { public: typedef void (*Callback)(const WeakCallbackInfo<T>& data); WeakCallbackInfo(Isolate* isolate, T* parameter, void* embedder_fields[kEmbedderFieldsInWeakCallback], Callback* callback) : isolate_(isolate), parameter_(parameter), callback_(callback) { for (int i = 0; i < kEmbedderFieldsInWeakCallback; ++i) { embedder_fields_[i] = embedder_fields[i]; } } V8_INLINE Isolate* GetIsolate() const { return isolate_; } V8_INLINE T* GetParameter() const { return parameter_; } V8_INLINE void* GetInternalField(int index) const; // When first called, the embedder MUST Reset() the Global which triggered the // callback. The Global itself is unusable for anything else. No v8 other api // calls may be called in the first callback. Should additional work be // required, the embedder must set a second pass callback, which will be // called after all the initial callbacks are processed. // Calling SetSecondPassCallback on the second pass will immediately crash. void SetSecondPassCallback(Callback callback) const { *callback_ = callback; } private: Isolate* isolate_; T* parameter_; Callback* callback_; void* embedder_fields_[kEmbedderFieldsInWeakCallback]; }; // kParameter will pass a void* parameter back to the callback, kInternalFields // will pass the first two internal fields back to the callback, kFinalizer // will pass a void* parameter back, but is invoked before the object is // actually collected, so it can be resurrected. In the last case, it is not // possible to request a second pass callback. enum class WeakCallbackType { kParameter, kInternalFields, kFinalizer }; /** * An object reference that is independent of any handle scope. Where * a Local handle only lives as long as the HandleScope in which it was * allocated, a PersistentBase handle remains valid until it is explicitly * disposed using Reset(). * * A persistent handle contains a reference to a storage cell within * the V8 engine which holds an object value and which is updated by * the garbage collector whenever the object is moved. A new storage * cell can be created using the constructor or PersistentBase::Reset and * existing handles can be disposed using PersistentBase::Reset. * */ template <class T> class PersistentBase { public: /** * If non-empty, destroy the underlying storage cell * IsEmpty() will return true after this call. */ V8_INLINE void Reset(); /** * If non-empty, destroy the underlying storage cell * and create a new one with the contents of other if other is non empty */ template <class S> V8_INLINE void Reset(Isolate* isolate, const Local<S>& other); /** * If non-empty, destroy the underlying storage cell * and create a new one with the contents of other if other is non empty */ template <class S> V8_INLINE void Reset(Isolate* isolate, const PersistentBase<S>& other); V8_INLINE bool IsEmpty() const { return val_ == NULL; } V8_INLINE void Empty() { val_ = 0; } V8_INLINE Local<T> Get(Isolate* isolate) const { return Local<T>::New(isolate, *this); } template <class S> V8_INLINE bool operator==(const PersistentBase<S>& that) const { internal::Object** a = reinterpret_cast<internal::Object**>(this->val_); internal::Object** b = reinterpret_cast<internal::Object**>(that.val_); if (a == NULL) return b == NULL; if (b == NULL) return false; return *a == *b; } template <class S> V8_INLINE bool operator==(const Local<S>& that) const { internal::Object** a = reinterpret_cast<internal::Object**>(this->val_); internal::Object** b = reinterpret_cast<internal::Object**>(that.val_); if (a == NULL) return b == NULL; if (b == NULL) return false; return *a == *b; } template <class S> V8_INLINE bool operator!=(const PersistentBase<S>& that) const { return !operator==(that); } template <class S> V8_INLINE bool operator!=(const Local<S>& that) const { return !operator==(that); } /** * Install a finalization callback on this object. * NOTE: There is no guarantee as to *when* or even *if* the callback is * invoked. The invocation is performed solely on a best effort basis. * As always, GC-based finalization should *not* be relied upon for any * critical form of resource management! */ template <typename P> V8_INLINE void SetWeak(P* parameter, typename WeakCallbackInfo<P>::Callback callback, WeakCallbackType type); /** * Turns this handle into a weak phantom handle without finalization callback. * The handle will be reset automatically when the garbage collector detects * that the object is no longer reachable. * A related function Isolate::NumberOfPhantomHandleResetsSinceLastCall * returns how many phantom handles were reset by the garbage collector. */ V8_INLINE void SetWeak(); template<typename P> V8_INLINE P* ClearWeak(); // TODO(dcarney): remove this. V8_INLINE void ClearWeak() { ClearWeak<void>(); } /** * Annotates the strong handle with the given label, which is then used by the * heap snapshot generator as a name of the edge from the root to the handle. * The function does not take ownership of the label and assumes that the * label is valid as long as the handle is valid. */ V8_INLINE void AnnotateStrongRetainer(const char* label); /** * Allows the embedder to tell the v8 garbage collector that a certain object * is alive. Only allowed when the embedder is asked to trace its heap by * EmbedderHeapTracer. */ V8_INLINE void RegisterExternalReference(Isolate* isolate) const; /** * Marks the reference to this object independent. Garbage collector is free * to ignore any object groups containing this object. Weak callback for an * independent handle should not assume that it will be preceded by a global * GC prologue callback or followed by a global GC epilogue callback. */ V8_DEPRECATE_SOON( "Objects are always considered independent. " "Use MarkActive to avoid collecting otherwise dead weak handles.", V8_INLINE void MarkIndependent()); /** * Marks the reference to this object as active. The scavenge garbage * collection should not reclaim the objects marked as active, even if the * object held by the handle is otherwise unreachable. * * This bit is cleared after the each garbage collection pass. */ V8_INLINE void MarkActive(); V8_DEPRECATE_SOON("See MarkIndependent.", V8_INLINE bool IsIndependent() const); /** Checks if the handle holds the only reference to an object. */ V8_INLINE bool IsNearDeath() const; /** Returns true if the handle's reference is weak. */ V8_INLINE bool IsWeak() const; /** * Assigns a wrapper class ID to the handle. See RetainedObjectInfo interface * description in v8-profiler.h for details. */ V8_INLINE void SetWrapperClassId(uint16_t class_id); /** * Returns the class ID previously assigned to this handle or 0 if no class ID * was previously assigned. */ V8_INLINE uint16_t WrapperClassId() const; PersistentBase(const PersistentBase& other) = delete; // NOLINT void operator=(const PersistentBase&) = delete; private: friend class Isolate; friend class Utils; template<class F> friend class Local; template<class F1, class F2> friend class Persistent; template <class F> friend class Global; template<class F> friend class PersistentBase; template<class F> friend class ReturnValue; template <class F1, class F2, class F3> friend class PersistentValueMapBase; template<class F1, class F2> friend class PersistentValueVector; friend class Object; explicit V8_INLINE PersistentBase(T* val) : val_(val) {} V8_INLINE static T* New(Isolate* isolate, T* that); T* val_; }; /** * Default traits for Persistent. This class does not allow * use of the copy constructor or assignment operator. * At present kResetInDestructor is not set, but that will change in a future * version. */ template<class T> class NonCopyablePersistentTraits { public: typedef Persistent<T, NonCopyablePersistentTraits<T> > NonCopyablePersistent; static const bool kResetInDestructor = false; template<class S, class M> V8_INLINE static void Copy(const Persistent<S, M>& source, NonCopyablePersistent* dest) { Uncompilable<Object>(); } // TODO(dcarney): come up with a good compile error here. template<class O> V8_INLINE static void Uncompilable() { TYPE_CHECK(O, Primitive); } }; /** * Helper class traits to allow copying and assignment of Persistent. * This will clone the contents of storage cell, but not any of the flags, etc. */ template<class T> struct CopyablePersistentTraits { typedef Persistent<T, CopyablePersistentTraits<T> > CopyablePersistent; static const bool kResetInDestructor = true; template<class S, class M> static V8_INLINE void Copy(const Persistent<S, M>& source, CopyablePersistent* dest) { // do nothing, just allow copy } }; /** * A PersistentBase which allows copy and assignment. * * Copy, assignment and destructor behavior is controlled by the traits * class M. * * Note: Persistent class hierarchy is subject to future changes. */ template <class T, class M> class Persistent : public PersistentBase<T> { public: /** * A Persistent with no storage cell. */ V8_INLINE Persistent() : PersistentBase<T>(0) { } /** * Construct a Persistent from a Local. * When the Local is non-empty, a new storage cell is created * pointing to the same object, and no flags are set. */ template <class S> V8_INLINE Persistent(Isolate* isolate, Local<S> that) : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) { TYPE_CHECK(T, S); } /** * Construct a Persistent from a Persistent. * When the Persistent is non-empty, a new storage cell is created * pointing to the same object, and no flags are set. */ template <class S, class M2> V8_INLINE Persistent(Isolate* isolate, const Persistent<S, M2>& that) : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) { TYPE_CHECK(T, S); } /** * The copy constructors and assignment operator create a Persistent * exactly as the Persistent constructor, but the Copy function from the * traits class is called, allowing the setting of flags based on the * copied Persistent. */ V8_INLINE Persistent(const Persistent& that) : PersistentBase<T>(0) { Copy(that); } template <class S, class M2> V8_INLINE Persistent(const Persistent<S, M2>& that) : PersistentBase<T>(0) { Copy(that); } V8_INLINE Persistent& operator=(const Persistent& that) { // NOLINT Copy(that); return *this; } template <class S, class M2> V8_INLINE Persistent& operator=(const Persistent<S, M2>& that) { // NOLINT Copy(that); return *this; } /** * The destructor will dispose the Persistent based on the * kResetInDestructor flags in the traits class. Since not calling dispose * can result in a memory leak, it is recommended to always set this flag. */ V8_INLINE ~Persistent() { if (M::kResetInDestructor) this->Reset(); } // TODO(dcarney): this is pretty useless, fix or remove template <class S> V8_INLINE static Persistent<T>& Cast(const Persistent<S>& that) { // NOLINT #ifdef V8_ENABLE_CHECKS // If we're going to perform the type check then we have to check // that the handle isn't empty before doing the checked cast. if (!that.IsEmpty()) T::Cast(*that); #endif return reinterpret_cast<Persistent<T>&>(const_cast<Persistent<S>&>(that)); } // TODO(dcarney): this is pretty useless, fix or remove template <class S> V8_INLINE Persistent<S>& As() const { // NOLINT return Persistent<S>::Cast(*this); } private: friend class Isolate; friend class Utils; template<class F> friend class Local; template<class F1, class F2> friend class Persistent; template<class F> friend class ReturnValue; explicit V8_INLINE Persistent(T* that) : PersistentBase<T>(that) {} V8_INLINE T* operator*() const { return this->val_; } template<class S, class M2> V8_INLINE void Copy(const Persistent<S, M2>& that); }; /** * A PersistentBase which has move semantics. * * Note: Persistent class hierarchy is subject to future changes. */ template <class T> class Global : public PersistentBase<T> { public: /** * A Global with no storage cell. */ V8_INLINE Global() : PersistentBase<T>(nullptr) {} /** * Construct a Global from a Local. * When the Local is non-empty, a new storage cell is created * pointing to the same object, and no flags are set. */ template <class S> V8_INLINE Global(Isolate* isolate, Local<S> that) : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) { TYPE_CHECK(T, S); } /** * Construct a Global from a PersistentBase. * When the Persistent is non-empty, a new storage cell is created * pointing to the same object, and no flags are set. */ template <class S> V8_INLINE Global(Isolate* isolate, const PersistentBase<S>& that) : PersistentBase<T>(PersistentBase<T>::New(isolate, that.val_)) { TYPE_CHECK(T, S); } /** * Move constructor. */ V8_INLINE Global(Global&& other) : PersistentBase<T>(other.val_) { // NOLINT other.val_ = nullptr; } V8_INLINE ~Global() { this->Reset(); } /** * Move via assignment. */ template <class S> V8_INLINE Global& operator=(Global<S>&& rhs) { // NOLINT TYPE_CHECK(T, S); if (this != &rhs) { this->Reset(); this->val_ = rhs.val_; rhs.val_ = nullptr; } return *this; } /** * Pass allows returning uniques from functions, etc. */ Global Pass() { return static_cast<Global&&>(*this); } // NOLINT /* * For compatibility with Chromium's base::Bind (base::Passed). */ typedef void MoveOnlyTypeForCPP03; Global(const Global&) = delete; void operator=(const Global&) = delete; private: template <class F> friend class ReturnValue; V8_INLINE T* operator*() const { return this->val_; } }; // UniquePersistent is an alias for Global for historical reason. template <class T> using UniquePersistent = Global<T>; /** * A stack-allocated class that governs a number of local handles. * After a handle scope has been created, all local handles will be * allocated within that handle scope until either the handle scope is * deleted or another handle scope is created. If there is already a * handle scope and a new one is created, all allocations will take * place in the new handle scope until it is deleted. After that, * new handles will again be allocated in the original handle scope. * * After the handle scope of a local handle has been deleted the * garbage collector will no longer track the object stored in the * handle and may deallocate it. The behavior of accessing a handle * for which the handle scope has been deleted is undefined. */ class V8_EXPORT HandleScope { public: explicit HandleScope(Isolate* isolate); ~HandleScope(); /** * Counts the number of allocated handles. */ static int NumberOfHandles(Isolate* isolate); V8_INLINE Isolate* GetIsolate() const { return reinterpret_cast<Isolate*>(isolate_); } HandleScope(const HandleScope&) = delete; void operator=(const HandleScope&) = delete; protected: V8_INLINE HandleScope() {} void Initialize(Isolate* isolate); static internal::Object** CreateHandle(internal::Isolate* isolate, internal::Object* value); private: // Declaring operator new and delete as deleted is not spec compliant. // Therefore declare them private instead to disable dynamic alloc void* operator new(size_t size); void* operator new[](size_t size); void operator delete(void*, size_t); void operator delete[](void*, size_t); // Uses heap_object to obtain the current Isolate. static internal::Object** CreateHandle( internal::NeverReadOnlySpaceObject* heap_object, internal::Object* value); internal::Isolate* isolate_; internal::Object** prev_next_; internal::Object** prev_limit_; // Local::New uses CreateHandle with an Isolate* parameter. template<class F> friend class Local; // Object::GetInternalField and Context::GetEmbedderData use CreateHandle with // a HeapObject* in their shortcuts. friend class Object; friend class Context; }; /** * A HandleScope which first allocates a handle in the current scope * which will be later filled with the escape value. */ class V8_EXPORT EscapableHandleScope : public HandleScope { public: explicit EscapableHandleScope(Isolate* isolate); V8_INLINE ~EscapableHandleScope() {} /** * Pushes the value into the previous scope and returns a handle to it. * Cannot be called twice. */ template <class T> V8_INLINE Local<T> Escape(Local<T> value) { internal::Object** slot = Escape(reinterpret_cast<internal::Object**>(*value)); return Local<T>(reinterpret_cast<T*>(slot)); } template <class T> V8_INLINE MaybeLocal<T> EscapeMaybe(MaybeLocal<T> value) { return Escape(value.FromMaybe(Local<T>())); } EscapableHandleScope(const EscapableHandleScope&) = delete; void operator=(const EscapableHandleScope&) = delete; private: // Declaring operator new and delete as deleted is not spec compliant. // Therefore declare them private instead to disable dynamic alloc void* operator new(size_t size); void* operator new[](size_t size); void operator delete(void*, size_t); void operator delete[](void*, size_t); internal::Object** Escape(internal::Object** escape_value); internal::Object** escape_slot_; }; /** * A SealHandleScope acts like a handle scope in which no handle allocations * are allowed. It can be useful for debugging handle leaks. * Handles can be allocated within inner normal HandleScopes. */ class V8_EXPORT SealHandleScope { public: explicit SealHandleScope(Isolate* isolate); ~SealHandleScope(); SealHandleScope(const SealHandleScope&) = delete; void operator=(const SealHandleScope&) = delete; private: // Declaring operator new and delete as deleted is not spec compliant. // Therefore declare them private instead to disable dynamic alloc void* operator new(size_t size); void* operator new[](size_t size); void operator delete(void*, size_t); void operator delete[](void*, size_t); internal::Isolate* const isolate_; internal::Object** prev_limit_; int prev_sealed_level_; }; // --- Special objects --- /** * The superclass of values and API object templates. */ class V8_EXPORT Data { private: Data(); }; /** * A container type that holds relevant metadata for module loading. * * This is passed back to the embedder as part of * HostImportModuleDynamicallyCallback for module loading. */ class V8_EXPORT ScriptOrModule { public: /** * The name that was passed by the embedder as ResourceName to the * ScriptOrigin. This can be either a v8::String or v8::Undefined. */ Local<Value> GetResourceName(); /** * The options that were passed by the embedder as HostDefinedOptions to * the ScriptOrigin. */ Local<PrimitiveArray> GetHostDefinedOptions(); }; /** * An array to hold Primitive values. This is used by the embedder to * pass host defined options to the ScriptOptions during compilation. * * This is passed back to the embedder as part of * HostImportModuleDynamicallyCallback for module loading. * */ class V8_EXPORT PrimitiveArray { public: static Local<PrimitiveArray> New(Isolate* isolate, int length); int Length() const; void Set(Isolate* isolate, int index, Local<Primitive> item); Local<Primitive> Get(Isolate* isolate, int index); V8_DEPRECATED("Use Isolate version", void Set(int index, Local<Primitive> item)); V8_DEPRECATED("Use Isolate version", Local<Primitive> Get(int index)); }; /** * The optional attributes of ScriptOrigin. */ class ScriptOriginOptions { public: V8_INLINE ScriptOriginOptions(bool is_shared_cross_origin = false, bool is_opaque = false, bool is_wasm = false, bool is_module = false) : flags_((is_shared_cross_origin ? kIsSharedCrossOrigin : 0) | (is_wasm ? kIsWasm : 0) | (is_opaque ? kIsOpaque : 0) | (is_module ? kIsModule : 0)) {} V8_INLINE ScriptOriginOptions(int flags) : flags_(flags & (kIsSharedCrossOrigin | kIsOpaque | kIsWasm | kIsModule)) {} bool IsSharedCrossOrigin() const { return (flags_ & kIsSharedCrossOrigin) != 0; } bool IsOpaque() const { return (flags_ & kIsOpaque) != 0; } bool IsWasm() const { return (flags_ & kIsWasm) != 0; } bool IsModule() const { return (flags_ & kIsModule) != 0; } int Flags() const { return flags_; } private: enum { kIsSharedCrossOrigin = 1, kIsOpaque = 1 << 1, kIsWasm = 1 << 2, kIsModule = 1 << 3 }; const int flags_; }; /** * The origin, within a file, of a script. */ class ScriptOrigin { public: V8_INLINE ScriptOrigin( Local<Value> resource_name, Local<Integer> resource_line_offset = Local<Integer>(), Local<Integer> resource_column_offset = Local<Integer>(), Local<Boolean> resource_is_shared_cross_origin = Local<Boolean>(), Local<Integer> script_id = Local<Integer>(), Local<Value> source_map_url = Local<Value>(), Local<Boolean> resource_is_opaque = Local<Boolean>(), Local<Boolean> is_wasm = Local<Boolean>(), Local<Boolean> is_module = Local<Boolean>(), Local<PrimitiveArray> host_defined_options = Local<PrimitiveArray>()); V8_INLINE Local<Value> ResourceName() const; V8_INLINE Local<Integer> ResourceLineOffset() const; V8_INLINE Local<Integer> ResourceColumnOffset() const; V8_INLINE Local<Integer> ScriptID() const; V8_INLINE Local<Value> SourceMapUrl() const; V8_INLINE Local<PrimitiveArray> HostDefinedOptions() const; V8_INLINE ScriptOriginOptions Options() const { return options_; } private: Local<Value> resource_name_; Local<Integer> resource_line_offset_; Local<Integer> resource_column_offset_; ScriptOriginOptions options_; Local<Integer> script_id_; Local<Value> source_map_url_; Local<PrimitiveArray> host_defined_options_; }; /** * A compiled JavaScript script, not yet tied to a Context. */ class V8_EXPORT UnboundScript { public: /** * Binds the script to the currently entered context. */ Local<Script> BindToCurrentContext(); int GetId(); Local<Value> GetScriptName(); /** * Data read from magic sourceURL comments. */ Local<Value> GetSourceURL(); /** * Data read from magic sourceMappingURL comments. */ Local<Value> GetSourceMappingURL(); /** * Returns zero based line number of the code_pos location in the script. * -1 will be returned if no information available. */ int GetLineNumber(int code_pos); static const int kNoScriptId = 0; }; /** * A compiled JavaScript module, not yet tied to a Context. */ class V8_EXPORT UnboundModuleScript { // Only used as a container for code caching. }; /** * A location in JavaScript source. */ class V8_EXPORT Location { public: int GetLineNumber() { return line_number_; } int GetColumnNumber() { return column_number_; } Location(int line_number, int column_number) : line_number_(line_number), column_number_(column_number) {} private: int line_number_; int column_number_; }; /** * A compiled JavaScript module. */ class V8_EXPORT Module { public: /** * The different states a module can be in. * * This corresponds to the states used in ECMAScript except that "evaluated" * is split into kEvaluated and kErrored, indicating success and failure, * respectively. */ enum Status { kUninstantiated, kInstantiating, kInstantiated, kEvaluating, kEvaluated, kErrored }; /** * Returns the module's current status. */ Status GetStatus() const; /** * For a module in kErrored status, this returns the corresponding exception. */ Local<Value> GetException() const; /** * Returns the number of modules requested by this module. */ int GetModuleRequestsLength() const; /** * Returns the ith module specifier in this module. * i must be < GetModuleRequestsLength() and >= 0. */ Local<String> GetModuleRequest(int i) const; /** * Returns the source location (line number and column number) of the ith * module specifier's first occurrence in this module. */ Location GetModuleRequestLocation(int i) const; /** * Returns the identity hash for this object. */ int GetIdentityHash() const; typedef MaybeLocal<Module> (*ResolveCallback)(Local<Context> context, Local<String> specifier, Local<Module> referrer); /** * Instantiates the module and its dependencies. * * Returns an empty Maybe<bool> if an exception occurred during * instantiation. (In the case where the callback throws an exception, that * exception is propagated.) */ V8_WARN_UNUSED_RESULT Maybe<bool> InstantiateModule(Local<Context> context, ResolveCallback callback); /** * Evaluates the module and its dependencies. * * If status is kInstantiated, run the module's code. On success, set status * to kEvaluated and return the completion value; on failure, set status to * kErrored and propagate the thrown exception (which is then also available * via |GetException|). */ V8_WARN_UNUSED_RESULT MaybeLocal<Value> Evaluate(Local<Context> context); /** * Returns the namespace object of this module. * * The module's status must be at least kInstantiated. */ Local<Value> GetModuleNamespace(); /** * Returns the corresponding context-unbound module script. * * The module must be unevaluated, i.e. its status must not be kEvaluating, * kEvaluated or kErrored. */ Local<UnboundModuleScript> GetUnboundModuleScript(); }; /** * A compiled JavaScript script, tied to a Context which was active when the * script was compiled. */ class V8_EXPORT Script { public: /** * A shorthand for ScriptCompiler::Compile(). */ static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile( Local<Context> context, Local<String> source, ScriptOrigin* origin = nullptr); /** * Runs the script returning the resulting value. It will be run in the * context in which it was created (ScriptCompiler::CompileBound or * UnboundScript::BindToCurrentContext()). */ V8_WARN_UNUSED_RESULT MaybeLocal<Value> Run(Local<Context> context); /** * Returns the corresponding context-unbound script. */ Local<UnboundScript> GetUnboundScript(); }; /** * For compiling scripts. */ class V8_EXPORT ScriptCompiler { public: /** * Compilation data that the embedder can cache and pass back to speed up * future compilations. The data is produced if the CompilerOptions passed to * the compilation functions in ScriptCompiler contains produce_data_to_cache * = true. The data to cache can then can be retrieved from * UnboundScript. */ struct V8_EXPORT CachedData { enum BufferPolicy { BufferNotOwned, BufferOwned }; CachedData() : data(NULL), length(0), rejected(false), buffer_policy(BufferNotOwned) {} // If buffer_policy is BufferNotOwned, the caller keeps the ownership of // data and guarantees that it stays alive until the CachedData object is // destroyed. If the policy is BufferOwned, the given data will be deleted // (with delete[]) when the CachedData object is destroyed. CachedData(const uint8_t* data, int length, BufferPolicy buffer_policy = BufferNotOwned); ~CachedData(); // TODO(marja): Async compilation; add constructors which take a callback // which will be called when V8 no longer needs the data. const uint8_t* data; int length; bool rejected; BufferPolicy buffer_policy; // Prevent copying. CachedData(const CachedData&) = delete; CachedData& operator=(const CachedData&) = delete; }; /** * Source code which can be then compiled to a UnboundScript or Script. */ class Source { public: // Source takes ownership of CachedData. V8_INLINE Source(Local<String> source_string, const ScriptOrigin& origin, CachedData* cached_data = NULL); V8_INLINE Source(Local<String> source_string, CachedData* cached_data = NULL); V8_INLINE ~Source(); // Ownership of the CachedData or its buffers is *not* transferred to the // caller. The CachedData object is alive as long as the Source object is // alive. V8_INLINE const CachedData* GetCachedData() const; V8_INLINE const ScriptOriginOptions& GetResourceOptions() const; // Prevent copying. Source(const Source&) = delete; Source& operator=(const Source&) = delete; private: friend class ScriptCompiler; Local<String> source_string; // Origin information Local<Value> resource_name; Local<Integer> resource_line_offset; Local<Integer> resource_column_offset; ScriptOriginOptions resource_options; Local<Value> source_map_url; Local<PrimitiveArray> host_defined_options; // Cached data from previous compilation (if a kConsume*Cache flag is // set), or hold newly generated cache data (kProduce*Cache flags) are // set when calling a compile method. CachedData* cached_data; }; /** * For streaming incomplete script data to V8. The embedder should implement a * subclass of this class. */ class V8_EXPORT ExternalSourceStream { public: virtual ~ExternalSourceStream() {} /** * V8 calls this to request the next chunk of data from the embedder. This * function will be called on a background thread, so it's OK to block and * wait for the data, if the embedder doesn't have data yet. Returns the * length of the data returned. When the data ends, GetMoreData should * return 0. Caller takes ownership of the data. * * When streaming UTF-8 data, V8 handles multi-byte characters split between * two data chunks, but doesn't handle multi-byte characters split between * more than two data chunks. The embedder can avoid this problem by always * returning at least 2 bytes of data. * * When streaming UTF-16 data, V8 does not handle characters split between * two data chunks. The embedder has to make sure that chunks have an even * length. * * If the embedder wants to cancel the streaming, they should make the next * GetMoreData call return 0. V8 will interpret it as end of data (and most * probably, parsing will fail). The streaming task will return as soon as * V8 has parsed the data it received so far. */ virtual size_t GetMoreData(const uint8_t** src) = 0; /** * V8 calls this method to set a 'bookmark' at the current position in * the source stream, for the purpose of (maybe) later calling * ResetToBookmark. If ResetToBookmark is called later, then subsequent * calls to GetMoreData should return the same data as they did when * SetBookmark was called earlier. * * The embedder may return 'false' to indicate it cannot provide this * functionality. */ virtual bool SetBookmark(); /** * V8 calls this to return to a previously set bookmark. */ virtual void ResetToBookmark(); }; /** * Source code which can be streamed into V8 in pieces. It will be parsed * while streaming. It can be compiled after the streaming is complete. * StreamedSource must be kept alive while the streaming task is ran (see * ScriptStreamingTask below). */ class V8_EXPORT StreamedSource { public: enum Encoding { ONE_BYTE, TWO_BYTE, UTF8 }; StreamedSource(ExternalSourceStream* source_stream, Encoding encoding); ~StreamedSource(); // Ownership of the CachedData or its buffers is *not* transferred to the // caller. The CachedData object is alive as long as the StreamedSource // object is alive. const CachedData* GetCachedData() const; internal::ScriptStreamingData* impl() const { return impl_; } // Prevent copying. StreamedSource(const StreamedSource&) = delete; StreamedSource& operator=(const StreamedSource&) = delete; private: internal::ScriptStreamingData* impl_; }; /** * A streaming task which the embedder must run on a background thread to * stream scripts into V8. Returned by ScriptCompiler::StartStreamingScript. */ class ScriptStreamingTask { public: virtual ~ScriptStreamingTask() {} virtual void Run() = 0; }; enum CompileOptions { kNoCompileOptions = 0, kProduceParserCache, kConsumeParserCache, kProduceCodeCache, kProduceFullCodeCache, kConsumeCodeCache, kEagerCompile }; /** * The reason for which we are not requesting or providing a code cache. */ enum NoCacheReason { kNoCacheNoReason = 0, kNoCacheBecauseCachingDisabled, kNoCacheBecauseNoResource, kNoCacheBecauseInlineScript, kNoCacheBecauseModule, kNoCacheBecauseStreamingSource, kNoCacheBecauseInspector, kNoCacheBecauseScriptTooSmall, kNoCacheBecauseCacheTooCold, kNoCacheBecauseV8Extension, kNoCacheBecauseExtensionModule, kNoCacheBecausePacScript, kNoCacheBecauseInDocumentWrite, kNoCacheBecauseResourceWithNoCacheHandler, kNoCacheBecauseDeferredProduceCodeCache }; /** * Compiles the specified script (context-independent). * Cached data as part of the source object can be optionally produced to be * consumed later to speed up compilation of identical source scripts. * * Note that when producing cached data, the source must point to NULL for * cached data. When consuming cached data, the cached data must have been * produced by the same version of V8. * * \param source Script source code. * \return Compiled script object (context independent; for running it must be * bound to a context). */ static V8_WARN_UNUSED_RESULT MaybeLocal<UnboundScript> CompileUnboundScript( Isolate* isolate, Source* source, CompileOptions options = kNoCompileOptions, NoCacheReason no_cache_reason = kNoCacheNoReason); /** * Compiles the specified script (bound to current context). * * \param source Script source code. * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile() * using pre_data speeds compilation if it's done multiple times. * Owned by caller, no references are kept when this function returns. * \return Compiled script object, bound to the context that was active * when this function was called. When run it will always use this * context. */ static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile( Local<Context> context, Source* source, CompileOptions options = kNoCompileOptions, NoCacheReason no_cache_reason = kNoCacheNoReason); /** * Returns a task which streams script data into V8, or NULL if the script * cannot be streamed. The user is responsible for running the task on a * background thread and deleting it. When ran, the task starts parsing the * script, and it will request data from the StreamedSource as needed. When * ScriptStreamingTask::Run exits, all data has been streamed and the script * can be compiled (see Compile below). * * This API allows to start the streaming with as little data as possible, and * the remaining data (for example, the ScriptOrigin) is passed to Compile. */ static ScriptStreamingTask* StartStreamingScript( Isolate* isolate, StreamedSource* source, CompileOptions options = kNoCompileOptions); /** * Compiles a streamed script (bound to current context). * * This can only be called after the streaming has finished * (ScriptStreamingTask has been run). V8 doesn't construct the source string * during streaming, so the embedder needs to pass the full source here. */ static V8_WARN_UNUSED_RESULT MaybeLocal<Script> Compile( Local<Context> context, StreamedSource* source, Local<String> full_source_string, const ScriptOrigin& origin); /** * Return a version tag for CachedData for the current V8 version & flags. * * This value is meant only for determining whether a previously generated * CachedData instance is still valid; the tag has no other meaing. * * Background: The data carried by CachedData may depend on the exact * V8 version number or current compiler flags. This means that when * persisting CachedData, the embedder must take care to not pass in * data from another V8 version, or the same version with different * features enabled. * * The easiest way to do so is to clear the embedder's cache on any * such change. * * Alternatively, this tag can be stored alongside the cached data and * compared when it is being used. */ static uint32_t CachedDataVersionTag(); /** * Compile an ES module, returning a Module that encapsulates * the compiled code. * * Corresponds to the ParseModule abstract operation in the * ECMAScript specification. */ static V8_WARN_UNUSED_RESULT MaybeLocal<Module> CompileModule( Isolate* isolate, Source* source, CompileOptions options = kNoCompileOptions, NoCacheReason no_cache_reason = kNoCacheNoReason); /** * Compile a function for a given context. This is equivalent to running * * with (obj) { * return function(args) { ... } * } * * It is possible to specify multiple context extensions (obj in the above * example). */ static V8_WARN_UNUSED_RESULT MaybeLocal<Function> CompileFunctionInContext( Local<Context> context, Source* source, size_t arguments_count, Local<String> arguments[], size_t context_extension_count, Local<Object> context_extensions[], CompileOptions options = kNoCompileOptions, NoCacheReason no_cache_reason = kNoCacheNoReason); /** * Creates and returns code cache for the specified unbound_script. * This will return nullptr if the script cannot be serialized. The * CachedData returned by this function should be owned by the caller. */ static CachedData* CreateCodeCache(Local<UnboundScript> unbound_script); /** * Creates and returns code cache for the specified unbound_module_script. * This will return nullptr if the script cannot be serialized. The * CachedData returned by this function should be owned by the caller. */ static CachedData* CreateCodeCache( Local<UnboundModuleScript> unbound_module_script); /** * Creates and returns code cache for the specified function that was * previously produced by CompileFunctionInContext. * This will return nullptr if the script cannot be serialized. The * CachedData returned by this function should be owned by the caller. */ static CachedData* CreateCodeCacheForFunction(Local<Function> function); private: static V8_WARN_UNUSED_RESULT MaybeLocal<UnboundScript> CompileUnboundInternal( Isolate* isolate, Source* source, CompileOptions options, NoCacheReason no_cache_reason); }; /** * An error message. */ class V8_EXPORT Message { public: Local<String> Get() const; /** * Return the isolate to which the Message belongs. */ Isolate* GetIsolate() const; V8_WARN_UNUSED_RESULT MaybeLocal<String> GetSourceLine( Local<Context> context) const; /** * Returns the origin for the script from where the function causing the * error originates. */ ScriptOrigin GetScriptOrigin() const; /** * Returns the resource name for the script from where the function causing * the error originates. */ Local<Value> GetScriptResourceName() const; /** * Exception stack trace. By default stack traces are not captured for * uncaught exceptions. SetCaptureStackTraceForUncaughtExceptions allows * to change this option. */ Local<StackTrace> GetStackTrace() const; /** * Returns the number, 1-based, of the line where the error occurred. */ V8_WARN_UNUSED_RESULT Maybe<int> GetLineNumber(Local<Context> context) const; /** * Returns the index within the script of the first character where * the error occurred. */ int GetStartPosition() const; /** * Returns the index within the script of the last character where * the error occurred. */ int GetEndPosition() const; /** * Returns the error level of the message. */ int ErrorLevel() const; /** * Returns the index within the line of the first character where * the error occurred. */ int GetStartColumn() const; V8_WARN_UNUSED_RESULT Maybe<int> GetStartColumn(Local<Context> context) const; /** * Returns the index within the line of the last character where * the error occurred. */ int GetEndColumn() const; V8_WARN_UNUSED_RESULT Maybe<int> GetEndColumn(Local<Context> context) const; /** * Passes on the value set by the embedder when it fed the script from which * this Message was generated to V8. */ bool IsSharedCrossOrigin() const; bool IsOpaque() const; // TODO(1245381): Print to a string instead of on a FILE. static void PrintCurrentStackTrace(Isolate* isolate, FILE* out); static const int kNoLineNumberInfo = 0; static const int kNoColumnInfo = 0; static const int kNoScriptIdInfo = 0; }; /** * Representation of a JavaScript stack trace. The information collected is a * snapshot of the execution stack and the information remains valid after * execution continues. */ class V8_EXPORT StackTrace { public: /** * Flags that determine what information is placed captured for each * StackFrame when grabbing the current stack trace. * Note: these options are deprecated and we always collect all available * information (kDetailed). */ enum StackTraceOptions { kLineNumber = 1, kColumnOffset = 1 << 1 | kLineNumber, kScriptName = 1 << 2, kFunctionName = 1 << 3, kIsEval = 1 << 4, kIsConstructor = 1 << 5, kScriptNameOrSourceURL = 1 << 6, kScriptId = 1 << 7, kExposeFramesAcrossSecurityOrigins = 1 << 8, kOverview = kLineNumber | kColumnOffset | kScriptName | kFunctionName, kDetailed = kOverview | kIsEval | kIsConstructor | kScriptNameOrSourceURL }; /** * Returns a StackFrame at a particular index. */ V8_DEPRECATED("Use Isolate version", Local<StackFrame> GetFrame(uint32_t index) const); Local<StackFrame> GetFrame(Isolate* isolate, uint32_t index) const; /** * Returns the number of StackFrames. */ int GetFrameCount() const; /** * Grab a snapshot of the current JavaScript execution stack. * * \param frame_limit The maximum number of stack frames we want to capture. * \param options Enumerates the set of things we will capture for each * StackFrame. */ static Local<StackTrace> CurrentStackTrace( Isolate* isolate, int frame_limit, StackTraceOptions options = kDetailed); }; /** * A single JavaScript stack frame. */ class V8_EXPORT StackFrame { public: /** * Returns the number, 1-based, of the line for the associate function call. * This method will return Message::kNoLineNumberInfo if it is unable to * retrieve the line number, or if kLineNumber was not passed as an option * when capturing the StackTrace. */ int GetLineNumber() const; /** * Returns the 1-based column offset on the line for the associated function * call. * This method will return Message::kNoColumnInfo if it is unable to retrieve * the column number, or if kColumnOffset was not passed as an option when * capturing the StackTrace. */ int GetColumn() const; /** * Returns the id of the script for the function for this StackFrame. * This method will return Message::kNoScriptIdInfo if it is unable to * retrieve the script id, or if kScriptId was not passed as an option when * capturing the StackTrace. */ int GetScriptId() const; /** * Returns the name of the resource that contains the script for the * function for this StackFrame. */ Local<String> GetScriptName() const; /** * Returns the name of the resource that contains the script for the * function for this StackFrame or sourceURL value if the script name * is undefined and its source ends with //# sourceURL=... string or * deprecated //@ sourceURL=... string. */ Local<String> GetScriptNameOrSourceURL() const; /** * Returns the name of the function associated with this stack frame. */ Local<String> GetFunctionName() const; /** * Returns whether or not the associated function is compiled via a call to * eval(). */ bool IsEval() const; /** * Returns whether or not the associated function is called as a * constructor via "new". */ bool IsConstructor() const; /** * Returns whether or not the associated functions is defined in wasm. */ bool IsWasm() const; }; // A StateTag represents a possible state of the VM. enum StateTag { JS, GC, PARSER, BYTECODE_COMPILER, COMPILER, OTHER, EXTERNAL, IDLE }; // A RegisterState represents the current state of registers used // by the sampling profiler API. struct RegisterState { RegisterState() : pc(nullptr), sp(nullptr), fp(nullptr) {} void* pc; // Instruction pointer. void* sp; // Stack pointer. void* fp; // Frame pointer. }; // The output structure filled up by GetStackSample API function. struct SampleInfo { size_t frames_count; // Number of frames collected. StateTag vm_state; // Current VM state. void* external_callback_entry; // External callback address if VM is // executing an external callback. }; /** * A JSON Parser and Stringifier. */ class V8_EXPORT JSON { public: /** * Tries to parse the string |json_string| and returns it as value if * successful. * * \param json_string The string to parse. * \return The corresponding value if successfully parsed. */ static V8_DEPRECATE_SOON("Use the maybe version taking context", MaybeLocal<Value> Parse(Isolate* isolate, Local<String> json_string)); static V8_WARN_UNUSED_RESULT MaybeLocal<Value> Parse( Local<Context> context, Local<String> json_string); /** * Tries to stringify the JSON-serializable object |json_object| and returns * it as string if successful. * * \param json_object The JSON-serializable object to stringify. * \return The corresponding string if successfully stringified. */ static V8_WARN_UNUSED_RESULT MaybeLocal<String> Stringify( Local<Context> context, Local<Value> json_object, Local<String> gap = Local<String>()); }; /** * Value serialization compatible with the HTML structured clone algorithm. * The format is backward-compatible (i.e. safe to store to disk). * * WARNING: This API is under development, and changes (including incompatible * changes to the API or wire format) may occur without notice until this * warning is removed. */ class V8_EXPORT ValueSerializer { public: class V8_EXPORT Delegate { public: virtual ~Delegate() {} /** * Handles the case where a DataCloneError would be thrown in the structured * clone spec. Other V8 embedders may throw some other appropriate exception * type. */ virtual void ThrowDataCloneError(Local<String> message) = 0; /** * The embedder overrides this method to write some kind of host object, if * possible. If not, a suitable exception should be thrown and * Nothing<bool>() returned. */ virtual Maybe<bool> WriteHostObject(Isolate* isolate, Local<Object> object); /** * Called when the ValueSerializer is going to serialize a * SharedArrayBuffer object. The embedder must return an ID for the * object, using the same ID if this SharedArrayBuffer has already been * serialized in this buffer. When deserializing, this ID will be passed to * ValueDeserializer::GetSharedArrayBufferFromId as |clone_id|. * * If the object cannot be serialized, an * exception should be thrown and Nothing<uint32_t>() returned. */ virtual Maybe<uint32_t> GetSharedArrayBufferId( Isolate* isolate, Local<SharedArrayBuffer> shared_array_buffer); virtual Maybe<uint32_t> GetWasmModuleTransferId( Isolate* isolate, Local<WasmCompiledModule> module); /** * Allocates memory for the buffer of at least the size provided. The actual * size (which may be greater or equal) is written to |actual_size|. If no * buffer has been allocated yet, nullptr will be provided. * * If the memory cannot be allocated, nullptr should be returned. * |actual_size| will be ignored. It is assumed that |old_buffer| is still * valid in this case and has not been modified. * * The default implementation uses the stdlib's `realloc()` function. */ virtual void* ReallocateBufferMemory(void* old_buffer, size_t size, size_t* actual_size); /** * Frees a buffer allocated with |ReallocateBufferMemory|. * * The default implementation uses the stdlib's `free()` function. */ virtual void FreeBufferMemory(void* buffer); }; explicit ValueSerializer(Isolate* isolate); ValueSerializer(Isolate* isolate, Delegate* delegate); ~ValueSerializer(); /** * Writes out a header, which includes the format version. */ void WriteHeader(); /** * Serializes a JavaScript value into the buffer. */ V8_WARN_UNUSED_RESULT Maybe<bool> WriteValue(Local<Context> context, Local<Value> value); /** * Returns the stored data. This serializer should not be used once the buffer * is released. The contents are undefined if a previous write has failed. */ V8_DEPRECATE_SOON("Use Release()", std::vector<uint8_t> ReleaseBuffer()); /** * Returns the stored data (allocated using the delegate's * ReallocateBufferMemory) and its size. This serializer should not be used * once the buffer is released. The contents are undefined if a previous write * has failed. Ownership of the buffer is transferred to the caller. */ V8_WARN_UNUSED_RESULT std::pair<uint8_t*, size_t> Release(); /** * Marks an ArrayBuffer as havings its contents transferred out of band. * Pass the corresponding ArrayBuffer in the deserializing context to * ValueDeserializer::TransferArrayBuffer. */ void TransferArrayBuffer(uint32_t transfer_id, Local<ArrayBuffer> array_buffer); /** * Similar to TransferArrayBuffer, but for SharedArrayBuffer. */ V8_DEPRECATE_SOON("Use Delegate::GetSharedArrayBufferId", void TransferSharedArrayBuffer( uint32_t transfer_id, Local<SharedArrayBuffer> shared_array_buffer)); /** * Indicate whether to treat ArrayBufferView objects as host objects, * i.e. pass them to Delegate::WriteHostObject. This should not be * called when no Delegate was passed. * * The default is not to treat ArrayBufferViews as host objects. */ void SetTreatArrayBufferViewsAsHostObjects(bool mode); /** * Write raw data in various common formats to the buffer. * Note that integer types are written in base-128 varint format, not with a * binary copy. For use during an override of Delegate::WriteHostObject. */ void WriteUint32(uint32_t value); void WriteUint64(uint64_t value); void WriteDouble(double value); void WriteRawBytes(const void* source, size_t length); private: ValueSerializer(const ValueSerializer&) = delete; void operator=(const ValueSerializer&) = delete; struct PrivateData; PrivateData* private_; }; /** * Deserializes values from data written with ValueSerializer, or a compatible * implementation. * * WARNING: This API is under development, and changes (including incompatible * changes to the API or wire format) may occur without notice until this * warning is removed. */ class V8_EXPORT ValueDeserializer { public: class V8_EXPORT Delegate { public: virtual ~Delegate() {} /** * The embedder overrides this method to read some kind of host object, if * possible. If not, a suitable exception should be thrown and * MaybeLocal<Object>() returned. */ virtual MaybeLocal<Object> ReadHostObject(Isolate* isolate); /** * Get a WasmCompiledModule given a transfer_id previously provided * by ValueSerializer::GetWasmModuleTransferId */ virtual MaybeLocal<WasmCompiledModule> GetWasmModuleFromId( Isolate* isolate, uint32_t transfer_id); /** * Get a SharedArrayBuffer given a clone_id previously provided * by ValueSerializer::GetSharedArrayBufferId */ virtual MaybeLocal<SharedArrayBuffer> GetSharedArrayBufferFromId( Isolate* isolate, uint32_t clone_id); }; ValueDeserializer(Isolate* isolate, const uint8_t* data, size_t size); ValueDeserializer(Isolate* isolate, const uint8_t* data, size_t size, Delegate* delegate); ~ValueDeserializer(); /** * Reads and validates a header (including the format version). * May, for example, reject an invalid or unsupported wire format. */ V8_WARN_UNUSED_RESULT Maybe<bool> ReadHeader(Local<Context> context); /** * Deserializes a JavaScript value from the buffer. */ V8_WARN_UNUSED_RESULT MaybeLocal<Value> ReadValue(Local<Context> context); /** * Accepts the array buffer corresponding to the one passed previously to * ValueSerializer::TransferArrayBuffer. */ void TransferArrayBuffer(uint32_t transfer_id, Local<ArrayBuffer> array_buffer); /** * Similar to TransferArrayBuffer, but for SharedArrayBuffer. * The id is not necessarily in the same namespace as unshared ArrayBuffer * objects. */ void TransferSharedArrayBuffer(uint32_t id, Local<SharedArrayBuffer> shared_array_buffer); /** * Must be called before ReadHeader to enable support for reading the legacy * wire format (i.e., which predates this being shipped). * * Don't use this unless you need to read data written by previous versions of * blink::ScriptValueSerializer. */ void SetSupportsLegacyWireFormat(bool supports_legacy_wire_format); /** * Expect inline wasm in the data stream (rather than in-memory transfer) */ void SetExpectInlineWasm(bool allow_inline_wasm); /** * Reads the underlying wire format version. Likely mostly to be useful to * legacy code reading old wire format versions. Must be called after * ReadHeader. */ uint32_t GetWireFormatVersion() const; /** * Reads raw data in various common formats to the buffer. * Note that integer types are read in base-128 varint format, not with a * binary copy. For use during an override of Delegate::ReadHostObject. */ V8_WARN_UNUSED_RESULT bool ReadUint32(uint32_t* value); V8_WARN_UNUSED_RESULT bool ReadUint64(uint64_t* value); V8_WARN_UNUSED_RESULT bool ReadDouble(double* value); V8_WARN_UNUSED_RESULT bool ReadRawBytes(size_t length, const void** data); private: ValueDeserializer(const ValueDeserializer&) = delete; void operator=(const ValueDeserializer&) = delete; struct PrivateData; PrivateData* private_; }; // --- Value --- /** * The superclass of all JavaScript values and objects. */ class V8_EXPORT Value : public Data { public: /** * Returns true if this value is the undefined value. See ECMA-262 * 4.3.10. */ V8_INLINE bool IsUndefined() const; /** * Returns true if this value is the null value. See ECMA-262 * 4.3.11. */ V8_INLINE bool IsNull() const; /** * Returns true if this value is either the null or the undefined value. * See ECMA-262 * 4.3.11. and 4.3.12 */ V8_INLINE bool IsNullOrUndefined() const; /** * Returns true if this value is true. */ bool IsTrue() const; /** * Returns true if this value is false. */ bool IsFalse() const; /** * Returns true if this value is a symbol or a string. */ bool IsName() const; /** * Returns true if this value is an instance of the String type. * See ECMA-262 8.4. */ V8_INLINE bool IsString() const; /** * Returns true if this value is a symbol. */ bool IsSymbol() const; /** * Returns true if this value is a function. */ bool IsFunction() const; /** * Returns true if this value is an array. Note that it will return false for * an Proxy for an array. */ bool IsArray() const; /** * Returns true if this value is an object. */ bool IsObject() const; /** * Returns true if this value is a bigint. */ bool IsBigInt() const; /** * Returns true if this value is boolean. */ bool IsBoolean() const; /** * Returns true if this value is a number. */ bool IsNumber() const; /** * Returns true if this value is external. */ bool IsExternal() const; /** * Returns true if this value is a 32-bit signed integer. */ bool IsInt32() const; /** * Returns true if this value is a 32-bit unsigned integer. */ bool IsUint32() const; /** * Returns true if this value is a Date. */ bool IsDate() const; /** * Returns true if this value is an Arguments object. */ bool IsArgumentsObject() const; /** * Returns true if this value is a BigInt object. */ bool IsBigIntObject() const; /** * Returns true if this value is a Boolean object. */ bool IsBooleanObject() const; /** * Returns true if this value is a Number object. */ bool IsNumberObject() const; /** * Returns true if this value is a String object. */ bool IsStringObject() const; /** * Returns true if this value is a Symbol object. */ bool IsSymbolObject() const; /** * Returns true if this value is a NativeError. */ bool IsNativeError() const; /** * Returns true if this value is a RegExp. */ bool IsRegExp() const; /** * Returns true if this value is an async function. */ bool IsAsyncFunction() const; /** * Returns true if this value is a Generator function. */ bool IsGeneratorFunction() const; /** * Returns true if this value is a Generator object (iterator). */ bool IsGeneratorObject() const; /** * Returns true if this value is a Promise. */ bool IsPromise() const; /** * Returns true if this value is a Map. */ bool IsMap() const; /** * Returns true if this value is a Set. */ bool IsSet() const; /** * Returns true if this value is a Map Iterator. */ bool IsMapIterator() const; /** * Returns true if this value is a Set Iterator. */ bool IsSetIterator() const; /** * Returns true if this value is a WeakMap. */ bool IsWeakMap() const; /** * Returns true if this value is a WeakSet. */ bool IsWeakSet() const; /** * Returns true if this value is an ArrayBuffer. */ bool IsArrayBuffer() const; /** * Returns true if this value is an ArrayBufferView. */ bool IsArrayBufferView() const; /** * Returns true if this value is one of TypedArrays. */ bool IsTypedArray() const; /** * Returns true if this value is an Uint8Array. */ bool IsUint8Array() const; /** * Returns true if this value is an Uint8ClampedArray. */ bool IsUint8ClampedArray() const; /** * Returns true if this value is an Int8Array. */ bool IsInt8Array() const; /** * Returns true if this value is an Uint16Array. */ bool IsUint16Array() const; /** * Returns true if this value is an Int16Array. */ bool IsInt16Array() const; /** * Returns true if this value is an Uint32Array. */ bool IsUint32Array() const; /** * Returns true if this value is an Int32Array. */ bool IsInt32Array() const; /** * Returns true if this value is a Float32Array. */ bool IsFloat32Array() const; /** * Returns true if this value is a Float64Array. */ bool IsFloat64Array() const; /** * Returns true if this value is a BigInt64Array. */ bool IsBigInt64Array() const; /** * Returns true if this value is a BigUint64Array. */ bool IsBigUint64Array() const; /** * Returns true if this value is a DataView. */ bool IsDataView() const; /** * Returns true if this value is a SharedArrayBuffer. * This is an experimental feature. */ bool IsSharedArrayBuffer() const; /** * Returns true if this value is a JavaScript Proxy. */ bool IsProxy() const; bool IsWebAssemblyCompiledModule() const; /** * Returns true if the value is a Module Namespace Object. */ bool IsModuleNamespaceObject() const; V8_WARN_UNUSED_RESULT MaybeLocal<BigInt> ToBigInt( Local<Context> context) const; V8_WARN_UNUSED_RESULT MaybeLocal<Boolean> ToBoolean( Local<Context> context) const; V8_WARN_UNUSED_RESULT MaybeLocal<Number> ToNumber( Local<Context> context) const; V8_WARN_UNUSED_RESULT MaybeLocal<String> ToString( Local<Context> context) const; V8_WARN_UNUSED_RESULT MaybeLocal<String> ToDetailString( Local<Context> context) const; V8_WARN_UNUSED_RESULT MaybeLocal<Object> ToObject( Local<Context> context) const; V8_WARN_UNUSED_RESULT MaybeLocal<Integer> ToInteger( Local<Context> context) const; V8_WARN_UNUSED_RESULT MaybeLocal<Uint32> ToUint32( Local<Context> context) const; V8_WARN_UNUSED_RESULT MaybeLocal<Int32> ToInt32(Local<Context> context) const; V8_DEPRECATE_SOON("Use maybe version", Local<Boolean> ToBoolean(Isolate* isolate) const); V8_DEPRECATE_SOON("Use maybe version", Local<Number> ToNumber(Isolate* isolate) const); V8_DEPRECATE_SOON("Use maybe version", Local<String> ToString(Isolate* isolate) const); V8_DEPRECATE_SOON("Use maybe version", Local<Object> ToObject(Isolate* isolate) const); V8_DEPRECATE_SOON("Use maybe version", Local<Integer> ToInteger(Isolate* isolate) const); V8_DEPRECATE_SOON("Use maybe version", Local<Int32> ToInt32(Isolate* isolate) const); inline V8_DEPRECATED("Use maybe version", Local<Boolean> ToBoolean() const); inline V8_DEPRECATED("Use maybe version", Local<String> ToString() const); inline V8_DEPRECATED("Use maybe version", Local<Object> ToObject() const); inline V8_DEPRECATED("Use maybe version", Local<Integer> ToInteger() const); /** * Attempts to convert a string to an array index. * Returns an empty handle if the conversion fails. */ V8_WARN_UNUSED_RESULT MaybeLocal<Uint32> ToArrayIndex( Local<Context> context) const; V8_WARN_UNUSED_RESULT Maybe<bool> BooleanValue(Local<Context> context) const; V8_WARN_UNUSED_RESULT Maybe<double> NumberValue(Local<Context> context) const; V8_WARN_UNUSED_RESULT Maybe<int64_t> IntegerValue( Local<Context> context) const; V8_WARN_UNUSED_RESULT Maybe<uint32_t> Uint32Value( Local<Context> context) const; V8_WARN_UNUSED_RESULT Maybe<int32_t> Int32Value(Local<Context> context) const; V8_DEPRECATED("Use maybe version", bool BooleanValue() const); V8_DEPRECATED("Use maybe version", double NumberValue() const); V8_DEPRECATED("Use maybe version", int64_t IntegerValue() const); V8_DEPRECATED("Use maybe version", uint32_t Uint32Value() const); V8_DEPRECATED("Use maybe version", int32_t Int32Value() const); /** JS == */ V8_DEPRECATED("Use maybe version", bool Equals(Local<Value> that) const); V8_WARN_UNUSED_RESULT Maybe<bool> Equals(Local<Context> context, Local<Value> that) const; bool StrictEquals(Local<Value> that) const; bool SameValue(Local<Value> that) const; template <class T> V8_INLINE static Value* Cast(T* value); Local<String> TypeOf(Isolate*); Maybe<bool> InstanceOf(Local<Context> context, Local<Object> object); private: V8_INLINE bool QuickIsUndefined() const; V8_INLINE bool QuickIsNull() const; V8_INLINE bool QuickIsNullOrUndefined() const; V8_INLINE bool QuickIsString() const; bool FullIsUndefined() const; bool FullIsNull() const; bool FullIsString() const; }; /** * The superclass of primitive values. See ECMA-262 4.3.2. */ class V8_EXPORT Primitive : public Value { }; /** * A primitive boolean value (ECMA-262, 4.3.14). Either the true * or false value. */ class V8_EXPORT Boolean : public Primitive { public: bool Value() const; V8_INLINE static Boolean* Cast(v8::Value* obj); V8_INLINE static Local<Boolean> New(Isolate* isolate, bool value); private: static void CheckCast(v8::Value* obj); }; /** * A superclass for symbols and strings. */ class V8_EXPORT Name : public Primitive { public: /** * Returns the identity hash for this object. The current implementation * uses an inline property on the object to store the identity hash. * * The return value will never be 0. Also, it is not guaranteed to be * unique. */ int GetIdentityHash(); V8_INLINE static Name* Cast(Value* obj); private: static void CheckCast(Value* obj); }; /** * A flag describing different modes of string creation. * * Aside from performance implications there are no differences between the two * creation modes. */ enum class NewStringType { /** * Create a new string, always allocating new storage memory. */ kNormal, /** * Acts as a hint that the string should be created in the * old generation heap space and be deduplicated if an identical string * already exists. */ kInternalized }; /** * A JavaScript string value (ECMA-262, 4.3.17). */ class V8_EXPORT String : public Name { public: static constexpr int kMaxLength = internal::kApiPointerSize == 4 ? (1 << 28) - 16 : internal::kSmiMaxValue / 2 - 24; enum Encoding { UNKNOWN_ENCODING = 0x1, TWO_BYTE_ENCODING = 0x0, ONE_BYTE_ENCODING = 0x8 }; /** * Returns the number of characters (UTF-16 code units) in this string. */ int Length() const; /** * Returns the number of bytes in the UTF-8 encoded * representation of this string. */ V8_DEPRECATED("Use Isolate version instead", int Utf8Length() const); int Utf8Length(Isolate* isolate) const; /** * Returns whether this string is known to contain only one byte data, * i.e. ISO-8859-1 code points. * Does not read the string. * False negatives are possible. */ bool IsOneByte() const; /** * Returns whether this string contain only one byte data, * i.e. ISO-8859-1 code points. * Will read the entire string in some cases. */ bool ContainsOnlyOneByte() const; /** * Write the contents of the string to an external buffer. * If no arguments are given, expects the buffer to be large * enough to hold the entire string and NULL terminator. Copies * the contents of the string and the NULL terminator into the * buffer. * * WriteUtf8 will not write partial UTF-8 sequences, preferring to stop * before the end of the buffer. * * Copies up to length characters into the output buffer. * Only null-terminates if there is enough space in the buffer. * * \param buffer The buffer into which the string will be copied. * \param start The starting position within the string at which * copying begins. * \param length The number of characters to copy from the string. For * WriteUtf8 the number of bytes in the buffer. * \param nchars_ref The number of characters written, can be NULL. * \param options Various options that might affect performance of this or * subsequent operations. * \return The number of characters copied to the buffer excluding the null * terminator. For WriteUtf8: The number of bytes copied to the buffer * including the null terminator (if written). */ enum WriteOptions { NO_OPTIONS = 0, HINT_MANY_WRITES_EXPECTED = 1, NO_NULL_TERMINATION = 2, PRESERVE_ONE_BYTE_NULL = 4, // Used by WriteUtf8 to replace orphan surrogate code units with the // unicode replacement character. Needs to be set to guarantee valid UTF-8 // output. REPLACE_INVALID_UTF8 = 8 }; // 16-bit character codes. int Write(Isolate* isolate, uint16_t* buffer, int start = 0, int length = -1, int options = NO_OPTIONS) const; V8_DEPRECATED("Use Isolate* version", int Write(uint16_t* buffer, int start = 0, int length = -1, int options = NO_OPTIONS) const); // One byte characters. int WriteOneByte(Isolate* isolate, uint8_t* buffer, int start = 0, int length = -1, int options = NO_OPTIONS) const; V8_DEPRECATED("Use Isolate* version", int WriteOneByte(uint8_t* buffer, int start = 0, int length = -1, int options = NO_OPTIONS) const); // UTF-8 encoded characters. int WriteUtf8(Isolate* isolate, char* buffer, int length = -1, int* nchars_ref = NULL, int options = NO_OPTIONS) const; V8_DEPRECATED("Use Isolate* version", int WriteUtf8(char* buffer, int length = -1, int* nchars_ref = NULL, int options = NO_OPTIONS) const); /** * A zero length string. */ V8_INLINE static Local<String> Empty(Isolate* isolate); /** * Returns true if the string is external */ bool IsExternal() const; /** * Returns true if the string is both external and one-byte. */ bool IsExternalOneByte() const; class V8_EXPORT ExternalStringResourceBase { // NOLINT public: virtual ~ExternalStringResourceBase() {} virtual bool IsCompressible() const { return false; } protected: ExternalStringResourceBase() {} /** * Internally V8 will call this Dispose method when the external string * resource is no longer needed. The default implementation will use the * delete operator. This method can be overridden in subclasses to * control how allocated external string resources are disposed. */ virtual void Dispose() { delete this; } // Disallow copying and assigning. ExternalStringResourceBase(const ExternalStringResourceBase&) = delete; void operator=(const ExternalStringResourceBase&) = delete; private: friend class internal::Heap; friend class v8::String; }; /** * An ExternalStringResource is a wrapper around a two-byte string * buffer that resides outside V8's heap. Implement an * ExternalStringResource to manage the life cycle of the underlying * buffer. Note that the string data must be immutable. */ class V8_EXPORT ExternalStringResource : public ExternalStringResourceBase { public: /** * Override the destructor to manage the life cycle of the underlying * buffer. */ virtual ~ExternalStringResource() {} /** * The string data from the underlying buffer. */ virtual const uint16_t* data() const = 0; /** * The length of the string. That is, the number of two-byte characters. */ virtual size_t length() const = 0; protected: ExternalStringResource() {} }; /** * An ExternalOneByteStringResource is a wrapper around an one-byte * string buffer that resides outside V8's heap. Implement an * ExternalOneByteStringResource to manage the life cycle of the * underlying buffer. Note that the string data must be immutable * and that the data must be Latin-1 and not UTF-8, which would require * special treatment internally in the engine and do not allow efficient * indexing. Use String::New or convert to 16 bit data for non-Latin1. */ class V8_EXPORT ExternalOneByteStringResource : public ExternalStringResourceBase { public: /** * Override the destructor to manage the life cycle of the underlying * buffer. */ virtual ~ExternalOneByteStringResource() {} /** The string data from the underlying buffer.*/ virtual const char* data() const = 0; /** The number of Latin-1 characters in the string.*/ virtual size_t length() const = 0; protected: ExternalOneByteStringResource() {} }; /** * If the string is an external string, return the ExternalStringResourceBase * regardless of the encoding, otherwise return NULL. The encoding of the * string is returned in encoding_out. */ V8_INLINE ExternalStringResourceBase* GetExternalStringResourceBase( Encoding* encoding_out) const; /** * Get the ExternalStringResource for an external string. Returns * NULL if IsExternal() doesn't return true. */ V8_INLINE ExternalStringResource* GetExternalStringResource() const; /** * Get the ExternalOneByteStringResource for an external one-byte string. * Returns NULL if IsExternalOneByte() doesn't return true. */ const ExternalOneByteStringResource* GetExternalOneByteStringResource() const; V8_INLINE static String* Cast(v8::Value* obj); // TODO(dcarney): remove with deprecation of New functions. enum NewStringType { kNormalString = static_cast<int>(v8::NewStringType::kNormal), kInternalizedString = static_cast<int>(v8::NewStringType::kInternalized) }; /** Allocates a new string from UTF-8 data.*/ static V8_DEPRECATE_SOON( "Use maybe version", Local<String> NewFromUtf8(Isolate* isolate, const char* data, NewStringType type = kNormalString, int length = -1)); /** Allocates a new string from UTF-8 data. Only returns an empty value when * length > kMaxLength. **/ static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromUtf8( Isolate* isolate, const char* data, v8::NewStringType type, int length = -1); /** Allocates a new string from Latin-1 data. Only returns an empty value * when length > kMaxLength. **/ static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromOneByte( Isolate* isolate, const uint8_t* data, v8::NewStringType type, int length = -1); /** Allocates a new string from UTF-16 data.*/ static V8_DEPRECATE_SOON( "Use maybe version", Local<String> NewFromTwoByte(Isolate* isolate, const uint16_t* data, NewStringType type = kNormalString, int length = -1)); /** Allocates a new string from UTF-16 data. Only returns an empty value when * length > kMaxLength. **/ static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewFromTwoByte( Isolate* isolate, const uint16_t* data, v8::NewStringType type, int length = -1); /** * Creates a new string by concatenating the left and the right strings * passed in as parameters. */ static Local<String> Concat(Isolate* isolate, Local<String> left, Local<String> right); static V8_DEPRECATED("Use Isolate* version", Local<String> Concat(Local<String> left, Local<String> right)); /** * Creates a new external string using the data defined in the given * resource. When the external string is no longer live on V8's heap the * resource will be disposed by calling its Dispose method. The caller of * this function should not otherwise delete or modify the resource. Neither * should the underlying buffer be deallocated or modified except through the * destructor of the external string resource. */ static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalTwoByte( Isolate* isolate, ExternalStringResource* resource); /** * Associate an external string resource with this string by transforming it * in place so that existing references to this string in the JavaScript heap * will use the external string resource. The external string resource's * character contents need to be equivalent to this string. * Returns true if the string has been changed to be an external string. * The string is not modified if the operation fails. See NewExternal for * information on the lifetime of the resource. */ bool MakeExternal(ExternalStringResource* resource); /** * Creates a new external string using the one-byte data defined in the given * resource. When the external string is no longer live on V8's heap the * resource will be disposed by calling its Dispose method. The caller of * this function should not otherwise delete or modify the resource. Neither * should the underlying buffer be deallocated or modified except through the * destructor of the external string resource. */ static V8_DEPRECATE_SOON( "Use maybe version", Local<String> NewExternal(Isolate* isolate, ExternalOneByteStringResource* resource)); static V8_WARN_UNUSED_RESULT MaybeLocal<String> NewExternalOneByte( Isolate* isolate, ExternalOneByteStringResource* resource); /** * Associate an external string resource with this string by transforming it * in place so that existing references to this string in the JavaScript heap * will use the external string resource. The external string resource's * character contents need to be equivalent to this string. * Returns true if the string has been changed to be an external string. * The string is not modified if the operation fails. See NewExternal for * information on the lifetime of the resource. */ bool MakeExternal(ExternalOneByteStringResource* resource); /** * Returns true if this string can be made external. */ bool CanMakeExternal(); /** * Returns true if the strings values are equal. Same as JS ==/===. */ bool StringEquals(Local<String> str); /** * Converts an object to a UTF-8-encoded character array. Useful if * you want to print the object. If conversion to a string fails * (e.g. due to an exception in the toString() method of the object) * then the length() method returns 0 and the * operator returns * NULL. */ class V8_EXPORT Utf8Value { public: Utf8Value(Isolate* isolate, Local<v8::Value> obj); ~Utf8Value(); char* operator*() { return str_; } const char* operator*() const { return str_; } int length() const { return length_; } // Disallow copying and assigning. Utf8Value(const Utf8Value&) = delete; void operator=(const Utf8Value&) = delete; private: char* str_; int length_; }; /** * Converts an object to a two-byte (UTF-16-encoded) string. * If conversion to a string fails (eg. due to an exception in the toString() * method of the object) then the length() method returns 0 and the * operator * returns NULL. */ class V8_EXPORT Value { public: Value(Isolate* isolate, Local<v8::Value> obj); ~Value(); uint16_t* operator*() { return str_; } const uint16_t* operator*() const { return str_; } int length() const { return length_; } // Disallow copying and assigning. Value(const Value&) = delete; void operator=(const Value&) = delete; private: uint16_t* str_; int length_; }; private: void VerifyExternalStringResourceBase(ExternalStringResourceBase* v, Encoding encoding) const; void VerifyExternalStringResource(ExternalStringResource* val) const; ExternalStringResource* GetExternalStringResourceSlow() const; ExternalStringResourceBase* GetExternalStringResourceBaseSlow( String::Encoding* encoding_out) const; const ExternalOneByteStringResource* GetExternalOneByteStringResourceSlow() const; static void CheckCast(v8::Value* obj); }; /** * A JavaScript symbol (ECMA-262 edition 6) */ class V8_EXPORT Symbol : public Name { public: /** * Returns the print name string of the symbol, or undefined if none. */ Local<Value> Name() const; /** * Create a symbol. If name is not empty, it will be used as the description. */ static Local<Symbol> New(Isolate* isolate, Local<String> name = Local<String>()); /** * Access global symbol registry. * Note that symbols created this way are never collected, so * they should only be used for statically fixed properties. * Also, there is only one global name space for the names used as keys. * To minimize the potential for clashes, use qualified names as keys. */ static Local<Symbol> For(Isolate *isolate, Local<String> name); /** * Retrieve a global symbol. Similar to |For|, but using a separate * registry that is not accessible by (and cannot clash with) JavaScript code. */ static Local<Symbol> ForApi(Isolate *isolate, Local<String> name); // Well-known symbols static Local<Symbol> GetHasInstance(Isolate* isolate); static Local<Symbol> GetIsConcatSpreadable(Isolate* isolate); static Local<Symbol> GetIterator(Isolate* isolate); static Local<Symbol> GetMatch(Isolate* isolate); static Local<Symbol> GetReplace(Isolate* isolate); static Local<Symbol> GetSearch(Isolate* isolate); static Local<Symbol> GetSplit(Isolate* isolate); static Local<Symbol> GetToPrimitive(Isolate* isolate); static Local<Symbol> GetToStringTag(Isolate* isolate); static Local<Symbol> GetUnscopables(Isolate* isolate); V8_INLINE static Symbol* Cast(Value* obj); private: Symbol(); static void CheckCast(Value* obj); }; /** * A private symbol * * This is an experimental feature. Use at your own risk. */ class V8_EXPORT Private : public Data { public: /** * Returns the print name string of the private symbol, or undefined if none. */ Local<Value> Name() const; /** * Create a private symbol. If name is not empty, it will be the description. */ static Local<Private> New(Isolate* isolate, Local<String> name = Local<String>()); /** * Retrieve a global private symbol. If a symbol with this name has not * been retrieved in the same isolate before, it is created. * Note that private symbols created this way are never collected, so * they should only be used for statically fixed properties. * Also, there is only one global name space for the names used as keys. * To minimize the potential for clashes, use qualified names as keys, * e.g., "Class#property". */ static Local<Private> ForApi(Isolate* isolate, Local<String> name); V8_INLINE static Private* Cast(Data* data); private: Private(); static void CheckCast(Data* that); }; /** * A JavaScript number value (ECMA-262, 4.3.20) */ class V8_EXPORT Number : public Primitive { public: double Value() const; static Local<Number> New(Isolate* isolate, double value); V8_INLINE static Number* Cast(v8::Value* obj); private: Number(); static void CheckCast(v8::Value* obj); }; /** * A JavaScript value representing a signed integer. */ class V8_EXPORT Integer : public Number { public: static Local<Integer> New(Isolate* isolate, int32_t value); static Local<Integer> NewFromUnsigned(Isolate* isolate, uint32_t value); int64_t Value() const; V8_INLINE static Integer* Cast(v8::Value* obj); private: Integer(); static void CheckCast(v8::Value* obj); }; /** * A JavaScript value representing a 32-bit signed integer. */ class V8_EXPORT Int32 : public Integer { public: int32_t Value() const; V8_INLINE static Int32* Cast(v8::Value* obj); private: Int32(); static void CheckCast(v8::Value* obj); }; /** * A JavaScript value representing a 32-bit unsigned integer. */ class V8_EXPORT Uint32 : public Integer { public: uint32_t Value() const; V8_INLINE static Uint32* Cast(v8::Value* obj); private: Uint32(); static void CheckCast(v8::Value* obj); }; /** * A JavaScript BigInt value (https://tc39.github.io/proposal-bigint) */ class V8_EXPORT BigInt : public Primitive { public: static Local<BigInt> New(Isolate* isolate, int64_t value); static Local<BigInt> NewFromUnsigned(Isolate* isolate, uint64_t value); /** * Creates a new BigInt object using a specified sign bit and a * specified list of digits/words. * The resulting number is calculated as: * * (-1)^sign_bit * (words[0] * (2^64)^0 + words[1] * (2^64)^1 + ...) */ static MaybeLocal<BigInt> NewFromWords(Local<Context> context, int sign_bit, int word_count, const uint64_t* words); /** * Returns the value of this BigInt as an unsigned 64-bit integer. * If `lossless` is provided, it will reflect whether the return value was * truncated or wrapped around. In particular, it is set to `false` if this * BigInt is negative. */ uint64_t Uint64Value(bool* lossless = nullptr) const; /** * Returns the value of this BigInt as a signed 64-bit integer. * If `lossless` is provided, it will reflect whether this BigInt was * truncated or not. */ int64_t Int64Value(bool* lossless = nullptr) const; /** * Returns the number of 64-bit words needed to store the result of * ToWordsArray(). */ int WordCount() const; /** * Writes the contents of this BigInt to a specified memory location. * `sign_bit` must be provided and will be set to 1 if this BigInt is * negative. * `*word_count` has to be initialized to the length of the `words` array. * Upon return, it will be set to the actual number of words that would * be needed to store this BigInt (i.e. the return value of `WordCount()`). */ void ToWordsArray(int* sign_bit, int* word_count, uint64_t* words) const; V8_INLINE static BigInt* Cast(v8::Value* obj); private: BigInt(); static void CheckCast(v8::Value* obj); }; /** * PropertyAttribute. */ enum PropertyAttribute { /** None. **/ None = 0, /** ReadOnly, i.e., not writable. **/ ReadOnly = 1 << 0, /** DontEnum, i.e., not enumerable. **/ DontEnum = 1 << 1, /** DontDelete, i.e., not configurable. **/ DontDelete = 1 << 2 }; /** * Accessor[Getter|Setter] are used as callback functions when * setting|getting a particular property. See Object and ObjectTemplate's * method SetAccessor. */ typedef void (*AccessorGetterCallback)( Local<String> property, const PropertyCallbackInfo<Value>& info); typedef void (*AccessorNameGetterCallback)( Local<Name> property, const PropertyCallbackInfo<Value>& info); typedef void (*AccessorSetterCallback)( Local<String> property, Local<Value> value, const PropertyCallbackInfo<void>& info); typedef void (*AccessorNameSetterCallback)( Local<Name> property, Local<Value> value, const PropertyCallbackInfo<void>& info); /** * Access control specifications. * * Some accessors should be accessible across contexts. These * accessors have an explicit access control parameter which specifies * the kind of cross-context access that should be allowed. * * TODO(dcarney): Remove PROHIBITS_OVERWRITING as it is now unused. */ enum AccessControl { DEFAULT = 0, ALL_CAN_READ = 1, ALL_CAN_WRITE = 1 << 1, PROHIBITS_OVERWRITING = 1 << 2 }; /** * Property filter bits. They can be or'ed to build a composite filter. */ enum PropertyFilter { ALL_PROPERTIES = 0, ONLY_WRITABLE = 1, ONLY_ENUMERABLE = 2, ONLY_CONFIGURABLE = 4, SKIP_STRINGS = 8, SKIP_SYMBOLS = 16 }; /** * Options for marking whether callbacks may trigger JS-observable side effects. * Side-effect-free callbacks are whitelisted during debug evaluation with * throwOnSideEffect. It applies when calling a Function, FunctionTemplate, * or an Accessor's getter callback. For Interceptors, please see * PropertyHandlerFlags's kHasNoSideEffect. */ enum class SideEffectType { kHasSideEffect, kHasNoSideEffect }; /** * Keys/Properties filter enums: * * KeyCollectionMode limits the range of collected properties. kOwnOnly limits * the collected properties to the given Object only. kIncludesPrototypes will * include all keys of the objects's prototype chain as well. */ enum class KeyCollectionMode { kOwnOnly, kIncludePrototypes }; /** * kIncludesIndices allows for integer indices to be collected, while * kSkipIndices will exclude integer indices from being collected. */ enum class IndexFilter { kIncludeIndices, kSkipIndices }; /** * kConvertToString will convert integer indices to strings. * kKeepNumbers will return numbers for integer indices. */ enum class KeyConversionMode { kConvertToString, kKeepNumbers }; /** * Integrity level for objects. */ enum class IntegrityLevel { kFrozen, kSealed }; /** * A JavaScript object (ECMA-262, 4.3.3) */ class V8_EXPORT Object : public Value { public: V8_DEPRECATE_SOON("Use maybe version", bool Set(Local<Value> key, Local<Value> value)); V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context, Local<Value> key, Local<Value> value); V8_DEPRECATE_SOON("Use maybe version", bool Set(uint32_t index, Local<Value> value)); V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context, uint32_t index, Local<Value> value); // Implements CreateDataProperty (ECMA-262, 7.3.4). // // Defines a configurable, writable, enumerable property with the given value // on the object unless the property already exists and is not configurable // or the object is not extensible. // // Returns true on success. V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context, Local<Name> key, Local<Value> value); V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context, uint32_t index, Local<Value> value); // Implements DefineOwnProperty. // // In general, CreateDataProperty will be faster, however, does not allow // for specifying attributes. // // Returns true on success. V8_WARN_UNUSED_RESULT Maybe<bool> DefineOwnProperty( Local<Context> context, Local<Name> key, Local<Value> value, PropertyAttribute attributes = None); // Implements Object.DefineProperty(O, P, Attributes), see Ecma-262 19.1.2.4. // // The defineProperty function is used to add an own property or // update the attributes of an existing own property of an object. // // Both data and accessor descriptors can be used. // // In general, CreateDataProperty is faster, however, does not allow // for specifying attributes or an accessor descriptor. // // The PropertyDescriptor can change when redefining a property. // // Returns true on success. V8_WARN_UNUSED_RESULT Maybe<bool> DefineProperty( Local<Context> context, Local<Name> key, PropertyDescriptor& descriptor); V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(Local<Value> key)); V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context, Local<Value> key); V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(uint32_t index)); V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context, uint32_t index); /** * Gets the property attributes of a property which can be None or * any combination of ReadOnly, DontEnum and DontDelete. Returns * None when the property doesn't exist. */ V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetPropertyAttributes( Local<Context> context, Local<Value> key); /** * Returns Object.getOwnPropertyDescriptor as per ES2016 section 19.1.2.6. */ V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetOwnPropertyDescriptor( Local<Context> context, Local<Name> key); V8_DEPRECATE_SOON("Use maybe version", bool Has(Local<Value> key)); /** * Object::Has() calls the abstract operation HasProperty(O, P) described * in ECMA-262, 7.3.10. Has() returns * true, if the object has the property, either own or on the prototype chain. * Interceptors, i.e., PropertyQueryCallbacks, are called if present. * * Has() has the same side effects as JavaScript's `variable in object`. * For example, calling Has() on a revoked proxy will throw an exception. * * \note Has() converts the key to a name, which possibly calls back into * JavaScript. * * See also v8::Object::HasOwnProperty() and * v8::Object::HasRealNamedProperty(). */ V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context, Local<Value> key); V8_DEPRECATE_SOON("Use maybe version", bool Delete(Local<Value> key)); V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context, Local<Value> key); V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context, uint32_t index); V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context, uint32_t index); /** * Note: SideEffectType affects the getter only, not the setter. */ V8_WARN_UNUSED_RESULT Maybe<bool> SetAccessor( Local<Context> context, Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter = 0, MaybeLocal<Value> data = MaybeLocal<Value>(), AccessControl settings = DEFAULT, PropertyAttribute attribute = None, SideEffectType getter_side_effect_type = SideEffectType::kHasSideEffect); void SetAccessorProperty(Local<Name> name, Local<Function> getter, Local<Function> setter = Local<Function>(), PropertyAttribute attribute = None, AccessControl settings = DEFAULT); /** * Sets a native data property like Template::SetNativeDataProperty, but * this method sets on this object directly. */ V8_WARN_UNUSED_RESULT Maybe<bool> SetNativeDataProperty( Local<Context> context, Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter = nullptr, Local<Value> data = Local<Value>(), PropertyAttribute attributes = None, SideEffectType getter_side_effect_type = SideEffectType::kHasSideEffect); /** * Attempts to create a property with the given name which behaves like a data * property, except that the provided getter is invoked (and provided with the * data value) to supply its value the first time it is read. After the * property is accessed once, it is replaced with an ordinary data property. * * Analogous to Template::SetLazyDataProperty. */ V8_WARN_UNUSED_RESULT Maybe<bool> SetLazyDataProperty( Local<Context> context, Local<Name> name, AccessorNameGetterCallback getter, Local<Value> data = Local<Value>(), PropertyAttribute attributes = None, SideEffectType getter_side_effect_type = SideEffectType::kHasSideEffect); /** * Functionality for private properties. * This is an experimental feature, use at your own risk. * Note: Private properties are not inherited. Do not rely on this, since it * may change. */ Maybe<bool> HasPrivate(Local<Context> context, Local<Private> key); Maybe<bool> SetPrivate(Local<Context> context, Local<Private> key, Local<Value> value); Maybe<bool> DeletePrivate(Local<Context> context, Local<Private> key); MaybeLocal<Value> GetPrivate(Local<Context> context, Local<Private> key); /** * Returns an array containing the names of the enumerable properties * of this object, including properties from prototype objects. The * array returned by this method contains the same values as would * be enumerated by a for-in statement over this object. */ V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetPropertyNames()); V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetPropertyNames( Local<Context> context); V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetPropertyNames( Local<Context> context, KeyCollectionMode mode, PropertyFilter property_filter, IndexFilter index_filter, KeyConversionMode key_conversion = KeyConversionMode::kKeepNumbers); /** * This function has the same functionality as GetPropertyNames but * the returned array doesn't contain the names of properties from * prototype objects. */ V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetOwnPropertyNames()); V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetOwnPropertyNames( Local<Context> context); /** * Returns an array containing the names of the filtered properties * of this object, including properties from prototype objects. The * array returned by this method contains the same values as would * be enumerated by a for-in statement over this object. */ V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetOwnPropertyNames( Local<Context> context, PropertyFilter filter, KeyConversionMode key_conversion = KeyConversionMode::kKeepNumbers); /** * Get the prototype object. This does not skip objects marked to * be skipped by __proto__ and it does not consult the security * handler. */ Local<Value> GetPrototype(); /** * Set the prototype object. This does not skip objects marked to * be skipped by __proto__ and it does not consult the security * handler. */ V8_WARN_UNUSED_RESULT Maybe<bool> SetPrototype(Local<Context> context, Local<Value> prototype); /** * Finds an instance of the given function template in the prototype * chain. */ Local<Object> FindInstanceInPrototypeChain(Local<FunctionTemplate> tmpl); /** * Call builtin Object.prototype.toString on this object. * This is different from Value::ToString() that may call * user-defined toString function. This one does not. */ V8_WARN_UNUSED_RESULT MaybeLocal<String> ObjectProtoToString( Local<Context> context); /** * Returns the name of the function invoked as a constructor for this object. */ Local<String> GetConstructorName(); /** * Sets the integrity level of the object. */ Maybe<bool> SetIntegrityLevel(Local<Context> context, IntegrityLevel level); /** Gets the number of internal fields for this Object. */ int InternalFieldCount(); /** Same as above, but works for Persistents */ V8_INLINE static int InternalFieldCount( const PersistentBase<Object>& object) { return object.val_->InternalFieldCount(); } /** Gets the value from an internal field. */ V8_INLINE Local<Value> GetInternalField(int index); /** Sets the value in an internal field. */ void SetInternalField(int index, Local<Value> value); /** * Gets a 2-byte-aligned native pointer from an internal field. This field * must have been set by SetAlignedPointerInInternalField, everything else * leads to undefined behavior. */ V8_INLINE void* GetAlignedPointerFromInternalField(int index); /** Same as above, but works for Persistents */ V8_INLINE static void* GetAlignedPointerFromInternalField( const PersistentBase<Object>& object, int index) { return object.val_->GetAlignedPointerFromInternalField(index); } /** * Sets a 2-byte-aligned native pointer in an internal field. To retrieve such * a field, GetAlignedPointerFromInternalField must be used, everything else * leads to undefined behavior. */ void SetAlignedPointerInInternalField(int index, void* value); void SetAlignedPointerInInternalFields(int argc, int indices[], void* values[]); /** * HasOwnProperty() is like JavaScript's Object.prototype.hasOwnProperty(). * * See also v8::Object::Has() and v8::Object::HasRealNamedProperty(). */ V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context, Local<Name> key); V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context, uint32_t index); V8_DEPRECATE_SOON("Use maybe version", bool HasRealNamedProperty(Local<String> key)); /** * Use HasRealNamedProperty() if you want to check if an object has an own * property without causing side effects, i.e., without calling interceptors. * * This function is similar to v8::Object::HasOwnProperty(), but it does not * call interceptors. * * \note Consider using non-masking interceptors, i.e., the interceptors are * not called if the receiver has the real named property. See * `v8::PropertyHandlerFlags::kNonMasking`. * * See also v8::Object::Has(). */ V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedProperty(Local<Context> context, Local<Name> key); V8_DEPRECATE_SOON("Use maybe version", bool HasRealIndexedProperty(uint32_t index)); V8_WARN_UNUSED_RESULT Maybe<bool> HasRealIndexedProperty( Local<Context> context, uint32_t index); V8_DEPRECATE_SOON("Use maybe version", bool HasRealNamedCallbackProperty(Local<String> key)); V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedCallbackProperty( Local<Context> context, Local<Name> key); /** * If result.IsEmpty() no real property was located in the prototype chain. * This means interceptors in the prototype chain are not called. */ V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedPropertyInPrototypeChain( Local<Context> context, Local<Name> key); /** * Gets the property attributes of a real property in the prototype chain, * which can be None or any combination of ReadOnly, DontEnum and DontDelete. * Interceptors in the prototype chain are not called. */ V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetRealNamedPropertyAttributesInPrototypeChain(Local<Context> context, Local<Name> key); /** * If result.IsEmpty() no real property was located on the object or * in the prototype chain. * This means interceptors in the prototype chain are not called. */ V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedProperty( Local<Context> context, Local<Name> key); /** * Gets the property attributes of a real property which can be * None or any combination of ReadOnly, DontEnum and DontDelete. * Interceptors in the prototype chain are not called. */ V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetRealNamedPropertyAttributes( Local<Context> context, Local<Name> key); /** Tests for a named lookup interceptor.*/ bool HasNamedLookupInterceptor(); /** Tests for an index lookup interceptor.*/ bool HasIndexedLookupInterceptor(); /** * Returns the identity hash for this object. The current implementation * uses a hidden property on the object to store the identity hash. * * The return value will never be 0. Also, it is not guaranteed to be * unique. */ int GetIdentityHash(); /** * Clone this object with a fast but shallow copy. Values will point * to the same values as the original object. */ // TODO(dcarney): take an isolate and optionally bail out? Local<Object> Clone(); /** * Returns the context in which the object was created. */ Local<Context> CreationContext(); /** Same as above, but works for Persistents */ V8_INLINE static Local<Context> CreationContext( const PersistentBase<Object>& object) { return object.val_->CreationContext(); } /** * Checks whether a callback is set by the * ObjectTemplate::SetCallAsFunctionHandler method. * When an Object is callable this method returns true. */ bool IsCallable(); /** * True if this object is a constructor. */ bool IsConstructor(); /** * Call an Object as a function if a callback is set by the * ObjectTemplate::SetCallAsFunctionHandler method. */ V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsFunction(Local<Context> context, Local<Value> recv, int argc, Local<Value> argv[]); /** * Call an Object as a constructor if a callback is set by the * ObjectTemplate::SetCallAsFunctionHandler method. * Note: This method behaves like the Function::NewInstance method. */ V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsConstructor( Local<Context> context, int argc, Local<Value> argv[]); /** * Return the isolate to which the Object belongs to. */ Isolate* GetIsolate(); /** * If this object is a Set, Map, WeakSet or WeakMap, this returns a * representation of the elements of this object as an array. * If this object is a SetIterator or MapIterator, this returns all * elements of the underlying collection, starting at the iterator's current * position. * For other types, this will return an empty MaybeLocal<Array> (without * scheduling an exception). */ MaybeLocal<Array> PreviewEntries(bool* is_key_value); static Local<Object> New(Isolate* isolate); V8_INLINE static Object* Cast(Value* obj); private: Object(); static void CheckCast(Value* obj); Local<Value> SlowGetInternalField(int index); void* SlowGetAlignedPointerFromInternalField(int index); }; /** * An instance of the built-in array constructor (ECMA-262, 15.4.2). */ class V8_EXPORT Array : public Object { public: uint32_t Length() const; /** * Creates a JavaScript array with the given length. If the length * is negative the returned array will have length 0. */ static Local<Array> New(Isolate* isolate, int length = 0); V8_INLINE static Array* Cast(Value* obj); private: Array(); static void CheckCast(Value* obj); }; /** * An instance of the built-in Map constructor (ECMA-262, 6th Edition, 23.1.1). */ class V8_EXPORT Map : public Object { public: size_t Size() const; void Clear(); V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context, Local<Value> key); V8_WARN_UNUSED_RESULT MaybeLocal<Map> Set(Local<Context> context, Local<Value> key, Local<Value> value); V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context, Local<Value> key); V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context, Local<Value> key); /** * Returns an array of length Size() * 2, where index N is the Nth key and * index N + 1 is the Nth value. */ Local<Array> AsArray() const; /** * Creates a new empty Map. */ static Local<Map> New(Isolate* isolate); V8_INLINE static Map* Cast(Value* obj); private: Map(); static void CheckCast(Value* obj); }; /** * An instance of the built-in Set constructor (ECMA-262, 6th Edition, 23.2.1). */ class V8_EXPORT Set : public Object { public: size_t Size() const; void Clear(); V8_WARN_UNUSED_RESULT MaybeLocal<Set> Add(Local<Context> context, Local<Value> key); V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context, Local<Value> key); V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context, Local<Value> key); /** * Returns an array of the keys in this Set. */ Local<Array> AsArray() const; /** * Creates a new empty Set. */ static Local<Set> New(Isolate* isolate); V8_INLINE static Set* Cast(Value* obj); private: Set(); static void CheckCast(Value* obj); }; template<typename T> class ReturnValue { public: template <class S> V8_INLINE ReturnValue(const ReturnValue<S>& that) : value_(that.value_) { TYPE_CHECK(T, S); } // Local setters template <typename S> V8_INLINE V8_DEPRECATE_SOON("Use Global<> instead", void Set(const Persistent<S>& handle)); template <typename S> V8_INLINE void Set(const Global<S>& handle); template <typename S> V8_INLINE void Set(const Local<S> handle); // Fast primitive setters V8_INLINE void Set(bool value); V8_INLINE void Set(double i); V8_INLINE void Set(int32_t i); V8_INLINE void Set(uint32_t i); // Fast JS primitive setters V8_INLINE void SetNull(); V8_INLINE void SetUndefined(); V8_INLINE void SetEmptyString(); // Convenience getter for Isolate V8_INLINE Isolate* GetIsolate() const; // Pointer setter: Uncompilable to prevent inadvertent misuse. template <typename S> V8_INLINE void Set(S* whatever); // Getter. Creates a new Local<> so it comes with a certain performance // hit. If the ReturnValue was not yet set, this will return the undefined // value. V8_INLINE Local<Value> Get() const; private: template<class F> friend class ReturnValue; template<class F> friend class FunctionCallbackInfo; template<class F> friend class PropertyCallbackInfo; template <class F, class G, class H> friend class PersistentValueMapBase; V8_INLINE void SetInternal(internal::Object* value) { *value_ = value; } V8_INLINE internal::Object* GetDefaultValue(); V8_INLINE explicit ReturnValue(internal::Object** slot); internal::Object** value_; }; /** * The argument information given to function call callbacks. This * class provides access to information about the context of the call, * including the receiver, the number and values of arguments, and * the holder of the function. */ template<typename T> class FunctionCallbackInfo { public: /** The number of available arguments. */ V8_INLINE int Length() const; /** Accessor for the available arguments. */ V8_INLINE Local<Value> operator[](int i) const; /** Returns the receiver. This corresponds to the "this" value. */ V8_INLINE Local<Object> This() const; /** * If the callback was created without a Signature, this is the same * value as This(). If there is a signature, and the signature didn't match * This() but one of its hidden prototypes, this will be the respective * hidden prototype. * * Note that this is not the prototype of This() on which the accessor * referencing this callback was found (which in V8 internally is often * referred to as holder [sic]). */ V8_INLINE Local<Object> Holder() const; /** For construct calls, this returns the "new.target" value. */ V8_INLINE Local<Value> NewTarget() const; /** Indicates whether this is a regular call or a construct call. */ V8_INLINE bool IsConstructCall() const; /** The data argument specified when creating the callback. */ V8_INLINE Local<Value> Data() const; /** The current Isolate. */ V8_INLINE Isolate* GetIsolate() const; /** The ReturnValue for the call. */ V8_INLINE ReturnValue<T> GetReturnValue() const; // This shouldn't be public, but the arm compiler needs it. static const int kArgsLength = 6; protected: friend class internal::FunctionCallbackArguments; friend class internal::CustomArguments<FunctionCallbackInfo>; friend class debug::ConsoleCallArguments; static const int kHolderIndex = 0; static const int kIsolateIndex = 1; static const int kReturnValueDefaultValueIndex = 2; static const int kReturnValueIndex = 3; static const int kDataIndex = 4; static const int kNewTargetIndex = 5; V8_INLINE FunctionCallbackInfo(internal::Object** implicit_args, internal::Object** values, int length); internal::Object** implicit_args_; internal::Object** values_; int length_; }; /** * The information passed to a property callback about the context * of the property access. */ template<typename T> class PropertyCallbackInfo { public: /** * \return The isolate of the property access. */ V8_INLINE Isolate* GetIsolate() const; /** * \return The data set in the configuration, i.e., in * `NamedPropertyHandlerConfiguration` or * `IndexedPropertyHandlerConfiguration.` */ V8_INLINE Local<Value> Data() const; /** * \return The receiver. In many cases, this is the object on which the * property access was intercepted. When using * `Reflect.get`, `Function.prototype.call`, or similar functions, it is the * object passed in as receiver or thisArg. * * \code * void GetterCallback(Local<Name> name, * const v8::PropertyCallbackInfo<v8::Value>& info) { * auto context = info.GetIsolate()->GetCurrentContext(); * * v8::Local<v8::Value> a_this = * info.This() * ->GetRealNamedProperty(context, v8_str("a")) * .ToLocalChecked(); * v8::Local<v8::Value> a_holder = * info.Holder() * ->GetRealNamedProperty(context, v8_str("a")) * .ToLocalChecked(); * * CHECK(v8_str("r")->Equals(context, a_this).FromJust()); * CHECK(v8_str("obj")->Equals(context, a_holder).FromJust()); * * info.GetReturnValue().Set(name); * } * * v8::Local<v8::FunctionTemplate> templ = * v8::FunctionTemplate::New(isolate); * templ->InstanceTemplate()->SetHandler( * v8::NamedPropertyHandlerConfiguration(GetterCallback)); * LocalContext env; * env->Global() * ->Set(env.local(), v8_str("obj"), templ->GetFunction(env.local()) * .ToLocalChecked() * ->NewInstance(env.local()) * .ToLocalChecked()) * .FromJust(); * * CompileRun("obj.a = 'obj'; var r = {a: 'r'}; Reflect.get(obj, 'x', r)"); * \endcode */ V8_INLINE Local<Object> This() const; /** * \return The object in the prototype chain of the receiver that has the * interceptor. Suppose you have `x` and its prototype is `y`, and `y` * has an interceptor. Then `info.This()` is `x` and `info.Holder()` is `y`. * The Holder() could be a hidden object (the global object, rather * than the global proxy). * * \note For security reasons, do not pass the object back into the runtime. */ V8_INLINE Local<Object> Holder() const; /** * \return The return value of the callback. * Can be changed by calling Set(). * \code * info.GetReturnValue().Set(...) * \endcode * */ V8_INLINE ReturnValue<T> GetReturnValue() const; /** * \return True if the intercepted function should throw if an error occurs. * Usually, `true` corresponds to `'use strict'`. * * \note Always `false` when intercepting `Reflect.set()` * independent of the language mode. */ V8_INLINE bool ShouldThrowOnError() const; // This shouldn't be public, but the arm compiler needs it. static const int kArgsLength = 7; protected: friend class MacroAssembler; friend class internal::PropertyCallbackArguments; friend class internal::CustomArguments<PropertyCallbackInfo>; static const int kShouldThrowOnErrorIndex = 0; static const int kHolderIndex = 1; static const int kIsolateIndex = 2; static const int kReturnValueDefaultValueIndex = 3; static const int kReturnValueIndex = 4; static const int kDataIndex = 5; static const int kThisIndex = 6; V8_INLINE PropertyCallbackInfo(internal::Object** args) : args_(args) {} internal::Object** args_; }; typedef void (*FunctionCallback)(const FunctionCallbackInfo<Value>& info); enum class ConstructorBehavior { kThrow, kAllow }; /** * A JavaScript function object (ECMA-262, 15.3). */ class V8_EXPORT Function : public Object { public: /** * Create a function in the current execution context * for a given FunctionCallback. */ static MaybeLocal<Function> New( Local<Context> context, FunctionCallback callback, Local<Value> data = Local<Value>(), int length = 0, ConstructorBehavior behavior = ConstructorBehavior::kAllow, SideEffectType side_effect_type = SideEffectType::kHasSideEffect); static V8_DEPRECATE_SOON( "Use maybe version", Local<Function> New(Isolate* isolate, FunctionCallback callback, Local<Value> data = Local<Value>(), int length = 0)); V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance( Local<Context> context, int argc, Local<Value> argv[]) const; V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance( Local<Context> context) const { return NewInstance(context, 0, nullptr); } /** * When side effect checks are enabled, passing kHasNoSideEffect allows the * constructor to be invoked without throwing. Calls made within the * constructor are still checked. */ V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstanceWithSideEffectType( Local<Context> context, int argc, Local<Value> argv[], SideEffectType side_effect_type = SideEffectType::kHasSideEffect) const; V8_DEPRECATE_SOON("Use maybe version", Local<Value> Call(Local<Value> recv, int argc, Local<Value> argv[])); V8_WARN_UNUSED_RESULT MaybeLocal<Value> Call(Local<Context> context, Local<Value> recv, int argc, Local<Value> argv[]); void SetName(Local<String> name); Local<Value> GetName() const; /** * Name inferred from variable or property assignment of this function. * Used to facilitate debugging and profiling of JavaScript code written * in an OO style, where many functions are anonymous but are assigned * to object properties. */ Local<Value> GetInferredName() const; /** * displayName if it is set, otherwise name if it is configured, otherwise * function name, otherwise inferred name. */ Local<Value> GetDebugName() const; /** * User-defined name assigned to the "displayName" property of this function. * Used to facilitate debugging and profiling of JavaScript code. */ Local<Value> GetDisplayName() const; /** * Returns zero based line number of function body and * kLineOffsetNotFound if no information available. */ int GetScriptLineNumber() const; /** * Returns zero based column number of function body and * kLineOffsetNotFound if no information available. */ int GetScriptColumnNumber() const; /** * Returns scriptId. */ int ScriptId() const; /** * Returns the original function if this function is bound, else returns * v8::Undefined. */ Local<Value> GetBoundFunction() const; ScriptOrigin GetScriptOrigin() const; V8_INLINE static Function* Cast(Value* obj); static const int kLineOffsetNotFound; private: Function(); static void CheckCast(Value* obj); }; #ifndef V8_PROMISE_INTERNAL_FIELD_COUNT // The number of required internal fields can be defined by embedder. #define V8_PROMISE_INTERNAL_FIELD_COUNT 0 #endif /** * An instance of the built-in Promise constructor (ES6 draft). */ class V8_EXPORT Promise : public Object { public: /** * State of the promise. Each value corresponds to one of the possible values * of the [[PromiseState]] field. */ enum PromiseState { kPending, kFulfilled, kRejected }; class V8_EXPORT Resolver : public Object { public: /** * Create a new resolver, along with an associated promise in pending state. */ static V8_WARN_UNUSED_RESULT MaybeLocal<Resolver> New( Local<Context> context); /** * Extract the associated promise. */ Local<Promise> GetPromise(); /** * Resolve/reject the associated promise with a given value. * Ignored if the promise is no longer pending. */ V8_WARN_UNUSED_RESULT Maybe<bool> Resolve(Local<Context> context, Local<Value> value); V8_WARN_UNUSED_RESULT Maybe<bool> Reject(Local<Context> context, Local<Value> value); V8_INLINE static Resolver* Cast(Value* obj); private: Resolver(); static void CheckCast(Value* obj); }; /** * Register a resolution/rejection handler with a promise. * The handler is given the respective resolution/rejection value as * an argument. If the promise is already resolved/rejected, the handler is * invoked at the end of turn. */ V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Catch(Local<Context> context, Local<Function> handler); V8_WARN_UNUSED_RESULT MaybeLocal<Promise> Then(Local<Context> context, Local<Function> handler); /** * Returns true if the promise has at least one derived promise, and * therefore resolve/reject handlers (including default handler). */ bool HasHandler(); /** * Returns the content of the [[PromiseResult]] field. The Promise must not * be pending. */ Local<Value> Result(); /** * Returns the value of the [[PromiseState]] field. */ PromiseState State(); V8_INLINE static Promise* Cast(Value* obj); static const int kEmbedderFieldCount = V8_PROMISE_INTERNAL_FIELD_COUNT; private: Promise(); static void CheckCast(Value* obj); }; /** * An instance of a Property Descriptor, see Ecma-262 6.2.4. * * Properties in a descriptor are present or absent. If you do not set * `enumerable`, `configurable`, and `writable`, they are absent. If `value`, * `get`, or `set` are absent, but you must specify them in the constructor, use * empty handles. * * Accessors `get` and `set` must be callable or undefined if they are present. * * \note Only query properties if they are present, i.e., call `x()` only if * `has_x()` returns true. * * \code * // var desc = {writable: false} * v8::PropertyDescriptor d(Local<Value>()), false); * d.value(); // error, value not set * if (d.has_writable()) { * d.writable(); // false * } * * // var desc = {value: undefined} * v8::PropertyDescriptor d(v8::Undefined(isolate)); * * // var desc = {get: undefined} * v8::PropertyDescriptor d(v8::Undefined(isolate), Local<Value>())); * \endcode */ class V8_EXPORT PropertyDescriptor { public: // GenericDescriptor PropertyDescriptor(); // DataDescriptor PropertyDescriptor(Local<Value> value); // DataDescriptor with writable property PropertyDescriptor(Local<Value> value, bool writable); // AccessorDescriptor PropertyDescriptor(Local<Value> get, Local<Value> set); ~PropertyDescriptor(); Local<Value> value() const; bool has_value() const; Local<Value> get() const; bool has_get() const; Local<Value> set() const; bool has_set() const; void set_enumerable(bool enumerable); bool enumerable() const; bool has_enumerable() const; void set_configurable(bool configurable); bool configurable() const; bool has_configurable() const; bool writable() const; bool has_writable() const; struct PrivateData; PrivateData* get_private() const { return private_; } PropertyDescriptor(const PropertyDescriptor&) = delete; void operator=(const PropertyDescriptor&) = delete; private: PrivateData* private_; }; /** * An instance of the built-in Proxy constructor (ECMA-262, 6th Edition, * 26.2.1). */ class V8_EXPORT Proxy : public Object { public: Local<Value> GetTarget(); Local<Value> GetHandler(); bool IsRevoked(); void Revoke(); /** * Creates a new Proxy for the target object. */ static MaybeLocal<Proxy> New(Local<Context> context, Local<Object> local_target, Local<Object> local_handler); V8_INLINE static Proxy* Cast(Value* obj); private: Proxy(); static void CheckCast(Value* obj); }; // TODO(mtrofin): rename WasmCompiledModule to WasmModuleObject, for // consistency with internal APIs. class V8_EXPORT WasmCompiledModule : public Object { public: typedef std::pair<std::unique_ptr<const uint8_t[]>, size_t> SerializedModule; // The COMMA macro allows us to use ',' inside of the V8_DEPRECATED macro. #define COMMA , V8_DEPRECATED( "Use BufferReference.", typedef std::pair<const uint8_t * COMMA size_t> CallerOwnedBuffer); #undef COMMA /** * A unowned reference to a byte buffer. */ struct BufferReference { const uint8_t* start; size_t size; BufferReference(const uint8_t* start, size_t size) : start(start), size(size) {} // Temporarily allow conversion to and from CallerOwnedBuffer. V8_DEPRECATED( "Use BufferReference directly.", inline BufferReference(CallerOwnedBuffer)); // NOLINT(runtime/explicit) V8_DEPRECATED("Use BufferReference directly.", inline operator CallerOwnedBuffer()); }; /** * An opaque, native heap object for transferring wasm modules. It * supports move semantics, and does not support copy semantics. */ class TransferrableModule final { public: TransferrableModule(TransferrableModule&& src) = default; TransferrableModule(const TransferrableModule& src) = delete; TransferrableModule& operator=(TransferrableModule&& src) = default; TransferrableModule& operator=(const TransferrableModule& src) = delete; private: typedef std::shared_ptr<internal::wasm::NativeModule> SharedModule; typedef std::pair<std::unique_ptr<const uint8_t[]>, size_t> OwnedBuffer; friend class WasmCompiledModule; explicit TransferrableModule(SharedModule shared_module) : shared_module_(std::move(shared_module)) {} TransferrableModule(OwnedBuffer serialized, OwnedBuffer bytes) : serialized_(std::move(serialized)), wire_bytes_(std::move(bytes)) {} SharedModule shared_module_; OwnedBuffer serialized_ = {nullptr, 0}; OwnedBuffer wire_bytes_ = {nullptr, 0}; }; /** * Get an in-memory, non-persistable, and context-independent (meaning, * suitable for transfer to another Isolate and Context) representation * of this wasm compiled module. */ TransferrableModule GetTransferrableModule(); /** * Efficiently re-create a WasmCompiledModule, without recompiling, from * a TransferrableModule. */ static MaybeLocal<WasmCompiledModule> FromTransferrableModule( Isolate* isolate, const TransferrableModule&); /** * Get the wasm-encoded bytes that were used to compile this module. */ BufferReference GetWasmWireBytesRef(); V8_DEPRECATED("Use GetWasmWireBytesRef version.", Local<String> GetWasmWireBytes()); /** * Serialize the compiled module. The serialized data does not include the * uncompiled bytes. */ SerializedModule Serialize(); /** * If possible, deserialize the module, otherwise compile it from the provided * uncompiled bytes. */ static MaybeLocal<WasmCompiledModule> DeserializeOrCompile( Isolate* isolate, BufferReference serialized_module, BufferReference wire_bytes); V8_INLINE static WasmCompiledModule* Cast(Value* obj); private: static MaybeLocal<WasmCompiledModule> Deserialize( Isolate* isolate, BufferReference serialized_module, BufferReference wire_bytes); static MaybeLocal<WasmCompiledModule> Compile(Isolate* isolate, const uint8_t* start, size_t length); static BufferReference AsReference( const TransferrableModule::OwnedBuffer& buff) { return {buff.first.get(), buff.second}; } WasmCompiledModule(); static void CheckCast(Value* obj); }; // TODO(clemensh): Remove after M70 branch. WasmCompiledModule::BufferReference::BufferReference( WasmCompiledModule::CallerOwnedBuffer buf) : BufferReference(buf.first, buf.second) {} WasmCompiledModule::BufferReference:: operator WasmCompiledModule::CallerOwnedBuffer() { return {start, size}; } /** * The V8 interface for WebAssembly streaming compilation. When streaming * compilation is initiated, V8 passes a {WasmStreaming} object to the embedder * such that the embedder can pass the input butes for streaming compilation to * V8. */ class V8_EXPORT WasmStreaming final { public: class WasmStreamingImpl; WasmStreaming(std::unique_ptr<WasmStreamingImpl> impl); ~WasmStreaming(); /** * Pass a new chunck of bytes to WebAssembly streaming compilation. * The buffer passed into {OnBytesReceived} is owned by the caller. */ void OnBytesReceived(const uint8_t* bytes, size_t size); /** * {Finish} should be called after all received bytes where passed to * {OnBytesReceived} to tell V8 that there will be no more bytes. {Finish} * does not have to be called after {Abort} has been called already. */ void Finish(); /** * Abort streaming compilation. If {exception} has a value, then the promise * associated with streaming compilation is rejected with that value. If * {exception} does not have value, the promise does not get rejected. */ void Abort(MaybeLocal<Value> exception); /** * Unpacks a {WasmStreaming} object wrapped in a {Managed} for the embedder. * Since the embedder is on the other side of the API, it cannot unpack the * {Managed} itself. */ static std::shared_ptr<WasmStreaming> Unpack(Isolate* isolate, Local<Value> value); private: std::unique_ptr<WasmStreamingImpl> impl_; }; // TODO(mtrofin): when streaming compilation is done, we can rename this // to simply WasmModuleObjectBuilder class V8_EXPORT WasmModuleObjectBuilderStreaming final { public: explicit WasmModuleObjectBuilderStreaming(Isolate* isolate); /** * The buffer passed into OnBytesReceived is owned by the caller. */ void OnBytesReceived(const uint8_t*, size_t size); void Finish(); /** * Abort streaming compilation. If {exception} has a value, then the promise * associated with streaming compilation is rejected with that value. If * {exception} does not have value, the promise does not get rejected. */ void Abort(MaybeLocal<Value> exception); Local<Promise> GetPromise(); ~WasmModuleObjectBuilderStreaming(); private: WasmModuleObjectBuilderStreaming(const WasmModuleObjectBuilderStreaming&) = delete; WasmModuleObjectBuilderStreaming(WasmModuleObjectBuilderStreaming&&) = default; WasmModuleObjectBuilderStreaming& operator=( const WasmModuleObjectBuilderStreaming&) = delete; WasmModuleObjectBuilderStreaming& operator=( WasmModuleObjectBuilderStreaming&&) = default; Isolate* isolate_ = nullptr; #if V8_CC_MSVC /** * We don't need the static Copy API, so the default * NonCopyablePersistentTraits would be sufficient, however, * MSVC eagerly instantiates the Copy. * We ensure we don't use Copy, however, by compiling with the * defaults everywhere else. */ Persistent<Promise, CopyablePersistentTraits<Promise>> promise_; #else Persistent<Promise> promise_; #endif std::shared_ptr<internal::wasm::StreamingDecoder> streaming_decoder_; }; #ifndef V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT // The number of required internal fields can be defined by embedder. #define V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT 2 #endif enum class ArrayBufferCreationMode { kInternalized, kExternalized }; /** * An instance of the built-in ArrayBuffer constructor (ES6 draft 15.13.5). */ class V8_EXPORT ArrayBuffer : public Object { public: /** * A thread-safe allocator that V8 uses to allocate |ArrayBuffer|'s memory. * The allocator is a global V8 setting. It has to be set via * Isolate::CreateParams. * * Memory allocated through this allocator by V8 is accounted for as external * memory by V8. Note that V8 keeps track of the memory for all internalized * |ArrayBuffer|s. Responsibility for tracking external memory (using * Isolate::AdjustAmountOfExternalAllocatedMemory) is handed over to the * embedder upon externalization and taken over upon internalization (creating * an internalized buffer from an existing buffer). * * Note that it is unsafe to call back into V8 from any of the allocator * functions. */ class V8_EXPORT Allocator { // NOLINT public: virtual ~Allocator() {} /** * Allocate |length| bytes. Return NULL if allocation is not successful. * Memory should be initialized to zeroes. */ virtual void* Allocate(size_t length) = 0; /** * Allocate |length| bytes. Return NULL if allocation is not successful. * Memory does not have to be initialized. */ virtual void* AllocateUninitialized(size_t length) = 0; /** * Free the memory block of size |length|, pointed to by |data|. * That memory is guaranteed to be previously allocated by |Allocate|. */ virtual void Free(void* data, size_t length) = 0; /** * ArrayBuffer allocation mode. kNormal is a malloc/free style allocation, * while kReservation is for larger allocations with the ability to set * access permissions. */ enum class AllocationMode { kNormal, kReservation }; /** * malloc/free based convenience allocator. * * Caller takes ownership, i.e. the returned object needs to be freed using * |delete allocator| once it is no longer in use. */ static Allocator* NewDefaultAllocator(); }; /** * The contents of an |ArrayBuffer|. Externalization of |ArrayBuffer| * returns an instance of this class, populated, with a pointer to data * and byte length. * * The Data pointer of ArrayBuffer::Contents must be freed using the provided * deleter, which will call ArrayBuffer::Allocator::Free if the buffer * was allocated with ArraryBuffer::Allocator::Allocate. */ class V8_EXPORT Contents { // NOLINT public: using DeleterCallback = void (*)(void* buffer, size_t length, void* info); Contents() : data_(nullptr), byte_length_(0), allocation_base_(nullptr), allocation_length_(0), allocation_mode_(Allocator::AllocationMode::kNormal), deleter_(nullptr), deleter_data_(nullptr) {} void* AllocationBase() const { return allocation_base_; } size_t AllocationLength() const { return allocation_length_; } Allocator::AllocationMode AllocationMode() const { return allocation_mode_; } void* Data() const { return data_; } size_t ByteLength() const { return byte_length_; } DeleterCallback Deleter() const { return deleter_; } void* DeleterData() const { return deleter_data_; } private: Contents(void* data, size_t byte_length, void* allocation_base, size_t allocation_length, Allocator::AllocationMode allocation_mode, DeleterCallback deleter, void* deleter_data); void* data_; size_t byte_length_; void* allocation_base_; size_t allocation_length_; Allocator::AllocationMode allocation_mode_; DeleterCallback deleter_; void* deleter_data_; friend class ArrayBuffer; }; /** * Data length in bytes. */ size_t ByteLength() const; /** * Create a new ArrayBuffer. Allocate |byte_length| bytes. * Allocated memory will be owned by a created ArrayBuffer and * will be deallocated when it is garbage-collected, * unless the object is externalized. */ static Local<ArrayBuffer> New(Isolate* isolate, size_t byte_length); /** * Create a new ArrayBuffer over an existing memory block. * The created array buffer is by default immediately in externalized state. * In externalized state, the memory block will not be reclaimed when a * created ArrayBuffer is garbage-collected. * In internalized state, the memory block will be released using * |Allocator::Free| once all ArrayBuffers referencing it are collected by * the garbage collector. */ static Local<ArrayBuffer> New( Isolate* isolate, void* data, size_t byte_length, ArrayBufferCreationMode mode = ArrayBufferCreationMode::kExternalized); /** * Returns true if ArrayBuffer is externalized, that is, does not * own its memory block. */ bool IsExternal() const; /** * Returns true if this ArrayBuffer may be neutered. */ bool IsNeuterable() const; /** * Neuters this ArrayBuffer and all its views (typed arrays). * Neutering sets the byte length of the buffer and all typed arrays to zero, * preventing JavaScript from ever accessing underlying backing store. * ArrayBuffer should have been externalized and must be neuterable. */ void Neuter(); /** * Make this ArrayBuffer external. The pointer to underlying memory block * and byte length are returned as |Contents| structure. After ArrayBuffer * had been externalized, it does no longer own the memory block. The caller * should take steps to free memory when it is no longer needed. * * The Data pointer of ArrayBuffer::Contents must be freed using the provided * deleter, which will call ArrayBuffer::Allocator::Free if the buffer * was allocated with ArraryBuffer::Allocator::Allocate. */ Contents Externalize(); /** * Get a pointer to the ArrayBuffer's underlying memory block without * externalizing it. If the ArrayBuffer is not externalized, this pointer * will become invalid as soon as the ArrayBuffer gets garbage collected. * * The embedder should make sure to hold a strong reference to the * ArrayBuffer while accessing this pointer. */ Contents GetContents(); V8_INLINE static ArrayBuffer* Cast(Value* obj); static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT; static const int kEmbedderFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT; private: ArrayBuffer(); static void CheckCast(Value* obj); }; #ifndef V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT // The number of required internal fields can be defined by embedder. #define V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT 2 #endif /** * A base class for an instance of one of "views" over ArrayBuffer, * including TypedArrays and DataView (ES6 draft 15.13). */ class V8_EXPORT ArrayBufferView : public Object { public: /** * Returns underlying ArrayBuffer. */ Local<ArrayBuffer> Buffer(); /** * Byte offset in |Buffer|. */ size_t ByteOffset(); /** * Size of a view in bytes. */ size_t ByteLength(); /** * Copy the contents of the ArrayBufferView's buffer to an embedder defined * memory without additional overhead that calling ArrayBufferView::Buffer * might incur. * * Will write at most min(|byte_length|, ByteLength) bytes starting at * ByteOffset of the underlying buffer to the memory starting at |dest|. * Returns the number of bytes actually written. */ size_t CopyContents(void* dest, size_t byte_length); /** * Returns true if ArrayBufferView's backing ArrayBuffer has already been * allocated. */ bool HasBuffer() const; V8_INLINE static ArrayBufferView* Cast(Value* obj); static const int kInternalFieldCount = V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT; static const int kEmbedderFieldCount = V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT; private: ArrayBufferView(); static void CheckCast(Value* obj); }; /** * A base class for an instance of TypedArray series of constructors * (ES6 draft 15.13.6). */ class V8_EXPORT TypedArray : public ArrayBufferView { public: /* * The largest typed array size that can be constructed using New. */ static constexpr size_t kMaxLength = internal::kSmiMaxValue; /** * Number of elements in this typed array * (e.g. for Int16Array, |ByteLength|/2). */ size_t Length(); V8_INLINE static TypedArray* Cast(Value* obj); private: TypedArray(); static void CheckCast(Value* obj); }; /** * An instance of Uint8Array constructor (ES6 draft 15.13.6). */ class V8_EXPORT Uint8Array : public TypedArray { public: static Local<Uint8Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Uint8Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Uint8Array* Cast(Value* obj); private: Uint8Array(); static void CheckCast(Value* obj); }; /** * An instance of Uint8ClampedArray constructor (ES6 draft 15.13.6). */ class V8_EXPORT Uint8ClampedArray : public TypedArray { public: static Local<Uint8ClampedArray> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Uint8ClampedArray> New( Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Uint8ClampedArray* Cast(Value* obj); private: Uint8ClampedArray(); static void CheckCast(Value* obj); }; /** * An instance of Int8Array constructor (ES6 draft 15.13.6). */ class V8_EXPORT Int8Array : public TypedArray { public: static Local<Int8Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Int8Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Int8Array* Cast(Value* obj); private: Int8Array(); static void CheckCast(Value* obj); }; /** * An instance of Uint16Array constructor (ES6 draft 15.13.6). */ class V8_EXPORT Uint16Array : public TypedArray { public: static Local<Uint16Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Uint16Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Uint16Array* Cast(Value* obj); private: Uint16Array(); static void CheckCast(Value* obj); }; /** * An instance of Int16Array constructor (ES6 draft 15.13.6). */ class V8_EXPORT Int16Array : public TypedArray { public: static Local<Int16Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Int16Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Int16Array* Cast(Value* obj); private: Int16Array(); static void CheckCast(Value* obj); }; /** * An instance of Uint32Array constructor (ES6 draft 15.13.6). */ class V8_EXPORT Uint32Array : public TypedArray { public: static Local<Uint32Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Uint32Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Uint32Array* Cast(Value* obj); private: Uint32Array(); static void CheckCast(Value* obj); }; /** * An instance of Int32Array constructor (ES6 draft 15.13.6). */ class V8_EXPORT Int32Array : public TypedArray { public: static Local<Int32Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Int32Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Int32Array* Cast(Value* obj); private: Int32Array(); static void CheckCast(Value* obj); }; /** * An instance of Float32Array constructor (ES6 draft 15.13.6). */ class V8_EXPORT Float32Array : public TypedArray { public: static Local<Float32Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Float32Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Float32Array* Cast(Value* obj); private: Float32Array(); static void CheckCast(Value* obj); }; /** * An instance of Float64Array constructor (ES6 draft 15.13.6). */ class V8_EXPORT Float64Array : public TypedArray { public: static Local<Float64Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<Float64Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static Float64Array* Cast(Value* obj); private: Float64Array(); static void CheckCast(Value* obj); }; /** * An instance of BigInt64Array constructor. */ class V8_EXPORT BigInt64Array : public TypedArray { public: static Local<BigInt64Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<BigInt64Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static BigInt64Array* Cast(Value* obj); private: BigInt64Array(); static void CheckCast(Value* obj); }; /** * An instance of BigUint64Array constructor. */ class V8_EXPORT BigUint64Array : public TypedArray { public: static Local<BigUint64Array> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<BigUint64Array> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static BigUint64Array* Cast(Value* obj); private: BigUint64Array(); static void CheckCast(Value* obj); }; /** * An instance of DataView constructor (ES6 draft 15.13.7). */ class V8_EXPORT DataView : public ArrayBufferView { public: static Local<DataView> New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t length); static Local<DataView> New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t length); V8_INLINE static DataView* Cast(Value* obj); private: DataView(); static void CheckCast(Value* obj); }; /** * An instance of the built-in SharedArrayBuffer constructor. * This API is experimental and may change significantly. */ class V8_EXPORT SharedArrayBuffer : public Object { public: /** * The contents of an |SharedArrayBuffer|. Externalization of * |SharedArrayBuffer| returns an instance of this class, populated, with a * pointer to data and byte length. * * The Data pointer of ArrayBuffer::Contents must be freed using the provided * deleter, which will call ArrayBuffer::Allocator::Free if the buffer * was allocated with ArraryBuffer::Allocator::Allocate. * * This API is experimental and may change significantly. */ class V8_EXPORT Contents { // NOLINT public: using Allocator = v8::ArrayBuffer::Allocator; using DeleterCallback = void (*)(void* buffer, size_t length, void* info); Contents() : data_(nullptr), byte_length_(0), allocation_base_(nullptr), allocation_length_(0), allocation_mode_(Allocator::AllocationMode::kNormal), deleter_(nullptr), deleter_data_(nullptr) {} void* AllocationBase() const { return allocation_base_; } size_t AllocationLength() const { return allocation_length_; } Allocator::AllocationMode AllocationMode() const { return allocation_mode_; } void* Data() const { return data_; } size_t ByteLength() const { return byte_length_; } DeleterCallback Deleter() const { return deleter_; } void* DeleterData() const { return deleter_data_; } private: Contents(void* data, size_t byte_length, void* allocation_base, size_t allocation_length, Allocator::AllocationMode allocation_mode, DeleterCallback deleter, void* deleter_data); void* data_; size_t byte_length_; void* allocation_base_; size_t allocation_length_; Allocator::AllocationMode allocation_mode_; DeleterCallback deleter_; void* deleter_data_; friend class SharedArrayBuffer; }; /** * Data length in bytes. */ size_t ByteLength() const; /** * Create a new SharedArrayBuffer. Allocate |byte_length| bytes. * Allocated memory will be owned by a created SharedArrayBuffer and * will be deallocated when it is garbage-collected, * unless the object is externalized. */ static Local<SharedArrayBuffer> New(Isolate* isolate, size_t byte_length); /** * Create a new SharedArrayBuffer over an existing memory block. The created * array buffer is immediately in externalized state unless otherwise * specified. The memory block will not be reclaimed when a created * SharedArrayBuffer is garbage-collected. */ static Local<SharedArrayBuffer> New( Isolate* isolate, void* data, size_t byte_length, ArrayBufferCreationMode mode = ArrayBufferCreationMode::kExternalized); /** * Returns true if SharedArrayBuffer is externalized, that is, does not * own its memory block. */ bool IsExternal() const; /** * Make this SharedArrayBuffer external. The pointer to underlying memory * block and byte length are returned as |Contents| structure. After * SharedArrayBuffer had been externalized, it does no longer own the memory * block. The caller should take steps to free memory when it is no longer * needed. * * The memory block is guaranteed to be allocated with |Allocator::Allocate| * by the allocator specified in * v8::Isolate::CreateParams::array_buffer_allocator. * */ Contents Externalize(); /** * Get a pointer to the ArrayBuffer's underlying memory block without * externalizing it. If the ArrayBuffer is not externalized, this pointer * will become invalid as soon as the ArrayBuffer became garbage collected. * * The embedder should make sure to hold a strong reference to the * ArrayBuffer while accessing this pointer. * * The memory block is guaranteed to be allocated with |Allocator::Allocate| * by the allocator specified in * v8::Isolate::CreateParams::array_buffer_allocator. */ Contents GetContents(); V8_INLINE static SharedArrayBuffer* Cast(Value* obj); static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT; private: SharedArrayBuffer(); static void CheckCast(Value* obj); }; /** * An instance of the built-in Date constructor (ECMA-262, 15.9). */ class V8_EXPORT Date : public Object { public: static V8_DEPRECATE_SOON("Use maybe version.", Local<Value> New(Isolate* isolate, double time)); static V8_WARN_UNUSED_RESULT MaybeLocal<Value> New(Local<Context> context, double time); /** * A specialization of Value::NumberValue that is more efficient * because we know the structure of this object. */ double ValueOf() const; V8_INLINE static Date* Cast(Value* obj); /** * Notification that the embedder has changed the time zone, * daylight savings time, or other date / time configuration * parameters. V8 keeps a cache of various values used for * date / time computation. This notification will reset * those cached values for the current context so that date / * time configuration changes would be reflected in the Date * object. * * This API should not be called more than needed as it will * negatively impact the performance of date operations. */ static void DateTimeConfigurationChangeNotification(Isolate* isolate); private: static void CheckCast(Value* obj); }; /** * A Number object (ECMA-262, 4.3.21). */ class V8_EXPORT NumberObject : public Object { public: static Local<Value> New(Isolate* isolate, double value); double ValueOf() const; V8_INLINE static NumberObject* Cast(Value* obj); private: static void CheckCast(Value* obj); }; /** * A BigInt object (https://tc39.github.io/proposal-bigint) */ class V8_EXPORT BigIntObject : public Object { public: static Local<Value> New(Isolate* isolate, int64_t value); Local<BigInt> ValueOf() const; V8_INLINE static BigIntObject* Cast(Value* obj); private: static void CheckCast(Value* obj); }; /** * A Boolean object (ECMA-262, 4.3.15). */ class V8_EXPORT BooleanObject : public Object { public: static Local<Value> New(Isolate* isolate, bool value); bool ValueOf() const; V8_INLINE static BooleanObject* Cast(Value* obj); private: static void CheckCast(Value* obj); }; /** * A String object (ECMA-262, 4.3.18). */ class V8_EXPORT StringObject : public Object { public: static Local<Value> New(Isolate* isolate, Local<String> value); static V8_DEPRECATED("Use Isolate* version", Local<Value> New(Local<String> value)); Local<String> ValueOf() const; V8_INLINE static StringObject* Cast(Value* obj); private: static void CheckCast(Value* obj); }; /** * A Symbol object (ECMA-262 edition 6). */ class V8_EXPORT SymbolObject : public Object { public: static Local<Value> New(Isolate* isolate, Local<Symbol> value); Local<Symbol> ValueOf() const; V8_INLINE static SymbolObject* Cast(Value* obj); private: static void CheckCast(Value* obj); }; /** * An instance of the built-in RegExp constructor (ECMA-262, 15.10). */ class V8_EXPORT RegExp : public Object { public: /** * Regular expression flag bits. They can be or'ed to enable a set * of flags. */ enum Flags { kNone = 0, kGlobal = 1 << 0, kIgnoreCase = 1 << 1, kMultiline = 1 << 2, kSticky = 1 << 3, kUnicode = 1 << 4, kDotAll = 1 << 5, }; /** * Creates a regular expression from the given pattern string and * the flags bit field. May throw a JavaScript exception as * described in ECMA-262, 15.10.4.1. * * For example, * RegExp::New(v8::String::New("foo"), * static_cast<RegExp::Flags>(kGlobal | kMultiline)) * is equivalent to evaluating "/foo/gm". */ static V8_WARN_UNUSED_RESULT MaybeLocal<RegExp> New(Local<Context> context, Local<String> pattern, Flags flags); /** * Returns the value of the source property: a string representing * the regular expression. */ Local<String> GetSource() const; /** * Returns the flags bit field. */ Flags GetFlags() const; V8_INLINE static RegExp* Cast(Value* obj); private: static void CheckCast(Value* obj); }; /** * A JavaScript value that wraps a C++ void*. This type of value is mainly used * to associate C++ data structures with JavaScript objects. */ class V8_EXPORT External : public Value { public: static Local<External> New(Isolate* isolate, void* value); V8_INLINE static External* Cast(Value* obj); void* Value() const; private: static void CheckCast(v8::Value* obj); }; #define V8_INTRINSICS_LIST(F) \ F(ArrayProto_entries, array_entries_iterator) \ F(ArrayProto_forEach, array_for_each_iterator) \ F(ArrayProto_keys, array_keys_iterator) \ F(ArrayProto_values, array_values_iterator) \ F(ErrorPrototype, initial_error_prototype) \ F(IteratorPrototype, initial_iterator_prototype) enum Intrinsic { #define V8_DECL_INTRINSIC(name, iname) k##name, V8_INTRINSICS_LIST(V8_DECL_INTRINSIC) #undef V8_DECL_INTRINSIC }; // --- Templates --- /** * The superclass of object and function templates. */ class V8_EXPORT Template : public Data { public: /** * Adds a property to each instance created by this template. * * The property must be defined either as a primitive value, or a template. */ void Set(Local<Name> name, Local<Data> value, PropertyAttribute attributes = None); void SetPrivate(Local<Private> name, Local<Data> value, PropertyAttribute attributes = None); V8_INLINE void Set(Isolate* isolate, const char* name, Local<Data> value); void SetAccessorProperty( Local<Name> name, Local<FunctionTemplate> getter = Local<FunctionTemplate>(), Local<FunctionTemplate> setter = Local<FunctionTemplate>(), PropertyAttribute attribute = None, AccessControl settings = DEFAULT); /** * Whenever the property with the given name is accessed on objects * created from this Template the getter and setter callbacks * are called instead of getting and setting the property directly * on the JavaScript object. * * \param name The name of the property for which an accessor is added. * \param getter The callback to invoke when getting the property. * \param setter The callback to invoke when setting the property. * \param data A piece of data that will be passed to the getter and setter * callbacks whenever they are invoked. * \param settings Access control settings for the accessor. This is a bit * field consisting of one of more of * DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2. * The default is to not allow cross-context access. * ALL_CAN_READ means that all cross-context reads are allowed. * ALL_CAN_WRITE means that all cross-context writes are allowed. * The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all * cross-context access. * \param attribute The attributes of the property for which an accessor * is added. * \param signature The signature describes valid receivers for the accessor * and is used to perform implicit instance checks against them. If the * receiver is incompatible (i.e. is not an instance of the constructor as * defined by FunctionTemplate::HasInstance()), an implicit TypeError is * thrown and no callback is invoked. */ void SetNativeDataProperty( Local<String> name, AccessorGetterCallback getter, AccessorSetterCallback setter = 0, // TODO(dcarney): gcc can't handle Local below Local<Value> data = Local<Value>(), PropertyAttribute attribute = None, Local<AccessorSignature> signature = Local<AccessorSignature>(), AccessControl settings = DEFAULT, SideEffectType getter_side_effect_type = SideEffectType::kHasSideEffect); void SetNativeDataProperty( Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter = 0, // TODO(dcarney): gcc can't handle Local below Local<Value> data = Local<Value>(), PropertyAttribute attribute = None, Local<AccessorSignature> signature = Local<AccessorSignature>(), AccessControl settings = DEFAULT, SideEffectType getter_side_effect_type = SideEffectType::kHasSideEffect); /** * Like SetNativeDataProperty, but V8 will replace the native data property * with a real data property on first access. */ void SetLazyDataProperty( Local<Name> name, AccessorNameGetterCallback getter, Local<Value> data = Local<Value>(), PropertyAttribute attribute = None, SideEffectType getter_side_effect_type = SideEffectType::kHasSideEffect); /** * During template instantiation, sets the value with the intrinsic property * from the correct context. */ void SetIntrinsicDataProperty(Local<Name> name, Intrinsic intrinsic, PropertyAttribute attribute = None); private: Template(); friend class ObjectTemplate; friend class FunctionTemplate; }; // TODO(dcarney): Replace GenericNamedPropertyFooCallback with just // NamedPropertyFooCallback. /** * Interceptor for get requests on an object. * * Use `info.GetReturnValue().Set()` to set the return value of the * intercepted get request. * * \param property The name of the property for which the request was * intercepted. * \param info Information about the intercepted request, such as * isolate, receiver, return value, or whether running in `'use strict`' mode. * See `PropertyCallbackInfo`. * * \code * void GetterCallback( * Local<Name> name, * const v8::PropertyCallbackInfo<v8::Value>& info) { * info.GetReturnValue().Set(v8_num(42)); * } * * v8::Local<v8::FunctionTemplate> templ = * v8::FunctionTemplate::New(isolate); * templ->InstanceTemplate()->SetHandler( * v8::NamedPropertyHandlerConfiguration(GetterCallback)); * LocalContext env; * env->Global() * ->Set(env.local(), v8_str("obj"), templ->GetFunction(env.local()) * .ToLocalChecked() * ->NewInstance(env.local()) * .ToLocalChecked()) * .FromJust(); * v8::Local<v8::Value> result = CompileRun("obj.a = 17; obj.a"); * CHECK(v8_num(42)->Equals(env.local(), result).FromJust()); * \endcode * * See also `ObjectTemplate::SetHandler`. */ typedef void (*GenericNamedPropertyGetterCallback)( Local<Name> property, const PropertyCallbackInfo<Value>& info); /** * Interceptor for set requests on an object. * * Use `info.GetReturnValue()` to indicate whether the request was intercepted * or not. If the setter successfully intercepts the request, i.e., if the * request should not be further executed, call * `info.GetReturnValue().Set(value)`. If the setter * did not intercept the request, i.e., if the request should be handled as * if no interceptor is present, do not not call `Set()`. * * \param property The name of the property for which the request was * intercepted. * \param value The value which the property will have if the request * is not intercepted. * \param info Information about the intercepted request, such as * isolate, receiver, return value, or whether running in `'use strict'` mode. * See `PropertyCallbackInfo`. * * See also * `ObjectTemplate::SetHandler.` */ typedef void (*GenericNamedPropertySetterCallback)( Local<Name> property, Local<Value> value, const PropertyCallbackInfo<Value>& info); /** * Intercepts all requests that query the attributes of the * property, e.g., getOwnPropertyDescriptor(), propertyIsEnumerable(), and * defineProperty(). * * Use `info.GetReturnValue().Set(value)` to set the property attributes. The * value is an integer encoding a `v8::PropertyAttribute`. * * \param property The name of the property for which the request was * intercepted. * \param info Information about the intercepted request, such as * isolate, receiver, return value, or whether running in `'use strict'` mode. * See `PropertyCallbackInfo`. * * \note Some functions query the property attributes internally, even though * they do not return the attributes. For example, `hasOwnProperty()` can * trigger this interceptor depending on the state of the object. * * See also * `ObjectTemplate::SetHandler.` */ typedef void (*GenericNamedPropertyQueryCallback)( Local<Name> property, const PropertyCallbackInfo<Integer>& info); /** * Interceptor for delete requests on an object. * * Use `info.GetReturnValue()` to indicate whether the request was intercepted * or not. If the deleter successfully intercepts the request, i.e., if the * request should not be further executed, call * `info.GetReturnValue().Set(value)` with a boolean `value`. The `value` is * used as the return value of `delete`. * * \param property The name of the property for which the request was * intercepted. * \param info Information about the intercepted request, such as * isolate, receiver, return value, or whether running in `'use strict'` mode. * See `PropertyCallbackInfo`. * * \note If you need to mimic the behavior of `delete`, i.e., throw in strict * mode instead of returning false, use `info.ShouldThrowOnError()` to determine * if you are in strict mode. * * See also `ObjectTemplate::SetHandler.` */ typedef void (*GenericNamedPropertyDeleterCallback)( Local<Name> property, const PropertyCallbackInfo<Boolean>& info); /** * Returns an array containing the names of the properties the named * property getter intercepts. * * Note: The values in the array must be of type v8::Name. */ typedef void (*GenericNamedPropertyEnumeratorCallback)( const PropertyCallbackInfo<Array>& info); /** * Interceptor for defineProperty requests on an object. * * Use `info.GetReturnValue()` to indicate whether the request was intercepted * or not. If the definer successfully intercepts the request, i.e., if the * request should not be further executed, call * `info.GetReturnValue().Set(value)`. If the definer * did not intercept the request, i.e., if the request should be handled as * if no interceptor is present, do not not call `Set()`. * * \param property The name of the property for which the request was * intercepted. * \param desc The property descriptor which is used to define the * property if the request is not intercepted. * \param info Information about the intercepted request, such as * isolate, receiver, return value, or whether running in `'use strict'` mode. * See `PropertyCallbackInfo`. * * See also `ObjectTemplate::SetHandler`. */ typedef void (*GenericNamedPropertyDefinerCallback)( Local<Name> property, const PropertyDescriptor& desc, const PropertyCallbackInfo<Value>& info); /** * Interceptor for getOwnPropertyDescriptor requests on an object. * * Use `info.GetReturnValue().Set()` to set the return value of the * intercepted request. The return value must be an object that * can be converted to a PropertyDescriptor, e.g., a `v8::value` returned from * `v8::Object::getOwnPropertyDescriptor`. * * \param property The name of the property for which the request was * intercepted. * \info Information about the intercepted request, such as * isolate, receiver, return value, or whether running in `'use strict'` mode. * See `PropertyCallbackInfo`. * * \note If GetOwnPropertyDescriptor is intercepted, it will * always return true, i.e., indicate that the property was found. * * See also `ObjectTemplate::SetHandler`. */ typedef void (*GenericNamedPropertyDescriptorCallback)( Local<Name> property, const PropertyCallbackInfo<Value>& info); /** * See `v8::GenericNamedPropertyGetterCallback`. */ typedef void (*IndexedPropertyGetterCallback)( uint32_t index, const PropertyCallbackInfo<Value>& info); /** * See `v8::GenericNamedPropertySetterCallback`. */ typedef void (*IndexedPropertySetterCallback)( uint32_t index, Local<Value> value, const PropertyCallbackInfo<Value>& info); /** * See `v8::GenericNamedPropertyQueryCallback`. */ typedef void (*IndexedPropertyQueryCallback)( uint32_t index, const PropertyCallbackInfo<Integer>& info); /** * See `v8::GenericNamedPropertyDeleterCallback`. */ typedef void (*IndexedPropertyDeleterCallback)( uint32_t index, const PropertyCallbackInfo<Boolean>& info); /** * Returns an array containing the indices of the properties the indexed * property getter intercepts. * * Note: The values in the array must be uint32_t. */ typedef void (*IndexedPropertyEnumeratorCallback)( const PropertyCallbackInfo<Array>& info); /** * See `v8::GenericNamedPropertyDefinerCallback`. */ typedef void (*IndexedPropertyDefinerCallback)( uint32_t index, const PropertyDescriptor& desc, const PropertyCallbackInfo<Value>& info); /** * See `v8::GenericNamedPropertyDescriptorCallback`. */ typedef void (*IndexedPropertyDescriptorCallback)( uint32_t index, const PropertyCallbackInfo<Value>& info); /** * Access type specification. */ enum AccessType { ACCESS_GET, ACCESS_SET, ACCESS_HAS, ACCESS_DELETE, ACCESS_KEYS }; /** * Returns true if the given context should be allowed to access the given * object. */ typedef bool (*AccessCheckCallback)(Local<Context> accessing_context, Local<Object> accessed_object, Local<Value> data); /** * A FunctionTemplate is used to create functions at runtime. There * can only be one function created from a FunctionTemplate in a * context. The lifetime of the created function is equal to the * lifetime of the context. So in case the embedder needs to create * temporary functions that can be collected using Scripts is * preferred. * * Any modification of a FunctionTemplate after first instantiation will trigger * a crash. * * A FunctionTemplate can have properties, these properties are added to the * function object when it is created. * * A FunctionTemplate has a corresponding instance template which is * used to create object instances when the function is used as a * constructor. Properties added to the instance template are added to * each object instance. * * A FunctionTemplate can have a prototype template. The prototype template * is used to create the prototype object of the function. * * The following example shows how to use a FunctionTemplate: * * \code * v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New(isolate); * t->Set(isolate, "func_property", v8::Number::New(isolate, 1)); * * v8::Local<v8::Template> proto_t = t->PrototypeTemplate(); * proto_t->Set(isolate, * "proto_method", * v8::FunctionTemplate::New(isolate, InvokeCallback)); * proto_t->Set(isolate, "proto_const", v8::Number::New(isolate, 2)); * * v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate(); * instance_t->SetAccessor(String::NewFromUtf8(isolate, "instance_accessor"), * InstanceAccessorCallback); * instance_t->SetHandler( * NamedPropertyHandlerConfiguration(PropertyHandlerCallback)); * instance_t->Set(String::NewFromUtf8(isolate, "instance_property"), * Number::New(isolate, 3)); * * v8::Local<v8::Function> function = t->GetFunction(); * v8::Local<v8::Object> instance = function->NewInstance(); * \endcode * * Let's use "function" as the JS variable name of the function object * and "instance" for the instance object created above. The function * and the instance will have the following properties: * * \code * func_property in function == true; * function.func_property == 1; * * function.prototype.proto_method() invokes 'InvokeCallback' * function.prototype.proto_const == 2; * * instance instanceof function == true; * instance.instance_accessor calls 'InstanceAccessorCallback' * instance.instance_property == 3; * \endcode * * A FunctionTemplate can inherit from another one by calling the * FunctionTemplate::Inherit method. The following graph illustrates * the semantics of inheritance: * * \code * FunctionTemplate Parent -> Parent() . prototype -> { } * ^ ^ * | Inherit(Parent) | .__proto__ * | | * FunctionTemplate Child -> Child() . prototype -> { } * \endcode * * A FunctionTemplate 'Child' inherits from 'Parent', the prototype * object of the Child() function has __proto__ pointing to the * Parent() function's prototype object. An instance of the Child * function has all properties on Parent's instance templates. * * Let Parent be the FunctionTemplate initialized in the previous * section and create a Child FunctionTemplate by: * * \code * Local<FunctionTemplate> parent = t; * Local<FunctionTemplate> child = FunctionTemplate::New(); * child->Inherit(parent); * * Local<Function> child_function = child->GetFunction(); * Local<Object> child_instance = child_function->NewInstance(); * \endcode * * The Child function and Child instance will have the following * properties: * * \code * child_func.prototype.__proto__ == function.prototype; * child_instance.instance_accessor calls 'InstanceAccessorCallback' * child_instance.instance_property == 3; * \endcode */ class V8_EXPORT FunctionTemplate : public Template { public: /** Creates a function template.*/ static Local<FunctionTemplate> New( Isolate* isolate, FunctionCallback callback = 0, Local<Value> data = Local<Value>(), Local<Signature> signature = Local<Signature>(), int length = 0, ConstructorBehavior behavior = ConstructorBehavior::kAllow, SideEffectType side_effect_type = SideEffectType::kHasSideEffect); /** Get a template included in the snapshot by index. */ static MaybeLocal<FunctionTemplate> FromSnapshot(Isolate* isolate, size_t index); /** * Creates a function template backed/cached by a private property. */ static Local<FunctionTemplate> NewWithCache( Isolate* isolate, FunctionCallback callback, Local<Private> cache_property, Local<Value> data = Local<Value>(), Local<Signature> signature = Local<Signature>(), int length = 0, SideEffectType side_effect_type = SideEffectType::kHasSideEffect); /** Returns the unique function instance in the current execution context.*/ V8_DEPRECATE_SOON("Use maybe version", Local<Function> GetFunction()); V8_WARN_UNUSED_RESULT MaybeLocal<Function> GetFunction( Local<Context> context); /** * Similar to Context::NewRemoteContext, this creates an instance that * isn't backed by an actual object. * * The InstanceTemplate of this FunctionTemplate must have access checks with * handlers installed. */ V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewRemoteInstance(); /** * Set the call-handler callback for a FunctionTemplate. This * callback is called whenever the function created from this * FunctionTemplate is called. */ void SetCallHandler( FunctionCallback callback, Local<Value> data = Local<Value>(), SideEffectType side_effect_type = SideEffectType::kHasSideEffect); /** Set the predefined length property for the FunctionTemplate. */ void SetLength(int length); /** Get the InstanceTemplate. */ Local<ObjectTemplate> InstanceTemplate(); /** * Causes the function template to inherit from a parent function template. * This means the function's prototype.__proto__ is set to the parent * function's prototype. **/ void Inherit(Local<FunctionTemplate> parent); /** * A PrototypeTemplate is the template used to create the prototype object * of the function created by this template. */ Local<ObjectTemplate> PrototypeTemplate(); /** * A PrototypeProviderTemplate is another function template whose prototype * property is used for this template. This is mutually exclusive with setting * a prototype template indirectly by calling PrototypeTemplate() or using * Inherit(). **/ void SetPrototypeProviderTemplate(Local<FunctionTemplate> prototype_provider); /** * Set the class name of the FunctionTemplate. This is used for * printing objects created with the function created from the * FunctionTemplate as its constructor. */ void SetClassName(Local<String> name); /** * When set to true, no access check will be performed on the receiver of a * function call. Currently defaults to true, but this is subject to change. */ void SetAcceptAnyReceiver(bool value); /** * Determines whether the __proto__ accessor ignores instances of * the function template. If instances of the function template are * ignored, __proto__ skips all instances and instead returns the * next object in the prototype chain. * * Call with a value of true to make the __proto__ accessor ignore * instances of the function template. Call with a value of false * to make the __proto__ accessor not ignore instances of the * function template. By default, instances of a function template * are not ignored. */ void SetHiddenPrototype(bool value); /** * Sets the ReadOnly flag in the attributes of the 'prototype' property * of functions created from this FunctionTemplate to true. */ void ReadOnlyPrototype(); /** * Removes the prototype property from functions created from this * FunctionTemplate. */ void RemovePrototype(); /** * Returns true if the given object is an instance of this function * template. */ bool HasInstance(Local<Value> object); V8_INLINE static FunctionTemplate* Cast(Data* data); private: FunctionTemplate(); static void CheckCast(Data* that); friend class Context; friend class ObjectTemplate; }; /** * Configuration flags for v8::NamedPropertyHandlerConfiguration or * v8::IndexedPropertyHandlerConfiguration. */ enum class PropertyHandlerFlags { /** * None. */ kNone = 0, /** * See ALL_CAN_READ above. */ kAllCanRead = 1, /** Will not call into interceptor for properties on the receiver or prototype * chain, i.e., only call into interceptor for properties that do not exist. * Currently only valid for named interceptors. */ kNonMasking = 1 << 1, /** * Will not call into interceptor for symbol lookup. Only meaningful for * named interceptors. */ kOnlyInterceptStrings = 1 << 2, /** * The getter, query, enumerator callbacks do not produce side effects. */ kHasNoSideEffect = 1 << 3, }; struct NamedPropertyHandlerConfiguration { NamedPropertyHandlerConfiguration( GenericNamedPropertyGetterCallback getter, GenericNamedPropertySetterCallback setter, GenericNamedPropertyQueryCallback query, GenericNamedPropertyDeleterCallback deleter, GenericNamedPropertyEnumeratorCallback enumerator, GenericNamedPropertyDefinerCallback definer, GenericNamedPropertyDescriptorCallback descriptor, Local<Value> data = Local<Value>(), PropertyHandlerFlags flags = PropertyHandlerFlags::kNone) : getter(getter), setter(setter), query(query), deleter(deleter), enumerator(enumerator), definer(definer), descriptor(descriptor), data(data), flags(flags) {} NamedPropertyHandlerConfiguration( /** Note: getter is required */ GenericNamedPropertyGetterCallback getter = 0, GenericNamedPropertySetterCallback setter = 0, GenericNamedPropertyQueryCallback query = 0, GenericNamedPropertyDeleterCallback deleter = 0, GenericNamedPropertyEnumeratorCallback enumerator = 0, Local<Value> data = Local<Value>(), PropertyHandlerFlags flags = PropertyHandlerFlags::kNone) : getter(getter), setter(setter), query(query), deleter(deleter), enumerator(enumerator), definer(0), descriptor(0), data(data), flags(flags) {} NamedPropertyHandlerConfiguration( GenericNamedPropertyGetterCallback getter, GenericNamedPropertySetterCallback setter, GenericNamedPropertyDescriptorCallback descriptor, GenericNamedPropertyDeleterCallback deleter, GenericNamedPropertyEnumeratorCallback enumerator, GenericNamedPropertyDefinerCallback definer, Local<Value> data = Local<Value>(), PropertyHandlerFlags flags = PropertyHandlerFlags::kNone) : getter(getter), setter(setter), query(0), deleter(deleter), enumerator(enumerator), definer(definer), descriptor(descriptor), data(data), flags(flags) {} GenericNamedPropertyGetterCallback getter; GenericNamedPropertySetterCallback setter; GenericNamedPropertyQueryCallback query; GenericNamedPropertyDeleterCallback deleter; GenericNamedPropertyEnumeratorCallback enumerator; GenericNamedPropertyDefinerCallback definer; GenericNamedPropertyDescriptorCallback descriptor; Local<Value> data; PropertyHandlerFlags flags; }; struct IndexedPropertyHandlerConfiguration { IndexedPropertyHandlerConfiguration( IndexedPropertyGetterCallback getter, IndexedPropertySetterCallback setter, IndexedPropertyQueryCallback query, IndexedPropertyDeleterCallback deleter, IndexedPropertyEnumeratorCallback enumerator, IndexedPropertyDefinerCallback definer, IndexedPropertyDescriptorCallback descriptor, Local<Value> data = Local<Value>(), PropertyHandlerFlags flags = PropertyHandlerFlags::kNone) : getter(getter), setter(setter), query(query), deleter(deleter), enumerator(enumerator), definer(definer), descriptor(descriptor), data(data), flags(flags) {} IndexedPropertyHandlerConfiguration( /** Note: getter is required */ IndexedPropertyGetterCallback getter = 0, IndexedPropertySetterCallback setter = 0, IndexedPropertyQueryCallback query = 0, IndexedPropertyDeleterCallback deleter = 0, IndexedPropertyEnumeratorCallback enumerator = 0, Local<Value> data = Local<Value>(), PropertyHandlerFlags flags = PropertyHandlerFlags::kNone) : getter(getter), setter(setter), query(query), deleter(deleter), enumerator(enumerator), definer(0), descriptor(0), data(data), flags(flags) {} IndexedPropertyHandlerConfiguration( IndexedPropertyGetterCallback getter, IndexedPropertySetterCallback setter, IndexedPropertyDescriptorCallback descriptor, IndexedPropertyDeleterCallback deleter, IndexedPropertyEnumeratorCallback enumerator, IndexedPropertyDefinerCallback definer, Local<Value> data = Local<Value>(), PropertyHandlerFlags flags = PropertyHandlerFlags::kNone) : getter(getter), setter(setter), query(0), deleter(deleter), enumerator(enumerator), definer(definer), descriptor(descriptor), data(data), flags(flags) {} IndexedPropertyGetterCallback getter; IndexedPropertySetterCallback setter; IndexedPropertyQueryCallback query; IndexedPropertyDeleterCallback deleter; IndexedPropertyEnumeratorCallback enumerator; IndexedPropertyDefinerCallback definer; IndexedPropertyDescriptorCallback descriptor; Local<Value> data; PropertyHandlerFlags flags; }; /** * An ObjectTemplate is used to create objects at runtime. * * Properties added to an ObjectTemplate are added to each object * created from the ObjectTemplate. */ class V8_EXPORT ObjectTemplate : public Template { public: /** Creates an ObjectTemplate. */ static Local<ObjectTemplate> New( Isolate* isolate, Local<FunctionTemplate> constructor = Local<FunctionTemplate>()); /** Get a template included in the snapshot by index. */ static MaybeLocal<ObjectTemplate> FromSnapshot(Isolate* isolate, size_t index); /** Creates a new instance of this template.*/ V8_DEPRECATE_SOON("Use maybe version", Local<Object> NewInstance()); V8_WARN_UNUSED_RESULT MaybeLocal<Object> NewInstance(Local<Context> context); /** * Sets an accessor on the object template. * * Whenever the property with the given name is accessed on objects * created from this ObjectTemplate the getter and setter callbacks * are called instead of getting and setting the property directly * on the JavaScript object. * * \param name The name of the property for which an accessor is added. * \param getter The callback to invoke when getting the property. * \param setter The callback to invoke when setting the property. * \param data A piece of data that will be passed to the getter and setter * callbacks whenever they are invoked. * \param settings Access control settings for the accessor. This is a bit * field consisting of one of more of * DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2. * The default is to not allow cross-context access. * ALL_CAN_READ means that all cross-context reads are allowed. * ALL_CAN_WRITE means that all cross-context writes are allowed. * The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all * cross-context access. * \param attribute The attributes of the property for which an accessor * is added. * \param signature The signature describes valid receivers for the accessor * and is used to perform implicit instance checks against them. If the * receiver is incompatible (i.e. is not an instance of the constructor as * defined by FunctionTemplate::HasInstance()), an implicit TypeError is * thrown and no callback is invoked. */ void SetAccessor( Local<String> name, AccessorGetterCallback getter, AccessorSetterCallback setter = 0, Local<Value> data = Local<Value>(), AccessControl settings = DEFAULT, PropertyAttribute attribute = None, Local<AccessorSignature> signature = Local<AccessorSignature>(), SideEffectType getter_side_effect_type = SideEffectType::kHasSideEffect); void SetAccessor( Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter = 0, Local<Value> data = Local<Value>(), AccessControl settings = DEFAULT, PropertyAttribute attribute = None, Local<AccessorSignature> signature = Local<AccessorSignature>(), SideEffectType getter_side_effect_type = SideEffectType::kHasSideEffect); /** * Sets a named property handler on the object template. * * Whenever a property whose name is a string or a symbol is accessed on * objects created from this object template, the provided callback is * invoked instead of accessing the property directly on the JavaScript * object. * * @param configuration The NamedPropertyHandlerConfiguration that defines the * callbacks to invoke when accessing a property. */ void SetHandler(const NamedPropertyHandlerConfiguration& configuration); /** * Sets an indexed property handler on the object template. * * Whenever an indexed property is accessed on objects created from * this object template, the provided callback is invoked instead of * accessing the property directly on the JavaScript object. * * \param getter The callback to invoke when getting a property. * \param setter The callback to invoke when setting a property. * \param query The callback to invoke to check if an object has a property. * \param deleter The callback to invoke when deleting a property. * \param enumerator The callback to invoke to enumerate all the indexed * properties of an object. * \param data A piece of data that will be passed to the callbacks * whenever they are invoked. */ // TODO(dcarney): deprecate void SetIndexedPropertyHandler( IndexedPropertyGetterCallback getter, IndexedPropertySetterCallback setter = 0, IndexedPropertyQueryCallback query = 0, IndexedPropertyDeleterCallback deleter = 0, IndexedPropertyEnumeratorCallback enumerator = 0, Local<Value> data = Local<Value>()) { SetHandler(IndexedPropertyHandlerConfiguration(getter, setter, query, deleter, enumerator, data)); } /** * Sets an indexed property handler on the object template. * * Whenever an indexed property is accessed on objects created from * this object template, the provided callback is invoked instead of * accessing the property directly on the JavaScript object. * * @param configuration The IndexedPropertyHandlerConfiguration that defines * the callbacks to invoke when accessing a property. */ void SetHandler(const IndexedPropertyHandlerConfiguration& configuration); /** * Sets the callback to be used when calling instances created from * this template as a function. If no callback is set, instances * behave like normal JavaScript objects that cannot be called as a * function. */ void SetCallAsFunctionHandler(FunctionCallback callback, Local<Value> data = Local<Value>()); /** * Mark object instances of the template as undetectable. * * In many ways, undetectable objects behave as though they are not * there. They behave like 'undefined' in conditionals and when * printed. However, properties can be accessed and called as on * normal objects. */ void MarkAsUndetectable(); /** * Sets access check callback on the object template and enables access * checks. * * When accessing properties on instances of this object template, * the access check callback will be called to determine whether or * not to allow cross-context access to the properties. */ void SetAccessCheckCallback(AccessCheckCallback callback, Local<Value> data = Local<Value>()); /** * Like SetAccessCheckCallback but invokes an interceptor on failed access * checks instead of looking up all-can-read properties. You can only use * either this method or SetAccessCheckCallback, but not both at the same * time. */ void SetAccessCheckCallbackAndHandler( AccessCheckCallback callback, const NamedPropertyHandlerConfiguration& named_handler, const IndexedPropertyHandlerConfiguration& indexed_handler, Local<Value> data = Local<Value>()); /** * Gets the number of internal fields for objects generated from * this template. */ int InternalFieldCount(); /** * Sets the number of internal fields for objects generated from * this template. */ void SetInternalFieldCount(int value); /** * Returns true if the object will be an immutable prototype exotic object. */ bool IsImmutableProto(); /** * Makes the ObjectTemplate for an immutable prototype exotic object, with an * immutable __proto__. */ void SetImmutableProto(); V8_INLINE static ObjectTemplate* Cast(Data* data); private: ObjectTemplate(); static Local<ObjectTemplate> New(internal::Isolate* isolate, Local<FunctionTemplate> constructor); static void CheckCast(Data* that); friend class FunctionTemplate; }; /** * A Signature specifies which receiver is valid for a function. * * A receiver matches a given signature if the receiver (or any of its * hidden prototypes) was created from the signature's FunctionTemplate, or * from a FunctionTemplate that inherits directly or indirectly from the * signature's FunctionTemplate. */ class V8_EXPORT Signature : public Data { public: static Local<Signature> New( Isolate* isolate, Local<FunctionTemplate> receiver = Local<FunctionTemplate>()); V8_INLINE static Signature* Cast(Data* data); private: Signature(); static void CheckCast(Data* that); }; /** * An AccessorSignature specifies which receivers are valid parameters * to an accessor callback. */ class V8_EXPORT AccessorSignature : public Data { public: static Local<AccessorSignature> New( Isolate* isolate, Local<FunctionTemplate> receiver = Local<FunctionTemplate>()); V8_INLINE static AccessorSignature* Cast(Data* data); private: AccessorSignature(); static void CheckCast(Data* that); }; // --- Extensions --- V8_DEPRECATE_SOON("Implementation detail", class) V8_EXPORT ExternalOneByteStringResourceImpl : public String::ExternalOneByteStringResource { public: ExternalOneByteStringResourceImpl() : data_(0), length_(0) {} ExternalOneByteStringResourceImpl(const char* data, size_t length) : data_(data), length_(length) {} const char* data() const { return data_; } size_t length() const { return length_; } private: const char* data_; size_t length_; }; /** * Ignore */ class V8_EXPORT Extension { // NOLINT public: // Note that the strings passed into this constructor must live as long // as the Extension itself. Extension(const char* name, const char* source = 0, int dep_count = 0, const char** deps = 0, int source_length = -1); virtual ~Extension() { delete source_; } virtual Local<FunctionTemplate> GetNativeFunctionTemplate( Isolate* isolate, Local<String> name) { return Local<FunctionTemplate>(); } const char* name() const { return name_; } size_t source_length() const { return source_length_; } const String::ExternalOneByteStringResource* source() const { return source_; } int dependency_count() { return dep_count_; } const char** dependencies() { return deps_; } void set_auto_enable(bool value) { auto_enable_ = value; } bool auto_enable() { return auto_enable_; } // Disallow copying and assigning. Extension(const Extension&) = delete; void operator=(const Extension&) = delete; private: const char* name_; size_t source_length_; // expected to initialize before source_ String::ExternalOneByteStringResource* source_; int dep_count_; const char** deps_; bool auto_enable_; }; void V8_EXPORT RegisterExtension(Extension* extension); // --- Statics --- V8_INLINE Local<Primitive> Undefined(Isolate* isolate); V8_INLINE Local<Primitive> Null(Isolate* isolate); V8_INLINE Local<Boolean> True(Isolate* isolate); V8_INLINE Local<Boolean> False(Isolate* isolate); /** * A set of constraints that specifies the limits of the runtime's memory use. * You must set the heap size before initializing the VM - the size cannot be * adjusted after the VM is initialized. * * If you are using threads then you should hold the V8::Locker lock while * setting the stack limit and you must set a non-default stack limit separately * for each thread. * * The arguments for set_max_semi_space_size, set_max_old_space_size, * set_max_executable_size, set_code_range_size specify limits in MB. * * The argument for set_max_semi_space_size_in_kb is in KB. */ class V8_EXPORT ResourceConstraints { public: ResourceConstraints(); /** * Configures the constraints with reasonable default values based on the * capabilities of the current device the VM is running on. * * \param physical_memory The total amount of physical memory on the current * device, in bytes. * \param virtual_memory_limit The amount of virtual memory on the current * device, in bytes, or zero, if there is no limit. */ void ConfigureDefaults(uint64_t physical_memory, uint64_t virtual_memory_limit); // Returns the max semi-space size in MB. V8_DEPRECATE_SOON("Use max_semi_space_size_in_kb()", size_t max_semi_space_size()) { return max_semi_space_size_in_kb_ / 1024; } // Sets the max semi-space size in MB. V8_DEPRECATE_SOON("Use set_max_semi_space_size_in_kb(size_t limit_in_kb)", void set_max_semi_space_size(size_t limit_in_mb)) { max_semi_space_size_in_kb_ = limit_in_mb * 1024; } // Returns the max semi-space size in KB. size_t max_semi_space_size_in_kb() const { return max_semi_space_size_in_kb_; } // Sets the max semi-space size in KB. void set_max_semi_space_size_in_kb(size_t limit_in_kb) { max_semi_space_size_in_kb_ = limit_in_kb; } size_t max_old_space_size() const { return max_old_space_size_; } void set_max_old_space_size(size_t limit_in_mb) { max_old_space_size_ = limit_in_mb; } V8_DEPRECATE_SOON("max_executable_size_ is subsumed by max_old_space_size_", size_t max_executable_size() const) { return max_executable_size_; } V8_DEPRECATE_SOON("max_executable_size_ is subsumed by max_old_space_size_", void set_max_executable_size(size_t limit_in_mb)) { max_executable_size_ = limit_in_mb; } uint32_t* stack_limit() const { return stack_limit_; } // Sets an address beyond which the VM's stack may not grow. void set_stack_limit(uint32_t* value) { stack_limit_ = value; } size_t code_range_size() const { return code_range_size_; } void set_code_range_size(size_t limit_in_mb) { code_range_size_ = limit_in_mb; } size_t max_zone_pool_size() const { return max_zone_pool_size_; } void set_max_zone_pool_size(size_t bytes) { max_zone_pool_size_ = bytes; } private: // max_semi_space_size_ is in KB size_t max_semi_space_size_in_kb_; // The remaining limits are in MB size_t max_old_space_size_; size_t max_executable_size_; uint32_t* stack_limit_; size_t code_range_size_; size_t max_zone_pool_size_; }; // --- Exceptions --- typedef void (*FatalErrorCallback)(const char* location, const char* message); typedef void (*OOMErrorCallback)(const char* location, bool is_heap_oom); typedef void (*DcheckErrorCallback)(const char* file, int line, const char* message); typedef void (*MessageCallback)(Local<Message> message, Local<Value> data); // --- Tracing --- typedef void (*LogEventCallback)(const char* name, int event); /** * Create new error objects by calling the corresponding error object * constructor with the message. */ class V8_EXPORT Exception { public: static Local<Value> RangeError(Local<String> message); static Local<Value> ReferenceError(Local<String> message); static Local<Value> SyntaxError(Local<String> message); static Local<Value> TypeError(Local<String> message); static Local<Value> Error(Local<String> message); /** * Creates an error message for the given exception. * Will try to reconstruct the original stack trace from the exception value, * or capture the current stack trace if not available. */ static Local<Message> CreateMessage(Isolate* isolate, Local<Value> exception); /** * Returns the original stack trace that was captured at the creation time * of a given exception, or an empty handle if not available. */ static Local<StackTrace> GetStackTrace(Local<Value> exception); }; // --- Counters Callbacks --- typedef int* (*CounterLookupCallback)(const char* name); typedef void* (*CreateHistogramCallback)(const char* name, int min, int max, size_t buckets); typedef void (*AddHistogramSampleCallback)(void* histogram, int sample); // --- Enter/Leave Script Callback --- typedef void (*BeforeCallEnteredCallback)(Isolate*); typedef void (*CallCompletedCallback)(Isolate*); /** * HostImportModuleDynamicallyCallback is called when we require the * embedder to load a module. This is used as part of the dynamic * import syntax. * * The referrer contains metadata about the script/module that calls * import. * * The specifier is the name of the module that should be imported. * * The embedder must compile, instantiate, evaluate the Module, and * obtain it's namespace object. * * The Promise returned from this function is forwarded to userland * JavaScript. The embedder must resolve this promise with the module * namespace object. In case of an exception, the embedder must reject * this promise with the exception. If the promise creation itself * fails (e.g. due to stack overflow), the embedder must propagate * that exception by returning an empty MaybeLocal. */ typedef MaybeLocal<Promise> (*HostImportModuleDynamicallyCallback)( Local<Context> context, Local<ScriptOrModule> referrer, Local<String> specifier); /** * HostInitializeImportMetaObjectCallback is called the first time import.meta * is accessed for a module. Subsequent access will reuse the same value. * * The method combines two implementation-defined abstract operations into one: * HostGetImportMetaProperties and HostFinalizeImportMeta. * * The embedder should use v8::Object::CreateDataProperty to add properties on * the meta object. */ typedef void (*HostInitializeImportMetaObjectCallback)(Local<Context> context, Local<Module> module, Local<Object> meta); /** * PromiseHook with type kInit is called when a new promise is * created. When a new promise is created as part of the chain in the * case of Promise.then or in the intermediate promises created by * Promise.{race, all}/AsyncFunctionAwait, we pass the parent promise * otherwise we pass undefined. * * PromiseHook with type kResolve is called at the beginning of * resolve or reject function defined by CreateResolvingFunctions. * * PromiseHook with type kBefore is called at the beginning of the * PromiseReactionJob. * * PromiseHook with type kAfter is called right at the end of the * PromiseReactionJob. */ enum class PromiseHookType { kInit, kResolve, kBefore, kAfter }; typedef void (*PromiseHook)(PromiseHookType type, Local<Promise> promise, Local<Value> parent); // --- Promise Reject Callback --- enum PromiseRejectEvent { kPromiseRejectWithNoHandler = 0, kPromiseHandlerAddedAfterReject = 1, kPromiseRejectAfterResolved = 2, kPromiseResolveAfterResolved = 3, }; class PromiseRejectMessage { public: PromiseRejectMessage(Local<Promise> promise, PromiseRejectEvent event, Local<Value> value, Local<StackTrace> stack_trace) : promise_(promise), event_(event), value_(value), stack_trace_(stack_trace) {} V8_INLINE Local<Promise> GetPromise() const { return promise_; } V8_INLINE PromiseRejectEvent GetEvent() const { return event_; } V8_INLINE Local<Value> GetValue() const { return value_; } private: Local<Promise> promise_; PromiseRejectEvent event_; Local<Value> value_; Local<StackTrace> stack_trace_; }; typedef void (*PromiseRejectCallback)(PromiseRejectMessage message); // --- Microtasks Callbacks --- typedef void (*MicrotasksCompletedCallback)(Isolate*); typedef void (*MicrotaskCallback)(void* data); /** * Policy for running microtasks: * - explicit: microtasks are invoked with Isolate::RunMicrotasks() method; * - scoped: microtasks invocation is controlled by MicrotasksScope objects; * - auto: microtasks are invoked when the script call depth decrements * to zero. */ enum class MicrotasksPolicy { kExplicit, kScoped, kAuto }; /** * This scope is used to control microtasks when kScopeMicrotasksInvocation * is used on Isolate. In this mode every non-primitive call to V8 should be * done inside some MicrotasksScope. * Microtasks are executed when topmost MicrotasksScope marked as kRunMicrotasks * exits. * kDoNotRunMicrotasks should be used to annotate calls not intended to trigger * microtasks. */ class V8_EXPORT MicrotasksScope { public: enum Type { kRunMicrotasks, kDoNotRunMicrotasks }; MicrotasksScope(Isolate* isolate, Type type); ~MicrotasksScope(); /** * Runs microtasks if no kRunMicrotasks scope is currently active. */ static void PerformCheckpoint(Isolate* isolate); /** * Returns current depth of nested kRunMicrotasks scopes. */ static int GetCurrentDepth(Isolate* isolate); /** * Returns true while microtasks are being executed. */ static bool IsRunningMicrotasks(Isolate* isolate); // Prevent copying. MicrotasksScope(const MicrotasksScope&) = delete; MicrotasksScope& operator=(const MicrotasksScope&) = delete; private: internal::Isolate* const isolate_; bool run_; }; // --- Failed Access Check Callback --- typedef void (*FailedAccessCheckCallback)(Local<Object> target, AccessType type, Local<Value> data); // --- AllowCodeGenerationFromStrings callbacks --- /** * Callback to check if code generation from strings is allowed. See * Context::AllowCodeGenerationFromStrings. */ typedef bool (*AllowCodeGenerationFromStringsCallback)(Local<Context> context, Local<String> source); // --- WebAssembly compilation callbacks --- typedef bool (*ExtensionCallback)(const FunctionCallbackInfo<Value>&); typedef bool (*AllowWasmCodeGenerationCallback)(Local<Context> context, Local<String> source); // --- Callback for APIs defined on v8-supported objects, but implemented // by the embedder. Example: WebAssembly.{compile|instantiate}Streaming --- typedef void (*ApiImplementationCallback)(const FunctionCallbackInfo<Value>&); // --- Callback for WebAssembly.compileStreaming --- typedef void (*WasmStreamingCallback)(const FunctionCallbackInfo<Value>&); // --- Callback for checking if WebAssembly threads are enabled --- typedef bool (*WasmThreadsEnabledCallback)(Local<Context> context); // --- Garbage Collection Callbacks --- /** * Applications can register callback functions which will be called before and * after certain garbage collection operations. Allocations are not allowed in * the callback functions, you therefore cannot manipulate objects (set or * delete properties for example) since it is possible such operations will * result in the allocation of objects. */ enum GCType { kGCTypeScavenge = 1 << 0, kGCTypeMarkSweepCompact = 1 << 1, kGCTypeIncrementalMarking = 1 << 2, kGCTypeProcessWeakCallbacks = 1 << 3, kGCTypeAll = kGCTypeScavenge | kGCTypeMarkSweepCompact | kGCTypeIncrementalMarking | kGCTypeProcessWeakCallbacks }; /** * GCCallbackFlags is used to notify additional information about the GC * callback. * - kGCCallbackFlagConstructRetainedObjectInfos: The GC callback is for * constructing retained object infos. * - kGCCallbackFlagForced: The GC callback is for a forced GC for testing. * - kGCCallbackFlagSynchronousPhantomCallbackProcessing: The GC callback * is called synchronously without getting posted to an idle task. * - kGCCallbackFlagCollectAllAvailableGarbage: The GC callback is called * in a phase where V8 is trying to collect all available garbage * (e.g., handling a low memory notification). * - kGCCallbackScheduleIdleGarbageCollection: The GC callback is called to * trigger an idle garbage collection. */ enum GCCallbackFlags { kNoGCCallbackFlags = 0, kGCCallbackFlagConstructRetainedObjectInfos = 1 << 1, kGCCallbackFlagForced = 1 << 2, kGCCallbackFlagSynchronousPhantomCallbackProcessing = 1 << 3, kGCCallbackFlagCollectAllAvailableGarbage = 1 << 4, kGCCallbackFlagCollectAllExternalMemory = 1 << 5, kGCCallbackScheduleIdleGarbageCollection = 1 << 6, }; typedef void (*GCCallback)(GCType type, GCCallbackFlags flags); typedef void (*InterruptCallback)(Isolate* isolate, void* data); /** * This callback is invoked when the heap size is close to the heap limit and * V8 is likely to abort with out-of-memory error. * The callback can extend the heap limit by returning a value that is greater * than the current_heap_limit. The initial heap limit is the limit that was * set after heap setup. */ typedef size_t (*NearHeapLimitCallback)(void* data, size_t current_heap_limit, size_t initial_heap_limit); /** * Collection of V8 heap information. * * Instances of this class can be passed to v8::V8::HeapStatistics to * get heap statistics from V8. */ class V8_EXPORT HeapStatistics { public: HeapStatistics(); size_t total_heap_size() { return total_heap_size_; } size_t total_heap_size_executable() { return total_heap_size_executable_; } size_t total_physical_size() { return total_physical_size_; } size_t total_available_size() { return total_available_size_; } size_t used_heap_size() { return used_heap_size_; } size_t heap_size_limit() { return heap_size_limit_; } size_t malloced_memory() { return malloced_memory_; } size_t external_memory() { return external_memory_; } size_t peak_malloced_memory() { return peak_malloced_memory_; } size_t number_of_native_contexts() { return number_of_native_contexts_; } size_t number_of_detached_contexts() { return number_of_detached_contexts_; } /** * Returns a 0/1 boolean, which signifies whether the V8 overwrite heap * garbage with a bit pattern. */ size_t does_zap_garbage() { return does_zap_garbage_; } private: size_t total_heap_size_; size_t total_heap_size_executable_; size_t total_physical_size_; size_t total_available_size_; size_t used_heap_size_; size_t heap_size_limit_; size_t malloced_memory_; size_t external_memory_; size_t peak_malloced_memory_; bool does_zap_garbage_; size_t number_of_native_contexts_; size_t number_of_detached_contexts_; friend class V8; friend class Isolate; }; class V8_EXPORT HeapSpaceStatistics { public: HeapSpaceStatistics(); const char* space_name() { return space_name_; } size_t space_size() { return space_size_; } size_t space_used_size() { return space_used_size_; } size_t space_available_size() { return space_available_size_; } size_t physical_space_size() { return physical_space_size_; } private: const char* space_name_; size_t space_size_; size_t space_used_size_; size_t space_available_size_; size_t physical_space_size_; friend class Isolate; }; class V8_EXPORT HeapObjectStatistics { public: HeapObjectStatistics(); const char* object_type() { return object_type_; } const char* object_sub_type() { return object_sub_type_; } size_t object_count() { return object_count_; } size_t object_size() { return object_size_; } private: const char* object_type_; const char* object_sub_type_; size_t object_count_; size_t object_size_; friend class Isolate; }; class V8_EXPORT HeapCodeStatistics { public: HeapCodeStatistics(); size_t code_and_metadata_size() { return code_and_metadata_size_; } size_t bytecode_and_metadata_size() { return bytecode_and_metadata_size_; } size_t external_script_source_size() { return external_script_source_size_; } private: size_t code_and_metadata_size_; size_t bytecode_and_metadata_size_; size_t external_script_source_size_; friend class Isolate; }; class RetainedObjectInfo; /** * FunctionEntryHook is the type of the profile entry hook called at entry to * any generated function when function-level profiling is enabled. * * \param function the address of the function that's being entered. * \param return_addr_location points to a location on stack where the machine * return address resides. This can be used to identify the caller of * \p function, and/or modified to divert execution when \p function exits. * * \note the entry hook must not cause garbage collection. */ typedef void (*FunctionEntryHook)(uintptr_t function, uintptr_t return_addr_location); /** * A JIT code event is issued each time code is added, moved or removed. * * \note removal events are not currently issued. */ struct JitCodeEvent { enum EventType { CODE_ADDED, CODE_MOVED, CODE_REMOVED, CODE_ADD_LINE_POS_INFO, CODE_START_LINE_INFO_RECORDING, CODE_END_LINE_INFO_RECORDING }; // Definition of the code position type. The "POSITION" type means the place // in the source code which are of interest when making stack traces to // pin-point the source location of a stack frame as close as possible. // The "STATEMENT_POSITION" means the place at the beginning of each // statement, and is used to indicate possible break locations. enum PositionType { POSITION, STATEMENT_POSITION }; // There are two different kinds of JitCodeEvents, one for JIT code generated // by the optimizing compiler, and one for byte code generated for the // interpreter. For JIT_CODE events, the |code_start| member of the event // points to the beginning of jitted assembly code, while for BYTE_CODE // events, |code_start| points to the first bytecode of the interpreted // function. enum CodeType { BYTE_CODE, JIT_CODE }; // Type of event. EventType type; CodeType code_type; // Start of the instructions. void* code_start; // Size of the instructions. size_t code_len; // Script info for CODE_ADDED event. Local<UnboundScript> script; // User-defined data for *_LINE_INFO_* event. It's used to hold the source // code line information which is returned from the // CODE_START_LINE_INFO_RECORDING event. And it's passed to subsequent // CODE_ADD_LINE_POS_INFO and CODE_END_LINE_INFO_RECORDING events. void* user_data; struct name_t { // Name of the object associated with the code, note that the string is not // zero-terminated. const char* str; // Number of chars in str. size_t len; }; struct line_info_t { // PC offset size_t offset; // Code position size_t pos; // The position type. PositionType position_type; }; union { // Only valid for CODE_ADDED. struct name_t name; // Only valid for CODE_ADD_LINE_POS_INFO struct line_info_t line_info; // New location of instructions. Only valid for CODE_MOVED. void* new_code_start; }; Isolate* isolate; }; /** * Option flags passed to the SetRAILMode function. * See documentation https://developers.google.com/web/tools/chrome-devtools/ * profile/evaluate-performance/rail */ enum RAILMode { // Response performance mode: In this mode very low virtual machine latency // is provided. V8 will try to avoid JavaScript execution interruptions. // Throughput may be throttled. PERFORMANCE_RESPONSE, // Animation performance mode: In this mode low virtual machine latency is // provided. V8 will try to avoid as many JavaScript execution interruptions // as possible. Throughput may be throttled. This is the default mode. PERFORMANCE_ANIMATION, // Idle performance mode: The embedder is idle. V8 can complete deferred work // in this mode. PERFORMANCE_IDLE, // Load performance mode: In this mode high throughput is provided. V8 may // turn off latency optimizations. PERFORMANCE_LOAD }; /** * Option flags passed to the SetJitCodeEventHandler function. */ enum JitCodeEventOptions { kJitCodeEventDefault = 0, // Generate callbacks for already existent code. kJitCodeEventEnumExisting = 1 }; /** * Callback function passed to SetJitCodeEventHandler. * * \param event code add, move or removal event. */ typedef void (*JitCodeEventHandler)(const JitCodeEvent* event); /** * Interface for iterating through all external resources in the heap. */ class V8_EXPORT ExternalResourceVisitor { // NOLINT public: virtual ~ExternalResourceVisitor() {} virtual void VisitExternalString(Local<String> string) {} }; /** * Interface for iterating through all the persistent handles in the heap. */ class V8_EXPORT PersistentHandleVisitor { // NOLINT public: virtual ~PersistentHandleVisitor() {} virtual void VisitPersistentHandle(Persistent<Value>* value, uint16_t class_id) {} }; /** * Memory pressure level for the MemoryPressureNotification. * kNone hints V8 that there is no memory pressure. * kModerate hints V8 to speed up incremental garbage collection at the cost of * of higher latency due to garbage collection pauses. * kCritical hints V8 to free memory as soon as possible. Garbage collection * pauses at this level will be large. */ enum class MemoryPressureLevel { kNone, kModerate, kCritical }; /** * Interface for tracing through the embedder heap. During a V8 garbage * collection, V8 collects hidden fields of all potential wrappers, and at the * end of its marking phase iterates the collection and asks the embedder to * trace through its heap and use reporter to report each JavaScript object * reachable from any of the given wrappers. */ class V8_EXPORT EmbedderHeapTracer { public: // Indicator for the stack state of the embedder. enum EmbedderStackState { kUnknown, kNonEmpty, kEmpty, }; enum ForceCompletionAction { FORCE_COMPLETION, DO_NOT_FORCE_COMPLETION }; struct AdvanceTracingActions { explicit AdvanceTracingActions(ForceCompletionAction force_completion_) : force_completion(force_completion_) {} ForceCompletionAction force_completion; }; virtual ~EmbedderHeapTracer() = default; /** * Called by v8 to register internal fields of found wrappers. * * The embedder is expected to store them somewhere and trace reachable * wrappers from them when called through |AdvanceTracing|. */ virtual void RegisterV8References( const std::vector<std::pair<void*, void*> >& embedder_fields) = 0; /** * Called at the beginning of a GC cycle. */ virtual void TracePrologue() = 0; /** * Called to make a tracing step in the embedder. * * The embedder is expected to trace its heap starting from wrappers reported * by RegisterV8References method, and report back all reachable wrappers. * Furthermore, the embedder is expected to stop tracing by the given * deadline. * * Returns true if there is still work to do. * * Note: Only one of the AdvanceTracing methods needs to be overriden by the * embedder. */ V8_DEPRECATE_SOON("Use void AdvanceTracing(deadline_in_ms)", virtual bool AdvanceTracing( double deadline_in_ms, AdvanceTracingActions actions)) { return false; } /** * Called to advance tracing in the embedder. * * The embedder is expected to trace its heap starting from wrappers reported * by RegisterV8References method, and report back all reachable wrappers. * Furthermore, the embedder is expected to stop tracing by the given * deadline. A deadline of infinity means that tracing should be finished. * * Returns |true| if tracing is done, and false otherwise. * * Note: Only one of the AdvanceTracing methods needs to be overriden by the * embedder. */ virtual bool AdvanceTracing(double deadline_in_ms); /* * Returns true if there no more tracing work to be done (see AdvanceTracing) * and false otherwise. */ virtual bool IsTracingDone(); /** * Called at the end of a GC cycle. * * Note that allocation is *not* allowed within |TraceEpilogue|. */ virtual void TraceEpilogue() = 0; /** * Called upon entering the final marking pause. No more incremental marking * steps will follow this call. * * Note: Only one of the EnterFinalPause methods needs to be overriden by the * embedder. */ V8_DEPRECATE_SOON("Use void EnterFinalPause(EmbedderStackState)", virtual void EnterFinalPause()) {} virtual void EnterFinalPause(EmbedderStackState stack_state); /** * Called when tracing is aborted. * * The embedder is expected to throw away all intermediate data and reset to * the initial state. */ virtual void AbortTracing() = 0; /* * Called by the embedder to request immediate finalization of the currently * running tracing phase that has been started with TracePrologue and not * yet finished with TraceEpilogue. * * Will be a noop when currently not in tracing. * * This is an experimental feature. */ void FinalizeTracing(); /* * Called by the embedder to immediately perform a full garbage collection. * * Should only be used in testing code. */ void GarbageCollectionForTesting(EmbedderStackState stack_state); /* * Returns the v8::Isolate this tracer is attached too and |nullptr| if it * is not attached to any v8::Isolate. */ v8::Isolate* isolate() const { return isolate_; } /** * Returns the number of wrappers that are still to be traced by the embedder. */ V8_DEPRECATE_SOON("Use IsTracingDone", virtual size_t NumberOfWrappersToTrace()) { return 0; } protected: v8::Isolate* isolate_ = nullptr; friend class internal::LocalEmbedderHeapTracer; }; /** * Callback and supporting data used in SnapshotCreator to implement embedder * logic to serialize internal fields. */ struct SerializeInternalFieldsCallback { typedef StartupData (*CallbackFunction)(Local<Object> holder, int index, void* data); SerializeInternalFieldsCallback(CallbackFunction function = nullptr, void* data_arg = nullptr) : callback(function), data(data_arg) {} CallbackFunction callback; void* data; }; // Note that these fields are called "internal fields" in the API and called // "embedder fields" within V8. typedef SerializeInternalFieldsCallback SerializeEmbedderFieldsCallback; /** * Callback and supporting data used to implement embedder logic to deserialize * internal fields. */ struct DeserializeInternalFieldsCallback { typedef void (*CallbackFunction)(Local<Object> holder, int index, StartupData payload, void* data); DeserializeInternalFieldsCallback(CallbackFunction function = nullptr, void* data_arg = nullptr) : callback(function), data(data_arg) {} void (*callback)(Local<Object> holder, int index, StartupData payload, void* data); void* data; }; typedef DeserializeInternalFieldsCallback DeserializeEmbedderFieldsCallback; /** * Isolate represents an isolated instance of the V8 engine. V8 isolates have * completely separate states. Objects from one isolate must not be used in * other isolates. The embedder can create multiple isolates and use them in * parallel in multiple threads. An isolate can be entered by at most one * thread at any given time. The Locker/Unlocker API must be used to * synchronize. */ class V8_EXPORT Isolate { public: /** * Initial configuration parameters for a new Isolate. */ struct CreateParams { CreateParams() : entry_hook(nullptr), code_event_handler(nullptr), snapshot_blob(nullptr), counter_lookup_callback(nullptr), create_histogram_callback(nullptr), add_histogram_sample_callback(nullptr), array_buffer_allocator(nullptr), external_references(nullptr), allow_atomics_wait(true), only_terminate_in_safe_scope(false) {} /** * The optional entry_hook allows the host application to provide the * address of a function that's invoked on entry to every V8-generated * function. Note that entry_hook is invoked at the very start of each * generated function. * An entry_hook can only be provided in no-snapshot builds; in snapshot * builds it must be nullptr. */ FunctionEntryHook entry_hook; /** * Allows the host application to provide the address of a function that is * notified each time code is added, moved or removed. */ JitCodeEventHandler code_event_handler; /** * ResourceConstraints to use for the new Isolate. */ ResourceConstraints constraints; /** * Explicitly specify a startup snapshot blob. The embedder owns the blob. */ StartupData* snapshot_blob; /** * Enables the host application to provide a mechanism for recording * statistics counters. */ CounterLookupCallback counter_lookup_callback; /** * Enables the host application to provide a mechanism for recording * histograms. The CreateHistogram function returns a * histogram which will later be passed to the AddHistogramSample * function. */ CreateHistogramCallback create_histogram_callback; AddHistogramSampleCallback add_histogram_sample_callback; /** * The ArrayBuffer::Allocator to use for allocating and freeing the backing * store of ArrayBuffers. */ ArrayBuffer::Allocator* array_buffer_allocator; /** * Specifies an optional nullptr-terminated array of raw addresses in the * embedder that V8 can match against during serialization and use for * deserialization. This array and its content must stay valid for the * entire lifetime of the isolate. */ const intptr_t* external_references; /** * Whether calling Atomics.wait (a function that may block) is allowed in * this isolate. This can also be configured via SetAllowAtomicsWait. */ bool allow_atomics_wait; /** * Termination is postponed when there is no active SafeForTerminationScope. */ bool only_terminate_in_safe_scope; }; /** * Stack-allocated class which sets the isolate for all operations * executed within a local scope. */ class V8_EXPORT Scope { public: explicit Scope(Isolate* isolate) : isolate_(isolate) { isolate->Enter(); } ~Scope() { isolate_->Exit(); } // Prevent copying of Scope objects. Scope(const Scope&) = delete; Scope& operator=(const Scope&) = delete; private: Isolate* const isolate_; }; /** * Assert that no Javascript code is invoked. */ class V8_EXPORT DisallowJavascriptExecutionScope { public: enum OnFailure { CRASH_ON_FAILURE, THROW_ON_FAILURE }; DisallowJavascriptExecutionScope(Isolate* isolate, OnFailure on_failure); ~DisallowJavascriptExecutionScope(); // Prevent copying of Scope objects. DisallowJavascriptExecutionScope(const DisallowJavascriptExecutionScope&) = delete; DisallowJavascriptExecutionScope& operator=( const DisallowJavascriptExecutionScope&) = delete; private: bool on_failure_; void* internal_; }; /** * Introduce exception to DisallowJavascriptExecutionScope. */ class V8_EXPORT AllowJavascriptExecutionScope { public: explicit AllowJavascriptExecutionScope(Isolate* isolate); ~AllowJavascriptExecutionScope(); // Prevent copying of Scope objects. AllowJavascriptExecutionScope(const AllowJavascriptExecutionScope&) = delete; AllowJavascriptExecutionScope& operator=( const AllowJavascriptExecutionScope&) = delete; private: void* internal_throws_; void* internal_assert_; }; /** * Do not run microtasks while this scope is active, even if microtasks are * automatically executed otherwise. */ class V8_EXPORT SuppressMicrotaskExecutionScope { public: explicit SuppressMicrotaskExecutionScope(Isolate* isolate); ~SuppressMicrotaskExecutionScope(); // Prevent copying of Scope objects. SuppressMicrotaskExecutionScope(const SuppressMicrotaskExecutionScope&) = delete; SuppressMicrotaskExecutionScope& operator=( const SuppressMicrotaskExecutionScope&) = delete; private: internal::Isolate* const isolate_; }; /** * This scope allows terminations inside direct V8 API calls and forbid them * inside any recursice API calls without explicit SafeForTerminationScope. */ class V8_EXPORT SafeForTerminationScope { public: explicit SafeForTerminationScope(v8::Isolate* isolate); ~SafeForTerminationScope(); // Prevent copying of Scope objects. SafeForTerminationScope(const SafeForTerminationScope&) = delete; SafeForTerminationScope& operator=(const SafeForTerminationScope&) = delete; private: internal::Isolate* isolate_; bool prev_value_; }; /** * Types of garbage collections that can be requested via * RequestGarbageCollectionForTesting. */ enum GarbageCollectionType { kFullGarbageCollection, kMinorGarbageCollection }; /** * Features reported via the SetUseCounterCallback callback. Do not change * assigned numbers of existing items; add new features to the end of this * list. */ enum UseCounterFeature { kUseAsm = 0, kBreakIterator = 1, kLegacyConst = 2, kMarkDequeOverflow = 3, kStoreBufferOverflow = 4, kSlotsBufferOverflow = 5, kObjectObserve = 6, kForcedGC = 7, kSloppyMode = 8, kStrictMode = 9, kStrongMode = 10, kRegExpPrototypeStickyGetter = 11, kRegExpPrototypeToString = 12, kRegExpPrototypeUnicodeGetter = 13, kIntlV8Parse = 14, kIntlPattern = 15, kIntlResolved = 16, kPromiseChain = 17, kPromiseAccept = 18, kPromiseDefer = 19, kHtmlCommentInExternalScript = 20, kHtmlComment = 21, kSloppyModeBlockScopedFunctionRedefinition = 22, kForInInitializer = 23, kArrayProtectorDirtied = 24, kArraySpeciesModified = 25, kArrayPrototypeConstructorModified = 26, kArrayInstanceProtoModified = 27, kArrayInstanceConstructorModified = 28, kLegacyFunctionDeclaration = 29, kRegExpPrototypeSourceGetter = 30, kRegExpPrototypeOldFlagGetter = 31, kDecimalWithLeadingZeroInStrictMode = 32, kLegacyDateParser = 33, kDefineGetterOrSetterWouldThrow = 34, kFunctionConstructorReturnedUndefined = 35, kAssigmentExpressionLHSIsCallInSloppy = 36, kAssigmentExpressionLHSIsCallInStrict = 37, kPromiseConstructorReturnedUndefined = 38, kConstructorNonUndefinedPrimitiveReturn = 39, kLabeledExpressionStatement = 40, kLineOrParagraphSeparatorAsLineTerminator = 41, kIndexAccessor = 42, kErrorCaptureStackTrace = 43, kErrorPrepareStackTrace = 44, kErrorStackTraceLimit = 45, kWebAssemblyInstantiation = 46, kDeoptimizerDisableSpeculation = 47, kArrayPrototypeSortJSArrayModifiedPrototype = 48, kFunctionTokenOffsetTooLongForToString = 49, kWasmSharedMemory = 50, kWasmThreadOpcodes = 51, // If you add new values here, you'll also need to update Chromium's: // web_feature.mojom, UseCounterCallback.cpp, and enums.xml. V8 changes to // this list need to be landed first, then changes on the Chromium side. kUseCounterFeatureCount // This enum value must be last. }; enum MessageErrorLevel { kMessageLog = (1 << 0), kMessageDebug = (1 << 1), kMessageInfo = (1 << 2), kMessageError = (1 << 3), kMessageWarning = (1 << 4), kMessageAll = kMessageLog | kMessageDebug | kMessageInfo | kMessageError | kMessageWarning, }; typedef void (*UseCounterCallback)(Isolate* isolate, UseCounterFeature feature); /** * Allocates a new isolate but does not initialize it. Does not change the * currently entered isolate. * * Only Isolate::GetData() and Isolate::SetData(), which access the * embedder-controlled parts of the isolate, are allowed to be called on the * uninitialized isolate. To initialize the isolate, call * Isolate::Initialize(). * * When an isolate is no longer used its resources should be freed * by calling Dispose(). Using the delete operator is not allowed. * * V8::Initialize() must have run prior to this. */ static Isolate* Allocate(); /** * Initialize an Isolate previously allocated by Isolate::Allocate(). */ static void Initialize(Isolate* isolate, const CreateParams& params); /** * Creates a new isolate. Does not change the currently entered * isolate. * * When an isolate is no longer used its resources should be freed * by calling Dispose(). Using the delete operator is not allowed. * * V8::Initialize() must have run prior to this. */ static Isolate* New(const CreateParams& params); /** * Returns the entered isolate for the current thread or NULL in * case there is no current isolate. * * This method must not be invoked before V8::Initialize() was invoked. */ static Isolate* GetCurrent(); /** * Custom callback used by embedders to help V8 determine if it should abort * when it throws and no internal handler is predicted to catch the * exception. If --abort-on-uncaught-exception is used on the command line, * then V8 will abort if either: * - no custom callback is set. * - the custom callback set returns true. * Otherwise, the custom callback will not be called and V8 will not abort. */ typedef bool (*AbortOnUncaughtExceptionCallback)(Isolate*); void SetAbortOnUncaughtExceptionCallback( AbortOnUncaughtExceptionCallback callback); /** * This specifies the callback called by the upcoming dynamic * import() language feature to load modules. */ void SetHostImportModuleDynamicallyCallback( HostImportModuleDynamicallyCallback callback); /** * This specifies the callback called by the upcoming importa.meta * language feature to retrieve host-defined meta data for a module. */ void SetHostInitializeImportMetaObjectCallback( HostInitializeImportMetaObjectCallback callback); /** * Optional notification that the system is running low on memory. * V8 uses these notifications to guide heuristics. * It is allowed to call this function from another thread while * the isolate is executing long running JavaScript code. */ void MemoryPressureNotification(MemoryPressureLevel level); /** * Methods below this point require holding a lock (using Locker) in * a multi-threaded environment. */ /** * Sets this isolate as the entered one for the current thread. * Saves the previously entered one (if any), so that it can be * restored when exiting. Re-entering an isolate is allowed. */ void Enter(); /** * Exits this isolate by restoring the previously entered one in the * current thread. The isolate may still stay the same, if it was * entered more than once. * * Requires: this == Isolate::GetCurrent(). */ void Exit(); /** * Disposes the isolate. The isolate must not be entered by any * thread to be disposable. */ void Dispose(); /** * Dumps activated low-level V8 internal stats. This can be used instead * of performing a full isolate disposal. */ void DumpAndResetStats(); /** * Discards all V8 thread-specific data for the Isolate. Should be used * if a thread is terminating and it has used an Isolate that will outlive * the thread -- all thread-specific data for an Isolate is discarded when * an Isolate is disposed so this call is pointless if an Isolate is about * to be Disposed. */ void DiscardThreadSpecificMetadata(); /** * Associate embedder-specific data with the isolate. |slot| has to be * between 0 and GetNumberOfDataSlots() - 1. */ V8_INLINE void SetData(uint32_t slot, void* data); /** * Retrieve embedder-specific data from the isolate. * Returns NULL if SetData has never been called for the given |slot|. */ V8_INLINE void* GetData(uint32_t slot); /** * Returns the maximum number of available embedder data slots. Valid slots * are in the range of 0 - GetNumberOfDataSlots() - 1. */ V8_INLINE static uint32_t GetNumberOfDataSlots(); /** * Return data that was previously attached to the isolate snapshot via * SnapshotCreator, and removes the reference to it. * Repeated call with the same index returns an empty MaybeLocal. */ template <class T> V8_INLINE MaybeLocal<T> GetDataFromSnapshotOnce(size_t index); /** * Get statistics about the heap memory usage. */ void GetHeapStatistics(HeapStatistics* heap_statistics); /** * Returns the number of spaces in the heap. */ size_t NumberOfHeapSpaces(); /** * Get the memory usage of a space in the heap. * * \param space_statistics The HeapSpaceStatistics object to fill in * statistics. * \param index The index of the space to get statistics from, which ranges * from 0 to NumberOfHeapSpaces() - 1. * \returns true on success. */ bool GetHeapSpaceStatistics(HeapSpaceStatistics* space_statistics, size_t index); /** * Returns the number of types of objects tracked in the heap at GC. */ size_t NumberOfTrackedHeapObjectTypes(); /** * Get statistics about objects in the heap. * * \param object_statistics The HeapObjectStatistics object to fill in * statistics of objects of given type, which were live in the previous GC. * \param type_index The index of the type of object to fill details about, * which ranges from 0 to NumberOfTrackedHeapObjectTypes() - 1. * \returns true on success. */ bool GetHeapObjectStatisticsAtLastGC(HeapObjectStatistics* object_statistics, size_t type_index); /** * Get statistics about code and its metadata in the heap. * * \param object_statistics The HeapCodeStatistics object to fill in * statistics of code, bytecode and their metadata. * \returns true on success. */ bool GetHeapCodeAndMetadataStatistics(HeapCodeStatistics* object_statistics); /** * Get a call stack sample from the isolate. * \param state Execution state. * \param frames Caller allocated buffer to store stack frames. * \param frames_limit Maximum number of frames to capture. The buffer must * be large enough to hold the number of frames. * \param sample_info The sample info is filled up by the function * provides number of actual captured stack frames and * the current VM state. * \note GetStackSample should only be called when the JS thread is paused or * interrupted. Otherwise the behavior is undefined. */ void GetStackSample(const RegisterState& state, void** frames, size_t frames_limit, SampleInfo* sample_info); /** * Adjusts the amount of registered external memory. Used to give V8 an * indication of the amount of externally allocated memory that is kept alive * by JavaScript objects. V8 uses this to decide when to perform global * garbage collections. Registering externally allocated memory will trigger * global garbage collections more often than it would otherwise in an attempt * to garbage collect the JavaScript objects that keep the externally * allocated memory alive. * * \param change_in_bytes the change in externally allocated memory that is * kept alive by JavaScript objects. * \returns the adjusted value. */ V8_INLINE int64_t AdjustAmountOfExternalAllocatedMemory(int64_t change_in_bytes); /** * Returns the number of phantom handles without callbacks that were reset * by the garbage collector since the last call to this function. */ size_t NumberOfPhantomHandleResetsSinceLastCall(); /** * Returns heap profiler for this isolate. Will return NULL until the isolate * is initialized. */ HeapProfiler* GetHeapProfiler(); /** * Tells the VM whether the embedder is idle or not. */ void SetIdle(bool is_idle); /** Returns true if this isolate has a current context. */ bool InContext(); /** * Returns the context of the currently running JavaScript, or the context * on the top of the stack if no JavaScript is running. */ Local<Context> GetCurrentContext(); /** Returns the last context entered through V8's C++ API. */ Local<Context> GetEnteredContext(); /** * Returns either the last context entered through V8's C++ API, or the * context of the currently running microtask while processing microtasks. * If a context is entered while executing a microtask, that context is * returned. */ Local<Context> GetEnteredOrMicrotaskContext(); /** * Returns the Context that corresponds to the Incumbent realm in HTML spec. * https://html.spec.whatwg.org/multipage/webappapis.html#incumbent */ Local<Context> GetIncumbentContext(); /** * Schedules an exception to be thrown when returning to JavaScript. When an * exception has been scheduled it is illegal to invoke any JavaScript * operation; the caller must return immediately and only after the exception * has been handled does it become legal to invoke JavaScript operations. */ Local<Value> ThrowException(Local<Value> exception); typedef void (*GCCallback)(Isolate* isolate, GCType type, GCCallbackFlags flags); typedef void (*GCCallbackWithData)(Isolate* isolate, GCType type, GCCallbackFlags flags, void* data); /** * Enables the host application to receive a notification before a * garbage collection. Allocations are allowed in the callback function, * but the callback is not re-entrant: if the allocation inside it will * trigger the garbage collection, the callback won't be called again. * It is possible to specify the GCType filter for your callback. But it is * not possible to register the same callback function two times with * different GCType filters. */ void AddGCPrologueCallback(GCCallbackWithData callback, void* data = nullptr, GCType gc_type_filter = kGCTypeAll); void AddGCPrologueCallback(GCCallback callback, GCType gc_type_filter = kGCTypeAll); /** * This function removes callback which was installed by * AddGCPrologueCallback function. */ void RemoveGCPrologueCallback(GCCallbackWithData, void* data = nullptr); void RemoveGCPrologueCallback(GCCallback callback); /** * Sets the embedder heap tracer for the isolate. */ void SetEmbedderHeapTracer(EmbedderHeapTracer* tracer); /** * Use for |AtomicsWaitCallback| to indicate the type of event it receives. */ enum class AtomicsWaitEvent { /** Indicates that this call is happening before waiting. */ kStartWait, /** `Atomics.wait()` finished because of an `Atomics.wake()` call. */ kWokenUp, /** `Atomics.wait()` finished because it timed out. */ kTimedOut, /** `Atomics.wait()` was interrupted through |TerminateExecution()|. */ kTerminatedExecution, /** `Atomics.wait()` was stopped through |AtomicsWaitWakeHandle|. */ kAPIStopped, /** `Atomics.wait()` did not wait, as the initial condition was not met. */ kNotEqual }; /** * Passed to |AtomicsWaitCallback| as a means of stopping an ongoing * `Atomics.wait` call. */ class V8_EXPORT AtomicsWaitWakeHandle { public: /** * Stop this `Atomics.wait()` call and call the |AtomicsWaitCallback| * with |kAPIStopped|. * * This function may be called from another thread. The caller has to ensure * through proper synchronization that it is not called after * the finishing |AtomicsWaitCallback|. * * Note that the ECMAScript specification does not plan for the possibility * of wakeups that are neither coming from a timeout or an `Atomics.wake()` * call, so this may invalidate assumptions made by existing code. * The embedder may accordingly wish to schedule an exception in the * finishing |AtomicsWaitCallback|. */ void Wake(); }; /** * Embedder callback for `Atomics.wait()` that can be added through * |SetAtomicsWaitCallback|. * * This will be called just before starting to wait with the |event| value * |kStartWait| and after finishing waiting with one of the other * values of |AtomicsWaitEvent| inside of an `Atomics.wait()` call. * * |array_buffer| will refer to the underlying SharedArrayBuffer, * |offset_in_bytes| to the location of the waited-on memory address inside * the SharedArrayBuffer. * * |value| and |timeout_in_ms| will be the values passed to * the `Atomics.wait()` call. If no timeout was used, |timeout_in_ms| * will be `INFINITY`. * * In the |kStartWait| callback, |stop_handle| will be an object that * is only valid until the corresponding finishing callback and that * can be used to stop the wait process while it is happening. * * This callback may schedule exceptions, *unless* |event| is equal to * |kTerminatedExecution|. */ typedef void (*AtomicsWaitCallback)(AtomicsWaitEvent event, Local<SharedArrayBuffer> array_buffer, size_t offset_in_bytes, int32_t value, double timeout_in_ms, AtomicsWaitWakeHandle* stop_handle, void* data); /** * Set a new |AtomicsWaitCallback|. This overrides an earlier * |AtomicsWaitCallback|, if there was any. If |callback| is nullptr, * this unsets the callback. |data| will be passed to the callback * as its last parameter. */ void SetAtomicsWaitCallback(AtomicsWaitCallback callback, void* data); /** * Enables the host application to receive a notification after a * garbage collection. Allocations are allowed in the callback function, * but the callback is not re-entrant: if the allocation inside it will * trigger the garbage collection, the callback won't be called again. * It is possible to specify the GCType filter for your callback. But it is * not possible to register the same callback function two times with * different GCType filters. */ void AddGCEpilogueCallback(GCCallbackWithData callback, void* data = nullptr, GCType gc_type_filter = kGCTypeAll); void AddGCEpilogueCallback(GCCallback callback, GCType gc_type_filter = kGCTypeAll); /** * This function removes callback which was installed by * AddGCEpilogueCallback function. */ void RemoveGCEpilogueCallback(GCCallbackWithData callback, void* data = nullptr); void RemoveGCEpilogueCallback(GCCallback callback); typedef size_t (*GetExternallyAllocatedMemoryInBytesCallback)(); /** * Set the callback that tells V8 how much memory is currently allocated * externally of the V8 heap. Ideally this memory is somehow connected to V8 * objects and may get freed-up when the corresponding V8 objects get * collected by a V8 garbage collection. */ void SetGetExternallyAllocatedMemoryInBytesCallback( GetExternallyAllocatedMemoryInBytesCallback callback); /** * Forcefully terminate the current thread of JavaScript execution * in the given isolate. * * This method can be used by any thread even if that thread has not * acquired the V8 lock with a Locker object. */ void TerminateExecution(); /** * Is V8 terminating JavaScript execution. * * Returns true if JavaScript execution is currently terminating * because of a call to TerminateExecution. In that case there are * still JavaScript frames on the stack and the termination * exception is still active. */ bool IsExecutionTerminating(); /** * Resume execution capability in the given isolate, whose execution * was previously forcefully terminated using TerminateExecution(). * * When execution is forcefully terminated using TerminateExecution(), * the isolate can not resume execution until all JavaScript frames * have propagated the uncatchable exception which is generated. This * method allows the program embedding the engine to handle the * termination event and resume execution capability, even if * JavaScript frames remain on the stack. * * This method can be used by any thread even if that thread has not * acquired the V8 lock with a Locker object. */ void CancelTerminateExecution(); /** * Request V8 to interrupt long running JavaScript code and invoke * the given |callback| passing the given |data| to it. After |callback| * returns control will be returned to the JavaScript code. * There may be a number of interrupt requests in flight. * Can be called from another thread without acquiring a |Locker|. * Registered |callback| must not reenter interrupted Isolate. */ void RequestInterrupt(InterruptCallback callback, void* data); /** * Request garbage collection in this Isolate. It is only valid to call this * function if --expose_gc was specified. * * This should only be used for testing purposes and not to enforce a garbage * collection schedule. It has strong negative impact on the garbage * collection performance. Use IdleNotificationDeadline() or * LowMemoryNotification() instead to influence the garbage collection * schedule. */ void RequestGarbageCollectionForTesting(GarbageCollectionType type); /** * Set the callback to invoke for logging event. */ void SetEventLogger(LogEventCallback that); /** * Adds a callback to notify the host application right before a script * is about to run. If a script re-enters the runtime during executing, the * BeforeCallEnteredCallback is invoked for each re-entrance. * Executing scripts inside the callback will re-trigger the callback. */ void AddBeforeCallEnteredCallback(BeforeCallEnteredCallback callback); /** * Removes callback that was installed by AddBeforeCallEnteredCallback. */ void RemoveBeforeCallEnteredCallback(BeforeCallEnteredCallback callback); /** * Adds a callback to notify the host application when a script finished * running. If a script re-enters the runtime during executing, the * CallCompletedCallback is only invoked when the outer-most script * execution ends. Executing scripts inside the callback do not trigger * further callbacks. */ void AddCallCompletedCallback(CallCompletedCallback callback); /** * Removes callback that was installed by AddCallCompletedCallback. */ void RemoveCallCompletedCallback(CallCompletedCallback callback); /** * Set the PromiseHook callback for various promise lifecycle * events. */ void SetPromiseHook(PromiseHook hook); /** * Set callback to notify about promise reject with no handler, or * revocation of such a previous notification once the handler is added. */ void SetPromiseRejectCallback(PromiseRejectCallback callback); /** * Runs the Microtask Work Queue until empty * Any exceptions thrown by microtask callbacks are swallowed. */ void RunMicrotasks(); /** * Enqueues the callback to the Microtask Work Queue */ void EnqueueMicrotask(Local<Function> microtask); /** * Enqueues the callback to the Microtask Work Queue */ void EnqueueMicrotask(MicrotaskCallback callback, void* data = nullptr); /** * Controls how Microtasks are invoked. See MicrotasksPolicy for details. */ void SetMicrotasksPolicy(MicrotasksPolicy policy); /** * Returns the policy controlling how Microtasks are invoked. */ MicrotasksPolicy GetMicrotasksPolicy() const; /** * Adds a callback to notify the host application after * microtasks were run. The callback is triggered by explicit RunMicrotasks * call or automatic microtasks execution (see SetAutorunMicrotasks). * * Callback will trigger even if microtasks were attempted to run, * but the microtasks queue was empty and no single microtask was actually * executed. * * Executing scriptsinside the callback will not re-trigger microtasks and * the callback. */ void AddMicrotasksCompletedCallback(MicrotasksCompletedCallback callback); /** * Removes callback that was installed by AddMicrotasksCompletedCallback. */ void RemoveMicrotasksCompletedCallback(MicrotasksCompletedCallback callback); /** * Sets a callback for counting the number of times a feature of V8 is used. */ void SetUseCounterCallback(UseCounterCallback callback); /** * Enables the host application to provide a mechanism for recording * statistics counters. */ void SetCounterFunction(CounterLookupCallback); /** * Enables the host application to provide a mechanism for recording * histograms. The CreateHistogram function returns a * histogram which will later be passed to the AddHistogramSample * function. */ void SetCreateHistogramFunction(CreateHistogramCallback); void SetAddHistogramSampleFunction(AddHistogramSampleCallback); /** * Optional notification that the embedder is idle. * V8 uses the notification to perform garbage collection. * This call can be used repeatedly if the embedder remains idle. * Returns true if the embedder should stop calling IdleNotificationDeadline * until real work has been done. This indicates that V8 has done * as much cleanup as it will be able to do. * * The deadline_in_seconds argument specifies the deadline V8 has to finish * garbage collection work. deadline_in_seconds is compared with * MonotonicallyIncreasingTime() and should be based on the same timebase as * that function. There is no guarantee that the actual work will be done * within the time limit. */ bool IdleNotificationDeadline(double deadline_in_seconds); /** * Optional notification that the system is running low on memory. * V8 uses these notifications to attempt to free memory. */ void LowMemoryNotification(); /** * Optional notification that a context has been disposed. V8 uses * these notifications to guide the GC heuristic. Returns the number * of context disposals - including this one - since the last time * V8 had a chance to clean up. * * The optional parameter |dependant_context| specifies whether the disposed * context was depending on state from other contexts or not. */ int ContextDisposedNotification(bool dependant_context = true); /** * Optional notification that the isolate switched to the foreground. * V8 uses these notifications to guide heuristics. */ void IsolateInForegroundNotification(); /** * Optional notification that the isolate switched to the background. * V8 uses these notifications to guide heuristics. */ void IsolateInBackgroundNotification(); /** * Optional notification which will enable the memory savings mode. * V8 uses this notification to guide heuristics which may result in a * smaller memory footprint at the cost of reduced runtime performance. */ void EnableMemorySavingsMode(); /** * Optional notification which will disable the memory savings mode. */ void DisableMemorySavingsMode(); /** * Optional notification to tell V8 the current performance requirements * of the embedder based on RAIL. * V8 uses these notifications to guide heuristics. * This is an unfinished experimental feature. Semantics and implementation * may change frequently. */ void SetRAILMode(RAILMode rail_mode); /** * Optional notification to tell V8 the current isolate is used for debugging * and requires higher heap limit. */ void IncreaseHeapLimitForDebugging(); /** * Restores the original heap limit after IncreaseHeapLimitForDebugging(). */ void RestoreOriginalHeapLimit(); /** * Returns true if the heap limit was increased for debugging and the * original heap limit was not restored yet. */ bool IsHeapLimitIncreasedForDebugging(); /** * Allows the host application to provide the address of a function that is * notified each time code is added, moved or removed. * * \param options options for the JIT code event handler. * \param event_handler the JIT code event handler, which will be invoked * each time code is added, moved or removed. * \note \p event_handler won't get notified of existent code. * \note since code removal notifications are not currently issued, the * \p event_handler may get notifications of code that overlaps earlier * code notifications. This happens when code areas are reused, and the * earlier overlapping code areas should therefore be discarded. * \note the events passed to \p event_handler and the strings they point to * are not guaranteed to live past each call. The \p event_handler must * copy strings and other parameters it needs to keep around. * \note the set of events declared in JitCodeEvent::EventType is expected to * grow over time, and the JitCodeEvent structure is expected to accrue * new members. The \p event_handler function must ignore event codes * it does not recognize to maintain future compatibility. * \note Use Isolate::CreateParams to get events for code executed during * Isolate setup. */ void SetJitCodeEventHandler(JitCodeEventOptions options, JitCodeEventHandler event_handler); /** * Modifies the stack limit for this Isolate. * * \param stack_limit An address beyond which the Vm's stack may not grow. * * \note If you are using threads then you should hold the V8::Locker lock * while setting the stack limit and you must set a non-default stack * limit separately for each thread. */ void SetStackLimit(uintptr_t stack_limit); /** * Returns a memory range that can potentially contain jitted code. * * On Win64, embedders are advised to install function table callbacks for * these ranges, as default SEH won't be able to unwind through jitted code. * * The first page of the code range is reserved for the embedder and is * committed, writable, and executable. * * Might be empty on other platforms. * * https://code.google.com/p/v8/issues/detail?id=3598 */ void GetCodeRange(void** start, size_t* length_in_bytes); /** Set the callback to invoke in case of fatal errors. */ void SetFatalErrorHandler(FatalErrorCallback that); /** Set the callback to invoke in case of OOM errors. */ void SetOOMErrorHandler(OOMErrorCallback that); /** * Add a callback to invoke in case the heap size is close to the heap limit. * If multiple callbacks are added, only the most recently added callback is * invoked. */ void AddNearHeapLimitCallback(NearHeapLimitCallback callback, void* data); /** * Remove the given callback and restore the heap limit to the * given limit. If the given limit is zero, then it is ignored. * If the current heap size is greater than the given limit, * then the heap limit is restored to the minimal limit that * is possible for the current heap size. */ void RemoveNearHeapLimitCallback(NearHeapLimitCallback callback, size_t heap_limit); /** * Set the callback to invoke to check if code generation from * strings should be allowed. */ void SetAllowCodeGenerationFromStringsCallback( AllowCodeGenerationFromStringsCallback callback); /** * Set the callback to invoke to check if wasm code generation should * be allowed. */ void SetAllowWasmCodeGenerationCallback( AllowWasmCodeGenerationCallback callback); /** * Embedder over{ride|load} injection points for wasm APIs. The expectation * is that the embedder sets them at most once. */ void SetWasmModuleCallback(ExtensionCallback callback); void SetWasmInstanceCallback(ExtensionCallback callback); void SetWasmCompileStreamingCallback(ApiImplementationCallback callback); void SetWasmStreamingCallback(WasmStreamingCallback callback); void SetWasmThreadsEnabledCallback(WasmThreadsEnabledCallback callback); /** * Check if V8 is dead and therefore unusable. This is the case after * fatal errors such as out-of-memory situations. */ bool IsDead(); /** * Adds a message listener (errors only). * * The same message listener can be added more than once and in that * case it will be called more than once for each message. * * If data is specified, it will be passed to the callback when it is called. * Otherwise, the exception object will be passed to the callback instead. */ bool AddMessageListener(MessageCallback that, Local<Value> data = Local<Value>()); /** * Adds a message listener. * * The same message listener can be added more than once and in that * case it will be called more than once for each message. * * If data is specified, it will be passed to the callback when it is called. * Otherwise, the exception object will be passed to the callback instead. * * A listener can listen for particular error levels by providing a mask. */ bool AddMessageListenerWithErrorLevel(MessageCallback that, int message_levels, Local<Value> data = Local<Value>()); /** * Remove all message listeners from the specified callback function. */ void RemoveMessageListeners(MessageCallback that); /** Callback function for reporting failed access checks.*/ void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback); /** * Tells V8 to capture current stack trace when uncaught exception occurs * and report it to the message listeners. The option is off by default. */ void SetCaptureStackTraceForUncaughtExceptions( bool capture, int frame_limit = 10, StackTrace::StackTraceOptions options = StackTrace::kOverview); /** * Iterates through all external resources referenced from current isolate * heap. GC is not invoked prior to iterating, therefore there is no * guarantee that visited objects are still alive. */ void VisitExternalResources(ExternalResourceVisitor* visitor); /** * Iterates through all the persistent handles in the current isolate's heap * that have class_ids. */ void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor); /** * Iterates through all the persistent handles in the current isolate's heap * that have class_ids and are candidates to be marked as partially dependent * handles. This will visit handles to young objects created since the last * garbage collection but is free to visit an arbitrary superset of these * objects. */ void VisitHandlesForPartialDependence(PersistentHandleVisitor* visitor); /** * Iterates through all the persistent handles in the current isolate's heap * that have class_ids and are weak to be marked as inactive if there is no * pending activity for the handle. */ void VisitWeakHandles(PersistentHandleVisitor* visitor); /** * Check if this isolate is in use. * True if at least one thread Enter'ed this isolate. */ bool IsInUse(); /** * Set whether calling Atomics.wait (a function that may block) is allowed in * this isolate. This can also be configured via * CreateParams::allow_atomics_wait. */ void SetAllowAtomicsWait(bool allow); Isolate() = delete; ~Isolate() = delete; Isolate(const Isolate&) = delete; Isolate& operator=(const Isolate&) = delete; // Deleting operator new and delete here is allowed as ctor and dtor is also // deleted. void* operator new(size_t size) = delete; void* operator new[](size_t size) = delete; void operator delete(void*, size_t) = delete; void operator delete[](void*, size_t) = delete; private: template <class K, class V, class Traits> friend class PersistentValueMapBase; internal::Object** GetDataFromSnapshotOnce(size_t index); void ReportExternalAllocationLimitReached(); void CheckMemoryPressure(); }; class V8_EXPORT StartupData { public: const char* data; int raw_size; }; /** * EntropySource is used as a callback function when v8 needs a source * of entropy. */ typedef bool (*EntropySource)(unsigned char* buffer, size_t length); /** * ReturnAddressLocationResolver is used as a callback function when v8 is * resolving the location of a return address on the stack. Profilers that * change the return address on the stack can use this to resolve the stack * location to wherever the profiler stashed the original return address. * * \param return_addr_location A location on stack where a machine * return address resides. * \returns Either return_addr_location, or else a pointer to the profiler's * copy of the original return address. * * \note The resolver function must not cause garbage collection. */ typedef uintptr_t (*ReturnAddressLocationResolver)( uintptr_t return_addr_location); /** * Container class for static utility functions. */ class V8_EXPORT V8 { public: /** * Hand startup data to V8, in case the embedder has chosen to build * V8 with external startup data. * * Note: * - By default the startup data is linked into the V8 library, in which * case this function is not meaningful. * - If this needs to be called, it needs to be called before V8 * tries to make use of its built-ins. * - To avoid unnecessary copies of data, V8 will point directly into the * given data blob, so pretty please keep it around until V8 exit. * - Compression of the startup blob might be useful, but needs to * handled entirely on the embedders' side. * - The call will abort if the data is invalid. */ static void SetNativesDataBlob(StartupData* startup_blob); static void SetSnapshotDataBlob(StartupData* startup_blob); /** Set the callback to invoke in case of Dcheck failures. */ static void SetDcheckErrorHandler(DcheckErrorCallback that); /** * Sets V8 flags from a string. */ static void SetFlagsFromString(const char* str, int length); /** * Sets V8 flags from the command line. */ static void SetFlagsFromCommandLine(int* argc, char** argv, bool remove_flags); /** Get the version string. */ static const char* GetVersion(); /** * Initializes V8. This function needs to be called before the first Isolate * is created. It always returns true. */ static bool Initialize(); /** * Allows the host application to provide a callback which can be used * as a source of entropy for random number generators. */ static void SetEntropySource(EntropySource source); /** * Allows the host application to provide a callback that allows v8 to * cooperate with a profiler that rewrites return addresses on stack. */ static void SetReturnAddressLocationResolver( ReturnAddressLocationResolver return_address_resolver); /** * Releases any resources used by v8 and stops any utility threads * that may be running. Note that disposing v8 is permanent, it * cannot be reinitialized. * * It should generally not be necessary to dispose v8 before exiting * a process, this should happen automatically. It is only necessary * to use if the process needs the resources taken up by v8. */ static bool Dispose(); /** * Initialize the ICU library bundled with V8. The embedder should only * invoke this method when using the bundled ICU. Returns true on success. * * If V8 was compiled with the ICU data in an external file, the location * of the data file has to be provided. */ static bool InitializeICU(const char* icu_data_file = nullptr); /** * Initialize the ICU library bundled with V8. The embedder should only * invoke this method when using the bundled ICU. If V8 was compiled with * the ICU data in an external file and when the default location of that * file should be used, a path to the executable must be provided. * Returns true on success. * * The default is a file called icudtl.dat side-by-side with the executable. * * Optionally, the location of the data file can be provided to override the * default. */ static bool InitializeICUDefaultLocation(const char* exec_path, const char* icu_data_file = nullptr); /** * Initialize the external startup data. The embedder only needs to * invoke this method when external startup data was enabled in a build. * * If V8 was compiled with the startup data in an external file, then * V8 needs to be given those external files during startup. There are * three ways to do this: * - InitializeExternalStartupData(const char*) * This will look in the given directory for files "natives_blob.bin" * and "snapshot_blob.bin" - which is what the default build calls them. * - InitializeExternalStartupData(const char*, const char*) * As above, but will directly use the two given file names. * - Call SetNativesDataBlob, SetNativesDataBlob. * This will read the blobs from the given data structures and will * not perform any file IO. */ static void InitializeExternalStartupData(const char* directory_path); static void InitializeExternalStartupData(const char* natives_blob, const char* snapshot_blob); /** * Sets the v8::Platform to use. This should be invoked before V8 is * initialized. */ static void InitializePlatform(Platform* platform); /** * Clears all references to the v8::Platform. This should be invoked after * V8 was disposed. */ static void ShutdownPlatform(); #if V8_OS_POSIX /** * Give the V8 signal handler a chance to handle a fault. * * This function determines whether a memory access violation can be recovered * by V8. If so, it will return true and modify context to return to a code * fragment that can recover from the fault. Otherwise, TryHandleSignal will * return false. * * The parameters to this function correspond to those passed to a Linux * signal handler. * * \param signal_number The signal number. * * \param info A pointer to the siginfo_t structure provided to the signal * handler. * * \param context The third argument passed to the Linux signal handler, which * points to a ucontext_t structure. */ static bool TryHandleSignal(int signal_number, void* info, void* context); #endif // V8_OS_POSIX /** * Enable the default signal handler rather than using one provided by the * embedder. */ V8_DEPRECATE_SOON("Use EnableWebAssemblyTrapHandler", static bool RegisterDefaultSignalHandler()); /** * Activate trap-based bounds checking for WebAssembly. * * \param use_v8_signal_handler Whether V8 should install its own signal * handler or rely on the embedder's. */ static bool EnableWebAssemblyTrapHandler(bool use_v8_signal_handler); private: V8(); static internal::Object** GlobalizeReference(internal::Isolate* isolate, internal::Object** handle); static internal::Object** CopyPersistent(internal::Object** handle); static void DisposeGlobal(internal::Object** global_handle); static void MakeWeak(internal::Object** location, void* data, WeakCallbackInfo<void>::Callback weak_callback, WeakCallbackType type); static void MakeWeak(internal::Object** location, void* data, // Must be 0 or -1. int internal_field_index1, // Must be 1 or -1. int internal_field_index2, WeakCallbackInfo<void>::Callback weak_callback); static void MakeWeak(internal::Object*** location_addr); static void* ClearWeak(internal::Object** location); static void AnnotateStrongRetainer(internal::Object** location, const char* label); static Value* Eternalize(Isolate* isolate, Value* handle); static void RegisterExternallyReferencedObject(internal::Object** object, internal::Isolate* isolate); template <class K, class V, class T> friend class PersistentValueMapBase; static void FromJustIsNothing(); static void ToLocalEmpty(); static void InternalFieldOutOfBounds(int index); template <class T> friend class Local; template <class T> friend class MaybeLocal; template <class T> friend class Maybe; template <class T> friend class WeakCallbackInfo; template <class T> friend class Eternal; template <class T> friend class PersistentBase; template <class T, class M> friend class Persistent; friend class Context; }; /** * Helper class to create a snapshot data blob. */ class V8_EXPORT SnapshotCreator { public: enum class FunctionCodeHandling { kClear, kKeep }; /** * Initialize and enter an isolate, and set it up for serialization. * The isolate is either created from scratch or from an existing snapshot. * The caller keeps ownership of the argument snapshot. * \param existing_blob existing snapshot from which to create this one. * \param external_references a null-terminated array of external references * that must be equivalent to CreateParams::external_references. */ SnapshotCreator(Isolate* isolate, const intptr_t* external_references = nullptr, StartupData* existing_blob = nullptr); /** * Create and enter an isolate, and set it up for serialization. * The isolate is either created from scratch or from an existing snapshot. * The caller keeps ownership of the argument snapshot. * \param existing_blob existing snapshot from which to create this one. * \param external_references a null-terminated array of external references * that must be equivalent to CreateParams::external_references. */ SnapshotCreator(const intptr_t* external_references = nullptr, StartupData* existing_blob = nullptr); ~SnapshotCreator(); /** * \returns the isolate prepared by the snapshot creator. */ Isolate* GetIsolate(); /** * Set the default context to be included in the snapshot blob. * The snapshot will not contain the global proxy, and we expect one or a * global object template to create one, to be provided upon deserialization. * * \param callback optional callback to serialize internal fields. */ void SetDefaultContext(Local<Context> context, SerializeInternalFieldsCallback callback = SerializeInternalFieldsCallback()); /** * Add additional context to be included in the snapshot blob. * The snapshot will include the global proxy. * * \param callback optional callback to serialize internal fields. * * \returns the index of the context in the snapshot blob. */ size_t AddContext(Local<Context> context, SerializeInternalFieldsCallback callback = SerializeInternalFieldsCallback()); /** * Add a template to be included in the snapshot blob. * \returns the index of the template in the snapshot blob. */ size_t AddTemplate(Local<Template> template_obj); /** * Attach arbitrary V8::Data to the context snapshot, which can be retrieved * via Context::GetDataFromSnapshot after deserialization. This data does not * survive when a new snapshot is created from an existing snapshot. * \returns the index for retrieval. */ template <class T> V8_INLINE size_t AddData(Local<Context> context, Local<T> object); /** * Attach arbitrary V8::Data to the isolate snapshot, which can be retrieved * via Isolate::GetDataFromSnapshot after deserialization. This data does not * survive when a new snapshot is created from an existing snapshot. * \returns the index for retrieval. */ template <class T> V8_INLINE size_t AddData(Local<T> object); /** * Created a snapshot data blob. * This must not be called from within a handle scope. * \param function_code_handling whether to include compiled function code * in the snapshot. * \returns { nullptr, 0 } on failure, and a startup snapshot on success. The * caller acquires ownership of the data array in the return value. */ StartupData CreateBlob(FunctionCodeHandling function_code_handling); // Disallow copying and assigning. SnapshotCreator(const SnapshotCreator&) = delete; void operator=(const SnapshotCreator&) = delete; private: size_t AddData(Local<Context> context, internal::Object* object); size_t AddData(internal::Object* object); void* data_; }; /** * A simple Maybe type, representing an object which may or may not have a * value, see https://hackage.haskell.org/package/base/docs/Data-Maybe.html. * * If an API method returns a Maybe<>, the API method can potentially fail * either because an exception is thrown, or because an exception is pending, * e.g. because a previous API call threw an exception that hasn't been caught * yet, or because a TerminateExecution exception was thrown. In that case, a * "Nothing" value is returned. */ template <class T> class Maybe { public: V8_INLINE bool IsNothing() const { return !has_value_; } V8_INLINE bool IsJust() const { return has_value_; } /** * An alias for |FromJust|. Will crash if the Maybe<> is nothing. */ V8_INLINE T ToChecked() const { return FromJust(); } /** * Converts this Maybe<> to a value of type T. If this Maybe<> is * nothing (empty), |false| is returned and |out| is left untouched. */ V8_WARN_UNUSED_RESULT V8_INLINE bool To(T* out) const { if (V8_LIKELY(IsJust())) *out = value_; return IsJust(); } /** * Converts this Maybe<> to a value of type T. If this Maybe<> is * nothing (empty), V8 will crash the process. */ V8_INLINE T FromJust() const { if (V8_UNLIKELY(!IsJust())) V8::FromJustIsNothing(); return value_; } /** * Converts this Maybe<> to a value of type T, using a default value if this * Maybe<> is nothing (empty). */ V8_INLINE T FromMaybe(const T& default_value) const { return has_value_ ? value_ : default_value; } V8_INLINE bool operator==(const Maybe& other) const { return (IsJust() == other.IsJust()) && (!IsJust() || FromJust() == other.FromJust()); } V8_INLINE bool operator!=(const Maybe& other) const { return !operator==(other); } private: Maybe() : has_value_(false) {} explicit Maybe(const T& t) : has_value_(true), value_(t) {} bool has_value_; T value_; template <class U> friend Maybe<U> Nothing(); template <class U> friend Maybe<U> Just(const U& u); }; template <class T> inline Maybe<T> Nothing() { return Maybe<T>(); } template <class T> inline Maybe<T> Just(const T& t) { return Maybe<T>(t); } // A template specialization of Maybe<T> for the case of T = void. template <> class Maybe<void> { public: V8_INLINE bool IsNothing() const { return !is_valid_; } V8_INLINE bool IsJust() const { return is_valid_; } V8_INLINE bool operator==(const Maybe& other) const { return IsJust() == other.IsJust(); } V8_INLINE bool operator!=(const Maybe& other) const { return !operator==(other); } private: struct JustTag {}; Maybe() : is_valid_(false) {} explicit Maybe(JustTag) : is_valid_(true) {} bool is_valid_; template <class U> friend Maybe<U> Nothing(); friend Maybe<void> JustVoid(); }; inline Maybe<void> JustVoid() { return Maybe<void>(Maybe<void>::JustTag()); } /** * An external exception handler. */ class V8_EXPORT TryCatch { public: /** * Creates a new try/catch block and registers it with v8. Note that * all TryCatch blocks should be stack allocated because the memory * location itself is compared against JavaScript try/catch blocks. */ explicit TryCatch(Isolate* isolate); /** * Unregisters and deletes this try/catch block. */ ~TryCatch(); /** * Returns true if an exception has been caught by this try/catch block. */ bool HasCaught() const; /** * For certain types of exceptions, it makes no sense to continue execution. * * If CanContinue returns false, the correct action is to perform any C++ * cleanup needed and then return. If CanContinue returns false and * HasTerminated returns true, it is possible to call * CancelTerminateExecution in order to continue calling into the engine. */ bool CanContinue() const; /** * Returns true if an exception has been caught due to script execution * being terminated. * * There is no JavaScript representation of an execution termination * exception. Such exceptions are thrown when the TerminateExecution * methods are called to terminate a long-running script. * * If such an exception has been thrown, HasTerminated will return true, * indicating that it is possible to call CancelTerminateExecution in order * to continue calling into the engine. */ bool HasTerminated() const; /** * Throws the exception caught by this TryCatch in a way that avoids * it being caught again by this same TryCatch. As with ThrowException * it is illegal to execute any JavaScript operations after calling * ReThrow; the caller must return immediately to where the exception * is caught. */ Local<Value> ReThrow(); /** * Returns the exception caught by this try/catch block. If no exception has * been caught an empty handle is returned. * * The returned handle is valid until this TryCatch block has been destroyed. */ Local<Value> Exception() const; /** * Returns the .stack property of the thrown object. If no .stack * property is present an empty handle is returned. */ V8_WARN_UNUSED_RESULT MaybeLocal<Value> StackTrace( Local<Context> context) const; /** * Returns the message associated with this exception. If there is * no message associated an empty handle is returned. * * The returned handle is valid until this TryCatch block has been * destroyed. */ Local<v8::Message> Message() const; /** * Clears any exceptions that may have been caught by this try/catch block. * After this method has been called, HasCaught() will return false. Cancels * the scheduled exception if it is caught and ReThrow() is not called before. * * It is not necessary to clear a try/catch block before using it again; if * another exception is thrown the previously caught exception will just be * overwritten. However, it is often a good idea since it makes it easier * to determine which operation threw a given exception. */ void Reset(); /** * Set verbosity of the external exception handler. * * By default, exceptions that are caught by an external exception * handler are not reported. Call SetVerbose with true on an * external exception handler to have exceptions caught by the * handler reported as if they were not caught. */ void SetVerbose(bool value); /** * Returns true if verbosity is enabled. */ bool IsVerbose() const; /** * Set whether or not this TryCatch should capture a Message object * which holds source information about where the exception * occurred. True by default. */ void SetCaptureMessage(bool value); /** * There are cases when the raw address of C++ TryCatch object cannot be * used for comparisons with addresses into the JS stack. The cases are: * 1) ARM, ARM64 and MIPS simulators which have separate JS stack. * 2) Address sanitizer allocates local C++ object in the heap when * UseAfterReturn mode is enabled. * This method returns address that can be used for comparisons with * addresses into the JS stack. When neither simulator nor ASAN's * UseAfterReturn is enabled, then the address returned will be the address * of the C++ try catch handler itself. */ static void* JSStackComparableAddress(TryCatch* handler) { if (handler == NULL) return NULL; return handler->js_stack_comparable_address_; } TryCatch(const TryCatch&) = delete; void operator=(const TryCatch&) = delete; private: // Declaring operator new and delete as deleted is not spec compliant. // Therefore declare them private instead to disable dynamic alloc void* operator new(size_t size); void* operator new[](size_t size); void operator delete(void*, size_t); void operator delete[](void*, size_t); void ResetInternal(); internal::Isolate* isolate_; TryCatch* next_; void* exception_; void* message_obj_; void* js_stack_comparable_address_; bool is_verbose_ : 1; bool can_continue_ : 1; bool capture_message_ : 1; bool rethrow_ : 1; bool has_terminated_ : 1; friend class internal::Isolate; }; // --- Context --- /** * A container for extension names. */ class V8_EXPORT ExtensionConfiguration { public: ExtensionConfiguration() : name_count_(0), names_(NULL) { } ExtensionConfiguration(int name_count, const char* names[]) : name_count_(name_count), names_(names) { } const char** begin() const { return &names_[0]; } const char** end() const { return &names_[name_count_]; } private: const int name_count_; const char** names_; }; /** * A sandboxed execution context with its own set of built-in objects * and functions. */ class V8_EXPORT Context { public: /** * Returns the global proxy object. * * Global proxy object is a thin wrapper whose prototype points to actual * context's global object with the properties like Object, etc. This is done * that way for security reasons (for more details see * https://wiki.mozilla.org/Gecko:SplitWindow). * * Please note that changes to global proxy object prototype most probably * would break VM---v8 expects only global object as a prototype of global * proxy object. */ Local<Object> Global(); /** * Detaches the global object from its context before * the global object can be reused to create a new context. */ void DetachGlobal(); /** * Creates a new context and returns a handle to the newly allocated * context. * * \param isolate The isolate in which to create the context. * * \param extensions An optional extension configuration containing * the extensions to be installed in the newly created context. * * \param global_template An optional object template from which the * global object for the newly created context will be created. * * \param global_object An optional global object to be reused for * the newly created context. This global object must have been * created by a previous call to Context::New with the same global * template. The state of the global object will be completely reset * and only object identify will remain. */ static Local<Context> New( Isolate* isolate, ExtensionConfiguration* extensions = NULL, MaybeLocal<ObjectTemplate> global_template = MaybeLocal<ObjectTemplate>(), MaybeLocal<Value> global_object = MaybeLocal<Value>(), DeserializeInternalFieldsCallback internal_fields_deserializer = DeserializeInternalFieldsCallback()); /** * Create a new context from a (non-default) context snapshot. There * is no way to provide a global object template since we do not create * a new global object from template, but we can reuse a global object. * * \param isolate See v8::Context::New. * * \param context_snapshot_index The index of the context snapshot to * deserialize from. Use v8::Context::New for the default snapshot. * * \param embedder_fields_deserializer Optional callback to deserialize * internal fields. It should match the SerializeInternalFieldCallback used * to serialize. * * \param extensions See v8::Context::New. * * \param global_object See v8::Context::New. */ static MaybeLocal<Context> FromSnapshot( Isolate* isolate, size_t context_snapshot_index, DeserializeInternalFieldsCallback embedder_fields_deserializer = DeserializeInternalFieldsCallback(), ExtensionConfiguration* extensions = nullptr, MaybeLocal<Value> global_object = MaybeLocal<Value>()); /** * Returns an global object that isn't backed by an actual context. * * The global template needs to have access checks with handlers installed. * If an existing global object is passed in, the global object is detached * from its context. * * Note that this is different from a detached context where all accesses to * the global proxy will fail. Instead, the access check handlers are invoked. * * It is also not possible to detach an object returned by this method. * Instead, the access check handlers need to return nothing to achieve the * same effect. * * It is possible, however, to create a new context from the global object * returned by this method. */ static MaybeLocal<Object> NewRemoteContext( Isolate* isolate, Local<ObjectTemplate> global_template, MaybeLocal<Value> global_object = MaybeLocal<Value>()); /** * Sets the security token for the context. To access an object in * another context, the security tokens must match. */ void SetSecurityToken(Local<Value> token); /** Restores the security token to the default value. */ void UseDefaultSecurityToken(); /** Returns the security token of this context.*/ Local<Value> GetSecurityToken(); /** * Enter this context. After entering a context, all code compiled * and run is compiled and run in this context. If another context * is already entered, this old context is saved so it can be * restored when the new context is exited. */ void Enter(); /** * Exit this context. Exiting the current context restores the * context that was in place when entering the current context. */ void Exit(); /** Returns an isolate associated with a current context. */ Isolate* GetIsolate(); /** * The field at kDebugIdIndex used to be reserved for the inspector. * It now serves no purpose. */ enum EmbedderDataFields { kDebugIdIndex = 0 }; /** * Return the number of fields allocated for embedder data. */ uint32_t GetNumberOfEmbedderDataFields(); /** * Gets the embedder data with the given index, which must have been set by a * previous call to SetEmbedderData with the same index. */ V8_INLINE Local<Value> GetEmbedderData(int index); /** * Gets the binding object used by V8 extras. Extra natives get a reference * to this object and can use it to "export" functionality by adding * properties. Extra natives can also "import" functionality by accessing * properties added by the embedder using the V8 API. */ Local<Object> GetExtrasBindingObject(); /** * Sets the embedder data with the given index, growing the data as * needed. Note that index 0 currently has a special meaning for Chrome's * debugger. */ void SetEmbedderData(int index, Local<Value> value); /** * Gets a 2-byte-aligned native pointer from the embedder data with the given * index, which must have been set by a previous call to * SetAlignedPointerInEmbedderData with the same index. Note that index 0 * currently has a special meaning for Chrome's debugger. */ V8_INLINE void* GetAlignedPointerFromEmbedderData(int index); /** * Sets a 2-byte-aligned native pointer in the embedder data with the given * index, growing the data as needed. Note that index 0 currently has a * special meaning for Chrome's debugger. */ void SetAlignedPointerInEmbedderData(int index, void* value); /** * Control whether code generation from strings is allowed. Calling * this method with false will disable 'eval' and the 'Function' * constructor for code running in this context. If 'eval' or the * 'Function' constructor are used an exception will be thrown. * * If code generation from strings is not allowed the * V8::AllowCodeGenerationFromStrings callback will be invoked if * set before blocking the call to 'eval' or the 'Function' * constructor. If that callback returns true, the call will be * allowed, otherwise an exception will be thrown. If no callback is * set an exception will be thrown. */ void AllowCodeGenerationFromStrings(bool allow); /** * Returns true if code generation from strings is allowed for the context. * For more details see AllowCodeGenerationFromStrings(bool) documentation. */ bool IsCodeGenerationFromStringsAllowed(); /** * Sets the error description for the exception that is thrown when * code generation from strings is not allowed and 'eval' or the 'Function' * constructor are called. */ void SetErrorMessageForCodeGenerationFromStrings(Local<String> message); /** * Return data that was previously attached to the context snapshot via * SnapshotCreator, and removes the reference to it. * Repeated call with the same index returns an empty MaybeLocal. */ template <class T> V8_INLINE MaybeLocal<T> GetDataFromSnapshotOnce(size_t index); /** * Stack-allocated class which sets the execution context for all * operations executed within a local scope. */ class Scope { public: explicit V8_INLINE Scope(Local<Context> context) : context_(context) { context_->Enter(); } V8_INLINE ~Scope() { context_->Exit(); } private: Local<Context> context_; }; /** * Stack-allocated class to support the backup incumbent settings object * stack. * https://html.spec.whatwg.org/multipage/webappapis.html#backup-incumbent-settings-object-stack */ class V8_EXPORT BackupIncumbentScope { public: /** * |backup_incumbent_context| is pushed onto the backup incumbent settings * object stack. */ explicit BackupIncumbentScope(Local<Context> backup_incumbent_context); ~BackupIncumbentScope(); private: friend class internal::Isolate; Local<Context> backup_incumbent_context_; const BackupIncumbentScope* prev_ = nullptr; }; private: friend class Value; friend class Script; friend class Object; friend class Function; internal::Object** GetDataFromSnapshotOnce(size_t index); Local<Value> SlowGetEmbedderData(int index); void* SlowGetAlignedPointerFromEmbedderData(int index); }; /** * Multiple threads in V8 are allowed, but only one thread at a time is allowed * to use any given V8 isolate, see the comments in the Isolate class. The * definition of 'using a V8 isolate' includes accessing handles or holding onto * object pointers obtained from V8 handles while in the particular V8 isolate. * It is up to the user of V8 to ensure, perhaps with locking, that this * constraint is not violated. In addition to any other synchronization * mechanism that may be used, the v8::Locker and v8::Unlocker classes must be * used to signal thread switches to V8. * * v8::Locker is a scoped lock object. While it's active, i.e. between its * construction and destruction, the current thread is allowed to use the locked * isolate. V8 guarantees that an isolate can be locked by at most one thread at * any time. In other words, the scope of a v8::Locker is a critical section. * * Sample usage: * \code * ... * { * v8::Locker locker(isolate); * v8::Isolate::Scope isolate_scope(isolate); * ... * // Code using V8 and isolate goes here. * ... * } // Destructor called here * \endcode * * If you wish to stop using V8 in a thread A you can do this either by * destroying the v8::Locker object as above or by constructing a v8::Unlocker * object: * * \code * { * isolate->Exit(); * v8::Unlocker unlocker(isolate); * ... * // Code not using V8 goes here while V8 can run in another thread. * ... * } // Destructor called here. * isolate->Enter(); * \endcode * * The Unlocker object is intended for use in a long-running callback from V8, * where you want to release the V8 lock for other threads to use. * * The v8::Locker is a recursive lock, i.e. you can lock more than once in a * given thread. This can be useful if you have code that can be called either * from code that holds the lock or from code that does not. The Unlocker is * not recursive so you can not have several Unlockers on the stack at once, and * you can not use an Unlocker in a thread that is not inside a Locker's scope. * * An unlocker will unlock several lockers if it has to and reinstate the * correct depth of locking on its destruction, e.g.: * * \code * // V8 not locked. * { * v8::Locker locker(isolate); * Isolate::Scope isolate_scope(isolate); * // V8 locked. * { * v8::Locker another_locker(isolate); * // V8 still locked (2 levels). * { * isolate->Exit(); * v8::Unlocker unlocker(isolate); * // V8 not locked. * } * isolate->Enter(); * // V8 locked again (2 levels). * } * // V8 still locked (1 level). * } * // V8 Now no longer locked. * \endcode */ class V8_EXPORT Unlocker { public: /** * Initialize Unlocker for a given Isolate. */ V8_INLINE explicit Unlocker(Isolate* isolate) { Initialize(isolate); } ~Unlocker(); private: void Initialize(Isolate* isolate); internal::Isolate* isolate_; }; class V8_EXPORT Locker { public: /** * Initialize Locker for a given Isolate. */ V8_INLINE explicit Locker(Isolate* isolate) { Initialize(isolate); } ~Locker(); /** * Returns whether or not the locker for a given isolate, is locked by the * current thread. */ static bool IsLocked(Isolate* isolate); /** * Returns whether v8::Locker is being used by this V8 instance. */ static bool IsActive(); // Disallow copying and assigning. Locker(const Locker&) = delete; void operator=(const Locker&) = delete; private: void Initialize(Isolate* isolate); bool has_lock_; bool top_level_; internal::Isolate* isolate_; }; // --- Implementation --- namespace internal { /** * This class exports constants and functionality from within v8 that * is necessary to implement inline functions in the v8 api. Don't * depend on functions and constants defined here. */ class Internals { public: // These values match non-compiler-dependent values defined within // the implementation of v8. static const int kHeapObjectMapOffset = 0; static const int kMapInstanceTypeOffset = 1 * kApiPointerSize + kApiIntSize; static const int kStringResourceOffset = 3 * kApiPointerSize; static const int kOddballKindOffset = 4 * kApiPointerSize + kApiDoubleSize; static const int kForeignAddressOffset = kApiPointerSize; static const int kJSObjectHeaderSize = 3 * kApiPointerSize; static const int kFixedArrayHeaderSize = 2 * kApiPointerSize; static const int kContextHeaderSize = 2 * kApiPointerSize; static const int kContextEmbedderDataIndex = 5; static const int kFullStringRepresentationMask = 0x0f; static const int kStringEncodingMask = 0x8; static const int kExternalTwoByteRepresentationTag = 0x02; static const int kExternalOneByteRepresentationTag = 0x0a; static const int kIsolateEmbedderDataOffset = 0 * kApiPointerSize; static const int kExternalMemoryOffset = 4 * kApiPointerSize; static const int kExternalMemoryLimitOffset = kExternalMemoryOffset + kApiInt64Size; static const int kExternalMemoryAtLastMarkCompactOffset = kExternalMemoryLimitOffset + kApiInt64Size; static const int kIsolateRootsOffset = kExternalMemoryLimitOffset + kApiInt64Size + kApiInt64Size + kApiPointerSize + kApiPointerSize; static const int kUndefinedValueRootIndex = 4; static const int kTheHoleValueRootIndex = 5; static const int kNullValueRootIndex = 6; static const int kTrueValueRootIndex = 7; static const int kFalseValueRootIndex = 8; static const int kEmptyStringRootIndex = 9; static const int kNodeClassIdOffset = 1 * kApiPointerSize; static const int kNodeFlagsOffset = 1 * kApiPointerSize + 3; static const int kNodeStateMask = 0x7; static const int kNodeStateIsWeakValue = 2; static const int kNodeStateIsPendingValue = 3; static const int kNodeStateIsNearDeathValue = 4; static const int kNodeIsIndependentShift = 3; static const int kNodeIsActiveShift = 4; static const int kFirstNonstringType = 0x80; static const int kOddballType = 0x83; static const int kForeignType = 0x87; static const int kJSSpecialApiObjectType = 0x410; static const int kJSApiObjectType = 0x420; static const int kJSObjectType = 0x421; static const int kUndefinedOddballKind = 5; static const int kNullOddballKind = 3; static const uint32_t kNumIsolateDataSlots = 4; V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate); V8_INLINE static void CheckInitialized(v8::Isolate* isolate) { #ifdef V8_ENABLE_CHECKS CheckInitializedImpl(isolate); #endif } V8_INLINE static bool HasHeapObjectTag(const internal::Object* value) { return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) == kHeapObjectTag); } V8_INLINE static int SmiValue(const internal::Object* value) { return PlatformSmiTagging::SmiToInt(value); } V8_INLINE static internal::Object* IntToSmi(int value) { return PlatformSmiTagging::IntToSmi(value); } V8_INLINE static constexpr bool IsValidSmi(intptr_t value) { return PlatformSmiTagging::IsValidSmi(value); } V8_INLINE static int GetInstanceType(const internal::Object* obj) { typedef internal::Object O; O* map = ReadField<O*>(obj, kHeapObjectMapOffset); return ReadField<uint16_t>(map, kMapInstanceTypeOffset); } V8_INLINE static int GetOddballKind(const internal::Object* obj) { typedef internal::Object O; return SmiValue(ReadField<O*>(obj, kOddballKindOffset)); } V8_INLINE static bool IsExternalTwoByteString(int instance_type) { int representation = (instance_type & kFullStringRepresentationMask); return representation == kExternalTwoByteRepresentationTag; } V8_INLINE static uint8_t GetNodeFlag(internal::Object** obj, int shift) { uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; return *addr & static_cast<uint8_t>(1U << shift); } V8_INLINE static void UpdateNodeFlag(internal::Object** obj, bool value, int shift) { uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; uint8_t mask = static_cast<uint8_t>(1U << shift); *addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift)); } V8_INLINE static uint8_t GetNodeState(internal::Object** obj) { uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; return *addr & kNodeStateMask; } V8_INLINE static void UpdateNodeState(internal::Object** obj, uint8_t value) { uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset; *addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value); } V8_INLINE static void SetEmbedderData(v8::Isolate* isolate, uint32_t slot, void* data) { uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + kIsolateEmbedderDataOffset + slot * kApiPointerSize; *reinterpret_cast<void**>(addr) = data; } V8_INLINE static void* GetEmbedderData(const v8::Isolate* isolate, uint32_t slot) { const uint8_t* addr = reinterpret_cast<const uint8_t*>(isolate) + kIsolateEmbedderDataOffset + slot * kApiPointerSize; return *reinterpret_cast<void* const*>(addr); } V8_INLINE static internal::Object** GetRoot(v8::Isolate* isolate, int index) { uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + kIsolateRootsOffset; return reinterpret_cast<internal::Object**>(addr + index * kApiPointerSize); } template <typename T> V8_INLINE static T ReadField(const internal::Object* ptr, int offset) { const uint8_t* addr = reinterpret_cast<const uint8_t*>(ptr) + offset - kHeapObjectTag; return *reinterpret_cast<const T*>(addr); } template <typename T> V8_INLINE static T ReadEmbedderData(const v8::Context* context, int index) { typedef internal::Object O; typedef internal::Internals I; O* ctx = *reinterpret_cast<O* const*>(context); int embedder_data_offset = I::kContextHeaderSize + (internal::kApiPointerSize * I::kContextEmbedderDataIndex); O* embedder_data = I::ReadField<O*>(ctx, embedder_data_offset); int value_offset = I::kFixedArrayHeaderSize + (internal::kApiPointerSize * index); return I::ReadField<T>(embedder_data, value_offset); } }; // Only perform cast check for types derived from v8::Data since // other types do not implement the Cast method. template <bool PerformCheck> struct CastCheck { template <class T> static void Perform(T* data); }; template <> template <class T> void CastCheck<true>::Perform(T* data) { T::Cast(data); } template <> template <class T> void CastCheck<false>::Perform(T* data) {} template <class T> V8_INLINE void PerformCastCheck(T* data) { CastCheck<std::is_base_of<Data, T>::value>::Perform(data); } } // namespace internal template <class T> Local<T> Local<T>::New(Isolate* isolate, Local<T> that) { return New(isolate, that.val_); } template <class T> Local<T> Local<T>::New(Isolate* isolate, const PersistentBase<T>& that) { return New(isolate, that.val_); } template <class T> Local<T> Local<T>::New(Isolate* isolate, T* that) { if (that == NULL) return Local<T>(); T* that_ptr = that; internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr); return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle( reinterpret_cast<internal::Isolate*>(isolate), *p))); } template<class T> template<class S> void Eternal<T>::Set(Isolate* isolate, Local<S> handle) { TYPE_CHECK(T, S); val_ = reinterpret_cast<T*>( V8::Eternalize(isolate, reinterpret_cast<Value*>(*handle))); } template <class T> Local<T> Eternal<T>::Get(Isolate* isolate) const { // The eternal handle will never go away, so as with the roots, we don't even // need to open a handle. return Local<T>(val_); } template <class T> Local<T> MaybeLocal<T>::ToLocalChecked() { if (V8_UNLIKELY(val_ == nullptr)) V8::ToLocalEmpty(); return Local<T>(val_); } template <class T> void* WeakCallbackInfo<T>::GetInternalField(int index) const { #ifdef V8_ENABLE_CHECKS if (index < 0 || index >= kEmbedderFieldsInWeakCallback) { V8::InternalFieldOutOfBounds(index); } #endif return embedder_fields_[index]; } template <class T> T* PersistentBase<T>::New(Isolate* isolate, T* that) { if (that == NULL) return NULL; internal::Object** p = reinterpret_cast<internal::Object**>(that); return reinterpret_cast<T*>( V8::GlobalizeReference(reinterpret_cast<internal::Isolate*>(isolate), p)); } template <class T, class M> template <class S, class M2> void Persistent<T, M>::Copy(const Persistent<S, M2>& that) { TYPE_CHECK(T, S); this->Reset(); if (that.IsEmpty()) return; internal::Object** p = reinterpret_cast<internal::Object**>(that.val_); this->val_ = reinterpret_cast<T*>(V8::CopyPersistent(p)); M::Copy(that, this); } template <class T> bool PersistentBase<T>::IsIndependent() const { typedef internal::Internals I; if (this->IsEmpty()) return false; return I::GetNodeFlag(reinterpret_cast<internal::Object**>(this->val_), I::kNodeIsIndependentShift); } template <class T> bool PersistentBase<T>::IsNearDeath() const { typedef internal::Internals I; if (this->IsEmpty()) return false; uint8_t node_state = I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_)); return node_state == I::kNodeStateIsNearDeathValue || node_state == I::kNodeStateIsPendingValue; } template <class T> bool PersistentBase<T>::IsWeak() const { typedef internal::Internals I; if (this->IsEmpty()) return false; return I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_)) == I::kNodeStateIsWeakValue; } template <class T> void PersistentBase<T>::Reset() { if (this->IsEmpty()) return; V8::DisposeGlobal(reinterpret_cast<internal::Object**>(this->val_)); val_ = 0; } template <class T> template <class S> void PersistentBase<T>::Reset(Isolate* isolate, const Local<S>& other) { TYPE_CHECK(T, S); Reset(); if (other.IsEmpty()) return; this->val_ = New(isolate, other.val_); } template <class T> template <class S> void PersistentBase<T>::Reset(Isolate* isolate, const PersistentBase<S>& other) { TYPE_CHECK(T, S); Reset(); if (other.IsEmpty()) return; this->val_ = New(isolate, other.val_); } template <class T> template <typename P> V8_INLINE void PersistentBase<T>::SetWeak( P* parameter, typename WeakCallbackInfo<P>::Callback callback, WeakCallbackType type) { typedef typename WeakCallbackInfo<void>::Callback Callback; V8::MakeWeak(reinterpret_cast<internal::Object**>(this->val_), parameter, reinterpret_cast<Callback>(callback), type); } template <class T> void PersistentBase<T>::SetWeak() { V8::MakeWeak(reinterpret_cast<internal::Object***>(&this->val_)); } template <class T> template <typename P> P* PersistentBase<T>::ClearWeak() { return reinterpret_cast<P*>( V8::ClearWeak(reinterpret_cast<internal::Object**>(this->val_))); } template <class T> void PersistentBase<T>::AnnotateStrongRetainer(const char* label) { V8::AnnotateStrongRetainer(reinterpret_cast<internal::Object**>(this->val_), label); } template <class T> void PersistentBase<T>::RegisterExternalReference(Isolate* isolate) const { if (IsEmpty()) return; V8::RegisterExternallyReferencedObject( reinterpret_cast<internal::Object**>(this->val_), reinterpret_cast<internal::Isolate*>(isolate)); } template <class T> void PersistentBase<T>::MarkIndependent() { typedef internal::Internals I; if (this->IsEmpty()) return; I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_), true, I::kNodeIsIndependentShift); } template <class T> void PersistentBase<T>::MarkActive() { typedef internal::Internals I; if (this->IsEmpty()) return; I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_), true, I::kNodeIsActiveShift); } template <class T> void PersistentBase<T>::SetWrapperClassId(uint16_t class_id) { typedef internal::Internals I; if (this->IsEmpty()) return; internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_); uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset; *reinterpret_cast<uint16_t*>(addr) = class_id; } template <class T> uint16_t PersistentBase<T>::WrapperClassId() const { typedef internal::Internals I; if (this->IsEmpty()) return 0; internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_); uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset; return *reinterpret_cast<uint16_t*>(addr); } template<typename T> ReturnValue<T>::ReturnValue(internal::Object** slot) : value_(slot) {} template<typename T> template<typename S> void ReturnValue<T>::Set(const Persistent<S>& handle) { TYPE_CHECK(T, S); if (V8_UNLIKELY(handle.IsEmpty())) { *value_ = GetDefaultValue(); } else { *value_ = *reinterpret_cast<internal::Object**>(*handle); } } template <typename T> template <typename S> void ReturnValue<T>::Set(const Global<S>& handle) { TYPE_CHECK(T, S); if (V8_UNLIKELY(handle.IsEmpty())) { *value_ = GetDefaultValue(); } else { *value_ = *reinterpret_cast<internal::Object**>(*handle); } } template <typename T> template <typename S> void ReturnValue<T>::Set(const Local<S> handle) { TYPE_CHECK(T, S); if (V8_UNLIKELY(handle.IsEmpty())) { *value_ = GetDefaultValue(); } else { *value_ = *reinterpret_cast<internal::Object**>(*handle); } } template<typename T> void ReturnValue<T>::Set(double i) { TYPE_CHECK(T, Number); Set(Number::New(GetIsolate(), i)); } template<typename T> void ReturnValue<T>::Set(int32_t i) { TYPE_CHECK(T, Integer); typedef internal::Internals I; if (V8_LIKELY(I::IsValidSmi(i))) { *value_ = I::IntToSmi(i); return; } Set(Integer::New(GetIsolate(), i)); } template<typename T> void ReturnValue<T>::Set(uint32_t i) { TYPE_CHECK(T, Integer); // Can't simply use INT32_MAX here for whatever reason. bool fits_into_int32_t = (i & (1U << 31)) == 0; if (V8_LIKELY(fits_into_int32_t)) { Set(static_cast<int32_t>(i)); return; } Set(Integer::NewFromUnsigned(GetIsolate(), i)); } template<typename T> void ReturnValue<T>::Set(bool value) { TYPE_CHECK(T, Boolean); typedef internal::Internals I; int root_index; if (value) { root_index = I::kTrueValueRootIndex; } else { root_index = I::kFalseValueRootIndex; } *value_ = *I::GetRoot(GetIsolate(), root_index); } template<typename T> void ReturnValue<T>::SetNull() { TYPE_CHECK(T, Primitive); typedef internal::Internals I; *value_ = *I::GetRoot(GetIsolate(), I::kNullValueRootIndex); } template<typename T> void ReturnValue<T>::SetUndefined() { TYPE_CHECK(T, Primitive); typedef internal::Internals I; *value_ = *I::GetRoot(GetIsolate(), I::kUndefinedValueRootIndex); } template<typename T> void ReturnValue<T>::SetEmptyString() { TYPE_CHECK(T, String); typedef internal::Internals I; *value_ = *I::GetRoot(GetIsolate(), I::kEmptyStringRootIndex); } template <typename T> Isolate* ReturnValue<T>::GetIsolate() const { // Isolate is always the pointer below the default value on the stack. return *reinterpret_cast<Isolate**>(&value_[-2]); } template <typename T> Local<Value> ReturnValue<T>::Get() const { typedef internal::Internals I; if (*value_ == *I::GetRoot(GetIsolate(), I::kTheHoleValueRootIndex)) return Local<Value>(*Undefined(GetIsolate())); return Local<Value>::New(GetIsolate(), reinterpret_cast<Value*>(value_)); } template <typename T> template <typename S> void ReturnValue<T>::Set(S* whatever) { // Uncompilable to prevent inadvertent misuse. TYPE_CHECK(S*, Primitive); } template<typename T> internal::Object* ReturnValue<T>::GetDefaultValue() { // Default value is always the pointer below value_ on the stack. return value_[-1]; } template <typename T> FunctionCallbackInfo<T>::FunctionCallbackInfo(internal::Object** implicit_args, internal::Object** values, int length) : implicit_args_(implicit_args), values_(values), length_(length) {} template<typename T> Local<Value> FunctionCallbackInfo<T>::operator[](int i) const { if (i < 0 || length_ <= i) return Local<Value>(*Undefined(GetIsolate())); return Local<Value>(reinterpret_cast<Value*>(values_ - i)); } template<typename T> Local<Object> FunctionCallbackInfo<T>::This() const { return Local<Object>(reinterpret_cast<Object*>(values_ + 1)); } template<typename T> Local<Object> FunctionCallbackInfo<T>::Holder() const { return Local<Object>(reinterpret_cast<Object*>( &implicit_args_[kHolderIndex])); } template <typename T> Local<Value> FunctionCallbackInfo<T>::NewTarget() const { return Local<Value>( reinterpret_cast<Value*>(&implicit_args_[kNewTargetIndex])); } template <typename T> Local<Value> FunctionCallbackInfo<T>::Data() const { return Local<Value>(reinterpret_cast<Value*>(&implicit_args_[kDataIndex])); } template<typename T> Isolate* FunctionCallbackInfo<T>::GetIsolate() const { return *reinterpret_cast<Isolate**>(&implicit_args_[kIsolateIndex]); } template<typename T> ReturnValue<T> FunctionCallbackInfo<T>::GetReturnValue() const { return ReturnValue<T>(&implicit_args_[kReturnValueIndex]); } template<typename T> bool FunctionCallbackInfo<T>::IsConstructCall() const { return !NewTarget()->IsUndefined(); } template<typename T> int FunctionCallbackInfo<T>::Length() const { return length_; } ScriptOrigin::ScriptOrigin(Local<Value> resource_name, Local<Integer> resource_line_offset, Local<Integer> resource_column_offset, Local<Boolean> resource_is_shared_cross_origin, Local<Integer> script_id, Local<Value> source_map_url, Local<Boolean> resource_is_opaque, Local<Boolean> is_wasm, Local<Boolean> is_module, Local<PrimitiveArray> host_defined_options) : resource_name_(resource_name), resource_line_offset_(resource_line_offset), resource_column_offset_(resource_column_offset), options_(!resource_is_shared_cross_origin.IsEmpty() && resource_is_shared_cross_origin->IsTrue(), !resource_is_opaque.IsEmpty() && resource_is_opaque->IsTrue(), !is_wasm.IsEmpty() && is_wasm->IsTrue(), !is_module.IsEmpty() && is_module->IsTrue()), script_id_(script_id), source_map_url_(source_map_url), host_defined_options_(host_defined_options) {} Local<Value> ScriptOrigin::ResourceName() const { return resource_name_; } Local<PrimitiveArray> ScriptOrigin::HostDefinedOptions() const { return host_defined_options_; } Local<Integer> ScriptOrigin::ResourceLineOffset() const { return resource_line_offset_; } Local<Integer> ScriptOrigin::ResourceColumnOffset() const { return resource_column_offset_; } Local<Integer> ScriptOrigin::ScriptID() const { return script_id_; } Local<Value> ScriptOrigin::SourceMapUrl() const { return source_map_url_; } ScriptCompiler::Source::Source(Local<String> string, const ScriptOrigin& origin, CachedData* data) : source_string(string), resource_name(origin.ResourceName()), resource_line_offset(origin.ResourceLineOffset()), resource_column_offset(origin.ResourceColumnOffset()), resource_options(origin.Options()), source_map_url(origin.SourceMapUrl()), host_defined_options(origin.HostDefinedOptions()), cached_data(data) {} ScriptCompiler::Source::Source(Local<String> string, CachedData* data) : source_string(string), cached_data(data) {} ScriptCompiler::Source::~Source() { delete cached_data; } const ScriptCompiler::CachedData* ScriptCompiler::Source::GetCachedData() const { return cached_data; } const ScriptOriginOptions& ScriptCompiler::Source::GetResourceOptions() const { return resource_options; } Local<Boolean> Boolean::New(Isolate* isolate, bool value) { return value ? True(isolate) : False(isolate); } void Template::Set(Isolate* isolate, const char* name, Local<Data> value) { Set(String::NewFromUtf8(isolate, name, NewStringType::kInternalized) .ToLocalChecked(), value); } FunctionTemplate* FunctionTemplate::Cast(Data* data) { #ifdef V8_ENABLE_CHECKS CheckCast(data); #endif return reinterpret_cast<FunctionTemplate*>(data); } ObjectTemplate* ObjectTemplate::Cast(Data* data) { #ifdef V8_ENABLE_CHECKS CheckCast(data); #endif return reinterpret_cast<ObjectTemplate*>(data); } Signature* Signature::Cast(Data* data) { #ifdef V8_ENABLE_CHECKS CheckCast(data); #endif return reinterpret_cast<Signature*>(data); } AccessorSignature* AccessorSignature::Cast(Data* data) { #ifdef V8_ENABLE_CHECKS CheckCast(data); #endif return reinterpret_cast<AccessorSignature*>(data); } Local<Value> Object::GetInternalField(int index) { #ifndef V8_ENABLE_CHECKS typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O**>(this); // Fast path: If the object is a plain JSObject, which is the common case, we // know where to find the internal fields and can return the value directly. auto instance_type = I::GetInstanceType(obj); if (instance_type == I::kJSObjectType || instance_type == I::kJSApiObjectType || instance_type == I::kJSSpecialApiObjectType) { int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index); O* value = I::ReadField<O*>(obj, offset); O** result = HandleScope::CreateHandle( reinterpret_cast<internal::NeverReadOnlySpaceObject*>(obj), value); return Local<Value>(reinterpret_cast<Value*>(result)); } #endif return SlowGetInternalField(index); } void* Object::GetAlignedPointerFromInternalField(int index) { #ifndef V8_ENABLE_CHECKS typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O**>(this); // Fast path: If the object is a plain JSObject, which is the common case, we // know where to find the internal fields and can return the value directly. auto instance_type = I::GetInstanceType(obj); if (V8_LIKELY(instance_type == I::kJSObjectType || instance_type == I::kJSApiObjectType || instance_type == I::kJSSpecialApiObjectType)) { int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index); return I::ReadField<void*>(obj, offset); } #endif return SlowGetAlignedPointerFromInternalField(index); } String* String::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<String*>(value); } Local<String> String::Empty(Isolate* isolate) { typedef internal::Object* S; typedef internal::Internals I; I::CheckInitialized(isolate); S* slot = I::GetRoot(isolate, I::kEmptyStringRootIndex); return Local<String>(reinterpret_cast<String*>(slot)); } String::ExternalStringResource* String::GetExternalStringResource() const { typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O* const*>(this); ExternalStringResource* result; if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) { void* value = I::ReadField<void*>(obj, I::kStringResourceOffset); result = reinterpret_cast<String::ExternalStringResource*>(value); } else { result = GetExternalStringResourceSlow(); } #ifdef V8_ENABLE_CHECKS VerifyExternalStringResource(result); #endif return result; } String::ExternalStringResourceBase* String::GetExternalStringResourceBase( String::Encoding* encoding_out) const { typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O* const*>(this); int type = I::GetInstanceType(obj) & I::kFullStringRepresentationMask; *encoding_out = static_cast<Encoding>(type & I::kStringEncodingMask); ExternalStringResourceBase* resource; if (type == I::kExternalOneByteRepresentationTag || type == I::kExternalTwoByteRepresentationTag) { void* value = I::ReadField<void*>(obj, I::kStringResourceOffset); resource = static_cast<ExternalStringResourceBase*>(value); } else { resource = GetExternalStringResourceBaseSlow(encoding_out); } #ifdef V8_ENABLE_CHECKS VerifyExternalStringResourceBase(resource, *encoding_out); #endif return resource; } bool Value::IsUndefined() const { #ifdef V8_ENABLE_CHECKS return FullIsUndefined(); #else return QuickIsUndefined(); #endif } bool Value::QuickIsUndefined() const { typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O* const*>(this); if (!I::HasHeapObjectTag(obj)) return false; if (I::GetInstanceType(obj) != I::kOddballType) return false; return (I::GetOddballKind(obj) == I::kUndefinedOddballKind); } bool Value::IsNull() const { #ifdef V8_ENABLE_CHECKS return FullIsNull(); #else return QuickIsNull(); #endif } bool Value::QuickIsNull() const { typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O* const*>(this); if (!I::HasHeapObjectTag(obj)) return false; if (I::GetInstanceType(obj) != I::kOddballType) return false; return (I::GetOddballKind(obj) == I::kNullOddballKind); } bool Value::IsNullOrUndefined() const { #ifdef V8_ENABLE_CHECKS return FullIsNull() || FullIsUndefined(); #else return QuickIsNullOrUndefined(); #endif } bool Value::QuickIsNullOrUndefined() const { typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O* const*>(this); if (!I::HasHeapObjectTag(obj)) return false; if (I::GetInstanceType(obj) != I::kOddballType) return false; int kind = I::GetOddballKind(obj); return kind == I::kNullOddballKind || kind == I::kUndefinedOddballKind; } bool Value::IsString() const { #ifdef V8_ENABLE_CHECKS return FullIsString(); #else return QuickIsString(); #endif } bool Value::QuickIsString() const { typedef internal::Object O; typedef internal::Internals I; O* obj = *reinterpret_cast<O* const*>(this); if (!I::HasHeapObjectTag(obj)) return false; return (I::GetInstanceType(obj) < I::kFirstNonstringType); } template <class T> Value* Value::Cast(T* value) { return static_cast<Value*>(value); } Local<Boolean> Value::ToBoolean() const { return ToBoolean(Isolate::GetCurrent()->GetCurrentContext()) .FromMaybe(Local<Boolean>()); } Local<String> Value::ToString() const { return ToString(Isolate::GetCurrent()->GetCurrentContext()) .FromMaybe(Local<String>()); } Local<Object> Value::ToObject() const { return ToObject(Isolate::GetCurrent()->GetCurrentContext()) .FromMaybe(Local<Object>()); } Local<Integer> Value::ToInteger() const { return ToInteger(Isolate::GetCurrent()->GetCurrentContext()) .FromMaybe(Local<Integer>()); } Boolean* Boolean::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Boolean*>(value); } Name* Name::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Name*>(value); } Symbol* Symbol::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Symbol*>(value); } Private* Private::Cast(Data* data) { #ifdef V8_ENABLE_CHECKS CheckCast(data); #endif return reinterpret_cast<Private*>(data); } Number* Number::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Number*>(value); } Integer* Integer::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Integer*>(value); } Int32* Int32::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Int32*>(value); } Uint32* Uint32::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Uint32*>(value); } BigInt* BigInt::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<BigInt*>(value); } Date* Date::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Date*>(value); } StringObject* StringObject::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<StringObject*>(value); } SymbolObject* SymbolObject::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<SymbolObject*>(value); } NumberObject* NumberObject::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<NumberObject*>(value); } BigIntObject* BigIntObject::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<BigIntObject*>(value); } BooleanObject* BooleanObject::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<BooleanObject*>(value); } RegExp* RegExp::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<RegExp*>(value); } Object* Object::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Object*>(value); } Array* Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Array*>(value); } Map* Map::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Map*>(value); } Set* Set::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Set*>(value); } Promise* Promise::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Promise*>(value); } Proxy* Proxy::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Proxy*>(value); } WasmCompiledModule* WasmCompiledModule::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<WasmCompiledModule*>(value); } Promise::Resolver* Promise::Resolver::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Promise::Resolver*>(value); } ArrayBuffer* ArrayBuffer::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<ArrayBuffer*>(value); } ArrayBufferView* ArrayBufferView::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<ArrayBufferView*>(value); } TypedArray* TypedArray::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<TypedArray*>(value); } Uint8Array* Uint8Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Uint8Array*>(value); } Int8Array* Int8Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Int8Array*>(value); } Uint16Array* Uint16Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Uint16Array*>(value); } Int16Array* Int16Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Int16Array*>(value); } Uint32Array* Uint32Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Uint32Array*>(value); } Int32Array* Int32Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Int32Array*>(value); } Float32Array* Float32Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Float32Array*>(value); } Float64Array* Float64Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Float64Array*>(value); } BigInt64Array* BigInt64Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<BigInt64Array*>(value); } BigUint64Array* BigUint64Array::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<BigUint64Array*>(value); } Uint8ClampedArray* Uint8ClampedArray::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Uint8ClampedArray*>(value); } DataView* DataView::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<DataView*>(value); } SharedArrayBuffer* SharedArrayBuffer::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<SharedArrayBuffer*>(value); } Function* Function::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<Function*>(value); } External* External::Cast(v8::Value* value) { #ifdef V8_ENABLE_CHECKS CheckCast(value); #endif return static_cast<External*>(value); } template<typename T> Isolate* PropertyCallbackInfo<T>::GetIsolate() const { return *reinterpret_cast<Isolate**>(&args_[kIsolateIndex]); } template<typename T> Local<Value> PropertyCallbackInfo<T>::Data() const { return Local<Value>(reinterpret_cast<Value*>(&args_[kDataIndex])); } template<typename T> Local<Object> PropertyCallbackInfo<T>::This() const { return Local<Object>(reinterpret_cast<Object*>(&args_[kThisIndex])); } template<typename T> Local<Object> PropertyCallbackInfo<T>::Holder() const { return Local<Object>(reinterpret_cast<Object*>(&args_[kHolderIndex])); } template<typename T> ReturnValue<T> PropertyCallbackInfo<T>::GetReturnValue() const { return ReturnValue<T>(&args_[kReturnValueIndex]); } template <typename T> bool PropertyCallbackInfo<T>::ShouldThrowOnError() const { typedef internal::Internals I; return args_[kShouldThrowOnErrorIndex] != I::IntToSmi(0); } Local<Primitive> Undefined(Isolate* isolate) { typedef internal::Object* S; typedef internal::Internals I; I::CheckInitialized(isolate); S* slot = I::GetRoot(isolate, I::kUndefinedValueRootIndex); return Local<Primitive>(reinterpret_cast<Primitive*>(slot)); } Local<Primitive> Null(Isolate* isolate) { typedef internal::Object* S; typedef internal::Internals I; I::CheckInitialized(isolate); S* slot = I::GetRoot(isolate, I::kNullValueRootIndex); return Local<Primitive>(reinterpret_cast<Primitive*>(slot)); } Local<Boolean> True(Isolate* isolate) { typedef internal::Object* S; typedef internal::Internals I; I::CheckInitialized(isolate); S* slot = I::GetRoot(isolate, I::kTrueValueRootIndex); return Local<Boolean>(reinterpret_cast<Boolean*>(slot)); } Local<Boolean> False(Isolate* isolate) { typedef internal::Object* S; typedef internal::Internals I; I::CheckInitialized(isolate); S* slot = I::GetRoot(isolate, I::kFalseValueRootIndex); return Local<Boolean>(reinterpret_cast<Boolean*>(slot)); } void Isolate::SetData(uint32_t slot, void* data) { typedef internal::Internals I; I::SetEmbedderData(this, slot, data); } void* Isolate::GetData(uint32_t slot) { typedef internal::Internals I; return I::GetEmbedderData(this, slot); } uint32_t Isolate::GetNumberOfDataSlots() { typedef internal::Internals I; return I::kNumIsolateDataSlots; } template <class T> MaybeLocal<T> Isolate::GetDataFromSnapshotOnce(size_t index) { T* data = reinterpret_cast<T*>(GetDataFromSnapshotOnce(index)); if (data) internal::PerformCastCheck(data); return Local<T>(data); } int64_t Isolate::AdjustAmountOfExternalAllocatedMemory( int64_t change_in_bytes) { typedef internal::Internals I; const int64_t kMemoryReducerActivationLimit = 32 * 1024 * 1024; int64_t* external_memory = reinterpret_cast<int64_t*>( reinterpret_cast<uint8_t*>(this) + I::kExternalMemoryOffset); int64_t* external_memory_limit = reinterpret_cast<int64_t*>( reinterpret_cast<uint8_t*>(this) + I::kExternalMemoryLimitOffset); int64_t* external_memory_at_last_mc = reinterpret_cast<int64_t*>(reinterpret_cast<uint8_t*>(this) + I::kExternalMemoryAtLastMarkCompactOffset); const int64_t amount = *external_memory + change_in_bytes; *external_memory = amount; int64_t allocation_diff_since_last_mc = *external_memory_at_last_mc - *external_memory; allocation_diff_since_last_mc = allocation_diff_since_last_mc < 0 ? -allocation_diff_since_last_mc : allocation_diff_since_last_mc; if (allocation_diff_since_last_mc > kMemoryReducerActivationLimit) { CheckMemoryPressure(); } if (change_in_bytes < 0) { *external_memory_limit += change_in_bytes; } if (change_in_bytes > 0 && amount > *external_memory_limit) { ReportExternalAllocationLimitReached(); } return *external_memory; } Local<Value> Context::GetEmbedderData(int index) { #ifndef V8_ENABLE_CHECKS typedef internal::Object O; typedef internal::Internals I; auto* context = *reinterpret_cast<internal::NeverReadOnlySpaceObject**>(this); O** result = HandleScope::CreateHandle(context, I::ReadEmbedderData<O*>(this, index)); return Local<Value>(reinterpret_cast<Value*>(result)); #else return SlowGetEmbedderData(index); #endif } void* Context::GetAlignedPointerFromEmbedderData(int index) { #ifndef V8_ENABLE_CHECKS typedef internal::Internals I; return I::ReadEmbedderData<void*>(this, index); #else return SlowGetAlignedPointerFromEmbedderData(index); #endif } template <class T> MaybeLocal<T> Context::GetDataFromSnapshotOnce(size_t index) { T* data = reinterpret_cast<T*>(GetDataFromSnapshotOnce(index)); if (data) internal::PerformCastCheck(data); return Local<T>(data); } template <class T> size_t SnapshotCreator::AddData(Local<Context> context, Local<T> object) { T* object_ptr = *object; internal::Object** p = reinterpret_cast<internal::Object**>(object_ptr); return AddData(context, *p); } template <class T> size_t SnapshotCreator::AddData(Local<T> object) { T* object_ptr = *object; internal::Object** p = reinterpret_cast<internal::Object**>(object_ptr); return AddData(*p); } /** * \example shell.cc * A simple shell that takes a list of expressions on the * command-line and executes them. */ /** * \example process.cc */ } // namespace v8 #undef TYPE_CHECK #endif // INCLUDE_V8_H_