// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/compiler/pipeline.h" #include <fstream> // NOLINT(readability/streams) #include <iostream> #include <memory> #include <sstream> #include "src/assembler-inl.h" #include "src/base/adapters.h" #include "src/base/optional.h" #include "src/base/platform/elapsed-timer.h" #include "src/bootstrapper.h" #include "src/code-tracer.h" #include "src/compiler.h" #include "src/compiler/basic-block-instrumentor.h" #include "src/compiler/branch-elimination.h" #include "src/compiler/bytecode-graph-builder.h" #include "src/compiler/checkpoint-elimination.h" #include "src/compiler/code-generator.h" #include "src/compiler/common-operator-reducer.h" #include "src/compiler/compilation-dependencies.h" #include "src/compiler/compiler-source-position-table.h" #include "src/compiler/constant-folding-reducer.h" #include "src/compiler/control-flow-optimizer.h" #include "src/compiler/dead-code-elimination.h" #include "src/compiler/effect-control-linearizer.h" #include "src/compiler/escape-analysis-reducer.h" #include "src/compiler/escape-analysis.h" #include "src/compiler/frame-elider.h" #include "src/compiler/graph-trimmer.h" #include "src/compiler/graph-visualizer.h" #include "src/compiler/instruction-selector.h" #include "src/compiler/instruction.h" #include "src/compiler/js-call-reducer.h" #include "src/compiler/js-context-specialization.h" #include "src/compiler/js-create-lowering.h" #include "src/compiler/js-generic-lowering.h" #include "src/compiler/js-heap-broker.h" #include "src/compiler/js-heap-copy-reducer.h" #include "src/compiler/js-inlining-heuristic.h" #include "src/compiler/js-intrinsic-lowering.h" #include "src/compiler/js-native-context-specialization.h" #include "src/compiler/js-typed-lowering.h" #include "src/compiler/jump-threading.h" #include "src/compiler/live-range-separator.h" #include "src/compiler/load-elimination.h" #include "src/compiler/loop-analysis.h" #include "src/compiler/loop-peeling.h" #include "src/compiler/loop-variable-optimizer.h" #include "src/compiler/machine-graph-verifier.h" #include "src/compiler/machine-operator-reducer.h" #include "src/compiler/memory-optimizer.h" #include "src/compiler/move-optimizer.h" #include "src/compiler/node-origin-table.h" #include "src/compiler/osr.h" #include "src/compiler/pipeline-statistics.h" #include "src/compiler/redundancy-elimination.h" #include "src/compiler/register-allocator-verifier.h" #include "src/compiler/register-allocator.h" #include "src/compiler/schedule.h" #include "src/compiler/scheduler.h" #include "src/compiler/select-lowering.h" #include "src/compiler/simplified-lowering.h" #include "src/compiler/simplified-operator-reducer.h" #include "src/compiler/simplified-operator.h" #include "src/compiler/store-store-elimination.h" #include "src/compiler/type-narrowing-reducer.h" #include "src/compiler/typed-optimization.h" #include "src/compiler/typer.h" #include "src/compiler/value-numbering-reducer.h" #include "src/compiler/verifier.h" #include "src/compiler/wasm-compiler.h" #include "src/compiler/zone-stats.h" #include "src/disassembler.h" #include "src/isolate-inl.h" #include "src/objects/shared-function-info.h" #include "src/optimized-compilation-info.h" #include "src/ostreams.h" #include "src/parsing/parse-info.h" #include "src/register-configuration.h" #include "src/utils.h" #include "src/wasm/function-body-decoder.h" #include "src/wasm/wasm-engine.h" namespace v8 { namespace internal { namespace trap_handler { struct ProtectedInstructionData; } // namespace trap_handler namespace compiler { // Turbofan can only handle 2^16 control inputs. Since each control flow split // requires at least two bytes (jump and offset), we limit the bytecode size // to 128K bytes. const int kMaxBytecodeSizeForTurbofan = 128 * 1024; class PipelineData { public: // For main entry point. PipelineData(ZoneStats* zone_stats, Isolate* isolate, OptimizedCompilationInfo* info, PipelineStatistics* pipeline_statistics) : isolate_(isolate), allocator_(isolate->allocator()), info_(info), debug_name_(info_->GetDebugName()), may_have_unverifiable_graph_(false), zone_stats_(zone_stats), pipeline_statistics_(pipeline_statistics), graph_zone_scope_(zone_stats_, ZONE_NAME), graph_zone_(graph_zone_scope_.zone()), instruction_zone_scope_(zone_stats_, ZONE_NAME), instruction_zone_(instruction_zone_scope_.zone()), codegen_zone_scope_(zone_stats_, ZONE_NAME), codegen_zone_(codegen_zone_scope_.zone()), register_allocation_zone_scope_(zone_stats_, ZONE_NAME), register_allocation_zone_(register_allocation_zone_scope_.zone()), assembler_options_(AssemblerOptions::Default(isolate)) { PhaseScope scope(pipeline_statistics, "init pipeline data"); graph_ = new (graph_zone_) Graph(graph_zone_); source_positions_ = new (graph_zone_) SourcePositionTable(graph_); node_origins_ = info->trace_turbo_json_enabled() ? new (graph_zone_) NodeOriginTable(graph_) : nullptr; simplified_ = new (graph_zone_) SimplifiedOperatorBuilder(graph_zone_); machine_ = new (graph_zone_) MachineOperatorBuilder( graph_zone_, MachineType::PointerRepresentation(), InstructionSelector::SupportedMachineOperatorFlags(), InstructionSelector::AlignmentRequirements()); common_ = new (graph_zone_) CommonOperatorBuilder(graph_zone_); javascript_ = new (graph_zone_) JSOperatorBuilder(graph_zone_); jsgraph_ = new (graph_zone_) JSGraph(isolate_, graph_, common_, javascript_, simplified_, machine_); js_heap_broker_ = new (codegen_zone_) JSHeapBroker(isolate_, codegen_zone_); dependencies_ = new (codegen_zone_) CompilationDependencies(isolate_, codegen_zone_); } // For WebAssembly compile entry point. PipelineData(ZoneStats* zone_stats, wasm::WasmEngine* wasm_engine, OptimizedCompilationInfo* info, MachineGraph* mcgraph, PipelineStatistics* pipeline_statistics, SourcePositionTable* source_positions, NodeOriginTable* node_origins, int wasm_function_index, const AssemblerOptions& assembler_options) : isolate_(nullptr), wasm_engine_(wasm_engine), allocator_(wasm_engine->allocator()), info_(info), debug_name_(info_->GetDebugName()), wasm_function_index_(wasm_function_index), zone_stats_(zone_stats), pipeline_statistics_(pipeline_statistics), graph_zone_scope_(zone_stats_, ZONE_NAME), graph_zone_(graph_zone_scope_.zone()), graph_(mcgraph->graph()), source_positions_(source_positions), node_origins_(node_origins), machine_(mcgraph->machine()), common_(mcgraph->common()), mcgraph_(mcgraph), instruction_zone_scope_(zone_stats_, ZONE_NAME), instruction_zone_(instruction_zone_scope_.zone()), codegen_zone_scope_(zone_stats_, ZONE_NAME), codegen_zone_(codegen_zone_scope_.zone()), register_allocation_zone_scope_(zone_stats_, ZONE_NAME), register_allocation_zone_(register_allocation_zone_scope_.zone()), assembler_options_(assembler_options) {} // For machine graph testing entry point. PipelineData(ZoneStats* zone_stats, OptimizedCompilationInfo* info, Isolate* isolate, Graph* graph, Schedule* schedule, SourcePositionTable* source_positions, NodeOriginTable* node_origins, JumpOptimizationInfo* jump_opt, const AssemblerOptions& assembler_options) : isolate_(isolate), allocator_(isolate->allocator()), info_(info), debug_name_(info_->GetDebugName()), zone_stats_(zone_stats), graph_zone_scope_(zone_stats_, ZONE_NAME), graph_(graph), source_positions_(source_positions), node_origins_(node_origins), schedule_(schedule), instruction_zone_scope_(zone_stats_, ZONE_NAME), instruction_zone_(instruction_zone_scope_.zone()), codegen_zone_scope_(zone_stats_, ZONE_NAME), codegen_zone_(codegen_zone_scope_.zone()), register_allocation_zone_scope_(zone_stats_, ZONE_NAME), register_allocation_zone_(register_allocation_zone_scope_.zone()), jump_optimization_info_(jump_opt), assembler_options_(assembler_options) {} // For register allocation testing entry point. PipelineData(ZoneStats* zone_stats, OptimizedCompilationInfo* info, Isolate* isolate, InstructionSequence* sequence) : isolate_(isolate), allocator_(isolate->allocator()), info_(info), debug_name_(info_->GetDebugName()), zone_stats_(zone_stats), graph_zone_scope_(zone_stats_, ZONE_NAME), instruction_zone_scope_(zone_stats_, ZONE_NAME), instruction_zone_(sequence->zone()), sequence_(sequence), codegen_zone_scope_(zone_stats_, ZONE_NAME), codegen_zone_(codegen_zone_scope_.zone()), register_allocation_zone_scope_(zone_stats_, ZONE_NAME), register_allocation_zone_(register_allocation_zone_scope_.zone()), assembler_options_(AssemblerOptions::Default(isolate)) {} ~PipelineData() { delete code_generator_; // Must happen before zones are destroyed. code_generator_ = nullptr; DeleteRegisterAllocationZone(); DeleteInstructionZone(); DeleteCodegenZone(); DeleteGraphZone(); } Isolate* isolate() const { return isolate_; } AccountingAllocator* allocator() const { return allocator_; } OptimizedCompilationInfo* info() const { return info_; } ZoneStats* zone_stats() const { return zone_stats_; } CompilationDependencies* dependencies() const { return dependencies_; } PipelineStatistics* pipeline_statistics() { return pipeline_statistics_; } OsrHelper* osr_helper() { return &(*osr_helper_); } bool compilation_failed() const { return compilation_failed_; } void set_compilation_failed() { compilation_failed_ = true; } bool verify_graph() const { return verify_graph_; } void set_verify_graph(bool value) { verify_graph_ = value; } MaybeHandle<Code> code() { return code_; } void set_code(MaybeHandle<Code> code) { DCHECK(code_.is_null()); code_ = code; } CodeGenerator* code_generator() const { return code_generator_; } // RawMachineAssembler generally produces graphs which cannot be verified. bool MayHaveUnverifiableGraph() const { return may_have_unverifiable_graph_; } Zone* graph_zone() const { return graph_zone_; } Graph* graph() const { return graph_; } SourcePositionTable* source_positions() const { return source_positions_; } NodeOriginTable* node_origins() const { return node_origins_; } MachineOperatorBuilder* machine() const { return machine_; } CommonOperatorBuilder* common() const { return common_; } JSOperatorBuilder* javascript() const { return javascript_; } JSGraph* jsgraph() const { return jsgraph_; } MachineGraph* mcgraph() const { return mcgraph_; } Handle<Context> native_context() const { return handle(info()->native_context(), isolate()); } Handle<JSGlobalObject> global_object() const { return handle(info()->global_object(), isolate()); } JSHeapBroker* js_heap_broker() const { return js_heap_broker_; } Schedule* schedule() const { return schedule_; } void set_schedule(Schedule* schedule) { DCHECK(!schedule_); schedule_ = schedule; } void reset_schedule() { schedule_ = nullptr; } Zone* instruction_zone() const { return instruction_zone_; } Zone* codegen_zone() const { return codegen_zone_; } InstructionSequence* sequence() const { return sequence_; } Frame* frame() const { return frame_; } Zone* register_allocation_zone() const { return register_allocation_zone_; } RegisterAllocationData* register_allocation_data() const { return register_allocation_data_; } BasicBlockProfiler::Data* profiler_data() const { return profiler_data_; } void set_profiler_data(BasicBlockProfiler::Data* profiler_data) { profiler_data_ = profiler_data; } std::string const& source_position_output() const { return source_position_output_; } void set_source_position_output(std::string const& source_position_output) { source_position_output_ = source_position_output; } JumpOptimizationInfo* jump_optimization_info() const { return jump_optimization_info_; } const AssemblerOptions& assembler_options() const { return assembler_options_; } CodeTracer* GetCodeTracer() const { return wasm_engine_ == nullptr ? isolate_->GetCodeTracer() : wasm_engine_->GetCodeTracer(); } void DeleteGraphZone() { if (graph_zone_ == nullptr) return; graph_zone_scope_.Destroy(); graph_zone_ = nullptr; graph_ = nullptr; source_positions_ = nullptr; node_origins_ = nullptr; simplified_ = nullptr; machine_ = nullptr; common_ = nullptr; javascript_ = nullptr; jsgraph_ = nullptr; mcgraph_ = nullptr; schedule_ = nullptr; } void DeleteInstructionZone() { if (instruction_zone_ == nullptr) return; instruction_zone_scope_.Destroy(); instruction_zone_ = nullptr; sequence_ = nullptr; } void DeleteCodegenZone() { if (codegen_zone_ == nullptr) return; codegen_zone_scope_.Destroy(); codegen_zone_ = nullptr; dependencies_ = nullptr; js_heap_broker_ = nullptr; frame_ = nullptr; } void DeleteRegisterAllocationZone() { if (register_allocation_zone_ == nullptr) return; register_allocation_zone_scope_.Destroy(); register_allocation_zone_ = nullptr; register_allocation_data_ = nullptr; } void InitializeInstructionSequence(const CallDescriptor* call_descriptor) { DCHECK_NULL(sequence_); InstructionBlocks* instruction_blocks = InstructionSequence::InstructionBlocksFor(instruction_zone(), schedule()); sequence_ = new (instruction_zone()) InstructionSequence(isolate(), instruction_zone(), instruction_blocks); if (call_descriptor && call_descriptor->RequiresFrameAsIncoming()) { sequence_->instruction_blocks()[0]->mark_needs_frame(); } else { DCHECK_EQ(0u, call_descriptor->CalleeSavedFPRegisters()); DCHECK_EQ(0u, call_descriptor->CalleeSavedRegisters()); } } void InitializeFrameData(CallDescriptor* call_descriptor) { DCHECK_NULL(frame_); int fixed_frame_size = 0; if (call_descriptor != nullptr) { fixed_frame_size = call_descriptor->CalculateFixedFrameSize(); } frame_ = new (codegen_zone()) Frame(fixed_frame_size); } void InitializeRegisterAllocationData(const RegisterConfiguration* config, CallDescriptor* call_descriptor) { DCHECK_NULL(register_allocation_data_); register_allocation_data_ = new (register_allocation_zone()) RegisterAllocationData(config, register_allocation_zone(), frame(), sequence(), debug_name()); } void InitializeOsrHelper() { DCHECK(!osr_helper_.has_value()); osr_helper_.emplace(info()); } void set_start_source_position(int position) { DCHECK_EQ(start_source_position_, kNoSourcePosition); start_source_position_ = position; } void InitializeCodeGenerator(Linkage* linkage) { DCHECK_NULL(code_generator_); code_generator_ = new CodeGenerator( codegen_zone(), frame(), linkage, sequence(), info(), isolate(), osr_helper_, start_source_position_, jump_optimization_info_, info()->GetPoisoningMitigationLevel(), assembler_options_, info_->builtin_index()); } void BeginPhaseKind(const char* phase_kind_name) { if (pipeline_statistics() != nullptr) { pipeline_statistics()->BeginPhaseKind(phase_kind_name); } } void EndPhaseKind() { if (pipeline_statistics() != nullptr) { pipeline_statistics()->EndPhaseKind(); } } const char* debug_name() const { return debug_name_.get(); } int wasm_function_index() const { return wasm_function_index_; } private: Isolate* const isolate_; wasm::WasmEngine* const wasm_engine_ = nullptr; AccountingAllocator* const allocator_; OptimizedCompilationInfo* const info_; std::unique_ptr<char[]> debug_name_; int wasm_function_index_ = -1; bool may_have_unverifiable_graph_ = true; ZoneStats* const zone_stats_; PipelineStatistics* pipeline_statistics_ = nullptr; bool compilation_failed_ = false; bool verify_graph_ = false; int start_source_position_ = kNoSourcePosition; base::Optional<OsrHelper> osr_helper_; MaybeHandle<Code> code_; CodeGenerator* code_generator_ = nullptr; // All objects in the following group of fields are allocated in graph_zone_. // They are all set to nullptr when the graph_zone_ is destroyed. ZoneStats::Scope graph_zone_scope_; Zone* graph_zone_ = nullptr; Graph* graph_ = nullptr; SourcePositionTable* source_positions_ = nullptr; NodeOriginTable* node_origins_ = nullptr; SimplifiedOperatorBuilder* simplified_ = nullptr; MachineOperatorBuilder* machine_ = nullptr; CommonOperatorBuilder* common_ = nullptr; JSOperatorBuilder* javascript_ = nullptr; JSGraph* jsgraph_ = nullptr; MachineGraph* mcgraph_ = nullptr; Schedule* schedule_ = nullptr; // All objects in the following group of fields are allocated in // instruction_zone_. They are all set to nullptr when the instruction_zone_ // is destroyed. ZoneStats::Scope instruction_zone_scope_; Zone* instruction_zone_; InstructionSequence* sequence_ = nullptr; // All objects in the following group of fields are allocated in // codegen_zone_. They are all set to nullptr when the codegen_zone_ // is destroyed. ZoneStats::Scope codegen_zone_scope_; Zone* codegen_zone_; CompilationDependencies* dependencies_ = nullptr; JSHeapBroker* js_heap_broker_ = nullptr; Frame* frame_ = nullptr; // All objects in the following group of fields are allocated in // register_allocation_zone_. They are all set to nullptr when the zone is // destroyed. ZoneStats::Scope register_allocation_zone_scope_; Zone* register_allocation_zone_; RegisterAllocationData* register_allocation_data_ = nullptr; // Basic block profiling support. BasicBlockProfiler::Data* profiler_data_ = nullptr; // Source position output for --trace-turbo. std::string source_position_output_; JumpOptimizationInfo* jump_optimization_info_ = nullptr; AssemblerOptions assembler_options_; DISALLOW_COPY_AND_ASSIGN(PipelineData); }; class PipelineImpl final { public: explicit PipelineImpl(PipelineData* data) : data_(data) {} // Helpers for executing pipeline phases. template <typename Phase> void Run(); template <typename Phase, typename Arg0> void Run(Arg0 arg_0); template <typename Phase, typename Arg0, typename Arg1> void Run(Arg0 arg_0, Arg1 arg_1); // Step A. Run the graph creation and initial optimization passes. bool CreateGraph(); // B. Run the concurrent optimization passes. bool OptimizeGraph(Linkage* linkage); // Substep B.1. Produce a scheduled graph. void ComputeScheduledGraph(); // Substep B.2. Select instructions from a scheduled graph. bool SelectInstructions(Linkage* linkage); // Step C. Run the code assembly pass. void AssembleCode(Linkage* linkage); // Step D. Run the code finalization pass. MaybeHandle<Code> FinalizeCode(); // Step E. Install any code dependencies. bool CommitDependencies(Handle<Code> code); void VerifyGeneratedCodeIsIdempotent(); void RunPrintAndVerify(const char* phase, bool untyped = false); MaybeHandle<Code> GenerateCode(CallDescriptor* call_descriptor); void AllocateRegisters(const RegisterConfiguration* config, CallDescriptor* call_descriptor, bool run_verifier); OptimizedCompilationInfo* info() const; Isolate* isolate() const; CodeGenerator* code_generator() const; private: PipelineData* const data_; }; namespace { void PrintFunctionSource(OptimizedCompilationInfo* info, Isolate* isolate, int source_id, Handle<SharedFunctionInfo> shared) { if (!shared->script()->IsUndefined(isolate)) { Handle<Script> script(Script::cast(shared->script()), isolate); if (!script->source()->IsUndefined(isolate)) { CodeTracer::Scope tracing_scope(isolate->GetCodeTracer()); Object* source_name = script->name(); OFStream os(tracing_scope.file()); os << "--- FUNCTION SOURCE ("; if (source_name->IsString()) { os << String::cast(source_name)->ToCString().get() << ":"; } os << shared->DebugName()->ToCString().get() << ") id{"; os << info->optimization_id() << "," << source_id << "} start{"; os << shared->StartPosition() << "} ---\n"; { DisallowHeapAllocation no_allocation; int start = shared->StartPosition(); int len = shared->EndPosition() - start; String::SubStringRange source(String::cast(script->source()), start, len); for (const auto& c : source) { os << AsReversiblyEscapedUC16(c); } } os << "\n--- END ---\n"; } } } // Print information for the given inlining: which function was inlined and // where the inlining occurred. void PrintInlinedFunctionInfo( OptimizedCompilationInfo* info, Isolate* isolate, int source_id, int inlining_id, const OptimizedCompilationInfo::InlinedFunctionHolder& h) { CodeTracer::Scope tracing_scope(isolate->GetCodeTracer()); OFStream os(tracing_scope.file()); os << "INLINE (" << h.shared_info->DebugName()->ToCString().get() << ") id{" << info->optimization_id() << "," << source_id << "} AS " << inlining_id << " AT "; const SourcePosition position = h.position.position; if (position.IsKnown()) { os << "<" << position.InliningId() << ":" << position.ScriptOffset() << ">"; } else { os << "<?>"; } os << std::endl; } // Print the source of all functions that participated in this optimizing // compilation. For inlined functions print source position of their inlining. void PrintParticipatingSource(OptimizedCompilationInfo* info, Isolate* isolate) { AllowDeferredHandleDereference allow_deference_for_print_code; SourceIdAssigner id_assigner(info->inlined_functions().size()); PrintFunctionSource(info, isolate, -1, info->shared_info()); const auto& inlined = info->inlined_functions(); for (unsigned id = 0; id < inlined.size(); id++) { const int source_id = id_assigner.GetIdFor(inlined[id].shared_info); PrintFunctionSource(info, isolate, source_id, inlined[id].shared_info); PrintInlinedFunctionInfo(info, isolate, source_id, id, inlined[id]); } } // Print the code after compiling it. void PrintCode(Isolate* isolate, Handle<Code> code, OptimizedCompilationInfo* info) { if (FLAG_print_opt_source && info->IsOptimizing()) { PrintParticipatingSource(info, isolate); } #ifdef ENABLE_DISASSEMBLER AllowDeferredHandleDereference allow_deference_for_print_code; bool print_code = isolate->bootstrapper()->IsActive() ? FLAG_print_builtin_code && info->shared_info()->PassesFilter( FLAG_print_builtin_code_filter) : (FLAG_print_code || (info->IsStub() && FLAG_print_code_stubs) || (info->IsOptimizing() && FLAG_print_opt_code && info->shared_info()->PassesFilter(FLAG_print_opt_code_filter))); if (print_code) { std::unique_ptr<char[]> debug_name = info->GetDebugName(); CodeTracer::Scope tracing_scope(isolate->GetCodeTracer()); OFStream os(tracing_scope.file()); // Print the source code if available. bool print_source = code->kind() == Code::OPTIMIZED_FUNCTION; if (print_source) { Handle<SharedFunctionInfo> shared = info->shared_info(); if (shared->script()->IsScript() && !Script::cast(shared->script())->source()->IsUndefined(isolate)) { os << "--- Raw source ---\n"; StringCharacterStream stream( String::cast(Script::cast(shared->script())->source()), shared->StartPosition()); // fun->end_position() points to the last character in the stream. We // need to compensate by adding one to calculate the length. int source_len = shared->EndPosition() - shared->StartPosition() + 1; for (int i = 0; i < source_len; i++) { if (stream.HasMore()) { os << AsReversiblyEscapedUC16(stream.GetNext()); } } os << "\n\n"; } } if (info->IsOptimizing()) { os << "--- Optimized code ---\n" << "optimization_id = " << info->optimization_id() << "\n"; } else { os << "--- Code ---\n"; } if (print_source) { Handle<SharedFunctionInfo> shared = info->shared_info(); os << "source_position = " << shared->StartPosition() << "\n"; } code->Disassemble(debug_name.get(), os); os << "--- End code ---\n"; } #endif // ENABLE_DISASSEMBLER } struct TurboCfgFile : public std::ofstream { explicit TurboCfgFile(Isolate* isolate) : std::ofstream(isolate->GetTurboCfgFileName().c_str(), std::ios_base::app) {} }; void TraceSchedule(OptimizedCompilationInfo* info, PipelineData* data, Schedule* schedule, const char* phase_name) { if (info->trace_turbo_json_enabled()) { AllowHandleDereference allow_deref; TurboJsonFile json_of(info, std::ios_base::app); json_of << "{\"name\":\"" << phase_name << "\",\"type\":\"schedule\"" << ",\"data\":\""; std::stringstream schedule_stream; schedule_stream << *schedule; std::string schedule_string(schedule_stream.str()); for (const auto& c : schedule_string) { json_of << AsEscapedUC16ForJSON(c); } json_of << "\"},\n"; } if (info->trace_turbo_graph_enabled() || FLAG_trace_turbo_scheduler) { AllowHandleDereference allow_deref; CodeTracer::Scope tracing_scope(data->GetCodeTracer()); OFStream os(tracing_scope.file()); os << "-- Schedule --------------------------------------\n" << *schedule; } } class SourcePositionWrapper final : public Reducer { public: SourcePositionWrapper(Reducer* reducer, SourcePositionTable* table) : reducer_(reducer), table_(table) {} ~SourcePositionWrapper() final {} const char* reducer_name() const override { return reducer_->reducer_name(); } Reduction Reduce(Node* node) final { SourcePosition const pos = table_->GetSourcePosition(node); SourcePositionTable::Scope position(table_, pos); return reducer_->Reduce(node); } void Finalize() final { reducer_->Finalize(); } private: Reducer* const reducer_; SourcePositionTable* const table_; DISALLOW_COPY_AND_ASSIGN(SourcePositionWrapper); }; class NodeOriginsWrapper final : public Reducer { public: NodeOriginsWrapper(Reducer* reducer, NodeOriginTable* table) : reducer_(reducer), table_(table) {} ~NodeOriginsWrapper() final {} const char* reducer_name() const override { return reducer_->reducer_name(); } Reduction Reduce(Node* node) final { NodeOriginTable::Scope position(table_, reducer_name(), node); return reducer_->Reduce(node); } void Finalize() final { reducer_->Finalize(); } private: Reducer* const reducer_; NodeOriginTable* const table_; DISALLOW_COPY_AND_ASSIGN(NodeOriginsWrapper); }; void AddReducer(PipelineData* data, GraphReducer* graph_reducer, Reducer* reducer) { if (data->info()->is_source_positions_enabled()) { void* const buffer = data->graph_zone()->New(sizeof(SourcePositionWrapper)); SourcePositionWrapper* const wrapper = new (buffer) SourcePositionWrapper(reducer, data->source_positions()); reducer = wrapper; } if (data->info()->trace_turbo_json_enabled()) { void* const buffer = data->graph_zone()->New(sizeof(NodeOriginsWrapper)); NodeOriginsWrapper* const wrapper = new (buffer) NodeOriginsWrapper(reducer, data->node_origins()); reducer = wrapper; } graph_reducer->AddReducer(reducer); } class PipelineRunScope { public: PipelineRunScope(PipelineData* data, const char* phase_name) : phase_scope_( phase_name == nullptr ? nullptr : data->pipeline_statistics(), phase_name), zone_scope_(data->zone_stats(), ZONE_NAME), origin_scope_(data->node_origins(), phase_name) {} Zone* zone() { return zone_scope_.zone(); } private: PhaseScope phase_scope_; ZoneStats::Scope zone_scope_; NodeOriginTable::PhaseScope origin_scope_; }; PipelineStatistics* CreatePipelineStatistics(Handle<Script> script, OptimizedCompilationInfo* info, Isolate* isolate, ZoneStats* zone_stats) { PipelineStatistics* pipeline_statistics = nullptr; if (FLAG_turbo_stats || FLAG_turbo_stats_nvp) { pipeline_statistics = new PipelineStatistics(info, isolate->GetTurboStatistics(), zone_stats); pipeline_statistics->BeginPhaseKind("initializing"); } if (info->trace_turbo_json_enabled()) { TurboJsonFile json_of(info, std::ios_base::trunc); json_of << "{\"function\" : "; JsonPrintFunctionSource(json_of, -1, info->GetDebugName(), script, isolate, info->shared_info()); json_of << ",\n\"phases\":["; } return pipeline_statistics; } PipelineStatistics* CreatePipelineStatistics(wasm::WasmEngine* wasm_engine, wasm::FunctionBody function_body, wasm::WasmModule* wasm_module, OptimizedCompilationInfo* info, ZoneStats* zone_stats) { PipelineStatistics* pipeline_statistics = nullptr; if (FLAG_turbo_stats_wasm) { pipeline_statistics = new PipelineStatistics( info, wasm_engine->GetOrCreateTurboStatistics(), zone_stats); pipeline_statistics->BeginPhaseKind("initializing"); } if (info->trace_turbo_json_enabled()) { TurboJsonFile json_of(info, std::ios_base::trunc); std::unique_ptr<char[]> function_name = info->GetDebugName(); json_of << "{\"function\":\"" << function_name.get() << "\", \"source\":\""; AccountingAllocator allocator; std::ostringstream disassembly; std::vector<int> source_positions; wasm::PrintRawWasmCode(&allocator, function_body, wasm_module, wasm::kPrintLocals, disassembly, &source_positions); for (const auto& c : disassembly.str()) { json_of << AsEscapedUC16ForJSON(c); } json_of << "\",\n\"sourceLineToBytecodePosition\" : ["; bool insert_comma = false; for (auto val : source_positions) { if (insert_comma) { json_of << ", "; } json_of << val; insert_comma = true; } json_of << "],\n\"phases\":["; } return pipeline_statistics; } } // namespace class PipelineCompilationJob final : public OptimizedCompilationJob { public: PipelineCompilationJob(Isolate* isolate, Handle<SharedFunctionInfo> shared_info, Handle<JSFunction> function) // Note that the OptimizedCompilationInfo is not initialized at the time // we pass it to the CompilationJob constructor, but it is not // dereferenced there. : OptimizedCompilationJob( function->GetIsolate()->stack_guard()->real_climit(), &compilation_info_, "TurboFan"), zone_(function->GetIsolate()->allocator(), ZONE_NAME), zone_stats_(function->GetIsolate()->allocator()), compilation_info_(&zone_, function->GetIsolate(), shared_info, function), pipeline_statistics_(CreatePipelineStatistics( handle(Script::cast(shared_info->script()), isolate), compilation_info(), function->GetIsolate(), &zone_stats_)), data_(&zone_stats_, function->GetIsolate(), compilation_info(), pipeline_statistics_.get()), pipeline_(&data_), linkage_(nullptr) {} protected: Status PrepareJobImpl(Isolate* isolate) final; Status ExecuteJobImpl() final; Status FinalizeJobImpl(Isolate* isolate) final; // Registers weak object to optimized code dependencies. void RegisterWeakObjectsInOptimizedCode(Handle<Code> code, Isolate* isolate); private: Zone zone_; ZoneStats zone_stats_; OptimizedCompilationInfo compilation_info_; std::unique_ptr<PipelineStatistics> pipeline_statistics_; PipelineData data_; PipelineImpl pipeline_; Linkage* linkage_; DISALLOW_COPY_AND_ASSIGN(PipelineCompilationJob); }; PipelineCompilationJob::Status PipelineCompilationJob::PrepareJobImpl( Isolate* isolate) { if (compilation_info()->shared_info()->GetBytecodeArray()->length() > kMaxBytecodeSizeForTurbofan) { return AbortOptimization(BailoutReason::kFunctionTooBig); } if (!FLAG_always_opt) { compilation_info()->MarkAsBailoutOnUninitialized(); } if (FLAG_turbo_loop_peeling) { compilation_info()->MarkAsLoopPeelingEnabled(); } if (FLAG_turbo_inlining) { compilation_info()->MarkAsInliningEnabled(); } if (FLAG_inline_accessors) { compilation_info()->MarkAsAccessorInliningEnabled(); } // Compute and set poisoning level. PoisoningMitigationLevel load_poisoning = PoisoningMitigationLevel::kDontPoison; if (FLAG_branch_load_poisoning) { load_poisoning = PoisoningMitigationLevel::kPoisonAll; } else if (FLAG_untrusted_code_mitigations) { load_poisoning = PoisoningMitigationLevel::kPoisonCriticalOnly; } compilation_info()->SetPoisoningMitigationLevel(load_poisoning); if (FLAG_turbo_allocation_folding) { compilation_info()->MarkAsAllocationFoldingEnabled(); } if (compilation_info()->closure()->feedback_cell()->map() == ReadOnlyRoots(isolate).one_closure_cell_map()) { compilation_info()->MarkAsFunctionContextSpecializing(); } data_.set_start_source_position( compilation_info()->shared_info()->StartPosition()); linkage_ = new (compilation_info()->zone()) Linkage( Linkage::ComputeIncoming(compilation_info()->zone(), compilation_info())); if (!pipeline_.CreateGraph()) { if (isolate->has_pending_exception()) return FAILED; // Stack overflowed. return AbortOptimization(BailoutReason::kGraphBuildingFailed); } if (compilation_info()->is_osr()) data_.InitializeOsrHelper(); // Make sure that we have generated the maximal number of deopt entries. // This is in order to avoid triggering the generation of deopt entries later // during code assembly. Deoptimizer::EnsureCodeForMaxDeoptimizationEntries(isolate); return SUCCEEDED; } PipelineCompilationJob::Status PipelineCompilationJob::ExecuteJobImpl() { if (!pipeline_.OptimizeGraph(linkage_)) return FAILED; pipeline_.AssembleCode(linkage_); return SUCCEEDED; } PipelineCompilationJob::Status PipelineCompilationJob::FinalizeJobImpl( Isolate* isolate) { MaybeHandle<Code> maybe_code = pipeline_.FinalizeCode(); Handle<Code> code; if (!maybe_code.ToHandle(&code)) { if (compilation_info()->bailout_reason() == BailoutReason::kNoReason) { return AbortOptimization(BailoutReason::kCodeGenerationFailed); } return FAILED; } if (!pipeline_.CommitDependencies(code)) { return RetryOptimization(BailoutReason::kBailedOutDueToDependencyChange); } compilation_info()->SetCode(code); compilation_info()->context()->native_context()->AddOptimizedCode(*code); RegisterWeakObjectsInOptimizedCode(code, isolate); return SUCCEEDED; } void PipelineCompilationJob::RegisterWeakObjectsInOptimizedCode( Handle<Code> code, Isolate* isolate) { DCHECK(code->is_optimized_code()); std::vector<Handle<Map>> maps; { DisallowHeapAllocation no_gc; int const mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT); for (RelocIterator it(*code, mode_mask); !it.done(); it.next()) { RelocInfo::Mode mode = it.rinfo()->rmode(); if (mode == RelocInfo::EMBEDDED_OBJECT && code->IsWeakObjectInOptimizedCode(it.rinfo()->target_object())) { Handle<HeapObject> object(HeapObject::cast(it.rinfo()->target_object()), isolate); if (object->IsMap()) { maps.push_back(Handle<Map>::cast(object)); } } } } for (Handle<Map> map : maps) { isolate->heap()->AddRetainedMap(map); } code->set_can_have_weak_objects(true); } // The stack limit used during compilation is used to limit the recursion // depth in, e.g. AST walking. No such recursion happens in WASM compilations. constexpr uintptr_t kNoStackLimit = 0; class PipelineWasmCompilationJob final : public OptimizedCompilationJob { public: explicit PipelineWasmCompilationJob( OptimizedCompilationInfo* info, wasm::WasmEngine* wasm_engine, MachineGraph* mcgraph, CallDescriptor* call_descriptor, SourcePositionTable* source_positions, NodeOriginTable* node_origins, wasm::FunctionBody function_body, wasm::WasmModule* wasm_module, wasm::NativeModule* native_module, int function_index, bool asmjs_origin) : OptimizedCompilationJob(kNoStackLimit, info, "TurboFan", State::kReadyToExecute), zone_stats_(wasm_engine->allocator()), pipeline_statistics_(CreatePipelineStatistics( wasm_engine, function_body, wasm_module, info, &zone_stats_)), data_(&zone_stats_, wasm_engine, info, mcgraph, pipeline_statistics_.get(), source_positions, node_origins, function_index, WasmAssemblerOptions()), pipeline_(&data_), linkage_(call_descriptor), native_module_(native_module), asmjs_origin_(asmjs_origin) {} protected: Status PrepareJobImpl(Isolate* isolate) final; Status ExecuteJobImpl() final; Status FinalizeJobImpl(Isolate* isolate) final; private: ZoneStats zone_stats_; std::unique_ptr<PipelineStatistics> pipeline_statistics_; PipelineData data_; PipelineImpl pipeline_; Linkage linkage_; wasm::NativeModule* native_module_; bool asmjs_origin_; }; PipelineWasmCompilationJob::Status PipelineWasmCompilationJob::PrepareJobImpl( Isolate* isolate) { UNREACHABLE(); // Prepare should always be skipped for WasmCompilationJob. return SUCCEEDED; } PipelineWasmCompilationJob::Status PipelineWasmCompilationJob::ExecuteJobImpl() { pipeline_.RunPrintAndVerify("Machine", true); PipelineData* data = &data_; data->BeginPhaseKind("wasm optimization"); if (FLAG_wasm_opt || asmjs_origin_) { PipelineRunScope scope(data, "wasm full optimization"); GraphReducer graph_reducer(scope.zone(), data->graph(), data->mcgraph()->Dead()); DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(), data->common(), scope.zone()); ValueNumberingReducer value_numbering(scope.zone(), data->graph()->zone()); MachineOperatorReducer machine_reducer(data->mcgraph(), asmjs_origin_); CommonOperatorReducer common_reducer(&graph_reducer, data->graph(), data->js_heap_broker(), data->common(), data->machine(), scope.zone()); AddReducer(data, &graph_reducer, &dead_code_elimination); AddReducer(data, &graph_reducer, &machine_reducer); AddReducer(data, &graph_reducer, &common_reducer); AddReducer(data, &graph_reducer, &value_numbering); graph_reducer.ReduceGraph(); } else { PipelineRunScope scope(data, "wasm base optimization"); GraphReducer graph_reducer(scope.zone(), data->graph(), data->mcgraph()->Dead()); ValueNumberingReducer value_numbering(scope.zone(), data->graph()->zone()); AddReducer(data, &graph_reducer, &value_numbering); graph_reducer.ReduceGraph(); } pipeline_.RunPrintAndVerify("wasm optimization", true); if (data_.node_origins()) { data_.node_origins()->RemoveDecorator(); } pipeline_.ComputeScheduledGraph(); if (!pipeline_.SelectInstructions(&linkage_)) return FAILED; pipeline_.AssembleCode(&linkage_); CodeGenerator* code_generator = pipeline_.code_generator(); CodeDesc code_desc; code_generator->tasm()->GetCode(nullptr, &code_desc); wasm::WasmCode* code = native_module_->AddCode( data_.wasm_function_index(), code_desc, code_generator->frame()->GetTotalFrameSlotCount(), code_generator->GetSafepointTableOffset(), code_generator->GetHandlerTableOffset(), code_generator->GetProtectedInstructions(), code_generator->GetSourcePositionTable(), wasm::WasmCode::kTurbofan); if (data_.info()->trace_turbo_json_enabled()) { TurboJsonFile json_of(data_.info(), std::ios_base::app); json_of << "{\"name\":\"disassembly\",\"type\":\"disassembly\",\"data\":\""; #ifdef ENABLE_DISASSEMBLER std::stringstream disassembler_stream; Disassembler::Decode( nullptr, &disassembler_stream, code->instructions().start(), code->instructions().start() + code->safepoint_table_offset(), CodeReference(code)); for (auto const c : disassembler_stream.str()) { json_of << AsEscapedUC16ForJSON(c); } #endif // ENABLE_DISASSEMBLER json_of << "\"}\n]"; json_of << "\n}"; } compilation_info()->SetCode(code); return SUCCEEDED; } PipelineWasmCompilationJob::Status PipelineWasmCompilationJob::FinalizeJobImpl( Isolate* isolate) { UNREACHABLE(); // Finalize should always be skipped for WasmCompilationJob. return SUCCEEDED; } template <typename Phase> void PipelineImpl::Run() { PipelineRunScope scope(this->data_, Phase::phase_name()); Phase phase; phase.Run(this->data_, scope.zone()); } template <typename Phase, typename Arg0> void PipelineImpl::Run(Arg0 arg_0) { PipelineRunScope scope(this->data_, Phase::phase_name()); Phase phase; phase.Run(this->data_, scope.zone(), arg_0); } template <typename Phase, typename Arg0, typename Arg1> void PipelineImpl::Run(Arg0 arg_0, Arg1 arg_1) { PipelineRunScope scope(this->data_, Phase::phase_name()); Phase phase; phase.Run(this->data_, scope.zone(), arg_0, arg_1); } struct GraphBuilderPhase { static const char* phase_name() { return "bytecode graph builder"; } void Run(PipelineData* data, Zone* temp_zone) { JSTypeHintLowering::Flags flags = JSTypeHintLowering::kNoFlags; if (data->info()->is_bailout_on_uninitialized()) { flags |= JSTypeHintLowering::kBailoutOnUninitialized; } CallFrequency frequency = CallFrequency(1.0f); BytecodeGraphBuilder graph_builder( temp_zone, data->info()->shared_info(), handle(data->info()->closure()->feedback_vector(), data->isolate()), data->info()->osr_offset(), data->jsgraph(), frequency, data->source_positions(), data->native_context(), SourcePosition::kNotInlined, flags, true, data->info()->is_analyze_environment_liveness()); graph_builder.CreateGraph(); } }; namespace { Maybe<OuterContext> GetModuleContext(Handle<JSFunction> closure) { Context* current = closure->context(); size_t distance = 0; while (!current->IsNativeContext()) { if (current->IsModuleContext()) { return Just( OuterContext(handle(current, current->GetIsolate()), distance)); } current = current->previous(); distance++; } return Nothing<OuterContext>(); } Maybe<OuterContext> ChooseSpecializationContext( Isolate* isolate, OptimizedCompilationInfo* info) { if (info->is_function_context_specializing()) { DCHECK(info->has_context()); return Just(OuterContext(handle(info->context(), isolate), 0)); } return GetModuleContext(info->closure()); } } // anonymous namespace struct InliningPhase { static const char* phase_name() { return "inlining"; } void Run(PipelineData* data, Zone* temp_zone) { Isolate* isolate = data->isolate(); GraphReducer graph_reducer(temp_zone, data->graph(), data->jsgraph()->Dead()); DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(), data->common(), temp_zone); CheckpointElimination checkpoint_elimination(&graph_reducer); CommonOperatorReducer common_reducer(&graph_reducer, data->graph(), data->js_heap_broker(), data->common(), data->machine(), temp_zone); JSCallReducer call_reducer(&graph_reducer, data->jsgraph(), data->js_heap_broker(), data->info()->is_bailout_on_uninitialized() ? JSCallReducer::kBailoutOnUninitialized : JSCallReducer::kNoFlags, data->native_context(), data->dependencies()); JSContextSpecialization context_specialization( &graph_reducer, data->jsgraph(), data->js_heap_broker(), ChooseSpecializationContext(isolate, data->info()), data->info()->is_function_context_specializing() ? data->info()->closure() : MaybeHandle<JSFunction>()); JSNativeContextSpecialization::Flags flags = JSNativeContextSpecialization::kNoFlags; if (data->info()->is_accessor_inlining_enabled()) { flags |= JSNativeContextSpecialization::kAccessorInliningEnabled; } if (data->info()->is_bailout_on_uninitialized()) { flags |= JSNativeContextSpecialization::kBailoutOnUninitialized; } JSNativeContextSpecialization native_context_specialization( &graph_reducer, data->jsgraph(), data->js_heap_broker(), flags, data->native_context(), data->dependencies(), temp_zone); JSInliningHeuristic inlining( &graph_reducer, data->info()->is_inlining_enabled() ? JSInliningHeuristic::kGeneralInlining : JSInliningHeuristic::kRestrictedInlining, temp_zone, data->info(), data->jsgraph(), data->source_positions()); JSIntrinsicLowering intrinsic_lowering(&graph_reducer, data->jsgraph()); AddReducer(data, &graph_reducer, &dead_code_elimination); AddReducer(data, &graph_reducer, &checkpoint_elimination); AddReducer(data, &graph_reducer, &common_reducer); AddReducer(data, &graph_reducer, &native_context_specialization); AddReducer(data, &graph_reducer, &context_specialization); AddReducer(data, &graph_reducer, &intrinsic_lowering); AddReducer(data, &graph_reducer, &call_reducer); AddReducer(data, &graph_reducer, &inlining); graph_reducer.ReduceGraph(); } }; struct TyperPhase { static const char* phase_name() { return "typer"; } void Run(PipelineData* data, Zone* temp_zone, Typer* typer) { NodeVector roots(temp_zone); data->jsgraph()->GetCachedNodes(&roots); LoopVariableOptimizer induction_vars(data->jsgraph()->graph(), data->common(), temp_zone); if (FLAG_turbo_loop_variable) induction_vars.Run(); typer->Run(roots, &induction_vars); } }; struct UntyperPhase { static const char* phase_name() { return "untyper"; } void Run(PipelineData* data, Zone* temp_zone) { class RemoveTypeReducer final : public Reducer { public: const char* reducer_name() const override { return "RemoveTypeReducer"; } Reduction Reduce(Node* node) final { if (NodeProperties::IsTyped(node)) { NodeProperties::RemoveType(node); return Changed(node); } return NoChange(); } }; NodeVector roots(temp_zone); data->jsgraph()->GetCachedNodes(&roots); for (Node* node : roots) { NodeProperties::RemoveType(node); } GraphReducer graph_reducer(temp_zone, data->graph(), data->jsgraph()->Dead()); RemoveTypeReducer remove_type_reducer; AddReducer(data, &graph_reducer, &remove_type_reducer); graph_reducer.ReduceGraph(); } }; struct CopyMetadataForConcurrentCompilePhase { static const char* phase_name() { return "copy metadata for concurrent compile"; } void Run(PipelineData* data, Zone* temp_zone) { GraphReducer graph_reducer(temp_zone, data->graph(), data->jsgraph()->Dead()); JSHeapCopyReducer heap_copy_reducer(data->js_heap_broker()); AddReducer(data, &graph_reducer, &heap_copy_reducer); graph_reducer.ReduceGraph(); data->js_heap_broker()->StopSerializing(); } }; struct TypedLoweringPhase { static const char* phase_name() { return "typed lowering"; } void Run(PipelineData* data, Zone* temp_zone) { GraphReducer graph_reducer(temp_zone, data->graph(), data->jsgraph()->Dead()); DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(), data->common(), temp_zone); JSCreateLowering create_lowering(&graph_reducer, data->dependencies(), data->jsgraph(), data->js_heap_broker(), data->native_context(), temp_zone); JSTypedLowering typed_lowering(&graph_reducer, data->jsgraph(), data->js_heap_broker(), temp_zone); ConstantFoldingReducer constant_folding_reducer( &graph_reducer, data->jsgraph(), data->js_heap_broker()); TypedOptimization typed_optimization(&graph_reducer, data->dependencies(), data->jsgraph(), data->js_heap_broker()); SimplifiedOperatorReducer simple_reducer(&graph_reducer, data->jsgraph(), data->js_heap_broker()); CheckpointElimination checkpoint_elimination(&graph_reducer); CommonOperatorReducer common_reducer(&graph_reducer, data->graph(), data->js_heap_broker(), data->common(), data->machine(), temp_zone); AddReducer(data, &graph_reducer, &dead_code_elimination); AddReducer(data, &graph_reducer, &create_lowering); AddReducer(data, &graph_reducer, &constant_folding_reducer); AddReducer(data, &graph_reducer, &typed_optimization); AddReducer(data, &graph_reducer, &typed_lowering); AddReducer(data, &graph_reducer, &simple_reducer); AddReducer(data, &graph_reducer, &checkpoint_elimination); AddReducer(data, &graph_reducer, &common_reducer); graph_reducer.ReduceGraph(); } }; struct EscapeAnalysisPhase { static const char* phase_name() { return "escape analysis"; } void Run(PipelineData* data, Zone* temp_zone) { EscapeAnalysis escape_analysis(data->jsgraph(), temp_zone); escape_analysis.ReduceGraph(); GraphReducer reducer(temp_zone, data->graph(), data->jsgraph()->Dead()); EscapeAnalysisReducer escape_reducer(&reducer, data->jsgraph(), escape_analysis.analysis_result(), temp_zone); AddReducer(data, &reducer, &escape_reducer); reducer.ReduceGraph(); // TODO(tebbi): Turn this into a debug mode check once we have confidence. escape_reducer.VerifyReplacement(); } }; struct SimplifiedLoweringPhase { static const char* phase_name() { return "simplified lowering"; } void Run(PipelineData* data, Zone* temp_zone) { SimplifiedLowering lowering(data->jsgraph(), data->js_heap_broker(), temp_zone, data->source_positions(), data->node_origins(), data->info()->GetPoisoningMitigationLevel()); lowering.LowerAllNodes(); } }; struct LoopPeelingPhase { static const char* phase_name() { return "loop peeling"; } void Run(PipelineData* data, Zone* temp_zone) { GraphTrimmer trimmer(temp_zone, data->graph()); NodeVector roots(temp_zone); data->jsgraph()->GetCachedNodes(&roots); trimmer.TrimGraph(roots.begin(), roots.end()); LoopTree* loop_tree = LoopFinder::BuildLoopTree(data->jsgraph()->graph(), temp_zone); LoopPeeler(data->graph(), data->common(), loop_tree, temp_zone, data->source_positions(), data->node_origins()) .PeelInnerLoopsOfTree(); } }; struct LoopExitEliminationPhase { static const char* phase_name() { return "loop exit elimination"; } void Run(PipelineData* data, Zone* temp_zone) { LoopPeeler::EliminateLoopExits(data->graph(), temp_zone); } }; struct ConcurrentOptimizationPrepPhase { static const char* phase_name() { return "concurrency preparation"; } void Run(PipelineData* data, Zone* temp_zone) { // Make sure we cache these code stubs. data->jsgraph()->CEntryStubConstant(1); data->jsgraph()->CEntryStubConstant(2); // TODO(turbofan): Remove this line once the Array constructor code // is a proper builtin and no longer a CodeStub. data->jsgraph()->ArrayConstructorStubConstant(); // This is needed for escape analysis. NodeProperties::SetType( data->jsgraph()->FalseConstant(), Type::HeapConstant(data->js_heap_broker(), data->isolate()->factory()->false_value(), data->jsgraph()->zone())); NodeProperties::SetType( data->jsgraph()->TrueConstant(), Type::HeapConstant(data->js_heap_broker(), data->isolate()->factory()->true_value(), data->jsgraph()->zone())); } }; struct GenericLoweringPhase { static const char* phase_name() { return "generic lowering"; } void Run(PipelineData* data, Zone* temp_zone) { GraphReducer graph_reducer(temp_zone, data->graph(), data->jsgraph()->Dead()); JSGenericLowering generic_lowering(data->jsgraph()); AddReducer(data, &graph_reducer, &generic_lowering); graph_reducer.ReduceGraph(); } }; struct EarlyOptimizationPhase { static const char* phase_name() { return "early optimization"; } void Run(PipelineData* data, Zone* temp_zone) { GraphReducer graph_reducer(temp_zone, data->graph(), data->jsgraph()->Dead()); DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(), data->common(), temp_zone); SimplifiedOperatorReducer simple_reducer(&graph_reducer, data->jsgraph(), data->js_heap_broker()); RedundancyElimination redundancy_elimination(&graph_reducer, temp_zone); ValueNumberingReducer value_numbering(temp_zone, data->graph()->zone()); MachineOperatorReducer machine_reducer(data->jsgraph()); CommonOperatorReducer common_reducer(&graph_reducer, data->graph(), data->js_heap_broker(), data->common(), data->machine(), temp_zone); AddReducer(data, &graph_reducer, &dead_code_elimination); AddReducer(data, &graph_reducer, &simple_reducer); AddReducer(data, &graph_reducer, &redundancy_elimination); AddReducer(data, &graph_reducer, &machine_reducer); AddReducer(data, &graph_reducer, &common_reducer); AddReducer(data, &graph_reducer, &value_numbering); graph_reducer.ReduceGraph(); } }; struct ControlFlowOptimizationPhase { static const char* phase_name() { return "control flow optimization"; } void Run(PipelineData* data, Zone* temp_zone) { ControlFlowOptimizer optimizer(data->graph(), data->common(), data->machine(), temp_zone); optimizer.Optimize(); } }; struct EffectControlLinearizationPhase { static const char* phase_name() { return "effect linearization"; } void Run(PipelineData* data, Zone* temp_zone) { { // The scheduler requires the graphs to be trimmed, so trim now. // TODO(jarin) Remove the trimming once the scheduler can handle untrimmed // graphs. GraphTrimmer trimmer(temp_zone, data->graph()); NodeVector roots(temp_zone); data->jsgraph()->GetCachedNodes(&roots); trimmer.TrimGraph(roots.begin(), roots.end()); // Schedule the graph without node splitting so that we can // fix the effect and control flow for nodes with low-level side // effects (such as changing representation to tagged or // 'floating' allocation regions.) Schedule* schedule = Scheduler::ComputeSchedule(temp_zone, data->graph(), Scheduler::kTempSchedule); if (FLAG_turbo_verify) ScheduleVerifier::Run(schedule); TraceSchedule(data->info(), data, schedule, "effect linearization schedule"); EffectControlLinearizer::MaskArrayIndexEnable mask_array_index = (data->info()->GetPoisoningMitigationLevel() != PoisoningMitigationLevel::kDontPoison) ? EffectControlLinearizer::kMaskArrayIndex : EffectControlLinearizer::kDoNotMaskArrayIndex; // Post-pass for wiring the control/effects // - connect allocating representation changes into the control&effect // chains and lower them, // - get rid of the region markers, // - introduce effect phis and rewire effects to get SSA again. EffectControlLinearizer linearizer( data->jsgraph(), schedule, temp_zone, data->source_positions(), data->node_origins(), mask_array_index); linearizer.Run(); } { // The {EffectControlLinearizer} might leave {Dead} nodes behind, so we // run {DeadCodeElimination} to prune these parts of the graph. // Also, the following store-store elimination phase greatly benefits from // doing a common operator reducer and dead code elimination just before // it, to eliminate conditional deopts with a constant condition. GraphReducer graph_reducer(temp_zone, data->graph(), data->jsgraph()->Dead()); DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(), data->common(), temp_zone); CommonOperatorReducer common_reducer( &graph_reducer, data->graph(), data->js_heap_broker(), data->common(), data->machine(), temp_zone); AddReducer(data, &graph_reducer, &dead_code_elimination); AddReducer(data, &graph_reducer, &common_reducer); graph_reducer.ReduceGraph(); } } }; struct StoreStoreEliminationPhase { static const char* phase_name() { return "store-store elimination"; } void Run(PipelineData* data, Zone* temp_zone) { GraphTrimmer trimmer(temp_zone, data->graph()); NodeVector roots(temp_zone); data->jsgraph()->GetCachedNodes(&roots); trimmer.TrimGraph(roots.begin(), roots.end()); StoreStoreElimination::Run(data->jsgraph(), temp_zone); } }; struct LoadEliminationPhase { static const char* phase_name() { return "load elimination"; } void Run(PipelineData* data, Zone* temp_zone) { GraphReducer graph_reducer(temp_zone, data->graph(), data->jsgraph()->Dead()); BranchElimination branch_condition_elimination(&graph_reducer, data->jsgraph(), temp_zone); DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(), data->common(), temp_zone); RedundancyElimination redundancy_elimination(&graph_reducer, temp_zone); LoadElimination load_elimination(&graph_reducer, data->jsgraph(), temp_zone); CheckpointElimination checkpoint_elimination(&graph_reducer); ValueNumberingReducer value_numbering(temp_zone, data->graph()->zone()); CommonOperatorReducer common_reducer(&graph_reducer, data->graph(), data->js_heap_broker(), data->common(), data->machine(), temp_zone); ConstantFoldingReducer constant_folding_reducer( &graph_reducer, data->jsgraph(), data->js_heap_broker()); TypeNarrowingReducer type_narrowing_reducer(&graph_reducer, data->jsgraph(), data->js_heap_broker()); AddReducer(data, &graph_reducer, &branch_condition_elimination); AddReducer(data, &graph_reducer, &dead_code_elimination); AddReducer(data, &graph_reducer, &redundancy_elimination); AddReducer(data, &graph_reducer, &load_elimination); AddReducer(data, &graph_reducer, &type_narrowing_reducer); AddReducer(data, &graph_reducer, &constant_folding_reducer); AddReducer(data, &graph_reducer, &checkpoint_elimination); AddReducer(data, &graph_reducer, &common_reducer); AddReducer(data, &graph_reducer, &value_numbering); graph_reducer.ReduceGraph(); } }; struct MemoryOptimizationPhase { static const char* phase_name() { return "memory optimization"; } void Run(PipelineData* data, Zone* temp_zone) { // The memory optimizer requires the graphs to be trimmed, so trim now. GraphTrimmer trimmer(temp_zone, data->graph()); NodeVector roots(temp_zone); data->jsgraph()->GetCachedNodes(&roots); trimmer.TrimGraph(roots.begin(), roots.end()); // Optimize allocations and load/store operations. MemoryOptimizer optimizer( data->jsgraph(), temp_zone, data->info()->GetPoisoningMitigationLevel(), data->info()->is_allocation_folding_enabled() ? MemoryOptimizer::AllocationFolding::kDoAllocationFolding : MemoryOptimizer::AllocationFolding::kDontAllocationFolding); optimizer.Optimize(); } }; struct LateOptimizationPhase { static const char* phase_name() { return "late optimization"; } void Run(PipelineData* data, Zone* temp_zone) { GraphReducer graph_reducer(temp_zone, data->graph(), data->jsgraph()->Dead()); BranchElimination branch_condition_elimination(&graph_reducer, data->jsgraph(), temp_zone); DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(), data->common(), temp_zone); ValueNumberingReducer value_numbering(temp_zone, data->graph()->zone()); MachineOperatorReducer machine_reducer(data->jsgraph()); CommonOperatorReducer common_reducer(&graph_reducer, data->graph(), data->js_heap_broker(), data->common(), data->machine(), temp_zone); SelectLowering select_lowering(data->jsgraph()->graph(), data->jsgraph()->common()); AddReducer(data, &graph_reducer, &branch_condition_elimination); AddReducer(data, &graph_reducer, &dead_code_elimination); AddReducer(data, &graph_reducer, &machine_reducer); AddReducer(data, &graph_reducer, &common_reducer); AddReducer(data, &graph_reducer, &select_lowering); AddReducer(data, &graph_reducer, &value_numbering); graph_reducer.ReduceGraph(); } }; struct EarlyGraphTrimmingPhase { static const char* phase_name() { return "early trimming"; } void Run(PipelineData* data, Zone* temp_zone) { GraphTrimmer trimmer(temp_zone, data->graph()); NodeVector roots(temp_zone); data->jsgraph()->GetCachedNodes(&roots); trimmer.TrimGraph(roots.begin(), roots.end()); } }; struct LateGraphTrimmingPhase { static const char* phase_name() { return "late graph trimming"; } void Run(PipelineData* data, Zone* temp_zone) { GraphTrimmer trimmer(temp_zone, data->graph()); NodeVector roots(temp_zone); if (data->jsgraph()) { data->jsgraph()->GetCachedNodes(&roots); } trimmer.TrimGraph(roots.begin(), roots.end()); } }; struct ComputeSchedulePhase { static const char* phase_name() { return "scheduling"; } void Run(PipelineData* data, Zone* temp_zone) { Schedule* schedule = Scheduler::ComputeSchedule( temp_zone, data->graph(), data->info()->is_splitting_enabled() ? Scheduler::kSplitNodes : Scheduler::kNoFlags); if (FLAG_turbo_verify) ScheduleVerifier::Run(schedule); data->set_schedule(schedule); } }; struct InstructionRangesAsJSON { const InstructionSequence* sequence; const ZoneVector<std::pair<int, int>>* instr_origins; }; std::ostream& operator<<(std::ostream& out, const InstructionRangesAsJSON& s) { const int max = static_cast<int>(s.sequence->LastInstructionIndex()); out << ", \"nodeIdToInstructionRange\": {"; bool need_comma = false; for (size_t i = 0; i < s.instr_origins->size(); ++i) { std::pair<int, int> offset = (*s.instr_origins)[i]; if (offset.first == -1) continue; const int first = max - offset.first + 1; const int second = max - offset.second + 1; if (need_comma) out << ", "; out << "\"" << i << "\": [" << first << ", " << second << "]"; need_comma = true; } out << "}"; out << ", \"blockIdtoInstructionRange\": {"; need_comma = false; for (auto block : s.sequence->instruction_blocks()) { if (need_comma) out << ", "; out << "\"" << block->rpo_number() << "\": [" << block->code_start() << ", " << block->code_end() << "]"; need_comma = true; } out << "}"; return out; } struct InstructionSelectionPhase { static const char* phase_name() { return "select instructions"; } void Run(PipelineData* data, Zone* temp_zone, Linkage* linkage) { InstructionSelector selector( temp_zone, data->graph()->NodeCount(), linkage, data->sequence(), data->schedule(), data->source_positions(), data->frame(), data->info()->switch_jump_table_enabled() ? InstructionSelector::kEnableSwitchJumpTable : InstructionSelector::kDisableSwitchJumpTable, data->info()->is_source_positions_enabled() ? InstructionSelector::kAllSourcePositions : InstructionSelector::kCallSourcePositions, InstructionSelector::SupportedFeatures(), FLAG_turbo_instruction_scheduling ? InstructionSelector::kEnableScheduling : InstructionSelector::kDisableScheduling, !data->isolate() || data->isolate()->serializer_enabled() ? InstructionSelector::kDisableRootsRelativeAddressing : InstructionSelector::kEnableRootsRelativeAddressing, data->info()->GetPoisoningMitigationLevel(), data->info()->trace_turbo_json_enabled() ? InstructionSelector::kEnableTraceTurboJson : InstructionSelector::kDisableTraceTurboJson); if (!selector.SelectInstructions()) { data->set_compilation_failed(); } if (data->info()->trace_turbo_json_enabled()) { TurboJsonFile json_of(data->info(), std::ios_base::app); json_of << "{\"name\":\"" << phase_name() << "\",\"type\":\"instructions\"" << InstructionRangesAsJSON{data->sequence(), &selector.instr_origins()} << "},\n"; } } }; struct MeetRegisterConstraintsPhase { static const char* phase_name() { return "meet register constraints"; } void Run(PipelineData* data, Zone* temp_zone) { ConstraintBuilder builder(data->register_allocation_data()); builder.MeetRegisterConstraints(); } }; struct ResolvePhisPhase { static const char* phase_name() { return "resolve phis"; } void Run(PipelineData* data, Zone* temp_zone) { ConstraintBuilder builder(data->register_allocation_data()); builder.ResolvePhis(); } }; struct BuildLiveRangesPhase { static const char* phase_name() { return "build live ranges"; } void Run(PipelineData* data, Zone* temp_zone) { LiveRangeBuilder builder(data->register_allocation_data(), temp_zone); builder.BuildLiveRanges(); } }; struct SplinterLiveRangesPhase { static const char* phase_name() { return "splinter live ranges"; } void Run(PipelineData* data, Zone* temp_zone) { LiveRangeSeparator live_range_splinterer(data->register_allocation_data(), temp_zone); live_range_splinterer.Splinter(); } }; template <typename RegAllocator> struct AllocateGeneralRegistersPhase { static const char* phase_name() { return "allocate general registers"; } void Run(PipelineData* data, Zone* temp_zone) { RegAllocator allocator(data->register_allocation_data(), GENERAL_REGISTERS, temp_zone); allocator.AllocateRegisters(); } }; template <typename RegAllocator> struct AllocateFPRegistersPhase { static const char* phase_name() { return "allocate f.p. registers"; } void Run(PipelineData* data, Zone* temp_zone) { RegAllocator allocator(data->register_allocation_data(), FP_REGISTERS, temp_zone); allocator.AllocateRegisters(); } }; struct MergeSplintersPhase { static const char* phase_name() { return "merge splintered ranges"; } void Run(PipelineData* pipeline_data, Zone* temp_zone) { RegisterAllocationData* data = pipeline_data->register_allocation_data(); LiveRangeMerger live_range_merger(data, temp_zone); live_range_merger.Merge(); } }; struct LocateSpillSlotsPhase { static const char* phase_name() { return "locate spill slots"; } void Run(PipelineData* data, Zone* temp_zone) { SpillSlotLocator locator(data->register_allocation_data()); locator.LocateSpillSlots(); } }; struct AssignSpillSlotsPhase { static const char* phase_name() { return "assign spill slots"; } void Run(PipelineData* data, Zone* temp_zone) { OperandAssigner assigner(data->register_allocation_data()); assigner.AssignSpillSlots(); } }; struct CommitAssignmentPhase { static const char* phase_name() { return "commit assignment"; } void Run(PipelineData* data, Zone* temp_zone) { OperandAssigner assigner(data->register_allocation_data()); assigner.CommitAssignment(); } }; struct PopulateReferenceMapsPhase { static const char* phase_name() { return "populate pointer maps"; } void Run(PipelineData* data, Zone* temp_zone) { ReferenceMapPopulator populator(data->register_allocation_data()); populator.PopulateReferenceMaps(); } }; struct ConnectRangesPhase { static const char* phase_name() { return "connect ranges"; } void Run(PipelineData* data, Zone* temp_zone) { LiveRangeConnector connector(data->register_allocation_data()); connector.ConnectRanges(temp_zone); } }; struct ResolveControlFlowPhase { static const char* phase_name() { return "resolve control flow"; } void Run(PipelineData* data, Zone* temp_zone) { LiveRangeConnector connector(data->register_allocation_data()); connector.ResolveControlFlow(temp_zone); } }; struct OptimizeMovesPhase { static const char* phase_name() { return "optimize moves"; } void Run(PipelineData* data, Zone* temp_zone) { MoveOptimizer move_optimizer(temp_zone, data->sequence()); move_optimizer.Run(); } }; struct FrameElisionPhase { static const char* phase_name() { return "frame elision"; } void Run(PipelineData* data, Zone* temp_zone) { FrameElider(data->sequence()).Run(); } }; struct JumpThreadingPhase { static const char* phase_name() { return "jump threading"; } void Run(PipelineData* data, Zone* temp_zone, bool frame_at_start) { ZoneVector<RpoNumber> result(temp_zone); if (JumpThreading::ComputeForwarding(temp_zone, result, data->sequence(), frame_at_start)) { JumpThreading::ApplyForwarding(temp_zone, result, data->sequence()); } } }; struct AssembleCodePhase { static const char* phase_name() { return "assemble code"; } void Run(PipelineData* data, Zone* temp_zone) { data->code_generator()->AssembleCode(); } }; struct FinalizeCodePhase { static const char* phase_name() { return "finalize code"; } void Run(PipelineData* data, Zone* temp_zone) { data->set_code(data->code_generator()->FinalizeCode()); } }; struct PrintGraphPhase { static const char* phase_name() { return nullptr; } void Run(PipelineData* data, Zone* temp_zone, const char* phase) { OptimizedCompilationInfo* info = data->info(); Graph* graph = data->graph(); if (info->trace_turbo_json_enabled()) { // Print JSON. AllowHandleDereference allow_deref; TurboJsonFile json_of(info, std::ios_base::app); json_of << "{\"name\":\"" << phase << "\",\"type\":\"graph\",\"data\":" << AsJSON(*graph, data->source_positions(), data->node_origins()) << "},\n"; } if (info->trace_turbo_scheduled_enabled()) { AccountingAllocator allocator; Schedule* schedule = data->schedule(); if (schedule == nullptr) { schedule = Scheduler::ComputeSchedule(temp_zone, data->graph(), Scheduler::kNoFlags); } AllowHandleDereference allow_deref; CodeTracer::Scope tracing_scope(data->GetCodeTracer()); OFStream os(tracing_scope.file()); os << "-- Graph after " << phase << " -- " << std::endl; os << AsScheduledGraph(schedule); } else if (info->trace_turbo_graph_enabled()) { // Simple textual RPO. AllowHandleDereference allow_deref; CodeTracer::Scope tracing_scope(data->GetCodeTracer()); OFStream os(tracing_scope.file()); os << "-- Graph after " << phase << " -- " << std::endl; os << AsRPO(*graph); } } }; struct VerifyGraphPhase { static const char* phase_name() { return nullptr; } void Run(PipelineData* data, Zone* temp_zone, const bool untyped, bool values_only = false) { Verifier::CodeType code_type; switch (data->info()->code_kind()) { case Code::WASM_FUNCTION: case Code::WASM_TO_JS_FUNCTION: case Code::JS_TO_WASM_FUNCTION: case Code::WASM_INTERPRETER_ENTRY: case Code::C_WASM_ENTRY: code_type = Verifier::kWasm; break; default: code_type = Verifier::kDefault; } Verifier::Run(data->graph(), !untyped ? Verifier::TYPED : Verifier::UNTYPED, values_only ? Verifier::kValuesOnly : Verifier::kAll, code_type); } }; void PipelineImpl::RunPrintAndVerify(const char* phase, bool untyped) { if (info()->trace_turbo_json_enabled() || info()->trace_turbo_graph_enabled()) { Run<PrintGraphPhase>(phase); } if (FLAG_turbo_verify) { Run<VerifyGraphPhase>(untyped); } } bool PipelineImpl::CreateGraph() { PipelineData* data = this->data_; data->BeginPhaseKind("graph creation"); if (info()->trace_turbo_json_enabled() || info()->trace_turbo_graph_enabled()) { CodeTracer::Scope tracing_scope(data->GetCodeTracer()); OFStream os(tracing_scope.file()); os << "---------------------------------------------------\n" << "Begin compiling method " << info()->GetDebugName().get() << " using Turbofan" << std::endl; } if (info()->trace_turbo_json_enabled()) { TurboCfgFile tcf(isolate()); tcf << AsC1VCompilation(info()); } data->source_positions()->AddDecorator(); if (data->info()->trace_turbo_json_enabled()) { data->node_origins()->AddDecorator(); } Run<GraphBuilderPhase>(); RunPrintAndVerify(GraphBuilderPhase::phase_name(), true); // Perform function context specialization and inlining (if enabled). Run<InliningPhase>(); RunPrintAndVerify(InliningPhase::phase_name(), true); // Remove dead->live edges from the graph. Run<EarlyGraphTrimmingPhase>(); RunPrintAndVerify(EarlyGraphTrimmingPhase::phase_name(), true); // Run the type-sensitive lowerings and optimizations on the graph. { // Determine the Typer operation flags. Typer::Flags flags = Typer::kNoFlags; if (is_sloppy(info()->shared_info()->language_mode()) && info()->shared_info()->IsUserJavaScript()) { // Sloppy mode functions always have an Object for this. flags |= Typer::kThisIsReceiver; } if (IsClassConstructor(info()->shared_info()->kind())) { // Class constructors cannot be [[Call]]ed. flags |= Typer::kNewTargetIsReceiver; } // Type the graph and keep the Typer running on newly created nodes within // this scope; the Typer is automatically unlinked from the Graph once we // leave this scope below. Typer typer(isolate(), data->js_heap_broker(), flags, data->graph()); Run<TyperPhase>(&typer); RunPrintAndVerify(TyperPhase::phase_name()); // Do some hacky things to prepare for the optimization phase. // (caching handles, etc.). Run<ConcurrentOptimizationPrepPhase>(); if (FLAG_concurrent_compiler_frontend) { data->js_heap_broker()->SerializeStandardObjects(); Run<CopyMetadataForConcurrentCompilePhase>(); } // Lower JSOperators where we can determine types. Run<TypedLoweringPhase>(); RunPrintAndVerify(TypedLoweringPhase::phase_name()); } data->EndPhaseKind(); return true; } bool PipelineImpl::OptimizeGraph(Linkage* linkage) { PipelineData* data = this->data_; data->BeginPhaseKind("lowering"); if (data->info()->is_loop_peeling_enabled()) { Run<LoopPeelingPhase>(); RunPrintAndVerify(LoopPeelingPhase::phase_name(), true); } else { Run<LoopExitEliminationPhase>(); RunPrintAndVerify(LoopExitEliminationPhase::phase_name(), true); } if (FLAG_turbo_load_elimination) { Run<LoadEliminationPhase>(); RunPrintAndVerify(LoadEliminationPhase::phase_name()); } if (FLAG_turbo_escape) { Run<EscapeAnalysisPhase>(); if (data->compilation_failed()) { info()->AbortOptimization( BailoutReason::kCyclicObjectStateDetectedInEscapeAnalysis); data->EndPhaseKind(); return false; } RunPrintAndVerify(EscapeAnalysisPhase::phase_name()); } // Perform simplified lowering. This has to run w/o the Typer decorator, // because we cannot compute meaningful types anyways, and the computed types // might even conflict with the representation/truncation logic. Run<SimplifiedLoweringPhase>(); RunPrintAndVerify(SimplifiedLoweringPhase::phase_name(), true); // From now on it is invalid to look at types on the nodes, because the types // on the nodes might not make sense after representation selection due to the // way we handle truncations; if we'd want to look at types afterwards we'd // essentially need to re-type (large portions of) the graph. // In order to catch bugs related to type access after this point, we now // remove the types from the nodes (currently only in Debug builds). #ifdef DEBUG Run<UntyperPhase>(); RunPrintAndVerify(UntyperPhase::phase_name(), true); #endif // Run generic lowering pass. Run<GenericLoweringPhase>(); RunPrintAndVerify(GenericLoweringPhase::phase_name(), true); data->BeginPhaseKind("block building"); // Run early optimization pass. Run<EarlyOptimizationPhase>(); RunPrintAndVerify(EarlyOptimizationPhase::phase_name(), true); Run<EffectControlLinearizationPhase>(); RunPrintAndVerify(EffectControlLinearizationPhase::phase_name(), true); if (FLAG_turbo_store_elimination) { Run<StoreStoreEliminationPhase>(); RunPrintAndVerify(StoreStoreEliminationPhase::phase_name(), true); } // Optimize control flow. if (FLAG_turbo_cf_optimization) { Run<ControlFlowOptimizationPhase>(); RunPrintAndVerify(ControlFlowOptimizationPhase::phase_name(), true); } // Optimize memory access and allocation operations. Run<MemoryOptimizationPhase>(); // TODO(jarin, rossberg): Remove UNTYPED once machine typing works. RunPrintAndVerify(MemoryOptimizationPhase::phase_name(), true); // Lower changes that have been inserted before. Run<LateOptimizationPhase>(); // TODO(jarin, rossberg): Remove UNTYPED once machine typing works. RunPrintAndVerify(LateOptimizationPhase::phase_name(), true); data->source_positions()->RemoveDecorator(); if (data->info()->trace_turbo_json_enabled()) { data->node_origins()->RemoveDecorator(); } ComputeScheduledGraph(); return SelectInstructions(linkage); } MaybeHandle<Code> Pipeline::GenerateCodeForCodeStub( Isolate* isolate, CallDescriptor* call_descriptor, Graph* graph, Schedule* schedule, Code::Kind kind, const char* debug_name, uint32_t stub_key, int32_t builtin_index, JumpOptimizationInfo* jump_opt, PoisoningMitigationLevel poisoning_level, const AssemblerOptions& options) { OptimizedCompilationInfo info(CStrVector(debug_name), graph->zone(), kind); info.set_builtin_index(builtin_index); info.set_stub_key(stub_key); if (poisoning_level != PoisoningMitigationLevel::kDontPoison) { info.SetPoisoningMitigationLevel(poisoning_level); } // Construct a pipeline for scheduling and code generation. ZoneStats zone_stats(isolate->allocator()); SourcePositionTable source_positions(graph); NodeOriginTable node_origins(graph); PipelineData data(&zone_stats, &info, isolate, graph, schedule, &source_positions, &node_origins, jump_opt, options); data.set_verify_graph(FLAG_verify_csa); std::unique_ptr<PipelineStatistics> pipeline_statistics; if (FLAG_turbo_stats || FLAG_turbo_stats_nvp) { pipeline_statistics.reset(new PipelineStatistics( &info, isolate->GetTurboStatistics(), &zone_stats)); pipeline_statistics->BeginPhaseKind("stub codegen"); } PipelineImpl pipeline(&data); DCHECK_NOT_NULL(data.schedule()); if (info.trace_turbo_json_enabled() || info.trace_turbo_graph_enabled()) { CodeTracer::Scope tracing_scope(data.GetCodeTracer()); OFStream os(tracing_scope.file()); os << "---------------------------------------------------\n" << "Begin compiling " << debug_name << " using Turbofan" << std::endl; if (info.trace_turbo_json_enabled()) { TurboJsonFile json_of(&info, std::ios_base::trunc); json_of << "{\"function\" : "; JsonPrintFunctionSource(json_of, -1, info.GetDebugName(), Handle<Script>(), isolate, Handle<SharedFunctionInfo>()); json_of << ",\n\"phases\":["; } pipeline.Run<PrintGraphPhase>("Machine"); } TraceSchedule(data.info(), &data, data.schedule(), "schedule"); pipeline.Run<VerifyGraphPhase>(false, true); return pipeline.GenerateCode(call_descriptor); } // static MaybeHandle<Code> Pipeline::GenerateCodeForTesting( OptimizedCompilationInfo* info, Isolate* isolate) { ZoneStats zone_stats(isolate->allocator()); std::unique_ptr<PipelineStatistics> pipeline_statistics( CreatePipelineStatistics(Handle<Script>::null(), info, isolate, &zone_stats)); PipelineData data(&zone_stats, isolate, info, pipeline_statistics.get()); PipelineImpl pipeline(&data); Linkage linkage(Linkage::ComputeIncoming(data.instruction_zone(), info)); Deoptimizer::EnsureCodeForMaxDeoptimizationEntries(isolate); if (!pipeline.CreateGraph()) return MaybeHandle<Code>(); if (!pipeline.OptimizeGraph(&linkage)) return MaybeHandle<Code>(); pipeline.AssembleCode(&linkage); Handle<Code> code; if (pipeline.FinalizeCode().ToHandle(&code) && pipeline.CommitDependencies(code)) { return code; } return MaybeHandle<Code>(); } // static MaybeHandle<Code> Pipeline::GenerateCodeForTesting( OptimizedCompilationInfo* info, Isolate* isolate, CallDescriptor* call_descriptor, Graph* graph, const AssemblerOptions& options, Schedule* schedule, SourcePositionTable* source_positions) { // Construct a pipeline for scheduling and code generation. ZoneStats zone_stats(isolate->allocator()); // TODO(wasm): Refactor code generation to check for non-existing source // table, then remove this conditional allocation. if (!source_positions) source_positions = new (info->zone()) SourcePositionTable(graph); NodeOriginTable* node_positions = new (info->zone()) NodeOriginTable(graph); PipelineData data(&zone_stats, info, isolate, graph, schedule, source_positions, node_positions, nullptr, options); std::unique_ptr<PipelineStatistics> pipeline_statistics; if (FLAG_turbo_stats || FLAG_turbo_stats_nvp) { pipeline_statistics.reset(new PipelineStatistics( info, isolate->GetTurboStatistics(), &zone_stats)); pipeline_statistics->BeginPhaseKind("test codegen"); } PipelineImpl pipeline(&data); if (info->trace_turbo_json_enabled()) { TurboJsonFile json_of(info, std::ios_base::trunc); json_of << "{\"function\":\"" << info->GetDebugName().get() << "\", \"source\":\"\",\n\"phases\":["; } // TODO(rossberg): Should this really be untyped? pipeline.RunPrintAndVerify("machine", true); // Ensure we have a schedule. if (data.schedule() == nullptr) { pipeline.ComputeScheduledGraph(); } Handle<Code> code; if (pipeline.GenerateCode(call_descriptor).ToHandle(&code) && pipeline.CommitDependencies(code)) { return code; } return MaybeHandle<Code>(); } // static OptimizedCompilationJob* Pipeline::NewCompilationJob( Isolate* isolate, Handle<JSFunction> function, bool has_script) { Handle<SharedFunctionInfo> shared = handle(function->shared(), function->GetIsolate()); return new PipelineCompilationJob(isolate, shared, function); } // static OptimizedCompilationJob* Pipeline::NewWasmCompilationJob( OptimizedCompilationInfo* info, wasm::WasmEngine* wasm_engine, MachineGraph* mcgraph, CallDescriptor* call_descriptor, SourcePositionTable* source_positions, NodeOriginTable* node_origins, wasm::FunctionBody function_body, wasm::WasmModule* wasm_module, wasm::NativeModule* native_module, int function_index, wasm::ModuleOrigin asmjs_origin) { return new PipelineWasmCompilationJob( info, wasm_engine, mcgraph, call_descriptor, source_positions, node_origins, function_body, wasm_module, native_module, function_index, asmjs_origin); } bool Pipeline::AllocateRegistersForTesting(const RegisterConfiguration* config, InstructionSequence* sequence, bool run_verifier) { OptimizedCompilationInfo info(ArrayVector("testing"), sequence->zone(), Code::STUB); ZoneStats zone_stats(sequence->isolate()->allocator()); PipelineData data(&zone_stats, &info, sequence->isolate(), sequence); data.InitializeFrameData(nullptr); PipelineImpl pipeline(&data); pipeline.AllocateRegisters(config, nullptr, run_verifier); return !data.compilation_failed(); } void PipelineImpl::ComputeScheduledGraph() { PipelineData* data = this->data_; // We should only schedule the graph if it is not scheduled yet. DCHECK_NULL(data->schedule()); Run<LateGraphTrimmingPhase>(); RunPrintAndVerify(LateGraphTrimmingPhase::phase_name(), true); Run<ComputeSchedulePhase>(); TraceSchedule(data->info(), data, data->schedule(), "schedule"); } bool PipelineImpl::SelectInstructions(Linkage* linkage) { auto call_descriptor = linkage->GetIncomingDescriptor(); PipelineData* data = this->data_; // We should have a scheduled graph. DCHECK_NOT_NULL(data->graph()); DCHECK_NOT_NULL(data->schedule()); if (FLAG_turbo_profiling) { data->set_profiler_data(BasicBlockInstrumentor::Instrument( info(), data->graph(), data->schedule(), data->isolate())); } bool verify_stub_graph = data->verify_graph(); // Jump optimization runs instruction selection twice, but the instruction // selector mutates nodes like swapping the inputs of a load, which can // violate the machine graph verification rules. So we skip the second // verification on a graph that already verified before. auto jump_opt = data->jump_optimization_info(); if (jump_opt && jump_opt->is_optimizing()) { verify_stub_graph = false; } if (verify_stub_graph || (FLAG_turbo_verify_machine_graph != nullptr && (!strcmp(FLAG_turbo_verify_machine_graph, "*") || !strcmp(FLAG_turbo_verify_machine_graph, data->debug_name())))) { if (FLAG_trace_verify_csa) { AllowHandleDereference allow_deref; CodeTracer::Scope tracing_scope(data->GetCodeTracer()); OFStream os(tracing_scope.file()); os << "--------------------------------------------------\n" << "--- Verifying " << data->debug_name() << " generated by TurboFan\n" << "--------------------------------------------------\n" << *data->schedule() << "--------------------------------------------------\n" << "--- End of " << data->debug_name() << " generated by TurboFan\n" << "--------------------------------------------------\n"; } Zone temp_zone(data->allocator(), ZONE_NAME); MachineGraphVerifier::Run(data->graph(), data->schedule(), linkage, data->info()->IsStub(), data->debug_name(), &temp_zone); } data->InitializeInstructionSequence(call_descriptor); data->InitializeFrameData(call_descriptor); // Select and schedule instructions covering the scheduled graph. Run<InstructionSelectionPhase>(linkage); if (data->compilation_failed()) { info()->AbortOptimization(BailoutReason::kCodeGenerationFailed); data->EndPhaseKind(); return false; } if (info()->trace_turbo_json_enabled() && !data->MayHaveUnverifiableGraph()) { AllowHandleDereference allow_deref; TurboCfgFile tcf(isolate()); tcf << AsC1V("CodeGen", data->schedule(), data->source_positions(), data->sequence()); } if (info()->trace_turbo_json_enabled()) { std::ostringstream source_position_output; // Output source position information before the graph is deleted. data_->source_positions()->PrintJson(source_position_output); source_position_output << ",\n\"NodeOrigins\" : "; data_->node_origins()->PrintJson(source_position_output); data_->set_source_position_output(source_position_output.str()); } data->DeleteGraphZone(); data->BeginPhaseKind("register allocation"); bool run_verifier = FLAG_turbo_verify_allocation; // Allocate registers. if (call_descriptor->HasRestrictedAllocatableRegisters()) { RegList registers = call_descriptor->AllocatableRegisters(); DCHECK_LT(0, NumRegs(registers)); std::unique_ptr<const RegisterConfiguration> config; config.reset(RegisterConfiguration::RestrictGeneralRegisters(registers)); AllocateRegisters(config.get(), call_descriptor, run_verifier); } else if (data->info()->GetPoisoningMitigationLevel() != PoisoningMitigationLevel::kDontPoison) { AllocateRegisters(RegisterConfiguration::Poisoning(), call_descriptor, run_verifier); #if defined(V8_TARGET_ARCH_IA32) && defined(V8_EMBEDDED_BUILTINS) } else if (data_->assembler_options().isolate_independent_code) { // TODO(v8:6666): Extend support to user code. Ensure that // it is mutually exclusive with the Poisoning configuration above; and that // it cooperates with restricted allocatable registers above. static_assert(kRootRegister == kSpeculationPoisonRegister, "The following checks assume root equals poison register"); CHECK_IMPLIES(FLAG_embedded_builtins, !FLAG_branch_load_poisoning); CHECK_IMPLIES(FLAG_embedded_builtins, !FLAG_untrusted_code_mitigations); AllocateRegisters(RegisterConfiguration::PreserveRootIA32(), call_descriptor, run_verifier); #endif // V8_TARGET_ARCH_IA32 } else { AllocateRegisters(RegisterConfiguration::Default(), call_descriptor, run_verifier); } // Verify the instruction sequence has the same hash in two stages. VerifyGeneratedCodeIsIdempotent(); Run<FrameElisionPhase>(); if (data->compilation_failed()) { info()->AbortOptimization( BailoutReason::kNotEnoughVirtualRegistersRegalloc); data->EndPhaseKind(); return false; } // TODO(mtrofin): move this off to the register allocator. bool generate_frame_at_start = data_->sequence()->instruction_blocks().front()->must_construct_frame(); // Optimimize jumps. if (FLAG_turbo_jt) { Run<JumpThreadingPhase>(generate_frame_at_start); } data->EndPhaseKind(); return true; } void PipelineImpl::VerifyGeneratedCodeIsIdempotent() { PipelineData* data = this->data_; JumpOptimizationInfo* jump_opt = data->jump_optimization_info(); if (jump_opt == nullptr) return; InstructionSequence* code = data->sequence(); int instruction_blocks = code->InstructionBlockCount(); int virtual_registers = code->VirtualRegisterCount(); size_t hash_code = base::hash_combine(instruction_blocks, virtual_registers); for (auto instr : *code) { hash_code = base::hash_combine(hash_code, instr->opcode(), instr->InputCount(), instr->OutputCount()); } for (int i = 0; i < virtual_registers; i++) { hash_code = base::hash_combine(hash_code, code->GetRepresentation(i)); } if (jump_opt->is_collecting()) { jump_opt->set_hash_code(hash_code); } else { CHECK_EQ(hash_code, jump_opt->hash_code()); } } struct InstructionStartsAsJSON { const ZoneVector<int>* instr_starts; }; std::ostream& operator<<(std::ostream& out, const InstructionStartsAsJSON& s) { out << ", \"instructionOffsetToPCOffset\": {"; bool need_comma = false; for (size_t i = 0; i < s.instr_starts->size(); ++i) { if (need_comma) out << ", "; int offset = (*s.instr_starts)[i]; out << "\"" << i << "\":" << offset; need_comma = true; } out << "}"; return out; } void PipelineImpl::AssembleCode(Linkage* linkage) { PipelineData* data = this->data_; data->BeginPhaseKind("code generation"); data->InitializeCodeGenerator(linkage); Run<AssembleCodePhase>(); if (data->info()->trace_turbo_json_enabled()) { TurboJsonFile json_of(data->info(), std::ios_base::app); json_of << "{\"name\":\"code generation\"" << ", \"type\":\"instructions\"" << InstructionStartsAsJSON{&data->code_generator()->instr_starts()}; json_of << "},\n"; } data->DeleteInstructionZone(); } struct BlockStartsAsJSON { const ZoneVector<int>* block_starts; }; std::ostream& operator<<(std::ostream& out, const BlockStartsAsJSON& s) { out << ", \"blockIdToOffset\": {"; bool need_comma = false; for (size_t i = 0; i < s.block_starts->size(); ++i) { if (need_comma) out << ", "; int offset = (*s.block_starts)[i]; out << "\"" << i << "\":" << offset; need_comma = true; } out << "},"; return out; } MaybeHandle<Code> PipelineImpl::FinalizeCode() { PipelineData* data = this->data_; Run<FinalizeCodePhase>(); MaybeHandle<Code> maybe_code = data->code(); Handle<Code> code; if (!maybe_code.ToHandle(&code)) { return maybe_code; } if (data->profiler_data()) { #ifdef ENABLE_DISASSEMBLER std::ostringstream os; code->Disassemble(nullptr, os); data->profiler_data()->SetCode(&os); #endif // ENABLE_DISASSEMBLER } info()->SetCode(code); PrintCode(isolate(), code, info()); if (info()->trace_turbo_json_enabled()) { TurboJsonFile json_of(info(), std::ios_base::app); json_of << "{\"name\":\"disassembly\",\"type\":\"disassembly\"" << BlockStartsAsJSON{&data->code_generator()->block_starts()} << "\"data\":\""; #ifdef ENABLE_DISASSEMBLER std::stringstream disassembly_stream; code->Disassemble(nullptr, disassembly_stream); std::string disassembly_string(disassembly_stream.str()); for (const auto& c : disassembly_string) { json_of << AsEscapedUC16ForJSON(c); } #endif // ENABLE_DISASSEMBLER json_of << "\"}\n],\n"; json_of << "\"nodePositions\":"; json_of << data->source_position_output() << ",\n"; JsonPrintAllSourceWithPositions(json_of, data->info(), isolate()); json_of << "\n}"; } if (info()->trace_turbo_json_enabled() || info()->trace_turbo_graph_enabled()) { CodeTracer::Scope tracing_scope(data->GetCodeTracer()); OFStream os(tracing_scope.file()); os << "---------------------------------------------------\n" << "Finished compiling method " << info()->GetDebugName().get() << " using Turbofan" << std::endl; } return code; } MaybeHandle<Code> PipelineImpl::GenerateCode(CallDescriptor* call_descriptor) { Linkage linkage(call_descriptor); // Perform instruction selection and register allocation. if (!SelectInstructions(&linkage)) return MaybeHandle<Code>(); // Generate the final machine code. AssembleCode(&linkage); return FinalizeCode(); } bool PipelineImpl::CommitDependencies(Handle<Code> code) { return data_->dependencies() == nullptr || data_->dependencies()->Commit(code); } void PipelineImpl::AllocateRegisters(const RegisterConfiguration* config, CallDescriptor* call_descriptor, bool run_verifier) { PipelineData* data = this->data_; // Don't track usage for this zone in compiler stats. std::unique_ptr<Zone> verifier_zone; RegisterAllocatorVerifier* verifier = nullptr; if (run_verifier) { verifier_zone.reset(new Zone(data->allocator(), ZONE_NAME)); verifier = new (verifier_zone.get()) RegisterAllocatorVerifier( verifier_zone.get(), config, data->sequence()); } #ifdef DEBUG data_->sequence()->ValidateEdgeSplitForm(); data_->sequence()->ValidateDeferredBlockEntryPaths(); data_->sequence()->ValidateDeferredBlockExitPaths(); #endif data->InitializeRegisterAllocationData(config, call_descriptor); if (info()->is_osr()) data->osr_helper()->SetupFrame(data->frame()); Run<MeetRegisterConstraintsPhase>(); Run<ResolvePhisPhase>(); Run<BuildLiveRangesPhase>(); if (info()->trace_turbo_graph_enabled()) { AllowHandleDereference allow_deref; CodeTracer::Scope tracing_scope(data->GetCodeTracer()); OFStream os(tracing_scope.file()); os << "----- Instruction sequence before register allocation -----\n" << PrintableInstructionSequence({config, data->sequence()}); } if (verifier != nullptr) { CHECK(!data->register_allocation_data()->ExistsUseWithoutDefinition()); CHECK(data->register_allocation_data() ->RangesDefinedInDeferredStayInDeferred()); } if (FLAG_turbo_preprocess_ranges) { Run<SplinterLiveRangesPhase>(); } Run<AllocateGeneralRegistersPhase<LinearScanAllocator>>(); Run<AllocateFPRegistersPhase<LinearScanAllocator>>(); if (FLAG_turbo_preprocess_ranges) { Run<MergeSplintersPhase>(); } Run<AssignSpillSlotsPhase>(); Run<CommitAssignmentPhase>(); // TODO(chromium:725559): remove this check once // we understand the cause of the bug. We keep just the // check at the end of the allocation. if (verifier != nullptr) { verifier->VerifyAssignment("Immediately after CommitAssignmentPhase."); } Run<PopulateReferenceMapsPhase>(); Run<ConnectRangesPhase>(); Run<ResolveControlFlowPhase>(); if (FLAG_turbo_move_optimization) { Run<OptimizeMovesPhase>(); } Run<LocateSpillSlotsPhase>(); if (info()->trace_turbo_graph_enabled()) { AllowHandleDereference allow_deref; CodeTracer::Scope tracing_scope(data->GetCodeTracer()); OFStream os(tracing_scope.file()); os << "----- Instruction sequence after register allocation -----\n" << PrintableInstructionSequence({config, data->sequence()}); } if (verifier != nullptr) { verifier->VerifyAssignment("End of regalloc pipeline."); verifier->VerifyGapMoves(); } if (info()->trace_turbo_json_enabled() && !data->MayHaveUnverifiableGraph()) { TurboCfgFile tcf(isolate()); tcf << AsC1VRegisterAllocationData("CodeGen", data->register_allocation_data()); } data->DeleteRegisterAllocationZone(); } OptimizedCompilationInfo* PipelineImpl::info() const { return data_->info(); } Isolate* PipelineImpl::isolate() const { return data_->isolate(); } CodeGenerator* PipelineImpl::code_generator() const { return data_->code_generator(); } } // namespace compiler } // namespace internal } // namespace v8