// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/frames.h" #include <memory> #include <sstream> #include "src/base/bits.h" #include "src/deoptimizer.h" #include "src/frames-inl.h" #include "src/ic/ic-stats.h" #include "src/register-configuration.h" #include "src/safepoint-table.h" #include "src/string-stream.h" #include "src/visitors.h" #include "src/vm-state-inl.h" #include "src/wasm/wasm-code-manager.h" #include "src/wasm/wasm-engine.h" #include "src/wasm/wasm-objects-inl.h" #include "src/zone/zone-containers.h" namespace v8 { namespace internal { ReturnAddressLocationResolver StackFrame::return_address_location_resolver_ = nullptr; // Iterator that supports traversing the stack handlers of a // particular frame. Needs to know the top of the handler chain. class StackHandlerIterator BASE_EMBEDDED { public: StackHandlerIterator(const StackFrame* frame, StackHandler* handler) : limit_(frame->fp()), handler_(handler) { // Make sure the handler has already been unwound to this frame. DCHECK(frame->sp() <= handler->address()); } StackHandler* handler() const { return handler_; } bool done() { return handler_ == nullptr || handler_->address() > limit_; } void Advance() { DCHECK(!done()); handler_ = handler_->next(); } private: const Address limit_; StackHandler* handler_; }; // ------------------------------------------------------------------------- #define INITIALIZE_SINGLETON(type, field) field##_(this), StackFrameIteratorBase::StackFrameIteratorBase(Isolate* isolate, bool can_access_heap_objects) : isolate_(isolate), STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON) frame_(nullptr), handler_(nullptr), can_access_heap_objects_(can_access_heap_objects) {} #undef INITIALIZE_SINGLETON StackFrameIterator::StackFrameIterator(Isolate* isolate) : StackFrameIterator(isolate, isolate->thread_local_top()) {} StackFrameIterator::StackFrameIterator(Isolate* isolate, ThreadLocalTop* t) : StackFrameIteratorBase(isolate, true) { Reset(t); } void StackFrameIterator::Advance() { DCHECK(!done()); // Compute the state of the calling frame before restoring // callee-saved registers and unwinding handlers. This allows the // frame code that computes the caller state to access the top // handler and the value of any callee-saved register if needed. StackFrame::State state; StackFrame::Type type = frame_->GetCallerState(&state); // Unwind handlers corresponding to the current frame. StackHandlerIterator it(frame_, handler_); while (!it.done()) it.Advance(); handler_ = it.handler(); // Advance to the calling frame. frame_ = SingletonFor(type, &state); // When we're done iterating over the stack frames, the handler // chain must have been completely unwound. DCHECK(!done() || handler_ == nullptr); } void StackFrameIterator::Reset(ThreadLocalTop* top) { StackFrame::State state; StackFrame::Type type = ExitFrame::GetStateForFramePointer( Isolate::c_entry_fp(top), &state); handler_ = StackHandler::FromAddress(Isolate::handler(top)); frame_ = SingletonFor(type, &state); } StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type, StackFrame::State* state) { StackFrame* result = SingletonFor(type); DCHECK((!result) == (type == StackFrame::NONE)); if (result) result->state_ = *state; return result; } StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type) { #define FRAME_TYPE_CASE(type, field) \ case StackFrame::type: \ return &field##_; switch (type) { case StackFrame::NONE: return nullptr; STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE) default: break; } return nullptr; #undef FRAME_TYPE_CASE } // ------------------------------------------------------------------------- void JavaScriptFrameIterator::Advance() { do { iterator_.Advance(); } while (!iterator_.done() && !iterator_.frame()->is_java_script()); } // ------------------------------------------------------------------------- StackTraceFrameIterator::StackTraceFrameIterator(Isolate* isolate) : iterator_(isolate) { if (!done() && !IsValidFrame(iterator_.frame())) Advance(); } StackTraceFrameIterator::StackTraceFrameIterator(Isolate* isolate, StackFrame::Id id) : StackTraceFrameIterator(isolate) { while (!done() && frame()->id() != id) Advance(); } void StackTraceFrameIterator::Advance() { do { iterator_.Advance(); } while (!done() && !IsValidFrame(iterator_.frame())); } bool StackTraceFrameIterator::IsValidFrame(StackFrame* frame) const { if (frame->is_java_script()) { JavaScriptFrame* jsFrame = static_cast<JavaScriptFrame*>(frame); if (!jsFrame->function()->IsJSFunction()) return false; return jsFrame->function()->shared()->IsSubjectToDebugging(); } // apart from javascript, only wasm is valid return frame->is_wasm(); } // ------------------------------------------------------------------------- namespace { bool IsInterpreterFramePc(Isolate* isolate, Address pc, StackFrame::State* state) { Code* interpreter_entry_trampoline = isolate->builtins()->builtin(Builtins::kInterpreterEntryTrampoline); Code* interpreter_bytecode_advance = isolate->builtins()->builtin(Builtins::kInterpreterEnterBytecodeAdvance); Code* interpreter_bytecode_dispatch = isolate->builtins()->builtin(Builtins::kInterpreterEnterBytecodeDispatch); if (interpreter_entry_trampoline->contains(pc) || interpreter_bytecode_advance->contains(pc) || interpreter_bytecode_dispatch->contains(pc)) { return true; } else if (FLAG_interpreted_frames_native_stack) { intptr_t marker = Memory<intptr_t>( state->fp + CommonFrameConstants::kContextOrFrameTypeOffset); MSAN_MEMORY_IS_INITIALIZED( state->fp + StandardFrameConstants::kFunctionOffset, kPointerSize); Object* maybe_function = Memory<Object*>(state->fp + StandardFrameConstants::kFunctionOffset); // There's no need to run a full ContainsSlow if we know the frame can't be // an InterpretedFrame, so we do these fast checks first if (StackFrame::IsTypeMarker(marker) || maybe_function->IsSmi()) { return false; } else if (!isolate->heap()->code_space()->ContainsSlow(pc)) { return false; } interpreter_entry_trampoline = isolate->heap()->GcSafeFindCodeForInnerPointer(pc); return interpreter_entry_trampoline->is_interpreter_trampoline_builtin(); } else { return false; } } DISABLE_ASAN Address ReadMemoryAt(Address address) { return Memory<Address>(address); } } // namespace SafeStackFrameIterator::SafeStackFrameIterator( Isolate* isolate, Address fp, Address sp, Address js_entry_sp) : StackFrameIteratorBase(isolate, false), low_bound_(sp), high_bound_(js_entry_sp), top_frame_type_(StackFrame::NONE), external_callback_scope_(isolate->external_callback_scope()) { StackFrame::State state; StackFrame::Type type; ThreadLocalTop* top = isolate->thread_local_top(); bool advance_frame = true; if (IsValidTop(top)) { type = ExitFrame::GetStateForFramePointer(Isolate::c_entry_fp(top), &state); top_frame_type_ = type; } else if (IsValidStackAddress(fp)) { DCHECK_NE(fp, kNullAddress); state.fp = fp; state.sp = sp; state.pc_address = StackFrame::ResolveReturnAddressLocation( reinterpret_cast<Address*>(StandardFrame::ComputePCAddress(fp))); // If the top of stack is a return address to the interpreter trampoline, // then we are likely in a bytecode handler with elided frame. In that // case, set the PC properly and make sure we do not drop the frame. if (IsValidStackAddress(sp)) { MSAN_MEMORY_IS_INITIALIZED(sp, kPointerSize); Address tos = ReadMemoryAt(sp); if (IsInterpreterFramePc(isolate, tos, &state)) { state.pc_address = reinterpret_cast<Address*>(sp); advance_frame = false; } } // StackFrame::ComputeType will read both kContextOffset and kMarkerOffset, // we check only that kMarkerOffset is within the stack bounds and do // compile time check that kContextOffset slot is pushed on the stack before // kMarkerOffset. STATIC_ASSERT(StandardFrameConstants::kFunctionOffset < StandardFrameConstants::kContextOffset); Address frame_marker = fp + StandardFrameConstants::kFunctionOffset; if (IsValidStackAddress(frame_marker)) { type = StackFrame::ComputeType(this, &state); top_frame_type_ = type; // We only keep the top frame if we believe it to be interpreted frame. if (type != StackFrame::INTERPRETED) { advance_frame = true; } } else { // Mark the frame as OPTIMIZED if we cannot determine its type. // We chose OPTIMIZED rather than INTERPRETED because it's closer to // the original value of StackFrame::JAVA_SCRIPT here, in that JAVA_SCRIPT // referred to full-codegen frames (now removed from the tree), and // OPTIMIZED refers to turbofan frames, both of which are generated // code. INTERPRETED frames refer to bytecode. // The frame anyways will be skipped. type = StackFrame::OPTIMIZED; // Top frame is incomplete so we cannot reliably determine its type. top_frame_type_ = StackFrame::NONE; } } else { return; } frame_ = SingletonFor(type, &state); if (advance_frame && frame_) Advance(); } bool SafeStackFrameIterator::IsValidTop(ThreadLocalTop* top) const { Address c_entry_fp = Isolate::c_entry_fp(top); if (!IsValidExitFrame(c_entry_fp)) return false; // There should be at least one JS_ENTRY stack handler. Address handler = Isolate::handler(top); if (handler == kNullAddress) return false; // Check that there are no js frames on top of the native frames. return c_entry_fp < handler; } void SafeStackFrameIterator::AdvanceOneFrame() { DCHECK(!done()); StackFrame* last_frame = frame_; Address last_sp = last_frame->sp(), last_fp = last_frame->fp(); // Before advancing to the next stack frame, perform pointer validity tests. if (!IsValidFrame(last_frame) || !IsValidCaller(last_frame)) { frame_ = nullptr; return; } // Advance to the previous frame. StackFrame::State state; StackFrame::Type type = frame_->GetCallerState(&state); frame_ = SingletonFor(type, &state); if (!frame_) return; // Check that we have actually moved to the previous frame in the stack. if (frame_->sp() <= last_sp || frame_->fp() <= last_fp) { frame_ = nullptr; } } bool SafeStackFrameIterator::IsValidFrame(StackFrame* frame) const { return IsValidStackAddress(frame->sp()) && IsValidStackAddress(frame->fp()); } bool SafeStackFrameIterator::IsValidCaller(StackFrame* frame) { StackFrame::State state; if (frame->is_entry() || frame->is_construct_entry()) { // See EntryFrame::GetCallerState. It computes the caller FP address // and calls ExitFrame::GetStateForFramePointer on it. We need to be // sure that caller FP address is valid. Address caller_fp = Memory<Address>(frame->fp() + EntryFrameConstants::kCallerFPOffset); if (!IsValidExitFrame(caller_fp)) return false; } else if (frame->is_arguments_adaptor()) { // See ArgumentsAdaptorFrame::GetCallerStackPointer. It assumes that // the number of arguments is stored on stack as Smi. We need to check // that it really an Smi. Object* number_of_args = reinterpret_cast<ArgumentsAdaptorFrame*>(frame)-> GetExpression(0); if (!number_of_args->IsSmi()) { return false; } } frame->ComputeCallerState(&state); return IsValidStackAddress(state.sp) && IsValidStackAddress(state.fp) && SingletonFor(frame->GetCallerState(&state)) != nullptr; } bool SafeStackFrameIterator::IsValidExitFrame(Address fp) const { if (!IsValidStackAddress(fp)) return false; Address sp = ExitFrame::ComputeStackPointer(fp); if (!IsValidStackAddress(sp)) return false; StackFrame::State state; ExitFrame::FillState(fp, sp, &state); MSAN_MEMORY_IS_INITIALIZED(state.pc_address, sizeof(state.pc_address)); return *state.pc_address != kNullAddress; } void SafeStackFrameIterator::Advance() { while (true) { AdvanceOneFrame(); if (done()) break; ExternalCallbackScope* last_callback_scope = nullptr; while (external_callback_scope_ != nullptr && external_callback_scope_->scope_address() < frame_->fp()) { // As long as the setup of a frame is not atomic, we may happen to be // in an interval where an ExternalCallbackScope is already created, // but the frame is not yet entered. So we are actually observing // the previous frame. // Skip all the ExternalCallbackScope's that are below the current fp. last_callback_scope = external_callback_scope_; external_callback_scope_ = external_callback_scope_->previous(); } if (frame_->is_java_script() || frame_->is_wasm()) break; if (frame_->is_exit() || frame_->is_builtin_exit()) { // Some of the EXIT frames may have ExternalCallbackScope allocated on // top of them. In that case the scope corresponds to the first EXIT // frame beneath it. There may be other EXIT frames on top of the // ExternalCallbackScope, just skip them as we cannot collect any useful // information about them. if (last_callback_scope) { frame_->state_.pc_address = last_callback_scope->callback_entrypoint_address(); } break; } } } // ------------------------------------------------------------------------- namespace { Code* GetContainingCode(Isolate* isolate, Address pc) { return isolate->inner_pointer_to_code_cache()->GetCacheEntry(pc)->code; } } // namespace Code* StackFrame::LookupCode() const { Code* result = GetContainingCode(isolate(), pc()); DCHECK_GE(pc(), result->InstructionStart()); DCHECK_LT(pc(), result->InstructionEnd()); return result; } void StackFrame::IteratePc(RootVisitor* v, Address* pc_address, Address* constant_pool_address, Code* holder) { Address pc = *pc_address; DCHECK(holder->GetHeap()->GcSafeCodeContains(holder, pc)); unsigned pc_offset = static_cast<unsigned>(pc - holder->InstructionStart()); Object* code = holder; v->VisitRootPointer(Root::kTop, nullptr, &code); if (code == holder) return; holder = reinterpret_cast<Code*>(code); pc = holder->InstructionStart() + pc_offset; *pc_address = pc; if (FLAG_enable_embedded_constant_pool && constant_pool_address) { *constant_pool_address = holder->constant_pool(); } } void StackFrame::SetReturnAddressLocationResolver( ReturnAddressLocationResolver resolver) { DCHECK_NULL(return_address_location_resolver_); return_address_location_resolver_ = resolver; } StackFrame::Type StackFrame::ComputeType(const StackFrameIteratorBase* iterator, State* state) { DCHECK_NE(state->fp, kNullAddress); MSAN_MEMORY_IS_INITIALIZED( state->fp + CommonFrameConstants::kContextOrFrameTypeOffset, kPointerSize); intptr_t marker = Memory<intptr_t>( state->fp + CommonFrameConstants::kContextOrFrameTypeOffset); if (!iterator->can_access_heap_objects_) { // TODO(titzer): "can_access_heap_objects" is kind of bogus. It really // means that we are being called from the profiler, which can interrupt // the VM with a signal at any arbitrary instruction, with essentially // anything on the stack. So basically none of these checks are 100% // reliable. MSAN_MEMORY_IS_INITIALIZED( state->fp + StandardFrameConstants::kFunctionOffset, kPointerSize); Object* maybe_function = Memory<Object*>(state->fp + StandardFrameConstants::kFunctionOffset); if (!StackFrame::IsTypeMarker(marker)) { if (maybe_function->IsSmi()) { return NATIVE; } else if (IsInterpreterFramePc(iterator->isolate(), *(state->pc_address), state)) { return INTERPRETED; } else { return OPTIMIZED; } } } else { Address pc = *(state->pc_address); // If the {pc} does not point into WebAssembly code we can rely on the // returned {wasm_code} to be null and fall back to {GetContainingCode}. wasm::WasmCode* wasm_code = iterator->isolate()->wasm_engine()->code_manager()->LookupCode(pc); if (wasm_code != nullptr) { switch (wasm_code->kind()) { case wasm::WasmCode::kFunction: return WASM_COMPILED; case wasm::WasmCode::kWasmToJsWrapper: return WASM_TO_JS; case wasm::WasmCode::kLazyStub: return WASM_COMPILE_LAZY; case wasm::WasmCode::kRuntimeStub: return STUB; case wasm::WasmCode::kInterpreterEntry: return WASM_INTERPRETER_ENTRY; default: UNREACHABLE(); } } else { // Look up the code object to figure out the type of the stack frame. Code* code_obj = GetContainingCode(iterator->isolate(), pc); if (code_obj != nullptr) { switch (code_obj->kind()) { case Code::BUILTIN: if (StackFrame::IsTypeMarker(marker)) break; if (code_obj->is_interpreter_trampoline_builtin()) { return INTERPRETED; } if (code_obj->is_turbofanned()) { // TODO(bmeurer): We treat frames for BUILTIN Code objects as // OptimizedFrame for now (all the builtins with JavaScript // linkage are actually generated with TurboFan currently, so // this is sound). return OPTIMIZED; } return BUILTIN; case Code::OPTIMIZED_FUNCTION: return OPTIMIZED; case Code::WASM_FUNCTION: return WASM_COMPILED; case Code::WASM_TO_JS_FUNCTION: return WASM_TO_JS; case Code::JS_TO_WASM_FUNCTION: return JS_TO_WASM; case Code::WASM_INTERPRETER_ENTRY: return WASM_INTERPRETER_ENTRY; case Code::C_WASM_ENTRY: return C_WASM_ENTRY; default: // All other types should have an explicit marker break; } } else { return NATIVE; } } } DCHECK(StackFrame::IsTypeMarker(marker)); StackFrame::Type candidate = StackFrame::MarkerToType(marker); switch (candidate) { case ENTRY: case CONSTRUCT_ENTRY: case EXIT: case BUILTIN_CONTINUATION: case JAVA_SCRIPT_BUILTIN_CONTINUATION: case JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH: case BUILTIN_EXIT: case STUB: case INTERNAL: case CONSTRUCT: case ARGUMENTS_ADAPTOR: case WASM_TO_JS: case WASM_COMPILED: return candidate; case JS_TO_WASM: case OPTIMIZED: case INTERPRETED: default: // Unoptimized and optimized JavaScript frames, including // interpreted frames, should never have a StackFrame::Type // marker. If we find one, we're likely being called from the // profiler in a bogus stack frame. return NATIVE; } } #ifdef DEBUG bool StackFrame::can_access_heap_objects() const { return iterator_->can_access_heap_objects_; } #endif StackFrame::Type StackFrame::GetCallerState(State* state) const { ComputeCallerState(state); return ComputeType(iterator_, state); } Address StackFrame::UnpaddedFP() const { return fp(); } void NativeFrame::ComputeCallerState(State* state) const { state->sp = caller_sp(); state->fp = Memory<Address>(fp() + CommonFrameConstants::kCallerFPOffset); state->pc_address = ResolveReturnAddressLocation( reinterpret_cast<Address*>(fp() + CommonFrameConstants::kCallerPCOffset)); state->callee_pc_address = nullptr; state->constant_pool_address = nullptr; } Code* EntryFrame::unchecked_code() const { return isolate()->heap()->js_entry_code(); } void EntryFrame::ComputeCallerState(State* state) const { GetCallerState(state); } StackFrame::Type EntryFrame::GetCallerState(State* state) const { const int offset = EntryFrameConstants::kCallerFPOffset; Address fp = Memory<Address>(this->fp() + offset); return ExitFrame::GetStateForFramePointer(fp, state); } Code* ConstructEntryFrame::unchecked_code() const { return isolate()->heap()->js_construct_entry_code(); } Object*& ExitFrame::code_slot() const { const int offset = ExitFrameConstants::kCodeOffset; return Memory<Object*>(fp() + offset); } Code* ExitFrame::unchecked_code() const { return reinterpret_cast<Code*>(code_slot()); } void ExitFrame::ComputeCallerState(State* state) const { // Set up the caller state. state->sp = caller_sp(); state->fp = Memory<Address>(fp() + ExitFrameConstants::kCallerFPOffset); state->pc_address = ResolveReturnAddressLocation( reinterpret_cast<Address*>(fp() + ExitFrameConstants::kCallerPCOffset)); state->callee_pc_address = nullptr; if (FLAG_enable_embedded_constant_pool) { state->constant_pool_address = reinterpret_cast<Address*>( fp() + ExitFrameConstants::kConstantPoolOffset); } } void ExitFrame::Iterate(RootVisitor* v) const { // The arguments are traversed as part of the expression stack of // the calling frame. IteratePc(v, pc_address(), constant_pool_address(), LookupCode()); v->VisitRootPointer(Root::kTop, nullptr, &code_slot()); } Address ExitFrame::GetCallerStackPointer() const { return fp() + ExitFrameConstants::kCallerSPOffset; } StackFrame::Type ExitFrame::GetStateForFramePointer(Address fp, State* state) { if (fp == 0) return NONE; Address sp = ComputeStackPointer(fp); FillState(fp, sp, state); DCHECK_NE(*state->pc_address, kNullAddress); return ComputeFrameType(fp); } StackFrame::Type ExitFrame::ComputeFrameType(Address fp) { // Distinguish between between regular and builtin exit frames. // Default to EXIT in all hairy cases (e.g., when called from profiler). const int offset = ExitFrameConstants::kFrameTypeOffset; Object* marker = Memory<Object*>(fp + offset); if (!marker->IsSmi()) { return EXIT; } intptr_t marker_int = bit_cast<intptr_t>(marker); StackFrame::Type frame_type = static_cast<StackFrame::Type>(marker_int >> 1); if (frame_type == EXIT || frame_type == BUILTIN_EXIT) { return frame_type; } return EXIT; } Address ExitFrame::ComputeStackPointer(Address fp) { MSAN_MEMORY_IS_INITIALIZED(fp + ExitFrameConstants::kSPOffset, kPointerSize); return Memory<Address>(fp + ExitFrameConstants::kSPOffset); } void ExitFrame::FillState(Address fp, Address sp, State* state) { state->sp = sp; state->fp = fp; state->pc_address = ResolveReturnAddressLocation( reinterpret_cast<Address*>(sp - 1 * kPCOnStackSize)); state->callee_pc_address = nullptr; // The constant pool recorded in the exit frame is not associated // with the pc in this state (the return address into a C entry // stub). ComputeCallerState will retrieve the constant pool // together with the associated caller pc. state->constant_pool_address = nullptr; } JSFunction* BuiltinExitFrame::function() const { return JSFunction::cast(target_slot_object()); } Object* BuiltinExitFrame::receiver() const { return receiver_slot_object(); } bool BuiltinExitFrame::IsConstructor() const { return !new_target_slot_object()->IsUndefined(isolate()); } Object* BuiltinExitFrame::GetParameter(int i) const { DCHECK(i >= 0 && i < ComputeParametersCount()); int offset = BuiltinExitFrameConstants::kFirstArgumentOffset + i * kPointerSize; return Memory<Object*>(fp() + offset); } int BuiltinExitFrame::ComputeParametersCount() const { Object* argc_slot = argc_slot_object(); DCHECK(argc_slot->IsSmi()); // Argc also counts the receiver, target, new target, and argc itself as args, // therefore the real argument count is argc - 4. int argc = Smi::ToInt(argc_slot) - 4; DCHECK_GE(argc, 0); return argc; } namespace { void PrintIndex(StringStream* accumulator, StackFrame::PrintMode mode, int index) { accumulator->Add((mode == StackFrame::OVERVIEW) ? "%5d: " : "[%d]: ", index); } const char* StringForStackFrameType(StackFrame::Type type) { switch (type) { #define CASE(value, name) \ case StackFrame::value: \ return #name; STACK_FRAME_TYPE_LIST(CASE) #undef CASE default: UNREACHABLE(); } } } // namespace void StackFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { DisallowHeapAllocation no_gc; PrintIndex(accumulator, mode, index); accumulator->Add(StringForStackFrameType(type())); accumulator->Add(" [pc: %p]\n", reinterpret_cast<void*>(pc())); } void BuiltinExitFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { DisallowHeapAllocation no_gc; Object* receiver = this->receiver(); JSFunction* function = this->function(); accumulator->PrintSecurityTokenIfChanged(function); PrintIndex(accumulator, mode, index); accumulator->Add("builtin exit frame: "); Code* code = nullptr; if (IsConstructor()) accumulator->Add("new "); accumulator->PrintFunction(function, receiver, &code); accumulator->Add("(this=%o", receiver); // Print the parameters. int parameters_count = ComputeParametersCount(); for (int i = 0; i < parameters_count; i++) { accumulator->Add(",%o", GetParameter(i)); } accumulator->Add(")\n\n"); } Address StandardFrame::GetExpressionAddress(int n) const { const int offset = StandardFrameConstants::kExpressionsOffset; return fp() + offset - n * kPointerSize; } Address InterpretedFrame::GetExpressionAddress(int n) const { const int offset = InterpreterFrameConstants::kExpressionsOffset; return fp() + offset - n * kPointerSize; } Script* StandardFrame::script() const { // This should only be called on frames which override this method. DCHECK(false); return nullptr; } Object* StandardFrame::receiver() const { return ReadOnlyRoots(isolate()).undefined_value(); } Object* StandardFrame::context() const { return ReadOnlyRoots(isolate()).undefined_value(); } int StandardFrame::position() const { AbstractCode* code = AbstractCode::cast(LookupCode()); int code_offset = static_cast<int>(pc() - code->InstructionStart()); return code->SourcePosition(code_offset); } int StandardFrame::ComputeExpressionsCount() const { Address base = GetExpressionAddress(0); Address limit = sp() - kPointerSize; DCHECK(base >= limit); // stack grows downwards // Include register-allocated locals in number of expressions. return static_cast<int>((base - limit) / kPointerSize); } Object* StandardFrame::GetParameter(int index) const { // StandardFrame does not define any parameters. UNREACHABLE(); } int StandardFrame::ComputeParametersCount() const { return 0; } void StandardFrame::ComputeCallerState(State* state) const { state->sp = caller_sp(); state->fp = caller_fp(); state->pc_address = ResolveReturnAddressLocation( reinterpret_cast<Address*>(ComputePCAddress(fp()))); state->callee_pc_address = pc_address(); state->constant_pool_address = reinterpret_cast<Address*>(ComputeConstantPoolAddress(fp())); } bool StandardFrame::IsConstructor() const { return false; } void StandardFrame::Summarize(std::vector<FrameSummary>* functions) const { // This should only be called on frames which override this method. UNREACHABLE(); } void StandardFrame::IterateCompiledFrame(RootVisitor* v) const { // Make sure that we're not doing "safe" stack frame iteration. We cannot // possibly find pointers in optimized frames in that state. DCHECK(can_access_heap_objects()); // Find the code and compute the safepoint information. Address inner_pointer = pc(); const wasm::WasmCode* wasm_code = isolate()->wasm_engine()->code_manager()->LookupCode(inner_pointer); SafepointEntry safepoint_entry; uint32_t stack_slots; Code* code = nullptr; bool has_tagged_params = false; if (wasm_code != nullptr) { SafepointTable table(wasm_code->instruction_start(), wasm_code->safepoint_table_offset(), wasm_code->stack_slots()); safepoint_entry = table.FindEntry(inner_pointer); stack_slots = wasm_code->stack_slots(); has_tagged_params = wasm_code->kind() != wasm::WasmCode::kFunction; } else { InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry = isolate()->inner_pointer_to_code_cache()->GetCacheEntry(inner_pointer); if (!entry->safepoint_entry.is_valid()) { entry->safepoint_entry = entry->code->GetSafepointEntry(inner_pointer); DCHECK(entry->safepoint_entry.is_valid()); } else { DCHECK(entry->safepoint_entry.Equals( entry->code->GetSafepointEntry(inner_pointer))); } code = entry->code; safepoint_entry = entry->safepoint_entry; stack_slots = code->stack_slots(); has_tagged_params = code->has_tagged_params(); } uint32_t slot_space = stack_slots * kPointerSize; // Determine the fixed header and spill slot area size. int frame_header_size = StandardFrameConstants::kFixedFrameSizeFromFp; intptr_t marker = Memory<intptr_t>(fp() + CommonFrameConstants::kContextOrFrameTypeOffset); if (StackFrame::IsTypeMarker(marker)) { StackFrame::Type candidate = StackFrame::MarkerToType(marker); switch (candidate) { case ENTRY: case CONSTRUCT_ENTRY: case EXIT: case BUILTIN_CONTINUATION: case JAVA_SCRIPT_BUILTIN_CONTINUATION: case JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH: case BUILTIN_EXIT: case ARGUMENTS_ADAPTOR: case STUB: case INTERNAL: case CONSTRUCT: case JS_TO_WASM: case C_WASM_ENTRY: frame_header_size = TypedFrameConstants::kFixedFrameSizeFromFp; break; case WASM_TO_JS: case WASM_COMPILED: case WASM_INTERPRETER_ENTRY: case WASM_COMPILE_LAZY: frame_header_size = WasmCompiledFrameConstants::kFixedFrameSizeFromFp; break; case OPTIMIZED: case INTERPRETED: case BUILTIN: // These frame types have a context, but they are actually stored // in the place on the stack that one finds the frame type. UNREACHABLE(); break; case NATIVE: case NONE: case NUMBER_OF_TYPES: case MANUAL: UNREACHABLE(); break; } } slot_space -= (frame_header_size + StandardFrameConstants::kFixedFrameSizeAboveFp); Object** frame_header_base = &Memory<Object*>(fp() - frame_header_size); Object** frame_header_limit = &Memory<Object*>(fp() - StandardFrameConstants::kCPSlotSize); Object** parameters_base = &Memory<Object*>(sp()); Object** parameters_limit = frame_header_base - slot_space / kPointerSize; // Visit the parameters that may be on top of the saved registers. if (safepoint_entry.argument_count() > 0) { v->VisitRootPointers(Root::kTop, nullptr, parameters_base, parameters_base + safepoint_entry.argument_count()); parameters_base += safepoint_entry.argument_count(); } // Skip saved double registers. if (safepoint_entry.has_doubles()) { // Number of doubles not known at snapshot time. DCHECK(!isolate()->serializer_enabled()); parameters_base += RegisterConfiguration::Default()->num_allocatable_double_registers() * kDoubleSize / kPointerSize; } // Visit the registers that contain pointers if any. if (safepoint_entry.HasRegisters()) { for (int i = kNumSafepointRegisters - 1; i >=0; i--) { if (safepoint_entry.HasRegisterAt(i)) { int reg_stack_index = MacroAssembler::SafepointRegisterStackIndex(i); v->VisitRootPointer(Root::kTop, nullptr, parameters_base + reg_stack_index); } } // Skip the words containing the register values. parameters_base += kNumSafepointRegisters; } // We're done dealing with the register bits. uint8_t* safepoint_bits = safepoint_entry.bits(); safepoint_bits += kNumSafepointRegisters >> kBitsPerByteLog2; // Visit the rest of the parameters if they are tagged. if (has_tagged_params) { v->VisitRootPointers(Root::kTop, nullptr, parameters_base, parameters_limit); } // Visit pointer spill slots and locals. for (unsigned index = 0; index < stack_slots; index++) { int byte_index = index >> kBitsPerByteLog2; int bit_index = index & (kBitsPerByte - 1); if ((safepoint_bits[byte_index] & (1U << bit_index)) != 0) { v->VisitRootPointer(Root::kTop, nullptr, parameters_limit + index); } } // For the off-heap code cases, we can skip this. if (code != nullptr) { // Visit the return address in the callee and incoming arguments. IteratePc(v, pc_address(), constant_pool_address(), code); } // If this frame has JavaScript ABI, visit the context (in stub and JS // frames) and the function (in JS frames). If it has WebAssembly ABI, visit // the instance object. v->VisitRootPointers(Root::kTop, nullptr, frame_header_base, frame_header_limit); } void StubFrame::Iterate(RootVisitor* v) const { IterateCompiledFrame(v); } Code* StubFrame::unchecked_code() const { return isolate()->FindCodeObject(pc()); } Address StubFrame::GetCallerStackPointer() const { return fp() + ExitFrameConstants::kCallerSPOffset; } int StubFrame::GetNumberOfIncomingArguments() const { return 0; } int StubFrame::LookupExceptionHandlerInTable(int* stack_slots) { Code* code = LookupCode(); DCHECK(code->is_turbofanned()); DCHECK_EQ(code->kind(), Code::BUILTIN); HandlerTable table(code); int pc_offset = static_cast<int>(pc() - code->InstructionStart()); *stack_slots = code->stack_slots(); return table.LookupReturn(pc_offset); } void OptimizedFrame::Iterate(RootVisitor* v) const { IterateCompiledFrame(v); } void JavaScriptFrame::SetParameterValue(int index, Object* value) const { Memory<Object*>(GetParameterSlot(index)) = value; } bool JavaScriptFrame::IsConstructor() const { Address fp = caller_fp(); if (has_adapted_arguments()) { // Skip the arguments adaptor frame and look at the real caller. fp = Memory<Address>(fp + StandardFrameConstants::kCallerFPOffset); } return IsConstructFrame(fp); } bool JavaScriptFrame::HasInlinedFrames() const { std::vector<SharedFunctionInfo*> functions; GetFunctions(&functions); return functions.size() > 1; } Code* JavaScriptFrame::unchecked_code() const { return function()->code(); } int JavaScriptFrame::GetNumberOfIncomingArguments() const { DCHECK(can_access_heap_objects() && isolate()->heap()->gc_state() == Heap::NOT_IN_GC); return function()->shared()->internal_formal_parameter_count(); } int OptimizedFrame::GetNumberOfIncomingArguments() const { Code* code = LookupCode(); if (code->kind() == Code::BUILTIN) { return static_cast<int>( Memory<intptr_t>(fp() + OptimizedBuiltinFrameConstants::kArgCOffset)); } else { return JavaScriptFrame::GetNumberOfIncomingArguments(); } } Address JavaScriptFrame::GetCallerStackPointer() const { return fp() + StandardFrameConstants::kCallerSPOffset; } void JavaScriptFrame::GetFunctions( std::vector<SharedFunctionInfo*>* functions) const { DCHECK(functions->empty()); functions->push_back(function()->shared()); } void JavaScriptFrame::GetFunctions( std::vector<Handle<SharedFunctionInfo>>* functions) const { DCHECK(functions->empty()); std::vector<SharedFunctionInfo*> raw_functions; GetFunctions(&raw_functions); for (const auto& raw_function : raw_functions) { functions->push_back( Handle<SharedFunctionInfo>(raw_function, function()->GetIsolate())); } } void JavaScriptFrame::Summarize(std::vector<FrameSummary>* functions) const { DCHECK(functions->empty()); Code* code = LookupCode(); int offset = static_cast<int>(pc() - code->InstructionStart()); AbstractCode* abstract_code = AbstractCode::cast(code); FrameSummary::JavaScriptFrameSummary summary(isolate(), receiver(), function(), abstract_code, offset, IsConstructor()); functions->push_back(summary); } JSFunction* JavaScriptFrame::function() const { return JSFunction::cast(function_slot_object()); } Object* JavaScriptFrame::unchecked_function() const { // During deoptimization of an optimized function, we may have yet to // materialize some closures on the stack. The arguments marker object // marks this case. DCHECK(function_slot_object()->IsJSFunction() || ReadOnlyRoots(isolate()).arguments_marker() == function_slot_object()); return function_slot_object(); } Object* JavaScriptFrame::receiver() const { return GetParameter(-1); } Object* JavaScriptFrame::context() const { const int offset = StandardFrameConstants::kContextOffset; Object* maybe_result = Memory<Object*>(fp() + offset); DCHECK(!maybe_result->IsSmi()); return maybe_result; } Script* JavaScriptFrame::script() const { return Script::cast(function()->shared()->script()); } int JavaScriptFrame::LookupExceptionHandlerInTable( int* stack_depth, HandlerTable::CatchPrediction* prediction) { DCHECK_EQ(0, LookupCode()->handler_table_offset()); DCHECK(!LookupCode()->is_optimized_code()); return -1; } void JavaScriptFrame::PrintFunctionAndOffset(JSFunction* function, AbstractCode* code, int code_offset, FILE* file, bool print_line_number) { PrintF(file, "%s", function->IsOptimized() ? "*" : "~"); function->PrintName(file); PrintF(file, "+%d", code_offset); if (print_line_number) { SharedFunctionInfo* shared = function->shared(); int source_pos = code->SourcePosition(code_offset); Object* maybe_script = shared->script(); if (maybe_script->IsScript()) { Script* script = Script::cast(maybe_script); int line = script->GetLineNumber(source_pos) + 1; Object* script_name_raw = script->name(); if (script_name_raw->IsString()) { String* script_name = String::cast(script->name()); std::unique_ptr<char[]> c_script_name = script_name->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL); PrintF(file, " at %s:%d", c_script_name.get(), line); } else { PrintF(file, " at <unknown>:%d", line); } } else { PrintF(file, " at <unknown>:<unknown>"); } } } void JavaScriptFrame::PrintTop(Isolate* isolate, FILE* file, bool print_args, bool print_line_number) { // constructor calls DisallowHeapAllocation no_allocation; JavaScriptFrameIterator it(isolate); while (!it.done()) { if (it.frame()->is_java_script()) { JavaScriptFrame* frame = it.frame(); if (frame->IsConstructor()) PrintF(file, "new "); JSFunction* function = frame->function(); int code_offset = 0; if (frame->is_interpreted()) { InterpretedFrame* iframe = reinterpret_cast<InterpretedFrame*>(frame); code_offset = iframe->GetBytecodeOffset(); } else { Code* code = frame->unchecked_code(); code_offset = static_cast<int>(frame->pc() - code->InstructionStart()); } PrintFunctionAndOffset(function, function->abstract_code(), code_offset, file, print_line_number); if (print_args) { // function arguments // (we are intentionally only printing the actually // supplied parameters, not all parameters required) PrintF(file, "(this="); frame->receiver()->ShortPrint(file); const int length = frame->ComputeParametersCount(); for (int i = 0; i < length; i++) { PrintF(file, ", "); frame->GetParameter(i)->ShortPrint(file); } PrintF(file, ")"); } break; } it.Advance(); } } void JavaScriptFrame::CollectFunctionAndOffsetForICStats(JSFunction* function, AbstractCode* code, int code_offset) { auto ic_stats = ICStats::instance(); ICInfo& ic_info = ic_stats->Current(); SharedFunctionInfo* shared = function->shared(); ic_info.function_name = ic_stats->GetOrCacheFunctionName(function); ic_info.script_offset = code_offset; int source_pos = code->SourcePosition(code_offset); Object* maybe_script = shared->script(); if (maybe_script->IsScript()) { Script* script = Script::cast(maybe_script); ic_info.line_num = script->GetLineNumber(source_pos) + 1; ic_info.script_name = ic_stats->GetOrCacheScriptName(script); } } void JavaScriptFrame::CollectTopFrameForICStats(Isolate* isolate) { // constructor calls DisallowHeapAllocation no_allocation; JavaScriptFrameIterator it(isolate); ICInfo& ic_info = ICStats::instance()->Current(); while (!it.done()) { if (it.frame()->is_java_script()) { JavaScriptFrame* frame = it.frame(); if (frame->IsConstructor()) ic_info.is_constructor = true; JSFunction* function = frame->function(); int code_offset = 0; if (frame->is_interpreted()) { InterpretedFrame* iframe = reinterpret_cast<InterpretedFrame*>(frame); code_offset = iframe->GetBytecodeOffset(); } else { Code* code = frame->unchecked_code(); code_offset = static_cast<int>(frame->pc() - code->InstructionStart()); } CollectFunctionAndOffsetForICStats(function, function->abstract_code(), code_offset); return; } it.Advance(); } } Object* JavaScriptFrame::GetParameter(int index) const { return Memory<Object*>(GetParameterSlot(index)); } int JavaScriptFrame::ComputeParametersCount() const { return GetNumberOfIncomingArguments(); } int JavaScriptBuiltinContinuationFrame::ComputeParametersCount() const { // Assert that the first allocatable register is also the argument count // register. DCHECK_EQ(RegisterConfiguration::Default()->GetAllocatableGeneralCode(0), kJavaScriptCallArgCountRegister.code()); Object* argc_object = Memory<Object*>(fp() + BuiltinContinuationFrameConstants::kArgCOffset); return Smi::ToInt(argc_object); } intptr_t JavaScriptBuiltinContinuationFrame::GetSPToFPDelta() const { Address height_slot = fp() + BuiltinContinuationFrameConstants::kFrameSPtoFPDeltaAtDeoptimize; intptr_t height = Smi::ToInt(*reinterpret_cast<Smi**>(height_slot)); return height; } Object* JavaScriptBuiltinContinuationFrame::context() const { return Memory<Object*>( fp() + BuiltinContinuationFrameConstants::kBuiltinContextOffset); } void JavaScriptBuiltinContinuationWithCatchFrame::SetException( Object* exception) { Address exception_argument_slot = fp() + JavaScriptFrameConstants::kLastParameterOffset + kPointerSize; // Skip over return value slot. // Only allow setting exception if previous value was the hole. CHECK_EQ(ReadOnlyRoots(isolate()).the_hole_value(), Memory<Object*>(exception_argument_slot)); Memory<Object*>(exception_argument_slot) = exception; } FrameSummary::JavaScriptFrameSummary::JavaScriptFrameSummary( Isolate* isolate, Object* receiver, JSFunction* function, AbstractCode* abstract_code, int code_offset, bool is_constructor) : FrameSummaryBase(isolate, FrameSummary::JAVA_SCRIPT), receiver_(receiver, isolate), function_(function, isolate), abstract_code_(abstract_code, isolate), code_offset_(code_offset), is_constructor_(is_constructor) { DCHECK(abstract_code->IsBytecodeArray() || Code::cast(abstract_code)->kind() != Code::OPTIMIZED_FUNCTION); } bool FrameSummary::JavaScriptFrameSummary::is_subject_to_debugging() const { return function()->shared()->IsSubjectToDebugging(); } int FrameSummary::JavaScriptFrameSummary::SourcePosition() const { return abstract_code()->SourcePosition(code_offset()); } int FrameSummary::JavaScriptFrameSummary::SourceStatementPosition() const { return abstract_code()->SourceStatementPosition(code_offset()); } Handle<Object> FrameSummary::JavaScriptFrameSummary::script() const { return handle(function_->shared()->script(), isolate()); } Handle<String> FrameSummary::JavaScriptFrameSummary::FunctionName() const { return JSFunction::GetDebugName(function_); } Handle<Context> FrameSummary::JavaScriptFrameSummary::native_context() const { return handle(function_->context()->native_context(), isolate()); } FrameSummary::WasmFrameSummary::WasmFrameSummary( Isolate* isolate, FrameSummary::Kind kind, Handle<WasmInstanceObject> instance, bool at_to_number_conversion) : FrameSummaryBase(isolate, kind), wasm_instance_(instance), at_to_number_conversion_(at_to_number_conversion) {} Handle<Object> FrameSummary::WasmFrameSummary::receiver() const { return wasm_instance_->GetIsolate()->global_proxy(); } #define WASM_SUMMARY_DISPATCH(type, name) \ type FrameSummary::WasmFrameSummary::name() const { \ DCHECK(kind() == Kind::WASM_COMPILED || kind() == Kind::WASM_INTERPRETED); \ return kind() == Kind::WASM_COMPILED \ ? static_cast<const WasmCompiledFrameSummary*>(this)->name() \ : static_cast<const WasmInterpretedFrameSummary*>(this) \ ->name(); \ } WASM_SUMMARY_DISPATCH(uint32_t, function_index) WASM_SUMMARY_DISPATCH(int, byte_offset) #undef WASM_SUMMARY_DISPATCH int FrameSummary::WasmFrameSummary::SourcePosition() const { Handle<WasmModuleObject> module_object(wasm_instance()->module_object(), isolate()); return WasmModuleObject::GetSourcePosition(module_object, function_index(), byte_offset(), at_to_number_conversion()); } Handle<Script> FrameSummary::WasmFrameSummary::script() const { return handle(wasm_instance()->module_object()->script(), wasm_instance()->GetIsolate()); } Handle<String> FrameSummary::WasmFrameSummary::FunctionName() const { Handle<WasmModuleObject> module_object(wasm_instance()->module_object(), isolate()); return WasmModuleObject::GetFunctionName(isolate(), module_object, function_index()); } Handle<Context> FrameSummary::WasmFrameSummary::native_context() const { return handle(wasm_instance()->native_context(), isolate()); } FrameSummary::WasmCompiledFrameSummary::WasmCompiledFrameSummary( Isolate* isolate, Handle<WasmInstanceObject> instance, wasm::WasmCode* code, int code_offset, bool at_to_number_conversion) : WasmFrameSummary(isolate, WASM_COMPILED, instance, at_to_number_conversion), code_(code), code_offset_(code_offset) {} uint32_t FrameSummary::WasmCompiledFrameSummary::function_index() const { return code()->index(); } int FrameSummary::WasmCompiledFrameSummary::GetWasmSourcePosition( const wasm::WasmCode* code, int offset) { int position = 0; // Subtract one because the current PC is one instruction after the call site. offset--; for (SourcePositionTableIterator iterator(code->source_positions()); !iterator.done() && iterator.code_offset() <= offset; iterator.Advance()) { position = iterator.source_position().ScriptOffset(); } return position; } int FrameSummary::WasmCompiledFrameSummary::byte_offset() const { return GetWasmSourcePosition(code_, code_offset()); } FrameSummary::WasmInterpretedFrameSummary::WasmInterpretedFrameSummary( Isolate* isolate, Handle<WasmInstanceObject> instance, uint32_t function_index, int byte_offset) : WasmFrameSummary(isolate, WASM_INTERPRETED, instance, false), function_index_(function_index), byte_offset_(byte_offset) {} FrameSummary::~FrameSummary() { #define FRAME_SUMMARY_DESTR(kind, type, field, desc) \ case kind: \ field.~type(); \ break; switch (base_.kind()) { FRAME_SUMMARY_VARIANTS(FRAME_SUMMARY_DESTR) default: UNREACHABLE(); } #undef FRAME_SUMMARY_DESTR } FrameSummary FrameSummary::GetTop(const StandardFrame* frame) { std::vector<FrameSummary> frames; frame->Summarize(&frames); DCHECK_LT(0, frames.size()); return frames.back(); } FrameSummary FrameSummary::GetBottom(const StandardFrame* frame) { return Get(frame, 0); } FrameSummary FrameSummary::GetSingle(const StandardFrame* frame) { std::vector<FrameSummary> frames; frame->Summarize(&frames); DCHECK_EQ(1, frames.size()); return frames.front(); } FrameSummary FrameSummary::Get(const StandardFrame* frame, int index) { DCHECK_LE(0, index); std::vector<FrameSummary> frames; frame->Summarize(&frames); DCHECK_GT(frames.size(), index); return frames[index]; } #define FRAME_SUMMARY_DISPATCH(ret, name) \ ret FrameSummary::name() const { \ switch (base_.kind()) { \ case JAVA_SCRIPT: \ return java_script_summary_.name(); \ case WASM_COMPILED: \ return wasm_compiled_summary_.name(); \ case WASM_INTERPRETED: \ return wasm_interpreted_summary_.name(); \ default: \ UNREACHABLE(); \ return ret{}; \ } \ } FRAME_SUMMARY_DISPATCH(Handle<Object>, receiver) FRAME_SUMMARY_DISPATCH(int, code_offset) FRAME_SUMMARY_DISPATCH(bool, is_constructor) FRAME_SUMMARY_DISPATCH(bool, is_subject_to_debugging) FRAME_SUMMARY_DISPATCH(Handle<Object>, script) FRAME_SUMMARY_DISPATCH(int, SourcePosition) FRAME_SUMMARY_DISPATCH(int, SourceStatementPosition) FRAME_SUMMARY_DISPATCH(Handle<String>, FunctionName) FRAME_SUMMARY_DISPATCH(Handle<Context>, native_context) #undef FRAME_SUMMARY_DISPATCH void OptimizedFrame::Summarize(std::vector<FrameSummary>* frames) const { DCHECK(frames->empty()); DCHECK(is_optimized()); // Delegate to JS frame in absence of turbofan deoptimization. // TODO(turbofan): Revisit once we support deoptimization across the board. Code* code = LookupCode(); if (code->kind() == Code::BUILTIN) { return JavaScriptFrame::Summarize(frames); } int deopt_index = Safepoint::kNoDeoptimizationIndex; DeoptimizationData* const data = GetDeoptimizationData(&deopt_index); if (deopt_index == Safepoint::kNoDeoptimizationIndex) { CHECK_NULL(data); FATAL("Missing deoptimization information for OptimizedFrame::Summarize."); } // Prepare iteration over translation. Note that the below iteration might // materialize objects without storing them back to the Isolate, this will // lead to objects being re-materialized again for each summary. TranslatedState translated(this); translated.Prepare(fp()); // We create the summary in reverse order because the frames // in the deoptimization translation are ordered bottom-to-top. bool is_constructor = IsConstructor(); for (auto it = translated.begin(); it != translated.end(); it++) { if (it->kind() == TranslatedFrame::kInterpretedFunction || it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuation || it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch) { Handle<SharedFunctionInfo> shared_info = it->shared_info(); // The translation commands are ordered and the function is always // at the first position, and the receiver is next. TranslatedFrame::iterator translated_values = it->begin(); // Get or materialize the correct function in the optimized frame. Handle<JSFunction> function = Handle<JSFunction>::cast(translated_values->GetValue()); translated_values++; // Get or materialize the correct receiver in the optimized frame. Handle<Object> receiver = translated_values->GetValue(); translated_values++; // Determine the underlying code object and the position within it from // the translation corresponding to the frame type in question. Handle<AbstractCode> abstract_code; unsigned code_offset; if (it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuation || it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch) { code_offset = 0; abstract_code = handle(AbstractCode::cast(isolate()->builtins()->builtin( Builtins::GetBuiltinFromBailoutId(it->node_id()))), isolate()); } else { DCHECK_EQ(it->kind(), TranslatedFrame::kInterpretedFunction); code_offset = it->node_id().ToInt(); // Points to current bytecode. abstract_code = handle(shared_info->abstract_code(), isolate()); } // Append full summary of the encountered JS frame. FrameSummary::JavaScriptFrameSummary summary(isolate(), *receiver, *function, *abstract_code, code_offset, is_constructor); frames->push_back(summary); is_constructor = false; } else if (it->kind() == TranslatedFrame::kConstructStub) { // The next encountered JS frame will be marked as a constructor call. DCHECK(!is_constructor); is_constructor = true; } } } int OptimizedFrame::LookupExceptionHandlerInTable( int* stack_slots, HandlerTable::CatchPrediction* prediction) { // We cannot perform exception prediction on optimized code. Instead, we need // to use FrameSummary to find the corresponding code offset in unoptimized // code to perform prediction there. DCHECK_NULL(prediction); Code* code = LookupCode(); HandlerTable table(code); int pc_offset = static_cast<int>(pc() - code->InstructionStart()); if (stack_slots) *stack_slots = code->stack_slots(); // When the return pc has been replaced by a trampoline there won't be // a handler for this trampoline. Thus we need to use the return pc that // _used to be_ on the stack to get the right ExceptionHandler. if (code->kind() == Code::OPTIMIZED_FUNCTION && code->marked_for_deoptimization()) { SafepointTable safepoints(code); pc_offset = safepoints.find_return_pc(pc_offset); } return table.LookupReturn(pc_offset); } DeoptimizationData* OptimizedFrame::GetDeoptimizationData( int* deopt_index) const { DCHECK(is_optimized()); JSFunction* opt_function = function(); Code* code = opt_function->code(); // The code object may have been replaced by lazy deoptimization. Fall // back to a slow search in this case to find the original optimized // code object. if (!code->contains(pc())) { code = isolate()->heap()->GcSafeFindCodeForInnerPointer(pc()); } DCHECK_NOT_NULL(code); DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION); SafepointEntry safepoint_entry = code->GetSafepointEntry(pc()); *deopt_index = safepoint_entry.deoptimization_index(); if (*deopt_index != Safepoint::kNoDeoptimizationIndex) { return DeoptimizationData::cast(code->deoptimization_data()); } return nullptr; } Object* OptimizedFrame::receiver() const { Code* code = LookupCode(); if (code->kind() == Code::BUILTIN) { Address argc_ptr = fp() + OptimizedBuiltinFrameConstants::kArgCOffset; intptr_t argc = *reinterpret_cast<intptr_t*>(argc_ptr); intptr_t args_size = (StandardFrameConstants::kFixedSlotCountAboveFp + argc) * kPointerSize; Address receiver_ptr = fp() + args_size; return *reinterpret_cast<Object**>(receiver_ptr); } else { return JavaScriptFrame::receiver(); } } void OptimizedFrame::GetFunctions( std::vector<SharedFunctionInfo*>* functions) const { DCHECK(functions->empty()); DCHECK(is_optimized()); // Delegate to JS frame in absence of turbofan deoptimization. // TODO(turbofan): Revisit once we support deoptimization across the board. Code* code = LookupCode(); if (code->kind() == Code::BUILTIN) { return JavaScriptFrame::GetFunctions(functions); } DisallowHeapAllocation no_gc; int deopt_index = Safepoint::kNoDeoptimizationIndex; DeoptimizationData* const data = GetDeoptimizationData(&deopt_index); DCHECK_NOT_NULL(data); DCHECK_NE(Safepoint::kNoDeoptimizationIndex, deopt_index); FixedArray* const literal_array = data->LiteralArray(); TranslationIterator it(data->TranslationByteArray(), data->TranslationIndex(deopt_index)->value()); Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next()); DCHECK_EQ(Translation::BEGIN, opcode); it.Next(); // Skip frame count. int jsframe_count = it.Next(); it.Next(); // Skip update feedback count. // We insert the frames in reverse order because the frames // in the deoptimization translation are ordered bottom-to-top. while (jsframe_count != 0) { opcode = static_cast<Translation::Opcode>(it.Next()); if (opcode == Translation::INTERPRETED_FRAME || opcode == Translation::JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME || opcode == Translation::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH_FRAME) { it.Next(); // Skip bailout id. jsframe_count--; // The second operand of the frame points to the function. Object* shared = literal_array->get(it.Next()); functions->push_back(SharedFunctionInfo::cast(shared)); // Skip over remaining operands to advance to the next opcode. it.Skip(Translation::NumberOfOperandsFor(opcode) - 2); } else { // Skip over operands to advance to the next opcode. it.Skip(Translation::NumberOfOperandsFor(opcode)); } } } int OptimizedFrame::StackSlotOffsetRelativeToFp(int slot_index) { return StandardFrameConstants::kCallerSPOffset - ((slot_index + 1) * kPointerSize); } Object* OptimizedFrame::StackSlotAt(int index) const { return Memory<Object*>(fp() + StackSlotOffsetRelativeToFp(index)); } int InterpretedFrame::position() const { AbstractCode* code = AbstractCode::cast(GetBytecodeArray()); int code_offset = GetBytecodeOffset(); return code->SourcePosition(code_offset); } int InterpretedFrame::LookupExceptionHandlerInTable( int* context_register, HandlerTable::CatchPrediction* prediction) { HandlerTable table(function()->shared()->GetBytecodeArray()); return table.LookupRange(GetBytecodeOffset(), context_register, prediction); } int InterpretedFrame::GetBytecodeOffset() const { const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex; DCHECK_EQ( InterpreterFrameConstants::kBytecodeOffsetFromFp, InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize); int raw_offset = Smi::ToInt(GetExpression(index)); return raw_offset - BytecodeArray::kHeaderSize + kHeapObjectTag; } int InterpretedFrame::GetBytecodeOffset(Address fp) { const int offset = InterpreterFrameConstants::kExpressionsOffset; const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex; DCHECK_EQ( InterpreterFrameConstants::kBytecodeOffsetFromFp, InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize); Address expression_offset = fp + offset - index * kPointerSize; int raw_offset = Smi::ToInt(Memory<Object*>(expression_offset)); return raw_offset - BytecodeArray::kHeaderSize + kHeapObjectTag; } void InterpretedFrame::PatchBytecodeOffset(int new_offset) { const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex; DCHECK_EQ( InterpreterFrameConstants::kBytecodeOffsetFromFp, InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize); int raw_offset = new_offset + BytecodeArray::kHeaderSize - kHeapObjectTag; SetExpression(index, Smi::FromInt(raw_offset)); } BytecodeArray* InterpretedFrame::GetBytecodeArray() const { const int index = InterpreterFrameConstants::kBytecodeArrayExpressionIndex; DCHECK_EQ( InterpreterFrameConstants::kBytecodeArrayFromFp, InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize); return BytecodeArray::cast(GetExpression(index)); } void InterpretedFrame::PatchBytecodeArray(BytecodeArray* bytecode_array) { const int index = InterpreterFrameConstants::kBytecodeArrayExpressionIndex; DCHECK_EQ( InterpreterFrameConstants::kBytecodeArrayFromFp, InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize); SetExpression(index, bytecode_array); } Object* InterpretedFrame::ReadInterpreterRegister(int register_index) const { const int index = InterpreterFrameConstants::kRegisterFileExpressionIndex; DCHECK_EQ( InterpreterFrameConstants::kRegisterFileFromFp, InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize); return GetExpression(index + register_index); } void InterpretedFrame::WriteInterpreterRegister(int register_index, Object* value) { const int index = InterpreterFrameConstants::kRegisterFileExpressionIndex; DCHECK_EQ( InterpreterFrameConstants::kRegisterFileFromFp, InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize); return SetExpression(index + register_index, value); } void InterpretedFrame::Summarize(std::vector<FrameSummary>* functions) const { DCHECK(functions->empty()); AbstractCode* abstract_code = AbstractCode::cast(function()->shared()->GetBytecodeArray()); FrameSummary::JavaScriptFrameSummary summary( isolate(), receiver(), function(), abstract_code, GetBytecodeOffset(), IsConstructor()); functions->push_back(summary); } int ArgumentsAdaptorFrame::GetNumberOfIncomingArguments() const { return Smi::ToInt(GetExpression(0)); } Code* ArgumentsAdaptorFrame::unchecked_code() const { return isolate()->builtins()->builtin( Builtins::kArgumentsAdaptorTrampoline); } int BuiltinFrame::GetNumberOfIncomingArguments() const { return Smi::ToInt(GetExpression(0)); } void BuiltinFrame::PrintFrameKind(StringStream* accumulator) const { accumulator->Add("builtin frame: "); } Address InternalFrame::GetCallerStackPointer() const { // Internal frames have no arguments. The stack pointer of the // caller is at a fixed offset from the frame pointer. return fp() + StandardFrameConstants::kCallerSPOffset; } Code* InternalFrame::unchecked_code() const { UNREACHABLE(); } void WasmCompiledFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { PrintIndex(accumulator, mode, index); accumulator->Add("WASM ["); accumulator->PrintName(script()->name()); Address instruction_start = isolate() ->wasm_engine() ->code_manager() ->LookupCode(pc()) ->instruction_start(); Vector<const uint8_t> raw_func_name = module_object()->GetRawFunctionName(function_index()); const int kMaxPrintedFunctionName = 64; char func_name[kMaxPrintedFunctionName + 1]; int func_name_len = std::min(kMaxPrintedFunctionName, raw_func_name.length()); memcpy(func_name, raw_func_name.start(), func_name_len); func_name[func_name_len] = '\0'; int pos = position(); const wasm::WasmModule* module = wasm_instance()->module_object()->module(); int func_index = function_index(); int func_code_offset = module->functions[func_index].code.offset(); accumulator->Add("], function #%u ('%s'), pc=%p (+0x%x), pos=%d (+%d)\n", func_index, func_name, reinterpret_cast<void*>(pc()), static_cast<int>(pc() - instruction_start), pos, pos - func_code_offset); if (mode != OVERVIEW) accumulator->Add("\n"); } Code* WasmCompiledFrame::unchecked_code() const { return isolate()->FindCodeObject(pc()); } void WasmCompiledFrame::Iterate(RootVisitor* v) const { IterateCompiledFrame(v); } Address WasmCompiledFrame::GetCallerStackPointer() const { return fp() + ExitFrameConstants::kCallerSPOffset; } wasm::WasmCode* WasmCompiledFrame::wasm_code() const { return isolate()->wasm_engine()->code_manager()->LookupCode(pc()); } WasmInstanceObject* WasmCompiledFrame::wasm_instance() const { const int offset = WasmCompiledFrameConstants::kWasmInstanceOffset; Object* instance = Memory<Object*>(fp() + offset); return WasmInstanceObject::cast(instance); } WasmModuleObject* WasmCompiledFrame::module_object() const { return wasm_instance()->module_object(); } uint32_t WasmCompiledFrame::function_index() const { return FrameSummary::GetSingle(this).AsWasmCompiled().function_index(); } Script* WasmCompiledFrame::script() const { return module_object()->script(); } int WasmCompiledFrame::position() const { return FrameSummary::GetSingle(this).SourcePosition(); } void WasmCompiledFrame::Summarize(std::vector<FrameSummary>* functions) const { DCHECK(functions->empty()); wasm::WasmCode* code = wasm_code(); int offset = static_cast<int>(pc() - code->instruction_start()); Handle<WasmInstanceObject> instance(wasm_instance(), isolate()); FrameSummary::WasmCompiledFrameSummary summary( isolate(), instance, code, offset, at_to_number_conversion()); functions->push_back(summary); } bool WasmCompiledFrame::at_to_number_conversion() const { // Check whether our callee is a WASM_TO_JS frame, and this frame is at the // ToNumber conversion call. wasm::WasmCode* code = callee_pc() != kNullAddress ? isolate()->wasm_engine()->code_manager()->LookupCode(callee_pc()) : nullptr; if (!code || code->kind() != wasm::WasmCode::kWasmToJsWrapper) return false; int offset = static_cast<int>(callee_pc() - code->instruction_start()); int pos = FrameSummary::WasmCompiledFrameSummary::GetWasmSourcePosition( code, offset); DCHECK(pos == 0 || pos == 1); // The imported call has position 0, ToNumber has position 1. return !!pos; } int WasmCompiledFrame::LookupExceptionHandlerInTable(int* stack_slots) { DCHECK_NOT_NULL(stack_slots); wasm::WasmCode* code = isolate()->wasm_engine()->code_manager()->LookupCode(pc()); if (!code->IsAnonymous() && code->handler_table_offset() > 0) { HandlerTable table(code->instruction_start(), code->handler_table_offset()); int pc_offset = static_cast<int>(pc() - code->instruction_start()); *stack_slots = static_cast<int>(code->stack_slots()); return table.LookupReturn(pc_offset); } return -1; } void WasmInterpreterEntryFrame::Iterate(RootVisitor* v) const { IterateCompiledFrame(v); } void WasmInterpreterEntryFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { PrintIndex(accumulator, mode, index); accumulator->Add("WASM INTERPRETER ENTRY ["); Script* script = this->script(); accumulator->PrintName(script->name()); accumulator->Add("]"); if (mode != OVERVIEW) accumulator->Add("\n"); } void WasmInterpreterEntryFrame::Summarize( std::vector<FrameSummary>* functions) const { Handle<WasmInstanceObject> instance(wasm_instance(), isolate()); std::vector<std::pair<uint32_t, int>> interpreted_stack = instance->debug_info()->GetInterpretedStack(fp()); for (auto& e : interpreted_stack) { FrameSummary::WasmInterpretedFrameSummary summary(isolate(), instance, e.first, e.second); functions->push_back(summary); } } Code* WasmInterpreterEntryFrame::unchecked_code() const { UNREACHABLE(); } WasmInstanceObject* WasmInterpreterEntryFrame::wasm_instance() const { const int offset = WasmCompiledFrameConstants::kWasmInstanceOffset; Object* instance = Memory<Object*>(fp() + offset); return WasmInstanceObject::cast(instance); } WasmDebugInfo* WasmInterpreterEntryFrame::debug_info() const { return wasm_instance()->debug_info(); } WasmModuleObject* WasmInterpreterEntryFrame::module_object() const { return wasm_instance()->module_object(); } Script* WasmInterpreterEntryFrame::script() const { return module_object()->script(); } int WasmInterpreterEntryFrame::position() const { return FrameSummary::GetBottom(this).AsWasmInterpreted().SourcePosition(); } Object* WasmInterpreterEntryFrame::context() const { return wasm_instance()->native_context(); } Address WasmInterpreterEntryFrame::GetCallerStackPointer() const { return fp() + ExitFrameConstants::kCallerSPOffset; } WasmInstanceObject* WasmCompileLazyFrame::wasm_instance() const { return WasmInstanceObject::cast(*wasm_instance_slot()); } Object** WasmCompileLazyFrame::wasm_instance_slot() const { const int offset = WasmCompileLazyFrameConstants::kWasmInstanceOffset; return &Memory<Object*>(fp() + offset); } void WasmCompileLazyFrame::Iterate(RootVisitor* v) const { const int header_size = WasmCompileLazyFrameConstants::kFixedFrameSizeFromFp; Object** base = &Memory<Object*>(sp()); Object** limit = &Memory<Object*>(fp() - header_size); v->VisitRootPointers(Root::kTop, nullptr, base, limit); v->VisitRootPointer(Root::kTop, nullptr, wasm_instance_slot()); } Address WasmCompileLazyFrame::GetCallerStackPointer() const { return fp() + WasmCompileLazyFrameConstants::kCallerSPOffset; } namespace { void PrintFunctionSource(StringStream* accumulator, SharedFunctionInfo* shared, Code* code) { if (FLAG_max_stack_trace_source_length != 0 && code != nullptr) { std::ostringstream os; os << "--------- s o u r c e c o d e ---------\n" << SourceCodeOf(shared, FLAG_max_stack_trace_source_length) << "\n-----------------------------------------\n"; accumulator->Add(os.str().c_str()); } } } // namespace void JavaScriptFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { DisallowHeapAllocation no_gc; Object* receiver = this->receiver(); JSFunction* function = this->function(); accumulator->PrintSecurityTokenIfChanged(function); PrintIndex(accumulator, mode, index); PrintFrameKind(accumulator); Code* code = nullptr; if (IsConstructor()) accumulator->Add("new "); accumulator->PrintFunction(function, receiver, &code); accumulator->Add(" [%p]", function); // Get scope information for nicer output, if possible. If code is nullptr, or // doesn't contain scope info, scope_info will return 0 for the number of // parameters, stack local variables, context local variables, stack slots, // or context slots. SharedFunctionInfo* shared = function->shared(); ScopeInfo* scope_info = shared->scope_info(); Object* script_obj = shared->script(); if (script_obj->IsScript()) { Script* script = Script::cast(script_obj); accumulator->Add(" ["); accumulator->PrintName(script->name()); if (is_interpreted()) { const InterpretedFrame* iframe = reinterpret_cast<const InterpretedFrame*>(this); BytecodeArray* bytecodes = iframe->GetBytecodeArray(); int offset = iframe->GetBytecodeOffset(); int source_pos = AbstractCode::cast(bytecodes)->SourcePosition(offset); int line = script->GetLineNumber(source_pos) + 1; accumulator->Add(":%d] [bytecode=%p offset=%d]", line, bytecodes, offset); } else { int function_start_pos = shared->StartPosition(); int line = script->GetLineNumber(function_start_pos) + 1; accumulator->Add(":~%d] [pc=%p]", line, reinterpret_cast<void*>(pc())); } } accumulator->Add("(this=%o", receiver); // Print the parameters. int parameters_count = ComputeParametersCount(); for (int i = 0; i < parameters_count; i++) { accumulator->Add(","); accumulator->Add("%o", GetParameter(i)); } accumulator->Add(")"); if (mode == OVERVIEW) { accumulator->Add("\n"); return; } if (is_optimized()) { accumulator->Add(" {\n// optimized frame\n"); PrintFunctionSource(accumulator, shared, code); accumulator->Add("}\n"); return; } accumulator->Add(" {\n"); // Compute the number of locals and expression stack elements. int heap_locals_count = scope_info->ContextLocalCount(); int expressions_count = ComputeExpressionsCount(); // Try to get hold of the context of this frame. Context* context = nullptr; if (this->context() != nullptr && this->context()->IsContext()) { context = Context::cast(this->context()); while (context->IsWithContext()) { context = context->previous(); DCHECK_NOT_NULL(context); } } // Print heap-allocated local variables. if (heap_locals_count > 0) { accumulator->Add(" // heap-allocated locals\n"); } for (int i = 0; i < heap_locals_count; i++) { accumulator->Add(" var "); accumulator->PrintName(scope_info->ContextLocalName(i)); accumulator->Add(" = "); if (context != nullptr) { int index = Context::MIN_CONTEXT_SLOTS + i; if (index < context->length()) { accumulator->Add("%o", context->get(index)); } else { accumulator->Add( "// warning: missing context slot - inconsistent frame?"); } } else { accumulator->Add("// warning: no context found - inconsistent frame?"); } accumulator->Add("\n"); } // Print the expression stack. if (0 < expressions_count) { accumulator->Add(" // expression stack (top to bottom)\n"); } for (int i = expressions_count - 1; i >= 0; i--) { accumulator->Add(" [%02d] : %o\n", i, GetExpression(i)); } PrintFunctionSource(accumulator, shared, code); accumulator->Add("}\n\n"); } void ArgumentsAdaptorFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { int actual = ComputeParametersCount(); int expected = -1; JSFunction* function = this->function(); expected = function->shared()->internal_formal_parameter_count(); PrintIndex(accumulator, mode, index); accumulator->Add("arguments adaptor frame: %d->%d", actual, expected); if (mode == OVERVIEW) { accumulator->Add("\n"); return; } accumulator->Add(" {\n"); // Print actual arguments. if (actual > 0) accumulator->Add(" // actual arguments\n"); for (int i = 0; i < actual; i++) { accumulator->Add(" [%02d] : %o", i, GetParameter(i)); if (expected != -1 && i >= expected) { accumulator->Add(" // not passed to callee"); } accumulator->Add("\n"); } accumulator->Add("}\n\n"); } void EntryFrame::Iterate(RootVisitor* v) const { IteratePc(v, pc_address(), constant_pool_address(), LookupCode()); } void StandardFrame::IterateExpressions(RootVisitor* v) const { const int offset = StandardFrameConstants::kLastObjectOffset; Object** base = &Memory<Object*>(sp()); Object** limit = &Memory<Object*>(fp() + offset) + 1; v->VisitRootPointers(Root::kTop, nullptr, base, limit); } void JavaScriptFrame::Iterate(RootVisitor* v) const { IterateExpressions(v); IteratePc(v, pc_address(), constant_pool_address(), LookupCode()); } void InternalFrame::Iterate(RootVisitor* v) const { Code* code = LookupCode(); IteratePc(v, pc_address(), constant_pool_address(), code); // Internal frames typically do not receive any arguments, hence their stack // only contains tagged pointers. // We are misusing the has_tagged_params flag here to tell us whether // the full stack frame contains only tagged pointers or only raw values. // This is used for the WasmCompileLazy builtin, where we actually pass // untagged arguments and also store untagged values on the stack. if (code->has_tagged_params()) IterateExpressions(v); } // ------------------------------------------------------------------------- InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* InnerPointerToCodeCache::GetCacheEntry(Address inner_pointer) { isolate_->counters()->pc_to_code()->Increment(); DCHECK(base::bits::IsPowerOfTwo(kInnerPointerToCodeCacheSize)); uint32_t hash = ComputeIntegerHash( ObjectAddressForHashing(reinterpret_cast<void*>(inner_pointer))); uint32_t index = hash & (kInnerPointerToCodeCacheSize - 1); InnerPointerToCodeCacheEntry* entry = cache(index); if (entry->inner_pointer == inner_pointer) { isolate_->counters()->pc_to_code_cached()->Increment(); DCHECK(entry->code == isolate_->heap()->GcSafeFindCodeForInnerPointer(inner_pointer)); } else { // Because this code may be interrupted by a profiling signal that // also queries the cache, we cannot update inner_pointer before the code // has been set. Otherwise, we risk trying to use a cache entry before // the code has been computed. entry->code = isolate_->heap()->GcSafeFindCodeForInnerPointer(inner_pointer); entry->safepoint_entry.Reset(); entry->inner_pointer = inner_pointer; } return entry; } } // namespace internal } // namespace v8