// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_ISOLATE_H_ #define V8_ISOLATE_H_ #include <cstddef> #include <memory> #include <queue> #include <unordered_map> #include <vector> #include "include/v8-inspector.h" #include "include/v8.h" #include "src/allocation.h" #include "src/base/atomicops.h" #include "src/base/macros.h" #include "src/builtins/builtins.h" #include "src/contexts.h" #include "src/date.h" #include "src/debug/debug-interface.h" #include "src/execution.h" #include "src/futex-emulation.h" #include "src/globals.h" #include "src/handles.h" #include "src/heap/factory.h" #include "src/heap/heap.h" #include "src/messages.h" #include "src/objects/code.h" #include "src/objects/debug-objects.h" #include "src/runtime/runtime.h" #include "src/unicode.h" #ifdef V8_INTL_SUPPORT #include "unicode/uversion.h" // Define U_ICU_NAMESPACE. // 'icu' does not work. Use U_ICU_NAMESPACE. namespace U_ICU_NAMESPACE { class RegexMatcher; } // namespace U_ICU_NAMESPACE #endif // V8_INTL_SUPPORT namespace v8 { namespace base { class RandomNumberGenerator; } namespace debug { class ConsoleDelegate; } namespace internal { namespace heap { class HeapTester; } // namespace heap class AccessCompilerData; class AddressToIndexHashMap; class AstStringConstants; class Bootstrapper; class BuiltinsConstantsTableBuilder; class CancelableTaskManager; class CodeEventDispatcher; class ExternalCodeEventListener; class CodeGenerator; class CodeRange; class CodeStubDescriptor; class CodeTracer; class CompilationCache; class CompilationStatistics; class CompilerDispatcher; class ContextSlotCache; class Counters; class CpuFeatures; class Debug; class DeoptimizerData; class DescriptorLookupCache; class EmptyStatement; class EternalHandles; class ExternalCallbackScope; class HandleScopeImplementer; class HeapObjectToIndexHashMap; class HeapProfiler; class InlineRuntimeFunctionsTable; class InnerPointerToCodeCache; class InstructionStream; class Logger; class MaterializedObjectStore; class Microtask; class OptimizingCompileDispatcher; class PromiseOnStack; class Redirection; class RegExpStack; class RootVisitor; class RuntimeProfiler; class SaveContext; class SetupIsolateDelegate; class Simulator; class StartupDeserializer; class StandardFrame; class StatsTable; class StringTracker; class StubCache; class SweeperThread; class ThreadManager; class ThreadState; class ThreadVisitor; // Defined in v8threads.h class TracingCpuProfilerImpl; class UnicodeCache; struct ManagedPtrDestructor; template <StateTag Tag> class VMState; namespace interpreter { class Interpreter; } namespace wasm { class WasmEngine; } #define RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate) \ do { \ Isolate* __isolate__ = (isolate); \ DCHECK(!__isolate__->has_pending_exception()); \ if (__isolate__->has_scheduled_exception()) { \ return __isolate__->PromoteScheduledException(); \ } \ } while (false) // Macros for MaybeHandle. #define RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, value) \ do { \ Isolate* __isolate__ = (isolate); \ DCHECK(!__isolate__->has_pending_exception()); \ if (__isolate__->has_scheduled_exception()) { \ __isolate__->PromoteScheduledException(); \ return value; \ } \ } while (false) #define RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, T) \ RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, MaybeHandle<T>()) #define ASSIGN_RETURN_ON_SCHEDULED_EXCEPTION_VALUE(isolate, dst, call, value) \ do { \ Isolate* __isolate__ = (isolate); \ if (!(call).ToLocal(&dst)) { \ DCHECK(__isolate__->has_scheduled_exception()); \ __isolate__->PromoteScheduledException(); \ return value; \ } \ } while (false) #define RETURN_ON_SCHEDULED_EXCEPTION_VALUE(isolate, call, value) \ do { \ Isolate* __isolate__ = (isolate); \ if ((call).IsNothing()) { \ DCHECK(__isolate__->has_scheduled_exception()); \ __isolate__->PromoteScheduledException(); \ return value; \ } \ } while (false) /** * RETURN_RESULT_OR_FAILURE is used in functions with return type Object* (such * as "RUNTIME_FUNCTION(...) {...}" or "BUILTIN(...) {...}" ) to return either * the contents of a MaybeHandle<X>, or the "exception" sentinel value. * Example usage: * * RUNTIME_FUNCTION(Runtime_Func) { * ... * RETURN_RESULT_OR_FAILURE( * isolate, * FunctionWithReturnTypeMaybeHandleX(...)); * } * * If inside a function with return type MaybeHandle<X> use RETURN_ON_EXCEPTION * instead. * If inside a function with return type Handle<X>, or Maybe<X> use * RETURN_ON_EXCEPTION_VALUE instead. */ #define RETURN_RESULT_OR_FAILURE(isolate, call) \ do { \ Handle<Object> __result__; \ Isolate* __isolate__ = (isolate); \ if (!(call).ToHandle(&__result__)) { \ DCHECK(__isolate__->has_pending_exception()); \ return ReadOnlyRoots(__isolate__).exception(); \ } \ DCHECK(!__isolate__->has_pending_exception()); \ return *__result__; \ } while (false) #define ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, dst, call, value) \ do { \ if (!(call).ToHandle(&dst)) { \ DCHECK((isolate)->has_pending_exception()); \ return value; \ } \ } while (false) #define ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, dst, call) \ do { \ Isolate* __isolate__ = (isolate); \ ASSIGN_RETURN_ON_EXCEPTION_VALUE(__isolate__, dst, call, \ ReadOnlyRoots(__isolate__).exception()); \ } while (false) #define ASSIGN_RETURN_ON_EXCEPTION(isolate, dst, call, T) \ ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, dst, call, MaybeHandle<T>()) #define THROW_NEW_ERROR(isolate, call, T) \ do { \ Isolate* __isolate__ = (isolate); \ return __isolate__->Throw<T>(__isolate__->factory()->call); \ } while (false) #define THROW_NEW_ERROR_RETURN_FAILURE(isolate, call) \ do { \ Isolate* __isolate__ = (isolate); \ return __isolate__->Throw(*__isolate__->factory()->call); \ } while (false) #define THROW_NEW_ERROR_RETURN_VALUE(isolate, call, value) \ do { \ Isolate* __isolate__ = (isolate); \ __isolate__->Throw(*__isolate__->factory()->call); \ return value; \ } while (false) /** * RETURN_ON_EXCEPTION_VALUE conditionally returns the given value when the * given MaybeHandle is empty. It is typically used in functions with return * type Maybe<X> or Handle<X>. Example usage: * * Handle<X> Func() { * ... * RETURN_ON_EXCEPTION_VALUE( * isolate, * FunctionWithReturnTypeMaybeHandleX(...), * Handle<X>()); * // code to handle non exception * ... * } * * Maybe<bool> Func() { * .. * RETURN_ON_EXCEPTION_VALUE( * isolate, * FunctionWithReturnTypeMaybeHandleX(...), * Nothing<bool>); * // code to handle non exception * return Just(true); * } * * If inside a function with return type MaybeHandle<X>, use RETURN_ON_EXCEPTION * instead. * If inside a function with return type Object*, use * RETURN_FAILURE_ON_EXCEPTION instead. */ #define RETURN_ON_EXCEPTION_VALUE(isolate, call, value) \ do { \ if ((call).is_null()) { \ DCHECK((isolate)->has_pending_exception()); \ return value; \ } \ } while (false) /** * RETURN_FAILURE_ON_EXCEPTION conditionally returns the "exception" sentinel if * the given MaybeHandle is empty; so it can only be used in functions with * return type Object*, such as RUNTIME_FUNCTION(...) {...} or BUILTIN(...) * {...}. Example usage: * * RUNTIME_FUNCTION(Runtime_Func) { * ... * RETURN_FAILURE_ON_EXCEPTION( * isolate, * FunctionWithReturnTypeMaybeHandleX(...)); * // code to handle non exception * ... * } * * If inside a function with return type MaybeHandle<X>, use RETURN_ON_EXCEPTION * instead. * If inside a function with return type Maybe<X> or Handle<X>, use * RETURN_ON_EXCEPTION_VALUE instead. */ #define RETURN_FAILURE_ON_EXCEPTION(isolate, call) \ do { \ Isolate* __isolate__ = (isolate); \ RETURN_ON_EXCEPTION_VALUE(__isolate__, call, \ ReadOnlyRoots(__isolate__).exception()); \ } while (false); /** * RETURN_ON_EXCEPTION conditionally returns an empty MaybeHandle<T> if the * given MaybeHandle is empty. Use it to return immediately from a function with * return type MaybeHandle when an exception was thrown. Example usage: * * MaybeHandle<X> Func() { * ... * RETURN_ON_EXCEPTION( * isolate, * FunctionWithReturnTypeMaybeHandleY(...), * X); * // code to handle non exception * ... * } * * If inside a function with return type Object*, use * RETURN_FAILURE_ON_EXCEPTION instead. * If inside a function with return type * Maybe<X> or Handle<X>, use RETURN_ON_EXCEPTION_VALUE instead. */ #define RETURN_ON_EXCEPTION(isolate, call, T) \ RETURN_ON_EXCEPTION_VALUE(isolate, call, MaybeHandle<T>()) #define FOR_WITH_HANDLE_SCOPE(isolate, loop_var_type, init, loop_var, \ limit_check, increment, body) \ do { \ loop_var_type init; \ loop_var_type for_with_handle_limit = loop_var; \ Isolate* for_with_handle_isolate = isolate; \ while (limit_check) { \ for_with_handle_limit += 1024; \ HandleScope loop_scope(for_with_handle_isolate); \ for (; limit_check && loop_var < for_with_handle_limit; increment) { \ body \ } \ } \ } while (false) // Platform-independent, reliable thread identifier. class ThreadId { public: // Creates an invalid ThreadId. ThreadId() { base::Relaxed_Store(&id_, kInvalidId); } ThreadId& operator=(const ThreadId& other) { base::Relaxed_Store(&id_, base::Relaxed_Load(&other.id_)); return *this; } bool operator==(const ThreadId& other) const { return Equals(other); } // Returns ThreadId for current thread. static ThreadId Current() { return ThreadId(GetCurrentThreadId()); } // Returns invalid ThreadId (guaranteed not to be equal to any thread). static ThreadId Invalid() { return ThreadId(kInvalidId); } // Compares ThreadIds for equality. V8_INLINE bool Equals(const ThreadId& other) const { return base::Relaxed_Load(&id_) == base::Relaxed_Load(&other.id_); } // Checks whether this ThreadId refers to any thread. V8_INLINE bool IsValid() const { return base::Relaxed_Load(&id_) != kInvalidId; } // Converts ThreadId to an integer representation // (required for public API: V8::V8::GetCurrentThreadId). int ToInteger() const { return static_cast<int>(base::Relaxed_Load(&id_)); } // Converts ThreadId to an integer representation // (required for public API: V8::V8::TerminateExecution). static ThreadId FromInteger(int id) { return ThreadId(id); } private: static const int kInvalidId = -1; explicit ThreadId(int id) { base::Relaxed_Store(&id_, id); } static int AllocateThreadId(); V8_EXPORT_PRIVATE static int GetCurrentThreadId(); base::Atomic32 id_; static base::Atomic32 highest_thread_id_; friend class Isolate; }; #define FIELD_ACCESSOR(type, name) \ inline void set_##name(type v) { name##_ = v; } \ inline type name() const { return name##_; } class ThreadLocalTop BASE_EMBEDDED { public: // Does early low-level initialization that does not depend on the // isolate being present. ThreadLocalTop() = default; // Initialize the thread data. void Initialize(Isolate*); // Get the top C++ try catch handler or nullptr if none are registered. // // This method is not guaranteed to return an address that can be // used for comparison with addresses into the JS stack. If such an // address is needed, use try_catch_handler_address. FIELD_ACCESSOR(v8::TryCatch*, try_catch_handler) // Get the address of the top C++ try catch handler or nullptr if // none are registered. // // This method always returns an address that can be compared to // pointers into the JavaScript stack. When running on actual // hardware, try_catch_handler_address and TryCatchHandler return // the same pointer. When running on a simulator with a separate JS // stack, try_catch_handler_address returns a JS stack address that // corresponds to the place on the JS stack where the C++ handler // would have been if the stack were not separate. Address try_catch_handler_address() { return reinterpret_cast<Address>( v8::TryCatch::JSStackComparableAddress(try_catch_handler())); } void Free(); Isolate* isolate_ = nullptr; // The context where the current execution method is created and for variable // lookups. Context* context_ = nullptr; ThreadId thread_id_ = ThreadId::Invalid(); Object* pending_exception_ = nullptr; // TODO(kschimpf): Change this to a stack of caught exceptions (rather than // just innermost catching try block). Object* wasm_caught_exception_ = nullptr; // Communication channel between Isolate::FindHandler and the CEntry. Context* pending_handler_context_ = nullptr; Address pending_handler_entrypoint_ = kNullAddress; Address pending_handler_constant_pool_ = kNullAddress; Address pending_handler_fp_ = kNullAddress; Address pending_handler_sp_ = kNullAddress; // Communication channel between Isolate::Throw and message consumers. bool rethrowing_message_ = false; Object* pending_message_obj_ = nullptr; // Use a separate value for scheduled exceptions to preserve the // invariants that hold about pending_exception. We may want to // unify them later. Object* scheduled_exception_ = nullptr; bool external_caught_exception_ = false; SaveContext* save_context_ = nullptr; // Stack. // The frame pointer of the top c entry frame. Address c_entry_fp_ = kNullAddress; // Try-blocks are chained through the stack. Address handler_ = kNullAddress; // C function that was called at c entry. Address c_function_ = kNullAddress; // Throwing an exception may cause a Promise rejection. For this purpose // we keep track of a stack of nested promises and the corresponding // try-catch handlers. PromiseOnStack* promise_on_stack_ = nullptr; #ifdef USE_SIMULATOR Simulator* simulator_ = nullptr; #endif // The stack pointer of the bottom JS entry frame. Address js_entry_sp_ = kNullAddress; // The external callback we're currently in. ExternalCallbackScope* external_callback_scope_ = nullptr; StateTag current_vm_state_ = EXTERNAL; // Call back function to report unsafe JS accesses. v8::FailedAccessCheckCallback failed_access_check_callback_ = nullptr; // Address of the thread-local "thread in wasm" flag. Address thread_in_wasm_flag_address_ = kNullAddress; private: v8::TryCatch* try_catch_handler_ = nullptr; }; #ifdef DEBUG #define ISOLATE_INIT_DEBUG_ARRAY_LIST(V) \ V(CommentStatistic, paged_space_comments_statistics, \ CommentStatistic::kMaxComments + 1) \ V(int, code_kind_statistics, AbstractCode::NUMBER_OF_KINDS) #else #define ISOLATE_INIT_DEBUG_ARRAY_LIST(V) #endif #define ISOLATE_INIT_ARRAY_LIST(V) \ /* SerializerDeserializer state. */ \ V(int32_t, jsregexp_static_offsets_vector, kJSRegexpStaticOffsetsVectorSize) \ V(int, bad_char_shift_table, kUC16AlphabetSize) \ V(int, good_suffix_shift_table, (kBMMaxShift + 1)) \ V(int, suffix_table, (kBMMaxShift + 1)) \ ISOLATE_INIT_DEBUG_ARRAY_LIST(V) typedef std::vector<HeapObject*> DebugObjectCache; #define ISOLATE_INIT_LIST(V) \ /* Assembler state. */ \ V(FatalErrorCallback, exception_behavior, nullptr) \ V(OOMErrorCallback, oom_behavior, nullptr) \ V(LogEventCallback, event_logger, nullptr) \ V(AllowCodeGenerationFromStringsCallback, allow_code_gen_callback, nullptr) \ V(AllowWasmCodeGenerationCallback, allow_wasm_code_gen_callback, nullptr) \ V(ExtensionCallback, wasm_module_callback, &NoExtension) \ V(ExtensionCallback, wasm_instance_callback, &NoExtension) \ V(ApiImplementationCallback, wasm_compile_streaming_callback, nullptr) \ V(WasmStreamingCallback, wasm_streaming_callback, nullptr) \ V(WasmThreadsEnabledCallback, wasm_threads_enabled_callback, nullptr) \ /* State for Relocatable. */ \ V(Relocatable*, relocatable_top, nullptr) \ V(DebugObjectCache*, string_stream_debug_object_cache, nullptr) \ V(Object*, string_stream_current_security_token, nullptr) \ V(const intptr_t*, api_external_references, nullptr) \ V(AddressToIndexHashMap*, external_reference_map, nullptr) \ V(HeapObjectToIndexHashMap*, root_index_map, nullptr) \ V(int, pending_microtask_count, 0) \ V(CompilationStatistics*, turbo_statistics, nullptr) \ V(CodeTracer*, code_tracer, nullptr) \ V(uint32_t, per_isolate_assert_data, 0xFFFFFFFFu) \ V(PromiseRejectCallback, promise_reject_callback, nullptr) \ V(const v8::StartupData*, snapshot_blob, nullptr) \ V(int, code_and_metadata_size, 0) \ V(int, bytecode_and_metadata_size, 0) \ V(int, external_script_source_size, 0) \ /* true if being profiled. Causes collection of extra compile info. */ \ V(bool, is_profiling, false) \ /* true if a trace is being formatted through Error.prepareStackTrace. */ \ V(bool, formatting_stack_trace, false) \ /* Perform side effect checks on function call and API callbacks. */ \ V(DebugInfo::ExecutionMode, debug_execution_mode, DebugInfo::kBreakpoints) \ /* Current code coverage mode */ \ V(debug::Coverage::Mode, code_coverage_mode, debug::Coverage::kBestEffort) \ V(debug::TypeProfile::Mode, type_profile_mode, debug::TypeProfile::kNone) \ V(int, last_stack_frame_info_id, 0) \ V(int, last_console_context_id, 0) \ V(v8_inspector::V8Inspector*, inspector, nullptr) \ V(bool, next_v8_call_is_safe_for_termination, false) \ V(bool, only_terminate_in_safe_scope, false) #define THREAD_LOCAL_TOP_ACCESSOR(type, name) \ inline void set_##name(type v) { thread_local_top_.name##_ = v; } \ inline type name() const { return thread_local_top_.name##_; } #define THREAD_LOCAL_TOP_ADDRESS(type, name) \ type* name##_address() { return &thread_local_top_.name##_; } // HiddenFactory exists so Isolate can privately inherit from it without making // Factory's members available to Isolate directly. class V8_EXPORT_PRIVATE HiddenFactory : private Factory {}; class Isolate : private HiddenFactory { // These forward declarations are required to make the friend declarations in // PerIsolateThreadData work on some older versions of gcc. class ThreadDataTable; class EntryStackItem; public: ~Isolate(); // A thread has a PerIsolateThreadData instance for each isolate that it has // entered. That instance is allocated when the isolate is initially entered // and reused on subsequent entries. class PerIsolateThreadData { public: PerIsolateThreadData(Isolate* isolate, ThreadId thread_id) : isolate_(isolate), thread_id_(thread_id), stack_limit_(0), thread_state_(nullptr), #if USE_SIMULATOR simulator_(nullptr), #endif next_(nullptr), prev_(nullptr) { } ~PerIsolateThreadData(); Isolate* isolate() const { return isolate_; } ThreadId thread_id() const { return thread_id_; } FIELD_ACCESSOR(uintptr_t, stack_limit) FIELD_ACCESSOR(ThreadState*, thread_state) #if USE_SIMULATOR FIELD_ACCESSOR(Simulator*, simulator) #endif bool Matches(Isolate* isolate, ThreadId thread_id) const { return isolate_ == isolate && thread_id_.Equals(thread_id); } private: Isolate* isolate_; ThreadId thread_id_; uintptr_t stack_limit_; ThreadState* thread_state_; #if USE_SIMULATOR Simulator* simulator_; #endif PerIsolateThreadData* next_; PerIsolateThreadData* prev_; friend class Isolate; friend class ThreadDataTable; friend class EntryStackItem; DISALLOW_COPY_AND_ASSIGN(PerIsolateThreadData); }; static void InitializeOncePerProcess(); // Returns the PerIsolateThreadData for the current thread (or nullptr if one // is not currently set). static PerIsolateThreadData* CurrentPerIsolateThreadData() { return reinterpret_cast<PerIsolateThreadData*>( base::Thread::GetThreadLocal(per_isolate_thread_data_key_)); } // Returns the isolate inside which the current thread is running. V8_INLINE static Isolate* Current() { DCHECK_EQ(base::Relaxed_Load(&isolate_key_created_), 1); Isolate* isolate = reinterpret_cast<Isolate*>( base::Thread::GetExistingThreadLocal(isolate_key_)); DCHECK_NOT_NULL(isolate); return isolate; } // Get the isolate that the given HeapObject lives in, returning true on // success. If the object is not writable (i.e. lives in read-only space), // return false. inline static bool FromWritableHeapObject(HeapObject* obj, Isolate** isolate); // Usually called by Init(), but can be called early e.g. to allow // testing components that require logging but not the whole // isolate. // // Safe to call more than once. void InitializeLoggingAndCounters(); bool InitializeCounters(); // Returns false if already initialized. bool Init(StartupDeserializer* des); // True if at least one thread Enter'ed this isolate. bool IsInUse() { return entry_stack_ != nullptr; } // Destroys the non-default isolates. // Sets default isolate into "has_been_disposed" state rather then destroying, // for legacy API reasons. void TearDown(); void ReleaseSharedPtrs(); void ClearSerializerData(); // Find the PerThread for this particular (isolate, thread) combination // If one does not yet exist, return null. PerIsolateThreadData* FindPerThreadDataForThisThread(); // Find the PerThread for given (isolate, thread) combination // If one does not yet exist, return null. PerIsolateThreadData* FindPerThreadDataForThread(ThreadId thread_id); // Discard the PerThread for this particular (isolate, thread) combination // If one does not yet exist, no-op. void DiscardPerThreadDataForThisThread(); // Returns the key used to store the pointer to the current isolate. // Used internally for V8 threads that do not execute JavaScript but still // are part of the domain of an isolate (like the context switcher). static base::Thread::LocalStorageKey isolate_key() { return isolate_key_; } // Returns the key used to store process-wide thread IDs. static base::Thread::LocalStorageKey thread_id_key() { return thread_id_key_; } static base::Thread::LocalStorageKey per_isolate_thread_data_key(); // Mutex for serializing access to break control structures. base::RecursiveMutex* break_access() { return &break_access_; } Address get_address_from_id(IsolateAddressId id); // Access to top context (where the current function object was created). Context* context() { return thread_local_top_.context_; } inline void set_context(Context* context); Context** context_address() { return &thread_local_top_.context_; } THREAD_LOCAL_TOP_ACCESSOR(SaveContext*, save_context) // Access to current thread id. THREAD_LOCAL_TOP_ACCESSOR(ThreadId, thread_id) // Interface to pending exception. inline Object* pending_exception(); inline void set_pending_exception(Object* exception_obj); inline void clear_pending_exception(); // Interface to wasm caught exception. inline Object* get_wasm_caught_exception(); inline void set_wasm_caught_exception(Object* exception); inline void clear_wasm_caught_exception(); bool AreWasmThreadsEnabled(Handle<Context> context); THREAD_LOCAL_TOP_ADDRESS(Object*, pending_exception) inline bool has_pending_exception(); THREAD_LOCAL_TOP_ADDRESS(Context*, pending_handler_context) THREAD_LOCAL_TOP_ADDRESS(Address, pending_handler_entrypoint) THREAD_LOCAL_TOP_ADDRESS(Address, pending_handler_constant_pool) THREAD_LOCAL_TOP_ADDRESS(Address, pending_handler_fp) THREAD_LOCAL_TOP_ADDRESS(Address, pending_handler_sp) THREAD_LOCAL_TOP_ACCESSOR(bool, external_caught_exception) v8::TryCatch* try_catch_handler() { return thread_local_top_.try_catch_handler(); } bool* external_caught_exception_address() { return &thread_local_top_.external_caught_exception_; } THREAD_LOCAL_TOP_ADDRESS(Object*, scheduled_exception) inline void clear_pending_message(); Address pending_message_obj_address() { return reinterpret_cast<Address>(&thread_local_top_.pending_message_obj_); } inline Object* scheduled_exception(); inline bool has_scheduled_exception(); inline void clear_scheduled_exception(); bool IsJavaScriptHandlerOnTop(Object* exception); bool IsExternalHandlerOnTop(Object* exception); inline bool is_catchable_by_javascript(Object* exception); bool is_catchable_by_wasm(Object* exception); // JS execution stack (see frames.h). static Address c_entry_fp(ThreadLocalTop* thread) { return thread->c_entry_fp_; } static Address handler(ThreadLocalTop* thread) { return thread->handler_; } Address c_function() { return thread_local_top_.c_function_; } inline Address* c_entry_fp_address() { return &thread_local_top_.c_entry_fp_; } inline Address* handler_address() { return &thread_local_top_.handler_; } inline Address* c_function_address() { return &thread_local_top_.c_function_; } // Bottom JS entry. Address js_entry_sp() { return thread_local_top_.js_entry_sp_; } inline Address* js_entry_sp_address() { return &thread_local_top_.js_entry_sp_; } // Returns the global object of the current context. It could be // a builtin object, or a JS global object. inline Handle<JSGlobalObject> global_object(); // Returns the global proxy object of the current context. inline Handle<JSObject> global_proxy(); static int ArchiveSpacePerThread() { return sizeof(ThreadLocalTop); } void FreeThreadResources() { thread_local_top_.Free(); } // This method is called by the api after operations that may throw // exceptions. If an exception was thrown and not handled by an external // handler the exception is scheduled to be rethrown when we return to running // JavaScript code. If an exception is scheduled true is returned. V8_EXPORT_PRIVATE bool OptionalRescheduleException(bool is_bottom_call); // Push and pop a promise and the current try-catch handler. void PushPromise(Handle<JSObject> promise); void PopPromise(); // Return the relevant Promise that a throw/rejection pertains to, based // on the contents of the Promise stack Handle<Object> GetPromiseOnStackOnThrow(); // Heuristically guess whether a Promise is handled by user catch handler bool PromiseHasUserDefinedRejectHandler(Handle<Object> promise); class ExceptionScope { public: // Scope currently can only be used for regular exceptions, // not termination exception. inline explicit ExceptionScope(Isolate* isolate); inline ~ExceptionScope(); private: Isolate* isolate_; Handle<Object> pending_exception_; }; void SetCaptureStackTraceForUncaughtExceptions( bool capture, int frame_limit, StackTrace::StackTraceOptions options); void SetAbortOnUncaughtExceptionCallback( v8::Isolate::AbortOnUncaughtExceptionCallback callback); enum PrintStackMode { kPrintStackConcise, kPrintStackVerbose }; void PrintCurrentStackTrace(FILE* out); void PrintStack(StringStream* accumulator, PrintStackMode mode = kPrintStackVerbose); V8_EXPORT_PRIVATE void PrintStack(FILE* out, PrintStackMode mode = kPrintStackVerbose); Handle<String> StackTraceString(); // Stores a stack trace in a stack-allocated temporary buffer which will // end up in the minidump for debugging purposes. V8_NOINLINE void PushStackTraceAndDie(void* ptr1 = nullptr, void* ptr2 = nullptr, void* ptr3 = nullptr, void* ptr4 = nullptr); Handle<FixedArray> CaptureCurrentStackTrace( int frame_limit, StackTrace::StackTraceOptions options); Handle<Object> CaptureSimpleStackTrace(Handle<JSReceiver> error_object, FrameSkipMode mode, Handle<Object> caller); MaybeHandle<JSReceiver> CaptureAndSetDetailedStackTrace( Handle<JSReceiver> error_object); MaybeHandle<JSReceiver> CaptureAndSetSimpleStackTrace( Handle<JSReceiver> error_object, FrameSkipMode mode, Handle<Object> caller); Handle<FixedArray> GetDetailedStackTrace(Handle<JSObject> error_object); Address GetAbstractPC(int* line, int* column); // Returns if the given context may access the given global object. If // the result is false, the pending exception is guaranteed to be // set. bool MayAccess(Handle<Context> accessing_context, Handle<JSObject> receiver); void SetFailedAccessCheckCallback(v8::FailedAccessCheckCallback callback); void ReportFailedAccessCheck(Handle<JSObject> receiver); // Exception throwing support. The caller should use the result // of Throw() as its return value. Object* Throw(Object* exception, MessageLocation* location = nullptr); Object* ThrowIllegalOperation(); template <typename T> V8_WARN_UNUSED_RESULT MaybeHandle<T> Throw( Handle<Object> exception, MessageLocation* location = nullptr) { Throw(*exception, location); return MaybeHandle<T>(); } void set_console_delegate(debug::ConsoleDelegate* delegate) { console_delegate_ = delegate; } debug::ConsoleDelegate* console_delegate() { return console_delegate_; } void set_async_event_delegate(debug::AsyncEventDelegate* delegate) { async_event_delegate_ = delegate; PromiseHookStateUpdated(); } void OnAsyncFunctionStateChanged(Handle<JSPromise> promise, debug::DebugAsyncActionType); // Re-throw an exception. This involves no error reporting since error // reporting was handled when the exception was thrown originally. Object* ReThrow(Object* exception); // Find the correct handler for the current pending exception. This also // clears and returns the current pending exception. Object* UnwindAndFindHandler(); // Tries to predict whether an exception will be caught. Note that this can // only produce an estimate, because it is undecidable whether a finally // clause will consume or re-throw an exception. enum CatchType { NOT_CAUGHT, CAUGHT_BY_JAVASCRIPT, CAUGHT_BY_EXTERNAL, CAUGHT_BY_DESUGARING, CAUGHT_BY_PROMISE, CAUGHT_BY_ASYNC_AWAIT }; CatchType PredictExceptionCatcher(); V8_EXPORT_PRIVATE void ScheduleThrow(Object* exception); // Re-set pending message, script and positions reported to the TryCatch // back to the TLS for re-use when rethrowing. void RestorePendingMessageFromTryCatch(v8::TryCatch* handler); // Un-schedule an exception that was caught by a TryCatch handler. void CancelScheduledExceptionFromTryCatch(v8::TryCatch* handler); void ReportPendingMessages(); void ReportPendingMessagesFromJavaScript(); // Implements code shared between the two above methods void ReportPendingMessagesImpl(bool report_externally); // Return pending location if any or unfilled structure. MessageLocation GetMessageLocation(); // Promote a scheduled exception to pending. Asserts has_scheduled_exception. Object* PromoteScheduledException(); // Attempts to compute the current source location, storing the // result in the target out parameter. The source location is attached to a // Message object as the location which should be shown to the user. It's // typically the top-most meaningful location on the stack. bool ComputeLocation(MessageLocation* target); bool ComputeLocationFromException(MessageLocation* target, Handle<Object> exception); bool ComputeLocationFromStackTrace(MessageLocation* target, Handle<Object> exception); Handle<JSMessageObject> CreateMessage(Handle<Object> exception, MessageLocation* location); // Out of resource exception helpers. Object* StackOverflow(); Object* TerminateExecution(); void CancelTerminateExecution(); void RequestInterrupt(InterruptCallback callback, void* data); void InvokeApiInterruptCallbacks(); // Administration void Iterate(RootVisitor* v); void Iterate(RootVisitor* v, ThreadLocalTop* t); char* Iterate(RootVisitor* v, char* t); void IterateThread(ThreadVisitor* v, char* t); // Returns the current native context. inline Handle<NativeContext> native_context(); inline NativeContext* raw_native_context(); Handle<Context> GetIncumbentContext(); void RegisterTryCatchHandler(v8::TryCatch* that); void UnregisterTryCatchHandler(v8::TryCatch* that); char* ArchiveThread(char* to); char* RestoreThread(char* from); static const int kUC16AlphabetSize = 256; // See StringSearchBase. static const int kBMMaxShift = 250; // See StringSearchBase. // Accessors. #define GLOBAL_ACCESSOR(type, name, initialvalue) \ inline type name() const { \ DCHECK(OFFSET_OF(Isolate, name##_) == name##_debug_offset_); \ return name##_; \ } \ inline void set_##name(type value) { \ DCHECK(OFFSET_OF(Isolate, name##_) == name##_debug_offset_); \ name##_ = value; \ } ISOLATE_INIT_LIST(GLOBAL_ACCESSOR) #undef GLOBAL_ACCESSOR #define GLOBAL_ARRAY_ACCESSOR(type, name, length) \ inline type* name() { \ DCHECK(OFFSET_OF(Isolate, name##_) == name##_debug_offset_); \ return &(name##_)[0]; \ } ISOLATE_INIT_ARRAY_LIST(GLOBAL_ARRAY_ACCESSOR) #undef GLOBAL_ARRAY_ACCESSOR #define NATIVE_CONTEXT_FIELD_ACCESSOR(index, type, name) \ inline Handle<type> name(); \ inline bool is_##name(type* value); NATIVE_CONTEXT_FIELDS(NATIVE_CONTEXT_FIELD_ACCESSOR) #undef NATIVE_CONTEXT_FIELD_ACCESSOR Bootstrapper* bootstrapper() { return bootstrapper_; } // Use for updating counters on a foreground thread. Counters* counters() { return async_counters().get(); } // Use for updating counters on a background thread. const std::shared_ptr<Counters>& async_counters() { // Make sure InitializeCounters() has been called. DCHECK_NOT_NULL(async_counters_.get()); return async_counters_; } RuntimeProfiler* runtime_profiler() { return runtime_profiler_; } CompilationCache* compilation_cache() { return compilation_cache_; } Logger* logger() { // Call InitializeLoggingAndCounters() if logging is needed before // the isolate is fully initialized. DCHECK_NOT_NULL(logger_); return logger_; } StackGuard* stack_guard() { return &stack_guard_; } Heap* heap() { return &heap_; } StubCache* load_stub_cache() { return load_stub_cache_; } StubCache* store_stub_cache() { return store_stub_cache_; } DeoptimizerData* deoptimizer_data() { return deoptimizer_data_; } bool deoptimizer_lazy_throw() const { return deoptimizer_lazy_throw_; } void set_deoptimizer_lazy_throw(bool value) { deoptimizer_lazy_throw_ = value; } ThreadLocalTop* thread_local_top() { return &thread_local_top_; } MaterializedObjectStore* materialized_object_store() { return materialized_object_store_; } ContextSlotCache* context_slot_cache() { return context_slot_cache_; } DescriptorLookupCache* descriptor_lookup_cache() { return descriptor_lookup_cache_; } HandleScopeData* handle_scope_data() { return &handle_scope_data_; } HandleScopeImplementer* handle_scope_implementer() { DCHECK(handle_scope_implementer_); return handle_scope_implementer_; } UnicodeCache* unicode_cache() { return unicode_cache_; } InnerPointerToCodeCache* inner_pointer_to_code_cache() { return inner_pointer_to_code_cache_; } GlobalHandles* global_handles() { return global_handles_; } EternalHandles* eternal_handles() { return eternal_handles_; } ThreadManager* thread_manager() { return thread_manager_; } unibrow::Mapping<unibrow::Ecma262UnCanonicalize>* jsregexp_uncanonicalize() { return &jsregexp_uncanonicalize_; } unibrow::Mapping<unibrow::CanonicalizationRange>* jsregexp_canonrange() { return &jsregexp_canonrange_; } RuntimeState* runtime_state() { return &runtime_state_; } Builtins* builtins() { return &builtins_; } unibrow::Mapping<unibrow::Ecma262Canonicalize>* regexp_macro_assembler_canonicalize() { return ®exp_macro_assembler_canonicalize_; } RegExpStack* regexp_stack() { return regexp_stack_; } size_t total_regexp_code_generated() { return total_regexp_code_generated_; } void IncreaseTotalRegexpCodeGenerated(int size) { total_regexp_code_generated_ += size; } std::vector<int>* regexp_indices() { return ®exp_indices_; } unibrow::Mapping<unibrow::Ecma262Canonicalize>* interp_canonicalize_mapping() { return ®exp_macro_assembler_canonicalize_; } Debug* debug() { return debug_; } bool* is_profiling_address() { return &is_profiling_; } CodeEventDispatcher* code_event_dispatcher() const { return code_event_dispatcher_.get(); } HeapProfiler* heap_profiler() const { return heap_profiler_; } #ifdef DEBUG static size_t non_disposed_isolates() { return non_disposed_isolates_; } #endif v8::internal::Factory* factory() { // Upcast to the privately inherited base-class using c-style casts to avoid // undefined behavior (as static_cast cannot cast across private bases). return (v8::internal::Factory*)this; // NOLINT(readability/casting) } static const int kJSRegexpStaticOffsetsVectorSize = 128; THREAD_LOCAL_TOP_ACCESSOR(ExternalCallbackScope*, external_callback_scope) THREAD_LOCAL_TOP_ACCESSOR(StateTag, current_vm_state) void SetData(uint32_t slot, void* data) { DCHECK_LT(slot, Internals::kNumIsolateDataSlots); embedder_data_[slot] = data; } void* GetData(uint32_t slot) { DCHECK_LT(slot, Internals::kNumIsolateDataSlots); return embedder_data_[slot]; } bool serializer_enabled() const { return serializer_enabled_; } void enable_serializer() { serializer_enabled_ = true; } bool snapshot_available() const { return snapshot_blob_ != nullptr && snapshot_blob_->raw_size != 0; } bool IsDead() { return has_fatal_error_; } void SignalFatalError() { has_fatal_error_ = true; } bool use_optimizer(); bool initialized_from_snapshot() { return initialized_from_snapshot_; } bool NeedsSourcePositionsForProfiling() const; bool NeedsDetailedOptimizedCodeLineInfo() const; bool is_best_effort_code_coverage() const { return code_coverage_mode() == debug::Coverage::kBestEffort; } bool is_precise_count_code_coverage() const { return code_coverage_mode() == debug::Coverage::kPreciseCount; } bool is_precise_binary_code_coverage() const { return code_coverage_mode() == debug::Coverage::kPreciseBinary; } bool is_block_count_code_coverage() const { return code_coverage_mode() == debug::Coverage::kBlockCount; } bool is_block_binary_code_coverage() const { return code_coverage_mode() == debug::Coverage::kBlockBinary; } bool is_block_code_coverage() const { return is_block_count_code_coverage() || is_block_binary_code_coverage(); } bool is_collecting_type_profile() const { return type_profile_mode() == debug::TypeProfile::kCollect; } // Collect feedback vectors with data for code coverage or type profile. // Reset the list, when both code coverage and type profile are not // needed anymore. This keeps many feedback vectors alive, but code // coverage or type profile are used for debugging only and increase in // memory usage is expected. void SetFeedbackVectorsForProfilingTools(Object* value); void MaybeInitializeVectorListFromHeap(); double time_millis_since_init() { return heap_.MonotonicallyIncreasingTimeInMs() - time_millis_at_init_; } DateCache* date_cache() { return date_cache_; } void set_date_cache(DateCache* date_cache) { if (date_cache != date_cache_) { delete date_cache_; } date_cache_ = date_cache; } #ifdef V8_INTL_SUPPORT icu::RegexMatcher* language_singleton_regexp_matcher() { return language_singleton_regexp_matcher_; } icu::RegexMatcher* language_tag_regexp_matcher() { return language_tag_regexp_matcher_; } icu::RegexMatcher* language_variant_regexp_matcher() { return language_variant_regexp_matcher_; } const std::string& default_locale() { return default_locale_; } void set_default_locale(const std::string& locale) { DCHECK_EQ(default_locale_.length(), 0); default_locale_ = locale; } void set_language_tag_regexp_matchers( icu::RegexMatcher* language_singleton_regexp_matcher, icu::RegexMatcher* language_tag_regexp_matcher, icu::RegexMatcher* language_variant_regexp_matcher) { DCHECK_NULL(language_singleton_regexp_matcher_); DCHECK_NULL(language_tag_regexp_matcher_); DCHECK_NULL(language_variant_regexp_matcher_); language_singleton_regexp_matcher_ = language_singleton_regexp_matcher; language_tag_regexp_matcher_ = language_tag_regexp_matcher; language_variant_regexp_matcher_ = language_variant_regexp_matcher; } #endif // V8_INTL_SUPPORT static const int kProtectorValid = 1; static const int kProtectorInvalid = 0; inline bool IsArrayConstructorIntact(); // The version with an explicit context parameter can be used when // Isolate::context is not set up, e.g. when calling directly into C++ from // CSA. bool IsNoElementsProtectorIntact(Context* context); bool IsNoElementsProtectorIntact(); inline bool IsArraySpeciesLookupChainIntact(); inline bool IsTypedArraySpeciesLookupChainIntact(); inline bool IsPromiseSpeciesLookupChainIntact(); bool IsIsConcatSpreadableLookupChainIntact(); bool IsIsConcatSpreadableLookupChainIntact(JSReceiver* receiver); inline bool IsStringLengthOverflowIntact(); inline bool IsArrayIteratorLookupChainIntact(); // Make sure we do check for neutered array buffers. inline bool IsArrayBufferNeuteringIntact(); // Disable promise optimizations if promise (debug) hooks have ever been // active. bool IsPromiseHookProtectorIntact(); // Make sure a lookup of "resolve" on the %Promise% intrinsic object // yeidls the initial Promise.resolve method. bool IsPromiseResolveLookupChainIntact(); // Make sure a lookup of "then" on any JSPromise whose [[Prototype]] is the // initial %PromisePrototype% yields the initial method. In addition this // protector also guards the negative lookup of "then" on the intrinsic // %ObjectPrototype%, meaning that such lookups are guaranteed to yield // undefined without triggering any side-effects. bool IsPromiseThenLookupChainIntact(); bool IsPromiseThenLookupChainIntact(Handle<JSReceiver> receiver); // On intent to set an element in object, make sure that appropriate // notifications occur if the set is on the elements of the array or // object prototype. Also ensure that changes to prototype chain between // Array and Object fire notifications. void UpdateNoElementsProtectorOnSetElement(Handle<JSObject> object); void UpdateNoElementsProtectorOnSetLength(Handle<JSObject> object) { UpdateNoElementsProtectorOnSetElement(object); } void UpdateNoElementsProtectorOnSetPrototype(Handle<JSObject> object) { UpdateNoElementsProtectorOnSetElement(object); } void UpdateNoElementsProtectorOnNormalizeElements(Handle<JSObject> object) { UpdateNoElementsProtectorOnSetElement(object); } void InvalidateArrayConstructorProtector(); void InvalidateArraySpeciesProtector(); void InvalidateTypedArraySpeciesProtector(); void InvalidatePromiseSpeciesProtector(); void InvalidateIsConcatSpreadableProtector(); void InvalidateStringLengthOverflowProtector(); void InvalidateArrayIteratorProtector(); void InvalidateArrayBufferNeuteringProtector(); V8_EXPORT_PRIVATE void InvalidatePromiseHookProtector(); void InvalidatePromiseResolveProtector(); void InvalidatePromiseThenProtector(); // Returns true if array is the initial array prototype in any native context. bool IsAnyInitialArrayPrototype(Handle<JSArray> array); void IterateDeferredHandles(RootVisitor* visitor); void LinkDeferredHandles(DeferredHandles* deferred_handles); void UnlinkDeferredHandles(DeferredHandles* deferred_handles); #ifdef DEBUG bool IsDeferredHandle(Object** location); #endif // DEBUG bool concurrent_recompilation_enabled() { // Thread is only available with flag enabled. DCHECK(optimizing_compile_dispatcher_ == nullptr || FLAG_concurrent_recompilation); return optimizing_compile_dispatcher_ != nullptr; } OptimizingCompileDispatcher* optimizing_compile_dispatcher() { return optimizing_compile_dispatcher_; } // Flushes all pending concurrent optimzation jobs from the optimizing // compile dispatcher's queue. void AbortConcurrentOptimization(BlockingBehavior blocking_behavior); int id() const { return static_cast<int>(id_); } CompilationStatistics* GetTurboStatistics(); CodeTracer* GetCodeTracer(); void DumpAndResetStats(); FunctionEntryHook function_entry_hook() { return function_entry_hook_; } void set_function_entry_hook(FunctionEntryHook function_entry_hook) { function_entry_hook_ = function_entry_hook; } void* stress_deopt_count_address() { return &stress_deopt_count_; } void set_force_slow_path(bool v) { force_slow_path_ = v; } bool force_slow_path() const { return force_slow_path_; } bool* force_slow_path_address() { return &force_slow_path_; } V8_EXPORT_PRIVATE base::RandomNumberGenerator* random_number_generator(); V8_EXPORT_PRIVATE base::RandomNumberGenerator* fuzzer_rng(); // Generates a random number that is non-zero when masked // with the provided mask. int GenerateIdentityHash(uint32_t mask); // Given an address occupied by a live code object, return that object. Code* FindCodeObject(Address a); int NextOptimizationId() { int id = next_optimization_id_++; if (!Smi::IsValid(next_optimization_id_)) { next_optimization_id_ = 0; } return id; } void AddNearHeapLimitCallback(v8::NearHeapLimitCallback, void* data); void RemoveNearHeapLimitCallback(v8::NearHeapLimitCallback callback, size_t heap_limit); void AddCallCompletedCallback(CallCompletedCallback callback); void RemoveCallCompletedCallback(CallCompletedCallback callback); void FireCallCompletedCallback(); void AddBeforeCallEnteredCallback(BeforeCallEnteredCallback callback); void RemoveBeforeCallEnteredCallback(BeforeCallEnteredCallback callback); inline void FireBeforeCallEnteredCallback(); void AddMicrotasksCompletedCallback(MicrotasksCompletedCallback callback); void RemoveMicrotasksCompletedCallback(MicrotasksCompletedCallback callback); inline void FireMicrotasksCompletedCallback(); void SetPromiseRejectCallback(PromiseRejectCallback callback); void ReportPromiseReject(Handle<JSPromise> promise, Handle<Object> value, v8::PromiseRejectEvent event); void EnqueueMicrotask(Handle<Microtask> microtask); void RunMicrotasks(); bool IsRunningMicrotasks() const { return is_running_microtasks_; } Handle<Symbol> SymbolFor(Heap::RootListIndex dictionary_index, Handle<String> name, bool private_symbol); void SetUseCounterCallback(v8::Isolate::UseCounterCallback callback); void CountUsage(v8::Isolate::UseCounterFeature feature); std::string GetTurboCfgFileName(); #if V8_SFI_HAS_UNIQUE_ID int GetNextUniqueSharedFunctionInfoId() { return next_unique_sfi_id_++; } #endif Address promise_hook_address() { return reinterpret_cast<Address>(&promise_hook_); } Address async_event_delegate_address() { return reinterpret_cast<Address>(&async_event_delegate_); } Address promise_hook_or_async_event_delegate_address() { return reinterpret_cast<Address>(&promise_hook_or_async_event_delegate_); } Address pending_microtask_count_address() { return reinterpret_cast<Address>(&pending_microtask_count_); } Address handle_scope_implementer_address() { return reinterpret_cast<Address>(&handle_scope_implementer_); } void SetAtomicsWaitCallback(v8::Isolate::AtomicsWaitCallback callback, void* data); void RunAtomicsWaitCallback(v8::Isolate::AtomicsWaitEvent event, Handle<JSArrayBuffer> array_buffer, size_t offset_in_bytes, int32_t value, double timeout_in_ms, AtomicsWaitWakeHandle* stop_handle); void SetPromiseHook(PromiseHook hook); void RunPromiseHook(PromiseHookType type, Handle<JSPromise> promise, Handle<Object> parent); void AddDetachedContext(Handle<Context> context); void CheckDetachedContextsAfterGC(); std::vector<Object*>* partial_snapshot_cache() { return &partial_snapshot_cache_; } // Off-heap builtins cannot embed constants within the code object itself, // and thus need to load them from the root list. bool ShouldLoadConstantsFromRootList() const { if (FLAG_embedded_builtins) { return (serializer_enabled() && builtins_constants_table_builder() != nullptr); } else { return false; } } // Called only prior to serialization. // This function copies off-heap-safe builtins off the heap, creates off-heap // trampolines, and sets up this isolate's embedded blob. void PrepareEmbeddedBlobForSerialization(); BuiltinsConstantsTableBuilder* builtins_constants_table_builder() const { return builtins_constants_table_builder_; } static const uint8_t* CurrentEmbeddedBlob(); static uint32_t CurrentEmbeddedBlobSize(); // These always return the same result as static methods above, but don't // access the global atomic variable (and thus *might be* slightly faster). const uint8_t* embedded_blob() const; uint32_t embedded_blob_size() const; void set_array_buffer_allocator(v8::ArrayBuffer::Allocator* allocator) { array_buffer_allocator_ = allocator; } v8::ArrayBuffer::Allocator* array_buffer_allocator() const { return array_buffer_allocator_; } FutexWaitListNode* futex_wait_list_node() { return &futex_wait_list_node_; } CancelableTaskManager* cancelable_task_manager() { return cancelable_task_manager_; } const AstStringConstants* ast_string_constants() const { return ast_string_constants_; } interpreter::Interpreter* interpreter() const { return interpreter_; } AccountingAllocator* allocator() { return allocator_; } CompilerDispatcher* compiler_dispatcher() const { return compiler_dispatcher_; } bool IsInAnyContext(Object* object, uint32_t index); void SetHostImportModuleDynamicallyCallback( HostImportModuleDynamicallyCallback callback); MaybeHandle<JSPromise> RunHostImportModuleDynamicallyCallback( Handle<Script> referrer, Handle<Object> specifier); void SetHostInitializeImportMetaObjectCallback( HostInitializeImportMetaObjectCallback callback); Handle<JSObject> RunHostInitializeImportMetaObjectCallback( Handle<Module> module); void SetRAILMode(RAILMode rail_mode); RAILMode rail_mode() { return rail_mode_.Value(); } double LoadStartTimeMs(); void IsolateInForegroundNotification(); void IsolateInBackgroundNotification(); bool IsIsolateInBackground() { return is_isolate_in_background_; } void EnableMemorySavingsMode() { memory_savings_mode_active_ = true; } void DisableMemorySavingsMode() { memory_savings_mode_active_ = false; } bool IsMemorySavingsModeActive() { return memory_savings_mode_active_; } PRINTF_FORMAT(2, 3) void PrintWithTimestamp(const char* format, ...); void set_allow_atomics_wait(bool set) { allow_atomics_wait_ = set; } bool allow_atomics_wait() { return allow_atomics_wait_; } // Register a finalizer to be called at isolate teardown. void RegisterManagedPtrDestructor(ManagedPtrDestructor* finalizer); // Removes a previously-registered shared object finalizer. void UnregisterManagedPtrDestructor(ManagedPtrDestructor* finalizer); size_t elements_deletion_counter() { return elements_deletion_counter_; } void set_elements_deletion_counter(size_t value) { elements_deletion_counter_ = value; } wasm::WasmEngine* wasm_engine() const { return wasm_engine_.get(); } void set_wasm_engine(std::shared_ptr<wasm::WasmEngine> engine) { DCHECK_NULL(wasm_engine_); // Only call once before {Init}. wasm_engine_ = std::move(engine); } const v8::Context::BackupIncumbentScope* top_backup_incumbent_scope() const { return top_backup_incumbent_scope_; } void set_top_backup_incumbent_scope( const v8::Context::BackupIncumbentScope* top_backup_incumbent_scope) { top_backup_incumbent_scope_ = top_backup_incumbent_scope; } void SetIdle(bool is_idle); protected: Isolate(); bool IsArrayOrObjectOrStringPrototype(Object* object); private: friend struct GlobalState; friend struct InitializeGlobalState; // These fields are accessed through the API, offsets must be kept in sync // with v8::internal::Internals (in include/v8.h) constants. This is also // verified in Isolate::Init() using runtime checks. void* embedder_data_[Internals::kNumIsolateDataSlots]; Heap heap_; class ThreadDataTable { public: ThreadDataTable(); ~ThreadDataTable(); PerIsolateThreadData* Lookup(ThreadId thread_id); void Insert(PerIsolateThreadData* data); void Remove(PerIsolateThreadData* data); void RemoveAllThreads(); private: struct Hasher { std::size_t operator()(const ThreadId& t) const { return std::hash<int>()(t.ToInteger()); } }; std::unordered_map<ThreadId, PerIsolateThreadData*, Hasher> table_; }; // These items form a stack synchronously with threads Enter'ing and Exit'ing // the Isolate. The top of the stack points to a thread which is currently // running the Isolate. When the stack is empty, the Isolate is considered // not entered by any thread and can be Disposed. // If the same thread enters the Isolate more than once, the entry_count_ // is incremented rather then a new item pushed to the stack. class EntryStackItem { public: EntryStackItem(PerIsolateThreadData* previous_thread_data, Isolate* previous_isolate, EntryStackItem* previous_item) : entry_count(1), previous_thread_data(previous_thread_data), previous_isolate(previous_isolate), previous_item(previous_item) { } int entry_count; PerIsolateThreadData* previous_thread_data; Isolate* previous_isolate; EntryStackItem* previous_item; private: DISALLOW_COPY_AND_ASSIGN(EntryStackItem); }; static base::Thread::LocalStorageKey per_isolate_thread_data_key_; static base::Thread::LocalStorageKey isolate_key_; static base::Thread::LocalStorageKey thread_id_key_; // A global counter for all generated Isolates, might overflow. static base::Atomic32 isolate_counter_; #if DEBUG static base::Atomic32 isolate_key_created_; #endif void Deinit(); static void SetIsolateThreadLocals(Isolate* isolate, PerIsolateThreadData* data); // Find the PerThread for this particular (isolate, thread) combination. // If one does not yet exist, allocate a new one. PerIsolateThreadData* FindOrAllocatePerThreadDataForThisThread(); // Initializes the current thread to run this Isolate. // Not thread-safe. Multiple threads should not Enter/Exit the same isolate // at the same time, this should be prevented using external locking. void Enter(); // Exits the current thread. The previosuly entered Isolate is restored // for the thread. // Not thread-safe. Multiple threads should not Enter/Exit the same isolate // at the same time, this should be prevented using external locking. void Exit(); void InitializeThreadLocal(); void MarkCompactPrologue(bool is_compacting, ThreadLocalTop* archived_thread_data); void MarkCompactEpilogue(bool is_compacting, ThreadLocalTop* archived_thread_data); void FillCache(); // Propagate pending exception message to the v8::TryCatch. // If there is no external try-catch or message was successfully propagated, // then return true. bool PropagatePendingExceptionToExternalTryCatch(); void SetTerminationOnExternalTryCatch(); void PromiseHookStateUpdated(); void RunPromiseHookForAsyncEventDelegate(PromiseHookType type, Handle<JSPromise> promise); const char* RAILModeName(RAILMode rail_mode) const { switch (rail_mode) { case PERFORMANCE_RESPONSE: return "RESPONSE"; case PERFORMANCE_ANIMATION: return "ANIMATION"; case PERFORMANCE_IDLE: return "IDLE"; case PERFORMANCE_LOAD: return "LOAD"; } return ""; } base::Atomic32 id_; EntryStackItem* entry_stack_; int stack_trace_nesting_level_; StringStream* incomplete_message_; Address isolate_addresses_[kIsolateAddressCount + 1]; // NOLINT Bootstrapper* bootstrapper_; RuntimeProfiler* runtime_profiler_; CompilationCache* compilation_cache_; std::shared_ptr<Counters> async_counters_; base::RecursiveMutex break_access_; Logger* logger_; StackGuard stack_guard_; StubCache* load_stub_cache_; StubCache* store_stub_cache_; DeoptimizerData* deoptimizer_data_; bool deoptimizer_lazy_throw_; MaterializedObjectStore* materialized_object_store_; ThreadLocalTop thread_local_top_; bool capture_stack_trace_for_uncaught_exceptions_; int stack_trace_for_uncaught_exceptions_frame_limit_; StackTrace::StackTraceOptions stack_trace_for_uncaught_exceptions_options_; ContextSlotCache* context_slot_cache_; DescriptorLookupCache* descriptor_lookup_cache_; HandleScopeData handle_scope_data_; HandleScopeImplementer* handle_scope_implementer_; UnicodeCache* unicode_cache_; AccountingAllocator* allocator_; InnerPointerToCodeCache* inner_pointer_to_code_cache_; GlobalHandles* global_handles_; EternalHandles* eternal_handles_; ThreadManager* thread_manager_; RuntimeState runtime_state_; Builtins builtins_; SetupIsolateDelegate* setup_delegate_; unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize_; unibrow::Mapping<unibrow::CanonicalizationRange> jsregexp_canonrange_; unibrow::Mapping<unibrow::Ecma262Canonicalize> regexp_macro_assembler_canonicalize_; RegExpStack* regexp_stack_; std::vector<int> regexp_indices_; DateCache* date_cache_; base::RandomNumberGenerator* random_number_generator_; base::RandomNumberGenerator* fuzzer_rng_; base::AtomicValue<RAILMode> rail_mode_; v8::Isolate::AtomicsWaitCallback atomics_wait_callback_; void* atomics_wait_callback_data_; PromiseHook promise_hook_; HostImportModuleDynamicallyCallback host_import_module_dynamically_callback_; HostInitializeImportMetaObjectCallback host_initialize_import_meta_object_callback_; base::Mutex rail_mutex_; double load_start_time_ms_; #ifdef V8_INTL_SUPPORT icu::RegexMatcher* language_singleton_regexp_matcher_; icu::RegexMatcher* language_tag_regexp_matcher_; icu::RegexMatcher* language_variant_regexp_matcher_; std::string default_locale_; #endif // V8_INTL_SUPPORT // Whether the isolate has been created for snapshotting. bool serializer_enabled_; // True if fatal error has been signaled for this isolate. bool has_fatal_error_; // True if this isolate was initialized from a snapshot. bool initialized_from_snapshot_; // True if ES2015 tail call elimination feature is enabled. bool is_tail_call_elimination_enabled_; // True if the isolate is in background. This flag is used // to prioritize between memory usage and latency. bool is_isolate_in_background_; // True if the isolate is in memory savings mode. This flag is used to // favor memory over runtime performance. bool memory_savings_mode_active_; // Time stamp at initialization. double time_millis_at_init_; #ifdef DEBUG static std::atomic<size_t> non_disposed_isolates_; JSObject::SpillInformation js_spill_information_; #endif Debug* debug_; HeapProfiler* heap_profiler_; std::unique_ptr<CodeEventDispatcher> code_event_dispatcher_; FunctionEntryHook function_entry_hook_; const AstStringConstants* ast_string_constants_; interpreter::Interpreter* interpreter_; CompilerDispatcher* compiler_dispatcher_; typedef std::pair<InterruptCallback, void*> InterruptEntry; std::queue<InterruptEntry> api_interrupts_queue_; #define GLOBAL_BACKING_STORE(type, name, initialvalue) \ type name##_; ISOLATE_INIT_LIST(GLOBAL_BACKING_STORE) #undef GLOBAL_BACKING_STORE #define GLOBAL_ARRAY_BACKING_STORE(type, name, length) \ type name##_[length]; ISOLATE_INIT_ARRAY_LIST(GLOBAL_ARRAY_BACKING_STORE) #undef GLOBAL_ARRAY_BACKING_STORE #ifdef DEBUG // This class is huge and has a number of fields controlled by // preprocessor defines. Make sure the offsets of these fields agree // between compilation units. #define ISOLATE_FIELD_OFFSET(type, name, ignored) \ static const intptr_t name##_debug_offset_; ISOLATE_INIT_LIST(ISOLATE_FIELD_OFFSET) ISOLATE_INIT_ARRAY_LIST(ISOLATE_FIELD_OFFSET) #undef ISOLATE_FIELD_OFFSET #endif DeferredHandles* deferred_handles_head_; OptimizingCompileDispatcher* optimizing_compile_dispatcher_; // Counts deopt points if deopt_every_n_times is enabled. unsigned int stress_deopt_count_; bool force_slow_path_; int next_optimization_id_; #if V8_SFI_HAS_UNIQUE_ID int next_unique_sfi_id_; #endif // Vector of callbacks before a Call starts execution. std::vector<BeforeCallEnteredCallback> before_call_entered_callbacks_; // Vector of callbacks when a Call completes. std::vector<CallCompletedCallback> call_completed_callbacks_; // Vector of callbacks after microtasks were run. std::vector<MicrotasksCompletedCallback> microtasks_completed_callbacks_; bool is_running_microtasks_; v8::Isolate::UseCounterCallback use_counter_callback_; std::vector<Object*> partial_snapshot_cache_; // Used during builtins compilation to build the builtins constants table, // which is stored on the root list prior to serialization. BuiltinsConstantsTableBuilder* builtins_constants_table_builder_ = nullptr; void SetEmbeddedBlob(const uint8_t* blob, uint32_t blob_size); const uint8_t* embedded_blob_ = nullptr; uint32_t embedded_blob_size_ = 0; v8::ArrayBuffer::Allocator* array_buffer_allocator_; FutexWaitListNode futex_wait_list_node_; CancelableTaskManager* cancelable_task_manager_; debug::ConsoleDelegate* console_delegate_ = nullptr; debug::AsyncEventDelegate* async_event_delegate_ = nullptr; bool promise_hook_or_async_event_delegate_ = false; int async_task_count_ = 0; v8::Isolate::AbortOnUncaughtExceptionCallback abort_on_uncaught_exception_callback_; bool allow_atomics_wait_; ManagedPtrDestructor* managed_ptr_destructors_head_ = nullptr; size_t total_regexp_code_generated_; size_t elements_deletion_counter_ = 0; std::shared_ptr<wasm::WasmEngine> wasm_engine_; std::unique_ptr<TracingCpuProfilerImpl> tracing_cpu_profiler_; // The top entry of the v8::Context::BackupIncumbentScope stack. const v8::Context::BackupIncumbentScope* top_backup_incumbent_scope_ = nullptr; // TODO(kenton@cloudflare.com): This mutex can be removed if // thread_data_table_ is always accessed under the isolate lock. I do not // know if this is the case, so I'm preserving it for now. base::Mutex thread_data_table_mutex_; ThreadDataTable thread_data_table_; friend class ExecutionAccess; friend class HandleScopeImplementer; friend class heap::HeapTester; friend class OptimizingCompileDispatcher; friend class Simulator; friend class StackGuard; friend class SweeperThread; friend class TestIsolate; friend class ThreadId; friend class ThreadManager; friend class v8::Isolate; friend class v8::Locker; friend class v8::SnapshotCreator; friend class v8::Unlocker; DISALLOW_COPY_AND_ASSIGN(Isolate); }; #undef FIELD_ACCESSOR #undef THREAD_LOCAL_TOP_ACCESSOR class PromiseOnStack { public: PromiseOnStack(Handle<JSObject> promise, PromiseOnStack* prev) : promise_(promise), prev_(prev) {} Handle<JSObject> promise() { return promise_; } PromiseOnStack* prev() { return prev_; } private: Handle<JSObject> promise_; PromiseOnStack* prev_; }; // If the GCC version is 4.1.x or 4.2.x an additional field is added to the // class as a work around for a bug in the generated code found with these // versions of GCC. See V8 issue 122 for details. class SaveContext BASE_EMBEDDED { public: explicit SaveContext(Isolate* isolate); ~SaveContext(); Handle<Context> context() { return context_; } SaveContext* prev() { return prev_; } // Returns true if this save context is below a given JavaScript frame. bool IsBelowFrame(StandardFrame* frame); private: Isolate* const isolate_; Handle<Context> context_; SaveContext* const prev_; Address c_entry_fp_; }; class AssertNoContextChange BASE_EMBEDDED { #ifdef DEBUG public: explicit AssertNoContextChange(Isolate* isolate); ~AssertNoContextChange() { DCHECK(isolate_->context() == *context_); } private: Isolate* isolate_; Handle<Context> context_; #else public: explicit AssertNoContextChange(Isolate* isolate) { } #endif }; class ExecutionAccess BASE_EMBEDDED { public: explicit ExecutionAccess(Isolate* isolate) : isolate_(isolate) { Lock(isolate); } ~ExecutionAccess() { Unlock(isolate_); } static void Lock(Isolate* isolate) { isolate->break_access()->Lock(); } static void Unlock(Isolate* isolate) { isolate->break_access()->Unlock(); } static bool TryLock(Isolate* isolate) { return isolate->break_access()->TryLock(); } private: Isolate* isolate_; }; // Support for checking for stack-overflows. class StackLimitCheck BASE_EMBEDDED { public: explicit StackLimitCheck(Isolate* isolate) : isolate_(isolate) { } // Use this to check for stack-overflows in C++ code. bool HasOverflowed() const { StackGuard* stack_guard = isolate_->stack_guard(); return GetCurrentStackPosition() < stack_guard->real_climit(); } // Use this to check for interrupt request in C++ code. bool InterruptRequested() { StackGuard* stack_guard = isolate_->stack_guard(); return GetCurrentStackPosition() < stack_guard->climit(); } // Use this to check for stack-overflow when entering runtime from JS code. bool JsHasOverflowed(uintptr_t gap = 0) const; private: Isolate* isolate_; }; #define STACK_CHECK(isolate, result_value) \ do { \ StackLimitCheck stack_check(isolate); \ if (stack_check.HasOverflowed()) { \ isolate->StackOverflow(); \ return result_value; \ } \ } while (false) // Scope intercepts only interrupt which is part of its interrupt_mask and does // not affect other interrupts. class InterruptsScope { public: enum Mode { kPostponeInterrupts, kRunInterrupts, kNoop }; virtual ~InterruptsScope() { if (mode_ != kNoop) stack_guard_->PopInterruptsScope(); } // Find the scope that intercepts this interrupt. // It may be outermost PostponeInterruptsScope or innermost // SafeForInterruptsScope if any. // Return whether the interrupt has been intercepted. bool Intercept(StackGuard::InterruptFlag flag); InterruptsScope(Isolate* isolate, int intercept_mask, Mode mode) : stack_guard_(isolate->stack_guard()), intercept_mask_(intercept_mask), intercepted_flags_(0), mode_(mode) { if (mode_ != kNoop) stack_guard_->PushInterruptsScope(this); } private: StackGuard* stack_guard_; int intercept_mask_; int intercepted_flags_; Mode mode_; InterruptsScope* prev_; friend class StackGuard; }; // Support for temporarily postponing interrupts. When the outermost // postpone scope is left the interrupts will be re-enabled and any // interrupts that occurred while in the scope will be taken into // account. class PostponeInterruptsScope : public InterruptsScope { public: PostponeInterruptsScope(Isolate* isolate, int intercept_mask = StackGuard::ALL_INTERRUPTS) : InterruptsScope(isolate, intercept_mask, InterruptsScope::kPostponeInterrupts) {} virtual ~PostponeInterruptsScope() = default; }; // Support for overriding PostponeInterruptsScope. Interrupt is not ignored if // innermost scope is SafeForInterruptsScope ignoring any outer // PostponeInterruptsScopes. class SafeForInterruptsScope : public InterruptsScope { public: SafeForInterruptsScope(Isolate* isolate, int intercept_mask = StackGuard::ALL_INTERRUPTS) : InterruptsScope(isolate, intercept_mask, InterruptsScope::kRunInterrupts) {} virtual ~SafeForInterruptsScope() = default; }; class StackTraceFailureMessage { public: explicit StackTraceFailureMessage(Isolate* isolate, void* ptr1 = nullptr, void* ptr2 = nullptr, void* ptr3 = nullptr, void* ptr4 = nullptr); V8_NOINLINE void Print() volatile; static const uintptr_t kStartMarker = 0xdecade30; static const uintptr_t kEndMarker = 0xdecade31; static const int kStacktraceBufferSize = 32 * KB; uintptr_t start_marker_ = kStartMarker; void* isolate_; void* ptr1_; void* ptr2_; void* ptr3_; void* ptr4_; void* code_objects_[4]; char js_stack_trace_[kStacktraceBufferSize]; uintptr_t end_marker_ = kEndMarker; }; } // namespace internal } // namespace v8 #endif // V8_ISOLATE_H_