/* Copyright (c) 2015-2019 The Khronos Group Inc. * Copyright (c) 2015-2019 Valve Corporation * Copyright (c) 2015-2019 LunarG, Inc. * Copyright (C) 2015-2019 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: Chris Forbes <chrisf@ijw.co.nz> */ #ifndef VULKAN_SHADER_VALIDATION_H #define VULKAN_SHADER_VALIDATION_H #include <spirv_tools_commit_id.h> #include "spirv-tools/optimizer.hpp" // A forward iterator over spirv instructions. Provides easy access to len, opcode, and content words // without the caller needing to care too much about the physical SPIRV module layout. struct spirv_inst_iter { std::vector<uint32_t>::const_iterator zero; std::vector<uint32_t>::const_iterator it; uint32_t len() { auto result = *it >> 16; assert(result > 0); return result; } uint32_t opcode() { return *it & 0x0ffffu; } uint32_t const &word(unsigned n) { assert(n < len()); return it[n]; } uint32_t offset() { return (uint32_t)(it - zero); } spirv_inst_iter() {} spirv_inst_iter(std::vector<uint32_t>::const_iterator zero, std::vector<uint32_t>::const_iterator it) : zero(zero), it(it) {} bool operator==(spirv_inst_iter const &other) { return it == other.it; } bool operator!=(spirv_inst_iter const &other) { return it != other.it; } spirv_inst_iter operator++(int) { // x++ spirv_inst_iter ii = *this; it += len(); return ii; } spirv_inst_iter operator++() { // ++x; it += len(); return *this; } // The iterator and the value are the same thing. spirv_inst_iter &operator*() { return *this; } spirv_inst_iter const &operator*() const { return *this; } }; struct shader_module { // The spirv image itself std::vector<uint32_t> words; // A mapping of <id> to the first word of its def. this is useful because walking type // trees, constant expressions, etc requires jumping all over the instruction stream. std::unordered_map<unsigned, unsigned> def_index; bool has_valid_spirv; VkShaderModule vk_shader_module; uint32_t gpu_validation_shader_id; std::vector<uint32_t> PreprocessShaderBinary(uint32_t *src_binary, size_t binary_size, spv_target_env env) { spvtools::Optimizer optimizer(env); optimizer.RegisterPass(spvtools::CreateFlattenDecorationPass()); std::vector<uint32_t> optimized_binary; auto result = optimizer.Run(src_binary, binary_size / sizeof(uint32_t), &optimized_binary); return (result ? optimized_binary : std::vector<uint32_t>(src_binary, src_binary + binary_size / sizeof(uint32_t))); } shader_module(VkShaderModuleCreateInfo const *pCreateInfo, VkShaderModule shaderModule, spv_target_env env, uint32_t unique_shader_id) : words(PreprocessShaderBinary((uint32_t *)pCreateInfo->pCode, pCreateInfo->codeSize, env)), def_index(), has_valid_spirv(true), vk_shader_module(shaderModule), gpu_validation_shader_id(unique_shader_id) { BuildDefIndex(); } shader_module() : has_valid_spirv(false), vk_shader_module(VK_NULL_HANDLE) {} // Expose begin() / end() to enable range-based for spirv_inst_iter begin() const { return spirv_inst_iter(words.begin(), words.begin() + 5); } // First insn spirv_inst_iter end() const { return spirv_inst_iter(words.begin(), words.end()); } // Just past last insn // Given an offset into the module, produce an iterator there. spirv_inst_iter at(unsigned offset) const { return spirv_inst_iter(words.begin(), words.begin() + offset); } // Gets an iterator to the definition of an id spirv_inst_iter get_def(unsigned id) const { auto it = def_index.find(id); if (it == def_index.end()) { return end(); } return at(it->second); } void BuildDefIndex(); }; class ValidationCache { // hashes of shaders that have passed validation before, and can be skipped. // we don't store negative results, as we would have to also store what was // wrong with them; also, we expect they will get fixed, so we're less // likely to see them again. std::unordered_set<uint32_t> good_shader_hashes; ValidationCache() {} public: static VkValidationCacheEXT Create(VkValidationCacheCreateInfoEXT const *pCreateInfo) { auto cache = new ValidationCache(); cache->Load(pCreateInfo); return VkValidationCacheEXT(cache); } void Load(VkValidationCacheCreateInfoEXT const *pCreateInfo) { const auto headerSize = 2 * sizeof(uint32_t) + VK_UUID_SIZE; auto size = headerSize; if (!pCreateInfo->pInitialData || pCreateInfo->initialDataSize < size) return; uint32_t const *data = (uint32_t const *)pCreateInfo->pInitialData; if (data[0] != size) return; if (data[1] != VK_VALIDATION_CACHE_HEADER_VERSION_ONE_EXT) return; uint8_t expected_uuid[VK_UUID_SIZE]; Sha1ToVkUuid(SPIRV_TOOLS_COMMIT_ID, expected_uuid); if (memcmp(&data[2], expected_uuid, VK_UUID_SIZE) != 0) return; // different version data = (uint32_t const *)(reinterpret_cast<uint8_t const *>(data) + headerSize); for (; size < pCreateInfo->initialDataSize; data++, size += sizeof(uint32_t)) { good_shader_hashes.insert(*data); } } void Write(size_t *pDataSize, void *pData) { const auto headerSize = 2 * sizeof(uint32_t) + VK_UUID_SIZE; // 4 bytes for header size + 4 bytes for version number + UUID if (!pData) { *pDataSize = headerSize + good_shader_hashes.size() * sizeof(uint32_t); return; } if (*pDataSize < headerSize) { *pDataSize = 0; return; // Too small for even the header! } uint32_t *out = (uint32_t *)pData; size_t actualSize = headerSize; // Write the header *out++ = headerSize; *out++ = VK_VALIDATION_CACHE_HEADER_VERSION_ONE_EXT; Sha1ToVkUuid(SPIRV_TOOLS_COMMIT_ID, reinterpret_cast<uint8_t *>(out)); out = (uint32_t *)(reinterpret_cast<uint8_t *>(out) + VK_UUID_SIZE); for (auto it = good_shader_hashes.begin(); it != good_shader_hashes.end() && actualSize < *pDataSize; it++, out++, actualSize += sizeof(uint32_t)) { *out = *it; } *pDataSize = actualSize; } void Merge(ValidationCache const *other) { good_shader_hashes.reserve(good_shader_hashes.size() + other->good_shader_hashes.size()); for (auto h : other->good_shader_hashes) good_shader_hashes.insert(h); } static uint32_t MakeShaderHash(VkShaderModuleCreateInfo const *smci); bool Contains(uint32_t hash) { return good_shader_hashes.count(hash) != 0; } void Insert(uint32_t hash) { good_shader_hashes.insert(hash); } private: void Sha1ToVkUuid(const char *sha1_str, uint8_t uuid[VK_UUID_SIZE]) { // Convert sha1_str from a hex string to binary. We only need VK_UUID_BYTES of // output, so pad with zeroes if the input string is shorter than that, and truncate // if it's longer. char padded_sha1_str[2 * VK_UUID_SIZE + 1] = {}; strncpy(padded_sha1_str, sha1_str, 2 * VK_UUID_SIZE + 1); char byte_str[3] = {}; for (uint32_t i = 0; i < VK_UUID_SIZE; ++i) { byte_str[0] = padded_sha1_str[2 * i + 0]; byte_str[1] = padded_sha1_str[2 * i + 1]; uuid[i] = static_cast<uint8_t>(strtol(byte_str, NULL, 16)); } } }; typedef std::pair<unsigned, unsigned> descriptor_slot_t; #endif // VULKAN_SHADER_VALIDATION_H