/* * Wrapper functions for libnettle and libgmp * Copyright (c) 2017, Jouni Malinen <j@w1.fi> * * This software may be distributed under the terms of the BSD license. * See README for more details. */ #include "includes.h" #include <nettle/nettle-meta.h> #include <nettle/des.h> #undef des_encrypt #include <nettle/hmac.h> #include <nettle/aes.h> #undef aes_encrypt #undef aes_decrypt #include <nettle/arcfour.h> #include <nettle/bignum.h> #include "common.h" #include "md5.h" #include "sha1.h" #include "sha256.h" #include "sha384.h" #include "sha512.h" #include "crypto.h" int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher) { struct des_ctx ctx; u8 pkey[8], next, tmp; int i; /* Add parity bits to the key */ next = 0; for (i = 0; i < 7; i++) { tmp = key[i]; pkey[i] = (tmp >> i) | next | 1; next = tmp << (7 - i); } pkey[i] = next | 1; nettle_des_set_key(&ctx, pkey); nettle_des_encrypt(&ctx, DES_BLOCK_SIZE, cypher, clear); os_memset(&ctx, 0, sizeof(ctx)); return 0; } static int nettle_digest_vector(const struct nettle_hash *alg, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { void *ctx; size_t i; if (TEST_FAIL()) return -1; ctx = os_malloc(alg->context_size); if (!ctx) return -1; alg->init(ctx); for (i = 0; i < num_elem; i++) alg->update(ctx, len[i], addr[i]); alg->digest(ctx, alg->digest_size, mac); bin_clear_free(ctx, alg->context_size); return 0; } int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { return nettle_digest_vector(&nettle_md4, num_elem, addr, len, mac); } int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { return nettle_digest_vector(&nettle_md5, num_elem, addr, len, mac); } int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { return nettle_digest_vector(&nettle_sha1, num_elem, addr, len, mac); } int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { return nettle_digest_vector(&nettle_sha256, num_elem, addr, len, mac); } int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { return nettle_digest_vector(&nettle_sha384, num_elem, addr, len, mac); } int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { return nettle_digest_vector(&nettle_sha512, num_elem, addr, len, mac); } int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { struct hmac_md5_ctx ctx; size_t i; if (TEST_FAIL()) return -1; hmac_md5_set_key(&ctx, key_len, key); for (i = 0; i < num_elem; i++) hmac_md5_update(&ctx, len[i], addr[i]); hmac_md5_digest(&ctx, MD5_DIGEST_SIZE, mac); os_memset(&ctx, 0, sizeof(ctx)); return 0; } int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len, u8 *mac) { return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac); } int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { struct hmac_sha1_ctx ctx; size_t i; if (TEST_FAIL()) return -1; hmac_sha1_set_key(&ctx, key_len, key); for (i = 0; i < num_elem; i++) hmac_sha1_update(&ctx, len[i], addr[i]); hmac_sha1_digest(&ctx, SHA1_DIGEST_SIZE, mac); os_memset(&ctx, 0, sizeof(ctx)); return 0; } int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len, u8 *mac) { return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac); } #ifdef CONFIG_SHA256 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { struct hmac_sha256_ctx ctx; size_t i; if (TEST_FAIL()) return -1; hmac_sha256_set_key(&ctx, key_len, key); for (i = 0; i < num_elem; i++) hmac_sha256_update(&ctx, len[i], addr[i]); hmac_sha256_digest(&ctx, SHA256_DIGEST_SIZE, mac); os_memset(&ctx, 0, sizeof(ctx)); return 0; } int hmac_sha256(const u8 *key, size_t key_len, const u8 *data, size_t data_len, u8 *mac) { return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac); } #endif /* CONFIG_SHA256 */ #ifdef CONFIG_SHA384 int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { struct hmac_sha384_ctx ctx; size_t i; if (TEST_FAIL()) return -1; hmac_sha384_set_key(&ctx, key_len, key); for (i = 0; i < num_elem; i++) hmac_sha384_update(&ctx, len[i], addr[i]); hmac_sha384_digest(&ctx, SHA384_DIGEST_SIZE, mac); os_memset(&ctx, 0, sizeof(ctx)); return 0; } int hmac_sha384(const u8 *key, size_t key_len, const u8 *data, size_t data_len, u8 *mac) { return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac); } #endif /* CONFIG_SHA384 */ #ifdef CONFIG_SHA512 int hmac_sha512_vector(const u8 *key, size_t key_len, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { struct hmac_sha512_ctx ctx; size_t i; if (TEST_FAIL()) return -1; hmac_sha512_set_key(&ctx, key_len, key); for (i = 0; i < num_elem; i++) hmac_sha512_update(&ctx, len[i], addr[i]); hmac_sha512_digest(&ctx, SHA512_DIGEST_SIZE, mac); os_memset(&ctx, 0, sizeof(ctx)); return 0; } int hmac_sha512(const u8 *key, size_t key_len, const u8 *data, size_t data_len, u8 *mac) { return hmac_sha512_vector(key, key_len, 1, &data, &data_len, mac); } #endif /* CONFIG_SHA512 */ void * aes_encrypt_init(const u8 *key, size_t len) { struct aes_ctx *ctx; if (TEST_FAIL()) return NULL; ctx = os_malloc(sizeof(*ctx)); if (!ctx) return NULL; nettle_aes_set_encrypt_key(ctx, len, key); return ctx; } int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt) { struct aes_ctx *actx = ctx; nettle_aes_encrypt(actx, AES_BLOCK_SIZE, crypt, plain); return 0; } void aes_encrypt_deinit(void *ctx) { struct aes_ctx *actx = ctx; bin_clear_free(actx, sizeof(*actx)); } void * aes_decrypt_init(const u8 *key, size_t len) { struct aes_ctx *ctx; if (TEST_FAIL()) return NULL; ctx = os_malloc(sizeof(*ctx)); if (!ctx) return NULL; nettle_aes_set_decrypt_key(ctx, len, key); return ctx; } int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain) { struct aes_ctx *actx = ctx; nettle_aes_decrypt(actx, AES_BLOCK_SIZE, plain, crypt); return 0; } void aes_decrypt_deinit(void *ctx) { struct aes_ctx *actx = ctx; bin_clear_free(actx, sizeof(*actx)); } int crypto_dh_init(u8 generator, const u8 *prime, size_t prime_len, u8 *privkey, u8 *pubkey) { size_t pubkey_len, pad; if (os_get_random(privkey, prime_len) < 0) return -1; if (os_memcmp(privkey, prime, prime_len) > 0) { /* Make sure private value is smaller than prime */ privkey[0] = 0; } pubkey_len = prime_len; if (crypto_mod_exp(&generator, 1, privkey, prime_len, prime, prime_len, pubkey, &pubkey_len) < 0) return -1; if (pubkey_len < prime_len) { pad = prime_len - pubkey_len; os_memmove(pubkey + pad, pubkey, pubkey_len); os_memset(pubkey, 0, pad); } return 0; } int crypto_dh_derive_secret(u8 generator, const u8 *prime, size_t prime_len, const u8 *order, size_t order_len, const u8 *privkey, size_t privkey_len, const u8 *pubkey, size_t pubkey_len, u8 *secret, size_t *len) { mpz_t pub; int res = -1; if (pubkey_len > prime_len || (pubkey_len == prime_len && os_memcmp(pubkey, prime, prime_len) >= 0)) return -1; mpz_init(pub); mpz_import(pub, pubkey_len, 1, 1, 1, 0, pubkey); if (mpz_cmp_d(pub, 1) <= 0) goto fail; if (order) { mpz_t p, q, tmp; int failed; /* verify: pubkey^q == 1 mod p */ mpz_inits(p, q, tmp, NULL); mpz_import(p, prime_len, 1, 1, 1, 0, prime); mpz_import(q, order_len, 1, 1, 1, 0, order); mpz_powm(tmp, pub, q, p); failed = mpz_cmp_d(tmp, 1) != 0; mpz_clears(p, q, tmp, NULL); if (failed) goto fail; } res = crypto_mod_exp(pubkey, pubkey_len, privkey, privkey_len, prime, prime_len, secret, len); fail: mpz_clear(pub); return res; } int crypto_mod_exp(const u8 *base, size_t base_len, const u8 *power, size_t power_len, const u8 *modulus, size_t modulus_len, u8 *result, size_t *result_len) { mpz_t bn_base, bn_exp, bn_modulus, bn_result; int ret = -1; size_t len; mpz_inits(bn_base, bn_exp, bn_modulus, bn_result, NULL); mpz_import(bn_base, base_len, 1, 1, 1, 0, base); mpz_import(bn_exp, power_len, 1, 1, 1, 0, power); mpz_import(bn_modulus, modulus_len, 1, 1, 1, 0, modulus); mpz_powm(bn_result, bn_base, bn_exp, bn_modulus); len = mpz_sizeinbase(bn_result, 2); len = (len + 7) / 8; if (*result_len < len) goto error; mpz_export(result, result_len, 1, 1, 1, 0, bn_result); ret = 0; error: mpz_clears(bn_base, bn_exp, bn_modulus, bn_result, NULL); return ret; } struct crypto_cipher { enum crypto_cipher_alg alg; union { struct arcfour_ctx arcfour_ctx; } u; }; struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg, const u8 *iv, const u8 *key, size_t key_len) { struct crypto_cipher *ctx; ctx = os_zalloc(sizeof(*ctx)); if (!ctx) return NULL; ctx->alg = alg; switch (alg) { case CRYPTO_CIPHER_ALG_RC4: nettle_arcfour_set_key(&ctx->u.arcfour_ctx, key_len, key); break; default: os_free(ctx); return NULL; } return ctx; } int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain, u8 *crypt, size_t len) { switch (ctx->alg) { case CRYPTO_CIPHER_ALG_RC4: nettle_arcfour_crypt(&ctx->u.arcfour_ctx, len, crypt, plain); break; default: return -1; } return 0; } int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt, u8 *plain, size_t len) { switch (ctx->alg) { case CRYPTO_CIPHER_ALG_RC4: nettle_arcfour_crypt(&ctx->u.arcfour_ctx, len, plain, crypt); break; default: return -1; } return 0; } void crypto_cipher_deinit(struct crypto_cipher *ctx) { bin_clear_free(ctx, sizeof(*ctx)); }