/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <math.h> #include <stdio.h> #include <unistd.h> #include <stdlib.h> #include <string.h> static inline double sinc(double x) { if (fabs(x) == 0.0f) return 1.0f; return sin(x) / x; } static inline double sqr(double x) { return x*x; } static inline int64_t toint(double x, int64_t maxval) { int64_t v; v = static_cast<int64_t>(floor(x * maxval + 0.5)); if (v >= maxval) { return maxval - 1; // error! } return v; } static double I0(double x) { // from the Numerical Recipes in C p. 237 double ax,ans,y; ax=fabs(x); if (ax < 3.75) { y=x/3.75; y*=y; ans=1.0+y*(3.5156229+y*(3.0899424+y*(1.2067492 +y*(0.2659732+y*(0.360768e-1+y*0.45813e-2))))); } else { y=3.75/ax; ans=(exp(ax)/sqrt(ax))*(0.39894228+y*(0.1328592e-1 +y*(0.225319e-2+y*(-0.157565e-2+y*(0.916281e-2 +y*(-0.2057706e-1+y*(0.2635537e-1+y*(-0.1647633e-1 +y*0.392377e-2)))))))); } return ans; } static double kaiser(int k, int N, double beta) { if (k < 0 || k > N) return 0; return I0(beta * sqrt(1.0 - sqr((2.0*k)/N - 1.0))) / I0(beta); } static void usage(char* name) { fprintf(stderr, "usage: %s [-h] [-d] [-D] [-s sample_rate] [-c cut-off_frequency] [-n half_zero_crossings]" " [-f {float|fixed|fixed16}] [-b beta] [-v dBFS] [-l lerp]\n" " %s [-h] [-d] [-D] [-s sample_rate] [-c cut-off_frequency] [-n half_zero_crossings]" " [-f {float|fixed|fixed16}] [-b beta] [-v dBFS] -p M/N\n" " -h this help message\n" " -d debug, print comma-separated coefficient table\n" " -D generate extra declarations\n" " -p generate poly-phase filter coefficients, with sample increment M/N\n" " -s sample rate (48000)\n" " -c cut-off frequency (20478)\n" " -n number of zero-crossings on one side (8)\n" " -l number of lerping bits (4)\n" " -m number of polyphases (related to -l, default 16)\n" " -f output format, can be fixed, fixed16, or float (fixed)\n" " -b kaiser window parameter beta (7.865 [-80dB])\n" " -v attenuation in dBFS (0)\n", name, name ); exit(0); } int main(int argc, char** argv) { // nc is the number of bits to store the coefficients int nc = 32; bool polyphase = false; unsigned int polyM = 160; unsigned int polyN = 147; bool debug = false; double Fs = 48000; double Fc = 20478; double atten = 1; int format = 0; // 0=fixed, 1=float bool declarations = false; // in order to keep the errors associated with the linear // interpolation of the coefficients below the quantization error // we must satisfy: // 2^nz >= 2^(nc/2) // // for 16 bit coefficients that would be 256 // // note that increasing nz only increases memory requirements, // but doesn't increase the amount of computation to do. // // // see: // Smith, J.O. Digital Audio Resampling Home Page // https://ccrma.stanford.edu/~jos/resample/, 2011-03-29 // // | 0.1102*(A - 8.7) A > 50 // beta = | 0.5842*(A - 21)^0.4 + 0.07886*(A - 21) 21 <= A <= 50 // | 0 A < 21 // with A is the desired stop-band attenuation in dBFS // // for eg: // // 30 dB 2.210 // 40 dB 3.384 // 50 dB 4.538 // 60 dB 5.658 // 70 dB 6.764 // 80 dB 7.865 // 90 dB 8.960 // 100 dB 10.056 double beta = 7.865; // 2*nzc = (A - 8) / (2.285 * dw) // with dw the transition width = 2*pi*dF/Fs // int nzc = 8; /* * Example: * 44.1 KHz to 48 KHz resampling * 100 dB rejection above 28 KHz * (the spectrum will fold around 24 KHz and we want 100 dB rejection * at the point where the folding reaches 20 KHz) * ...___|_____ * | \| * | ____/|\____ * |/alias| \ * ------/------+------\---------> KHz * 20 24 28 * * Transition band 8 KHz, or dw = 1.0472 * * beta = 10.056 * nzc = 20 */ int M = 1 << 4; // number of phases for interpolation int ch; while ((ch = getopt(argc, argv, ":hds:c:n:f:l:m:b:p:v:z:D")) != -1) { switch (ch) { case 'd': debug = true; break; case 'D': declarations = true; break; case 'p': if (sscanf(optarg, "%u/%u", &polyM, &polyN) != 2) { usage(argv[0]); } polyphase = true; break; case 's': Fs = atof(optarg); break; case 'c': Fc = atof(optarg); break; case 'n': nzc = atoi(optarg); break; case 'm': M = atoi(optarg); break; case 'l': M = 1 << atoi(optarg); break; case 'f': if (!strcmp(optarg, "fixed")) { format = 0; } else if (!strcmp(optarg, "fixed16")) { format = 0; nc = 16; } else if (!strcmp(optarg, "float")) { format = 1; } else { usage(argv[0]); } break; case 'b': beta = atof(optarg); break; case 'v': atten = pow(10, -fabs(atof(optarg))*0.05 ); break; case 'h': default: usage(argv[0]); break; } } // cut off frequency ratio Fc/Fs double Fcr = Fc / Fs; // total number of coefficients (one side) const int N = M * nzc; // lerp (which is most useful if M is a power of 2) int nz = 0; // recalculate nz as the bits needed to represent M for (int i = M-1 ; i; i>>=1, nz++); // generate the right half of the filter if (!debug) { printf("// cmd-line:"); for (int i=0 ; i<argc ; i++) { printf(" %s", argv[i]); } printf("\n"); if (declarations) { if (!polyphase) { printf("const int32_t RESAMPLE_FIR_SIZE = %d;\n", N); printf("const int32_t RESAMPLE_FIR_INT_PHASES = %d;\n", M); printf("const int32_t RESAMPLE_FIR_NUM_COEF = %d;\n", nzc); } else { printf("const int32_t RESAMPLE_FIR_SIZE = %d;\n", 2*nzc*polyN); printf("const int32_t RESAMPLE_FIR_NUM_COEF = %d;\n", 2*nzc); } if (!format) { printf("const int32_t RESAMPLE_FIR_COEF_BITS = %d;\n", nc); } printf("\n"); printf("static %s resampleFIR[] = {", !format ? "int32_t" : "float"); } } if (!polyphase) { for (int i=0 ; i<=M ; i++) { // an extra set of coefs for interpolation for (int j=0 ; j<nzc ; j++) { int ix = j*M + i; double x = (2.0 * M_PI * ix * Fcr) / M; double y = kaiser(ix+N, 2*N, beta) * sinc(x) * 2.0 * Fcr; y *= atten; if (!debug) { if (j == 0) printf("\n "); } if (!format) { int64_t yi = toint(y, 1ULL<<(nc-1)); if (nc > 16) { printf("0x%08x,", int32_t(yi)); } else { printf("0x%04x,", int32_t(yi)&0xffff); } } else { printf("%.9g%s", y, debug ? "," : "f,"); } if (j != nzc-1) { printf(" "); } } } } else { for (unsigned int j=0 ; j<polyN ; j++) { // calculate the phase double p = ((polyM*j) % polyN) / double(polyN); if (!debug) printf("\n "); else printf("\n"); // generate a FIR per phase for (int i=-nzc ; i<nzc ; i++) { double x = 2.0 * M_PI * Fcr * (i + p); double y = kaiser(i+N, 2*N, beta) * sinc(x) * 2.0 * Fcr;; y *= atten; if (!format) { int64_t yi = toint(y, 1ULL<<(nc-1)); if (nc > 16) { printf("0x%08x,", int32_t(yi)); } else { printf("0x%04x,", int32_t(yi)&0xffff); } } else { printf("%.9g%s", y, debug ? "," : "f,"); } if (i != nzc-1) { printf(" "); } } } } if (!debug && declarations) { printf("\n};"); } printf("\n"); return 0; } // http://www.csee.umbc.edu/help/sound/AFsp-V2R1/html/audio/ResampAudio.html