/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "VectorDrawable.h" #include <utils/Log.h> #include "PathParser.h" #include "SkColorFilter.h" #include "SkImageInfo.h" #include "SkShader.h" #include "utils/Macros.h" #include "utils/TraceUtils.h" #include "utils/VectorDrawableUtils.h" #include <math.h> #include <string.h> namespace android { namespace uirenderer { namespace VectorDrawable { const int Tree::MAX_CACHED_BITMAP_SIZE = 2048; void Path::dump() { ALOGD("Path: %s has %zu points", mName.c_str(), mProperties.getData().points.size()); } // Called from UI thread during the initial setup/theme change. Path::Path(const char* pathStr, size_t strLength) { PathParser::ParseResult result; Data data; PathParser::getPathDataFromAsciiString(&data, &result, pathStr, strLength); mStagingProperties.setData(data); } Path::Path(const Path& path) : Node(path) { mStagingProperties.syncProperties(path.mStagingProperties); } const SkPath& Path::getUpdatedPath(bool useStagingData, SkPath* tempStagingPath) { if (useStagingData) { tempStagingPath->reset(); VectorDrawableUtils::verbsToPath(tempStagingPath, mStagingProperties.getData()); return *tempStagingPath; } else { if (mSkPathDirty) { mSkPath.reset(); VectorDrawableUtils::verbsToPath(&mSkPath, mProperties.getData()); mSkPathDirty = false; } return mSkPath; } } void Path::syncProperties() { if (mStagingPropertiesDirty) { mProperties.syncProperties(mStagingProperties); } else { mStagingProperties.syncProperties(mProperties); } mStagingPropertiesDirty = false; } FullPath::FullPath(const FullPath& path) : Path(path) { mStagingProperties.syncProperties(path.mStagingProperties); } static void applyTrim(SkPath* outPath, const SkPath& inPath, float trimPathStart, float trimPathEnd, float trimPathOffset) { if (trimPathStart == 0.0f && trimPathEnd == 1.0f) { *outPath = inPath; return; } outPath->reset(); if (trimPathStart == trimPathEnd) { // Trimmed path should be empty. return; } SkPathMeasure measure(inPath, false); float len = SkScalarToFloat(measure.getLength()); float start = len * fmod((trimPathStart + trimPathOffset), 1.0f); float end = len * fmod((trimPathEnd + trimPathOffset), 1.0f); if (start > end) { measure.getSegment(start, len, outPath, true); if (end > 0) { measure.getSegment(0, end, outPath, true); } } else { measure.getSegment(start, end, outPath, true); } } const SkPath& FullPath::getUpdatedPath(bool useStagingData, SkPath* tempStagingPath) { if (!useStagingData && !mSkPathDirty && !mProperties.mTrimDirty) { return mTrimmedSkPath; } Path::getUpdatedPath(useStagingData, tempStagingPath); SkPath* outPath; if (useStagingData) { SkPath inPath = *tempStagingPath; applyTrim(tempStagingPath, inPath, mStagingProperties.getTrimPathStart(), mStagingProperties.getTrimPathEnd(), mStagingProperties.getTrimPathOffset()); outPath = tempStagingPath; } else { if (mProperties.getTrimPathStart() != 0.0f || mProperties.getTrimPathEnd() != 1.0f) { mProperties.mTrimDirty = false; applyTrim(&mTrimmedSkPath, mSkPath, mProperties.getTrimPathStart(), mProperties.getTrimPathEnd(), mProperties.getTrimPathOffset()); outPath = &mTrimmedSkPath; } else { outPath = &mSkPath; } } const FullPathProperties& properties = useStagingData ? mStagingProperties : mProperties; bool setFillPath = properties.getFillGradient() != nullptr || properties.getFillColor() != SK_ColorTRANSPARENT; if (setFillPath) { SkPath::FillType ft = static_cast<SkPath::FillType>(properties.getFillType()); outPath->setFillType(ft); } return *outPath; } void FullPath::dump() { Path::dump(); ALOGD("stroke width, color, alpha: %f, %d, %f, fill color, alpha: %d, %f", mProperties.getStrokeWidth(), mProperties.getStrokeColor(), mProperties.getStrokeAlpha(), mProperties.getFillColor(), mProperties.getFillAlpha()); } inline SkColor applyAlpha(SkColor color, float alpha) { int alphaBytes = SkColorGetA(color); return SkColorSetA(color, alphaBytes * alpha); } void FullPath::draw(SkCanvas* outCanvas, bool useStagingData) { const FullPathProperties& properties = useStagingData ? mStagingProperties : mProperties; SkPath tempStagingPath; const SkPath& renderPath = getUpdatedPath(useStagingData, &tempStagingPath); // Draw path's fill, if fill color or gradient is valid bool needsFill = false; SkPaint paint; if (properties.getFillGradient() != nullptr) { paint.setColor(applyAlpha(SK_ColorBLACK, properties.getFillAlpha())); paint.setShader(sk_sp<SkShader>(SkSafeRef(properties.getFillGradient()))); needsFill = true; } else if (properties.getFillColor() != SK_ColorTRANSPARENT) { paint.setColor(applyAlpha(properties.getFillColor(), properties.getFillAlpha())); needsFill = true; } if (needsFill) { paint.setStyle(SkPaint::Style::kFill_Style); paint.setAntiAlias(mAntiAlias); outCanvas->drawPath(renderPath, paint); } // Draw path's stroke, if stroke color or Gradient is valid bool needsStroke = false; if (properties.getStrokeGradient() != nullptr) { paint.setColor(applyAlpha(SK_ColorBLACK, properties.getStrokeAlpha())); paint.setShader(sk_sp<SkShader>(SkSafeRef(properties.getStrokeGradient()))); needsStroke = true; } else if (properties.getStrokeColor() != SK_ColorTRANSPARENT) { paint.setColor(applyAlpha(properties.getStrokeColor(), properties.getStrokeAlpha())); needsStroke = true; } if (needsStroke) { paint.setStyle(SkPaint::Style::kStroke_Style); paint.setAntiAlias(mAntiAlias); paint.setStrokeJoin(SkPaint::Join(properties.getStrokeLineJoin())); paint.setStrokeCap(SkPaint::Cap(properties.getStrokeLineCap())); paint.setStrokeMiter(properties.getStrokeMiterLimit()); paint.setStrokeWidth(properties.getStrokeWidth()); outCanvas->drawPath(renderPath, paint); } } void FullPath::syncProperties() { Path::syncProperties(); if (mStagingPropertiesDirty) { mProperties.syncProperties(mStagingProperties); } else { // Update staging property with property values from animation. mStagingProperties.syncProperties(mProperties); } mStagingPropertiesDirty = false; } REQUIRE_COMPATIBLE_LAYOUT(FullPath::FullPathProperties::PrimitiveFields); static_assert(sizeof(float) == sizeof(int32_t), "float is not the same size as int32_t"); static_assert(sizeof(SkColor) == sizeof(int32_t), "SkColor is not the same size as int32_t"); bool FullPath::FullPathProperties::copyProperties(int8_t* outProperties, int length) const { int propertyDataSize = sizeof(FullPathProperties::PrimitiveFields); if (length != propertyDataSize) { LOG_ALWAYS_FATAL("Properties needs exactly %d bytes, a byte array of size %d is provided", propertyDataSize, length); return false; } PrimitiveFields* out = reinterpret_cast<PrimitiveFields*>(outProperties); *out = mPrimitiveFields; return true; } void FullPath::FullPathProperties::setColorPropertyValue(int propertyId, int32_t value) { Property currentProperty = static_cast<Property>(propertyId); if (currentProperty == Property::strokeColor) { setStrokeColor(value); } else if (currentProperty == Property::fillColor) { setFillColor(value); } else { LOG_ALWAYS_FATAL( "Error setting color property on FullPath: No valid property" " with id: %d", propertyId); } } void FullPath::FullPathProperties::setPropertyValue(int propertyId, float value) { Property property = static_cast<Property>(propertyId); switch (property) { case Property::strokeWidth: setStrokeWidth(value); break; case Property::strokeAlpha: setStrokeAlpha(value); break; case Property::fillAlpha: setFillAlpha(value); break; case Property::trimPathStart: setTrimPathStart(value); break; case Property::trimPathEnd: setTrimPathEnd(value); break; case Property::trimPathOffset: setTrimPathOffset(value); break; default: LOG_ALWAYS_FATAL("Invalid property id: %d for animation", propertyId); break; } } void ClipPath::draw(SkCanvas* outCanvas, bool useStagingData) { SkPath tempStagingPath; outCanvas->clipPath(getUpdatedPath(useStagingData, &tempStagingPath)); } Group::Group(const Group& group) : Node(group) { mStagingProperties.syncProperties(group.mStagingProperties); } void Group::draw(SkCanvas* outCanvas, bool useStagingData) { // Save the current clip and matrix information, which is local to this group. SkAutoCanvasRestore saver(outCanvas, true); // apply the current group's matrix to the canvas SkMatrix stackedMatrix; const GroupProperties& prop = useStagingData ? mStagingProperties : mProperties; getLocalMatrix(&stackedMatrix, prop); outCanvas->concat(stackedMatrix); // Draw the group tree in the same order as the XML file. for (auto& child : mChildren) { child->draw(outCanvas, useStagingData); } // Restore the previous clip and matrix information. } void Group::dump() { ALOGD("Group %s has %zu children: ", mName.c_str(), mChildren.size()); ALOGD("Group translateX, Y : %f, %f, scaleX, Y: %f, %f", mProperties.getTranslateX(), mProperties.getTranslateY(), mProperties.getScaleX(), mProperties.getScaleY()); for (size_t i = 0; i < mChildren.size(); i++) { mChildren[i]->dump(); } } void Group::syncProperties() { // Copy over the dirty staging properties if (mStagingPropertiesDirty) { mProperties.syncProperties(mStagingProperties); } else { mStagingProperties.syncProperties(mProperties); } mStagingPropertiesDirty = false; for (auto& child : mChildren) { child->syncProperties(); } } void Group::getLocalMatrix(SkMatrix* outMatrix, const GroupProperties& properties) { outMatrix->reset(); // TODO: use rotate(mRotate, mPivotX, mPivotY) and scale with pivot point, instead of // translating to pivot for rotating and scaling, then translating back. outMatrix->postTranslate(-properties.getPivotX(), -properties.getPivotY()); outMatrix->postScale(properties.getScaleX(), properties.getScaleY()); outMatrix->postRotate(properties.getRotation(), 0, 0); outMatrix->postTranslate(properties.getTranslateX() + properties.getPivotX(), properties.getTranslateY() + properties.getPivotY()); } void Group::addChild(Node* child) { mChildren.emplace_back(child); if (mPropertyChangedListener != nullptr) { child->setPropertyChangedListener(mPropertyChangedListener); } } bool Group::GroupProperties::copyProperties(float* outProperties, int length) const { int propertyCount = static_cast<int>(Property::count); if (length != propertyCount) { LOG_ALWAYS_FATAL("Properties needs exactly %d bytes, a byte array of size %d is provided", propertyCount, length); return false; } PrimitiveFields* out = reinterpret_cast<PrimitiveFields*>(outProperties); *out = mPrimitiveFields; return true; } // TODO: Consider animating the properties as float pointers // Called on render thread float Group::GroupProperties::getPropertyValue(int propertyId) const { Property currentProperty = static_cast<Property>(propertyId); switch (currentProperty) { case Property::rotate: return getRotation(); case Property::pivotX: return getPivotX(); case Property::pivotY: return getPivotY(); case Property::scaleX: return getScaleX(); case Property::scaleY: return getScaleY(); case Property::translateX: return getTranslateX(); case Property::translateY: return getTranslateY(); default: LOG_ALWAYS_FATAL("Invalid property index: %d", propertyId); return 0; } } // Called on render thread void Group::GroupProperties::setPropertyValue(int propertyId, float value) { Property currentProperty = static_cast<Property>(propertyId); switch (currentProperty) { case Property::rotate: setRotation(value); break; case Property::pivotX: setPivotX(value); break; case Property::pivotY: setPivotY(value); break; case Property::scaleX: setScaleX(value); break; case Property::scaleY: setScaleY(value); break; case Property::translateX: setTranslateX(value); break; case Property::translateY: setTranslateY(value); break; default: LOG_ALWAYS_FATAL("Invalid property index: %d", propertyId); } } bool Group::isValidProperty(int propertyId) { return GroupProperties::isValidProperty(propertyId); } bool Group::GroupProperties::isValidProperty(int propertyId) { return propertyId >= 0 && propertyId < static_cast<int>(Property::count); } int Tree::draw(Canvas* outCanvas, SkColorFilter* colorFilter, const SkRect& bounds, bool needsMirroring, bool canReuseCache) { // The imageView can scale the canvas in different ways, in order to // avoid blurry scaling, we have to draw into a bitmap with exact pixel // size first. This bitmap size is determined by the bounds and the // canvas scale. SkMatrix canvasMatrix; outCanvas->getMatrix(&canvasMatrix); float canvasScaleX = 1.0f; float canvasScaleY = 1.0f; if (canvasMatrix.getSkewX() == 0 && canvasMatrix.getSkewY() == 0) { // Only use the scale value when there's no skew or rotation in the canvas matrix. // TODO: Add a cts test for drawing VD on a canvas with negative scaling factors. canvasScaleX = fabs(canvasMatrix.getScaleX()); canvasScaleY = fabs(canvasMatrix.getScaleY()); } int scaledWidth = (int)(bounds.width() * canvasScaleX); int scaledHeight = (int)(bounds.height() * canvasScaleY); scaledWidth = std::min(Tree::MAX_CACHED_BITMAP_SIZE, scaledWidth); scaledHeight = std::min(Tree::MAX_CACHED_BITMAP_SIZE, scaledHeight); if (scaledWidth <= 0 || scaledHeight <= 0) { return 0; } mStagingProperties.setScaledSize(scaledWidth, scaledHeight); int saveCount = outCanvas->save(SaveFlags::MatrixClip); outCanvas->translate(bounds.fLeft, bounds.fTop); // Handle RTL mirroring. if (needsMirroring) { outCanvas->translate(bounds.width(), 0); outCanvas->scale(-1.0f, 1.0f); } mStagingProperties.setColorFilter(colorFilter); // At this point, canvas has been translated to the right position. // And we use this bound for the destination rect for the drawBitmap, so // we offset to (0, 0); SkRect tmpBounds = bounds; tmpBounds.offsetTo(0, 0); mStagingProperties.setBounds(tmpBounds); outCanvas->drawVectorDrawable(this); outCanvas->restoreToCount(saveCount); return scaledWidth * scaledHeight; } void Tree::drawStaging(Canvas* outCanvas) { bool redrawNeeded = allocateBitmapIfNeeded(mStagingCache, mStagingProperties.getScaledWidth(), mStagingProperties.getScaledHeight()); // draw bitmap cache if (redrawNeeded || mStagingCache.dirty) { updateBitmapCache(*mStagingCache.bitmap, true); mStagingCache.dirty = false; } SkPaint paint; getPaintFor(&paint, mStagingProperties); outCanvas->drawBitmap(*mStagingCache.bitmap, 0, 0, mStagingCache.bitmap->width(), mStagingCache.bitmap->height(), mStagingProperties.getBounds().left(), mStagingProperties.getBounds().top(), mStagingProperties.getBounds().right(), mStagingProperties.getBounds().bottom(), &paint); } void Tree::getPaintFor(SkPaint* outPaint, const TreeProperties &prop) const { // HWUI always draws VD with bilinear filtering. outPaint->setFilterQuality(kLow_SkFilterQuality); if (prop.getColorFilter() != nullptr) { outPaint->setColorFilter(sk_ref_sp(prop.getColorFilter())); } outPaint->setAlpha(prop.getRootAlpha() * 255); } Bitmap& Tree::getBitmapUpdateIfDirty() { bool redrawNeeded = allocateBitmapIfNeeded(mCache, mProperties.getScaledWidth(), mProperties.getScaledHeight()); if (redrawNeeded || mCache.dirty) { updateBitmapCache(*mCache.bitmap, false); mCache.dirty = false; } return *mCache.bitmap; } void Tree::updateCache(sp<skiapipeline::VectorDrawableAtlas>& atlas, GrContext* context) { SkRect dst; sk_sp<SkSurface> surface = mCache.getSurface(&dst); bool canReuseSurface = surface && dst.width() >= mProperties.getScaledWidth() && dst.height() >= mProperties.getScaledHeight(); if (!canReuseSurface) { int scaledWidth = SkScalarCeilToInt(mProperties.getScaledWidth()); int scaledHeight = SkScalarCeilToInt(mProperties.getScaledHeight()); auto atlasEntry = atlas->requestNewEntry(scaledWidth, scaledHeight, context); if (INVALID_ATLAS_KEY != atlasEntry.key) { dst = atlasEntry.rect; surface = atlasEntry.surface; mCache.setAtlas(atlas, atlasEntry.key); } else { // don't draw, if we failed to allocate an offscreen buffer mCache.clear(); surface.reset(); } } if (!canReuseSurface || mCache.dirty) { if (surface) { Bitmap& bitmap = getBitmapUpdateIfDirty(); SkBitmap skiaBitmap; bitmap.getSkBitmap(&skiaBitmap); surface->writePixels(skiaBitmap, dst.fLeft, dst.fTop); } mCache.dirty = false; } } void Tree::Cache::setAtlas(sp<skiapipeline::VectorDrawableAtlas> newAtlas, skiapipeline::AtlasKey newAtlasKey) { LOG_ALWAYS_FATAL_IF(newAtlasKey == INVALID_ATLAS_KEY); clear(); mAtlas = newAtlas; mAtlasKey = newAtlasKey; } sk_sp<SkSurface> Tree::Cache::getSurface(SkRect* bounds) { sk_sp<SkSurface> surface; sp<skiapipeline::VectorDrawableAtlas> atlas = mAtlas.promote(); if (atlas.get() && mAtlasKey != INVALID_ATLAS_KEY) { auto atlasEntry = atlas->getEntry(mAtlasKey); *bounds = atlasEntry.rect; surface = atlasEntry.surface; mAtlasKey = atlasEntry.key; } return surface; } void Tree::Cache::clear() { sp<skiapipeline::VectorDrawableAtlas> lockAtlas = mAtlas.promote(); if (lockAtlas.get()) { lockAtlas->releaseEntry(mAtlasKey); } mAtlas = nullptr; mAtlasKey = INVALID_ATLAS_KEY; } void Tree::draw(SkCanvas* canvas, const SkRect& bounds, const SkPaint& inPaint) { if (canvas->quickReject(bounds)) { // The RenderNode is on screen, but the AVD is not. return; } // Update the paint for any animatable properties SkPaint paint = inPaint; paint.setAlpha(mProperties.getRootAlpha() * 255); if (canvas->getGrContext() == nullptr) { // Recording to picture, don't use the SkSurface which won't work off of renderthread. Bitmap& bitmap = getBitmapUpdateIfDirty(); SkBitmap skiaBitmap; bitmap.getSkBitmap(&skiaBitmap); int scaledWidth = SkScalarCeilToInt(mProperties.getScaledWidth()); int scaledHeight = SkScalarCeilToInt(mProperties.getScaledHeight()); canvas->drawBitmapRect(skiaBitmap, SkRect::MakeWH(scaledWidth, scaledHeight), bounds, &paint, SkCanvas::kFast_SrcRectConstraint); return; } SkRect src; sk_sp<SkSurface> vdSurface = mCache.getSurface(&src); if (vdSurface) { canvas->drawImageRect(vdSurface->makeImageSnapshot().get(), src, bounds, &paint, SkCanvas::kFast_SrcRectConstraint); } else { // Handle the case when VectorDrawableAtlas has been destroyed, because of memory pressure. // We render the VD into a temporary standalone buffer and mark the frame as dirty. Next // frame will be cached into the atlas. Bitmap& bitmap = getBitmapUpdateIfDirty(); SkBitmap skiaBitmap; bitmap.getSkBitmap(&skiaBitmap); int scaledWidth = SkScalarCeilToInt(mProperties.getScaledWidth()); int scaledHeight = SkScalarCeilToInt(mProperties.getScaledHeight()); canvas->drawBitmapRect(skiaBitmap, SkRect::MakeWH(scaledWidth, scaledHeight), bounds, &paint, SkCanvas::kFast_SrcRectConstraint); mCache.clear(); markDirty(); } } void Tree::updateBitmapCache(Bitmap& bitmap, bool useStagingData) { SkBitmap outCache; bitmap.getSkBitmap(&outCache); int cacheWidth = outCache.width(); int cacheHeight = outCache.height(); ATRACE_FORMAT("VectorDrawable repaint %dx%d", cacheWidth, cacheHeight); outCache.eraseColor(SK_ColorTRANSPARENT); SkCanvas outCanvas(outCache); float viewportWidth = useStagingData ? mStagingProperties.getViewportWidth() : mProperties.getViewportWidth(); float viewportHeight = useStagingData ? mStagingProperties.getViewportHeight() : mProperties.getViewportHeight(); float scaleX = cacheWidth / viewportWidth; float scaleY = cacheHeight / viewportHeight; outCanvas.scale(scaleX, scaleY); mRootNode->draw(&outCanvas, useStagingData); } bool Tree::allocateBitmapIfNeeded(Cache& cache, int width, int height) { if (!canReuseBitmap(cache.bitmap.get(), width, height)) { SkImageInfo info = SkImageInfo::MakeN32(width, height, kPremul_SkAlphaType); cache.bitmap = Bitmap::allocateHeapBitmap(info); return true; } return false; } bool Tree::canReuseBitmap(Bitmap* bitmap, int width, int height) { return bitmap && width <= bitmap->width() && height <= bitmap->height(); } void Tree::onPropertyChanged(TreeProperties* prop) { if (prop == &mStagingProperties) { mStagingCache.dirty = true; } else { mCache.dirty = true; } } class MinMaxAverage { public: void add(float sample) { if (mCount == 0) { mMin = sample; mMax = sample; } else { mMin = std::min(mMin, sample); mMax = std::max(mMax, sample); } mTotal += sample; mCount++; } float average() { return mTotal / mCount; } float min() { return mMin; } float max() { return mMax; } float delta() { return mMax - mMin; } private: float mMin = 0.0f; float mMax = 0.0f; float mTotal = 0.0f; int mCount = 0; }; BitmapPalette Tree::computePalette() { // TODO Cache this and share the code with Bitmap.cpp ATRACE_CALL(); // TODO: This calculation of converting to HSV & tracking min/max is probably overkill // Experiment with something simpler since we just want to figure out if it's "color-ful" // and then the average perceptual lightness. MinMaxAverage hue, saturation, value; int sampledCount = 0; // Sample a grid of 100 pixels to get an overall estimation of the colors in play mRootNode->forEachFillColor([&](SkColor color) { if (SkColorGetA(color) < 75) { return; } sampledCount++; float hsv[3]; SkColorToHSV(color, hsv); hue.add(hsv[0]); saturation.add(hsv[1]); value.add(hsv[2]); }); if (sampledCount == 0) { ALOGV("VectorDrawable is mostly translucent"); return BitmapPalette::Unknown; } ALOGV("samples = %d, hue [min = %f, max = %f, avg = %f]; saturation [min = %f, max = %f, avg = " "%f]; value [min = %f, max = %f, avg = %f]", sampledCount, hue.min(), hue.max(), hue.average(), saturation.min(), saturation.max(), saturation.average(), value.min(), value.max(), value.average()); if (hue.delta() <= 20 && saturation.delta() <= .1f) { if (value.average() >= .5f) { return BitmapPalette::Light; } else { return BitmapPalette::Dark; } } return BitmapPalette::Unknown; } } // namespace VectorDrawable } // namespace uirenderer } // namespace android